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ABSTRACT. The concept of the maximal contact is the key in Hironaka’s res-
olution theory. It treats local theory, and it is not effective in positive char-
acteristics. This is the essential reason why Hironaka’s theory treats only the
case of characteristic zero.

In this article we propose the substitute for the maximal contact, which is
effective in any characteristics of the ground field. We replace the maximal
contact by a theorem in the theory of torus embeddings.

Using essential ideas here, we would like to establish the theory of resolution
of singularities in arbitrary characteristics in a global sense in the forthcoming
articles.

1. INTRODUCTION

The concept of the maximal contact is the key in Hironaka’s resolution the-
ory. (Hironaka [15], [14], [12](II, Chapter III, sections 7-10), Giraud [I0], [9],
Hauser [I1].) It treats local theory, and it is not effective in positive character-
istics. This is the essential reason why Hironaka’s theory treats only the case of
characteristic zero. The maximal contact is closely related to the multiplicity of a
hypersurface singularity and the Hilbert-Samuel function of a general singularity.

In this article we propose the substitute for the multiplicity and the maximal
contact, which is effective in any characteristics of the ground field. We replace
the multiplicity by the degree of the Weierstrass polynomial, or, the height of the
Newton polyhedron, and we replace the maximal contact by a theorem in the theory
of torus embeddings (Kempf et al. [19], Fulton [8]).

The idea of the degree of the Weierstrass polynomial can be found in Hiron-
aka [13] in low dimensional cases. However, he did not manipulate higher dimen-
sional cases, because he did not apply the theory of torus embeddings. See also
Cossart et al. [7].

Some ideas in this article are inspired by the appendix of Abhyankar [2] and
Bogomolov [5].

Let k be any algebraically closed field in any characteristics; let n be any positive
integer, let z,2(1),2(2),...,2(n) be (n+ 1) of variables over k; let A denote the
ring of formal power series of variables z, z(1),z(2), ..., z(n) with coefficients in k.
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By A’ we denote the k-subalgebra of A consisting of power series of n of variables
x(1),2(2),...,z(n). The unique maximal ideal of A (respectively, A’) is denoted
by M(A) (respectively, M(A’)). The set of invertible elements of A (respectively,
A’) is denoted by A* (respectively, A’*). We have A = M(A)UA*, M(A)NA* =
0,A = M(AYU A MA)YNA* =0, M(A) € Spec(4), M(A") € Spec(A’),
M (A) is the unique closed point of the affine scheme Spec(A), and M(A’) is the
unique closed point of the affine scheme Spec(A’). Let Zy and Z; denote the
set of non-negative integers and the set of positive integers respectively, and let
P ={zz(1),2(2),...,2(n)}. Note that P is a parameter system of A and P—{z} =
{z(1),2(2),...,2(n)} is a parameter system of A’. For any ¢ € A with ¢ # 0 by
T4 (P, ¢) we denote the Newton polyhedron of ¢ over P.

Any element ¢ € A satisfying ¢ = 2" + Z?;()l ¢'(i)z" for some h € Zg and some
mapping ¢’ : {0,1,...,h — 1} = M(A’) is called a z- Weierstrass polynomial over
P, and the non-negative integer h is called the degree of ¢.

We counsider any ¢ € A with ¢ # 0. The Newton polyhedron I'} (P, ¢) is of
z-Weierstrass type, if and only if, there exist uniquely u € A* a € Zg,h € Zo,
a mapping b : {1,2,...,n} — Zo and a mapping ¢’ : {0,1,....,h — 1} — M(4")
satisfying ¢ = w2 [[I_, 2(i)?@ (2" + "7 ¢/ (i)2%) and ¢/(0) # 0 if b > 1. If
T4 (P, ¢) is of z-Weierstrass type, and if moreover, any compact face F of 'y (P, ¢)
satisfies dim F' < 1, then we say that ' (P, ¢) is z-simple. See Section [ for the
definition of z-simpleness. In case where 'y (P, ¢) is of z-Weierstrass type and
h > 1, any face of ' (P, ¢) satisfying a certain condition is called a z-removable
face. See Section [2] also for the definition of z-removable faces.

Let R be any complete regular local ring, and let ¢ € R. We consider a parameter
system @ of R. We say that ¢ has normal crossings over @, if ¢ = uHmEQ A @)
for some invertible element u € R and some mapping A : Q — Zy. We say that ¢
has normal crossings, if ¢ has normal crossings over ) for some parameter system
Q of R.

Furthermore, we denote

PW(1) ={p € Alp=u [ (z+x)* ™ []=()"®

XEX
for some u € A, some r € Zg, some finite subset X of M (A4’),

some mapping a : X — Z,, and some mapping b:{1,2,...,n} — Zg.}

For any h € Z, with h > 2 we denote

h—1
W(h)={seAp=2"+3 ¢(0)
i=0
for some mapping ¢’ : {0,1,...,h — 1} — M(A’) satisfying

h—1
X"+ Z #'(i)x" # 0 for any x € M(A').},
i=0

PW (h) ={¢ € Al¢ = ¢ for some ¥ € W (h) and some ¢’ € PW(1).},
SW(h) ={¢ € Alp = ¢’ for some ¢p € W (h) and some ¢’ € PW (1),
'+ (P,v) has no z-removable faces, and ' (P, ¢) is z-simple.}.
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Note that A is a unique factorization domain (Matsumura [20].), 1 € PW (1) # 0,
A = {0} UUpez, PW(h) if n = 1, and T'y (P, ¢) is z-simple for any ¢ € A with
¢ # 0if n = 1. We consider any integer h with h > 2. 0§ £ W(h) C PW(h) Z 0,
0 #SW(h) C PW(h). For any ¢ € W (h), the Newton polyhedron I'; (P, 1) is of
z-Weierstrass type, and the integer h is equal to the z-height of I'y (P, ). For any
¢ € PW(h), the Newton polyhedron I'; (P, ¢) is of z-Weierstrass type, and there
exist uniquely ¥ € W(h) and ¢’ € PW (1) with ¢ = ¢'.

Our main theorem, Theorem E.] in this article claims the following: For any
integer h with h > 2 and for any ¢ € SW(h), there exists a composition o : ¥ —
Spec(A) of finite blowing-ups with centers in closed irreducible smooth subschemes
of codimension two such that at any closed point a € ¥ with o(a) = M(A) the
following holds: Let Of, , denote the completion of the local ring Ox, o of X at .
Note that the morphism o induces a homomorphism of k-algebras o* : A — 0% o
and Of, , and A are isomorphic as k-algebras. We claim that there exists an
isomorphism p : Of , — A of k-algebras such that po* (¢) € PW(g) for some
g € Z4 with g < h.

Since g < h, we can claim that any hypersurface singularity can be improved by
a composition of finite blowing-ups.

Remark . We do not claim that the centers of blowing-ups are contained in the
singular locus of the subscheme to be resolved. It may be possible to improve our
main theorems and to add stataments claiming that any centers of blowing-ups are
contained in the singular locus of the subscheme to be resolved.

We would like to show that for any ¢ € A with ¢ # 0, there exists a composition
o : ¥ — Spec(A) of finite blowing-ups with centers in closed irreducible smooth
subschemes such that at any closed point a € ¥ with o(a)) = M(A) the element
o*(¢) € 0%, , has normal crossings.

Note here that dimA’ = dimA — 1 < dimA = n + 1, and any ¢’ € A’ with
¢’ # 0 has normal crossings over P — {z} if n = 1. Therefore, we decide that we
use induction on n, and we can assume the following claim (x):

(x) For any ¢’ € A’ with ¢’ # 0, there exists a composition ¢’ : 3/ — Spec(A’)
of finite blowing-ups with centers in closed irreducible smooth subschemes
such that at any closed point o/ € ¥/ with o'(¢/) = M(A’) the element
o™ (¢') € 0%, has normal crossings.

Let ¢/ : ¥ — Spec(A’) be any composition of finite blowing-ups with centers
in closed irreducible smooth subschemes. We consider a morphism Spec(4) —
Spec(A4’) induced by the inclusion ring homomorphism A’ — A, the product scheme
¥ = ¥’ Xgpee(ar) Spec(A), the projection o : ¥ — Spec(4), and the projection
m: X — Y. We know the following (See Lemma [B5]):

(1) The morphism ¢ is a composition of finite blowing-ups with centers in closed

irreducible smooth subschemes.

(2) The pull-back o*Spec(A/zA) of the smooth prime divisor Spec(A/zA)

of Spec(A) by o is a smooth prime divisor of ¥, and o*Spec(4/z4) D
o~ (M(A)).

(3) The projection 7 : ¥ — ¥/ induces an isomorphism o*Spec(A/zA) — X'.
Furthermore, we show the following three claims, assuming the above (x):
First, for any intger h with h > 2 and for any ¢ € PW(h), there exists a com-

position ¢’ : ¥/ — Spec(A’) of finite blowing-ups with centers in closed irreducible
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smooth subschemes such that considering the product scheme ¥ = ¥ Xgpec(ar)
Spec(A4), the projection o : X — Spec(A) and the projection 7 : ¥ — ¥, at any
closed point a € ¥ with o(a) = M (A) there exists an isomorphism p : O, , — A of
k-algebras such that po*(z) = z, pr*(0%, ) = A’ and either po™(¢) € SW(h)
or po*(¢) € PW(g) for some positive integer g € Z; with g < h. (Theorem
and Theorem [£4])

Second, for any ¢ € A with ¢ # 0, there exists a composition ¢’ : ¥/ — Spec(A’)
of finite blowing-ups with centers in closed irreducible smooth subschemes such
that considering the product scheme ¥ = ¥’ Xgpec(ary Spec(A), the projection
o : X — Spec(A) and the projection 7 : ¥ — 3, at any closed point a € X
with o(a) = M(A) there exists an isomorphism p : O, , — A of k-algebras such
that po*(z) = z, pn* (0%, (o)) = A’ and po*(¢) € PW(h) for some h € Z,.
(Theorem [£.H])

Third, for any ¢ € PW(1), there exists a composition o : ¥ — Spec(A) of finite
blowing-ups with centers in closed irreducible smooth subschemes such that at any
closed point @ € X with o(a) = M(A) the element o*(¢) € O, , has normal
crossings. (Theorem [.6])

Now, we would like to establish the theory of resolution of singularities in arbi-
trary characteristics in a global sense. The problem is to glue up local blowing-ups
obtained by repeated application of the above four claims, and to construct a global
blowing-up. In case n = 1 it is easy to glue up them. We would like to solve this
problem in case n > 2 and would like to write forthcoming articles, cooperating
with Professor Heisuke Hironaka and young mathematicians.

We give proofs only to difficult parts of our claims. Most of our claims follow
from definitions.
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2. NOTATIONS AND BASIC CONCEPTS

We arrange notations and basic concepts related to Newton polyhedrons and
commutative rings.

We denote

Zo = {t € Z|t > 0}, Zy = {t € Z|t > 0},
Qo ={teQt=0}, Qy={teQlt>0},
Ry = {t e R|t > 0}, R = {t e R|t > 0}.

For any set Z and any scheme X, by idz and ids; we denote the identity mapping
Z — Z and the identity morphism > — ¥ of schemes respectively. For any set Z,
the set of all subsets of Z is denoted by 27.

Let Z be a set, and let X and Y be subsets of Z. The union X UY and the
intersection X NY are defined. They are subsets of Z. The set of elements of X
not belonging to Y is denoted by X — Y, and is called the difference of X and Y.
X-Y={2€ZzeX,z2¢Y}.

Below assume that Z is an abelian group.

We consider any r € Zy and any mapping z : {1,2,...r} — Z. For any s €
{0,1,...,r} we define inductively

. 0 if s =0,
Z‘T(l) = s—1 . if 0
= Yoy x(i)+x(s) ifs#0.
Note that >0, z(i) € Z, Yi_,z(i) =0if r =0, and >;_, (i) = >\, z(v(i))
for any bijective mapping v : {1,2,...r} — {1,2,... r}.

We consider any finite set J and any mapping = : J — Z. Let r € Zg be the

number of elements in J. Choosing a bijective mapping v : {1,2,...r} — J, we
define

> o) =) w(w(i).

jeJ i=1

Note that > .. ;2(j) € Z and 3, ;2(j) does not depend on the choice of the
bijective mapping v : {1,2,...r} — J we used for the definition. If J = (), then
ZjeJ z(j) = 0.
We call 3, ; 2(j) the sum of 2(j),j € J.
We consider any finite set J and any mapping X from J to the set 2% of all
subsets of Z. We define
ZX(j) ={zeZlz= Zx(]) for some mapping x : J — Z satisfying
jeJ jeJ
z(j) € X(j) for any j € J} C 22.
Note that »- . ; X(j) isasubset of Z, 3-.; X (j) = {0}if J =0,and >°.; X(j) =
0, if and only if, J # () and X (j) = @ for some j € J.
We call 3, ; X(j) the sum of X(j),j € J.

For any r € Z and for any mapping X from {1,2,... r} to the set of all subsets
of Z we also write

XM+ XQ)+-+X(r)= > X()
je{1,2,...r}

For any subset X of Z, we denote —X = {z € Z|z = —x for some z € X}.



6 TOHSUKE URABE

Let X and Y be any sets. The set of mappings from X to Y is denoted by
map(X,Y). The set map(X,Y’) has a natural structure of an abelian group, if Y’
is an abelian group. It has a natural structure of an abelian semigroup, if Y is
an abelian semigroup. It has a natural structure of a vector space over R, if Y
is a vector space over R. In addition, let Z be a set containing Y. Note that the
inclusion mapping Y — Z induces the inclusion mapping map(X,Y) — map(X, Z),
and we can regard map(X,Y’) as a subset of map(X, Z). If Z is an abelian group
and Y is a subgroup of Z, then map(X,Y’) is a subgroup of map(X, Z). If Z is an
abelian semigroup and Y is a semisubgroup of Z, then map(X,Y’) is a semisubgroup
of map(X,Z). If Z is a vector space over R and Y is a vector subspace of Z over
R, then map(X,Y’) is a vector subspace of map(X, Z) over R.

Let X be any set; let Z be any abelian group, and let Y be any subset of Z with
0 €Y. For any a € map(X,Y) we denote

supp(a) = {z € X|a(x) # 0},
and we call supp(a) the support of a. It is a subset of X. We denote
map’(X,Y) = {a € map(X,Y)|supp(a) is a finite set.}.

map’'(X,Y) C map(X,Y). If Y is a subgroup of Z, then map’(X,Y) is a subgroup
of map(X,Y). If Y is a semisubgroup of Z, then map’(X,Y) is a semisubgroup of
map(X,Y). If Z is a vector space over R and Y is a vector subspace of Z over R,
then map’(X,Y") is a vector subspace of map(X,Y’) over R. If X is a finite set, we
have map’(X,Y) = map(X,Y).

In the case where Y is a semisubgroup of Z containing 0, for any a € map’(X,Y)

we denote
Z a(z) = Z a(z) €Y.
rcX z€supp(a)

We call }°__ y a(x) the sum of a(z),z € X.

Let V' be any finite dimensional vector space over R, and let X be any subset of
V. The subset X is called convez, if X # () and for any two different points x,y of
X, the segment {a € V|a = (1 — t)x + ty for some t € R with 0 < ¢ < 1} joining
z and y is contained in X. It is called an affine space, if X # () and for any two
different points z,y of X, the line {a € V]a = (1 — t)x + ty € R for some ¢t € R}
joining = and y is contained in X. It is called a cone, if 0 € X and for any
x € X and any t € Ry, we have tx € X. It is called a convex cone, if 0 € X
and for any z,y € X and any t,u € Ro, we have tx + uy € X. It is called a
vector space over R, or simply a vector space, if 0 € X and for any z,y € X
and any t,u € R, we have tz + uy € X. It is called a vector space over Q, if
0 € X and for any =,y € X and any t,u € Q, we have tx +uy € X. It is called
closed, if the limit of any convergent sequences of elements in X with respect to the
natural Hausdorff topology of V belongs to X again. In case X # () the minimum
convex subset (respectively, minimum affine space) with respect to the inclusion
relation containing X is denoted by conv(X) (respectively, affi(X)). We define
conv(f)) = affi(@) = . The minimum cone (respectively, minimum convex cone,
minimum vector space over R, minimum vector space over QQ, minimum closed
subset) with respect to the inclusion relation containing X is denoted by cone(X)
(respectively, convcone(X), vect(X ), Q-vect(X), clos(X)).

The subset X is called a convex polyhedron,(respectively, convex polyhedral cone),
if there exists a finite subset Y of V satisfying X = conv(Y) and Y # () (respectively,
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X = convcone(Y)). The subset X is called a convezr pseudo polyhedron, if there
exist finite subsets Y, Z of V satisfying X = conv(Y') + convcone(Z) and Y # ().
The subset X is called a lattice, if there exists a basis B of V over R such that
X ={a € Vl]a= 3,5 Ab)b for some A € map(B,Z)}. Any lattice N of V is a
free Z-submodule of V' with rankN = dimV. For any t € R we write tX = {a €
Vl]a = tx for some z € X}. We know (-1)X = —X, and 0X = {0} if X # (.
We write stab(X) = {a € V|X + {a} C X}, and call it the stabilizer of X in V.
The stabilizer of X in V is a semisubgroup of V' containing 0. In addition, we
consider any lattice IV in V. The subset X is called a simplicial cone over N, if
X = convcone(C) for some basis B of N over Z and a subset C of B. Any simplicial
cone is a convex polyhedral cone. Affine spaces, vector spaces, convex polyhedrons,
convex polyhedral cones, and convex pseudo polyhedrons are non-empty closed
convex subsets of V. If X is a cone (respectively, a convex cone), then clos(X) is
again a cone (respectively, a convex cone).

For any subset 7' of R and for any a € V we denote Ta = {b € V|b =
ta for some t € T}, and it is a subset of V.

The dual vector space V* = Homg(V,R) is a vector space over R with dim V* =
dim V. We define the canonical bilinear form

(, ViV*xV SR,

by putting (w,a) = w(a) € R for any w € Homg(V,R) = V* and any ¢ € V.
The dual vector space V** of V* is identified with V' by the natural isomorphism
V' — V** of vector spaces over R.

We consider any finite dimensional vector space W over R and any homomor-
phism 7 : V — W of vector spaces over R. Putting

7" (a) = ar € Homg(V,R) = V™,

for any @ € Homg(W,R) = W*, we define a mapping 7* : W* — V* and we call 7*
the dual homomorphism of w. The dual homomorphism 7* is a homomorphism of
vector spaces over R. For any w € W* and for any a € V the equality (7*(w),a) =
(w,m(a)) holds.

The dual homomorphism 7** of 7* is equal to 7.

If 7 is injective, then 7* is surjective. If 7 is surjective, then 7* is injective.

We have idj, = idy+, and for any finite dimensional vector spaces V', V" and for
any homomorphisms 7 : V — V' 7’ : V/ = V" we have (n'm)* = 7*n'*.

Let N be a lattice in V. We denote

N* ={w € V*|{w,a) € Z for any a € N},

and call N* the dual lattice of N. Indeed, N* is a lattice in V*. The dual lattice
N** of N* is equal to N. Let S be any convex cone in V. We denote

SYIV = {w € V*|{w,a) >0 for any a € S},

and call SV |V the dual cone of S over V. Indeed, SV |V is a closed convex cone in
V*. The dual cone SV|VV|V* of SV|V is equal to the closure clos(S) of S in V.
SY|IVVIV* = S if and only if S is closed in V. When we need not refer to V, we
also write simply SV, instead of SV|V.

The number of elements of a finite set P is denoted by §P. Let P be any non-
empty finite set. Note that map(P,R) is a finite dimensional vector space over R
with dimmap(P,R) = P, map(P,Z) is a lattice in map(P,R), map(P,Rp) is a
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simplicial cone over map(P,Z) in map(P,R) with vect(map(P,Ry)) = map(P,R),
and map(P,Zo) = map(P,Z) Nmap(P,Ry). Let z € P. Let y € P. Putting

1 ify==x
P _ )
ﬁﬂw—{oﬁy#%

we define an element f € map(P,Zy). Note that the subset {f7|x € P} of
map(P, Z) is an R-basis of map(X, R), it is a Z-basis of map(P, Z), and map(P, Ry)
= convcone({fF’|z € P}). The dual basis of {fF|z € P} is denoted by {fIV|x €
P}. For any z,y € P

pv )1 ifxz=y,

Indeed, {fFV|z € P} is a R-basis of the dual vector space map(P,R)* of map(P,R),
it is a Z-basis of the dual lattice map(P,Z)* of map(P,Z), and map(P,Ry)Y =
conveone({fI'V|z € P}).

A commutative ring with the identity element is called simply a ring. The
identity element and the zero element of a ring are denoted 1 and 0 respectively.
We assume that any ring homomorphism A preserves the identity elements, in other
words, the equality A\(1) = 1 holds.

Let R be any ring. We assume that for any R-module L and any element x € L,
the equality 1z = = holds. The equality 1 = 0 holds, if and only if, R = {0}. We
say that a subset S of R is a subring of R, if 1 € S, a—b € S for any a € S and
any b € S, and ab € S for any a € S and any b € S. We say that a subset I of R is
an ideal of R, if 0 € I, a—b € [ for any a € I and any b € I, and ab € I for any
a € I and any b € R. For any ideal I of R, 1 € [, if and only if, I = R. We say that
an ideal I of R is prime, if 1 ¢ I and ab ¢ I for any a € R— [ and any b € R — 1.
We say that an ideal I of R is mazimal, if 1 ¢ I and I = J for any ideal J of R
satisfying 1 € J and I C J. Any maximal ideal of R is a prime ideal of R. R has at
least one maximal ideal, if and only if, R has at least one prime ideal, if and only
if, 1 #£ 0. Let X be any subset of R and let S be any subring of R. The minimum
ideal of R with respect the inclusion relation containing X is denoted by X R or
RX. The minimum subring of R with respect to the inclusion relation containing
S and X is denoted by S[X]. In the case where X contains only one element z, we
also write simply =R, Rz, S[z], instead of {x}R, R{z}, S[{z}] respectively. We say
that R is noetherian, if for any ideal I of R, there exists a finite subset X of I with
I = XR. We say an element a € R is invertible, if there exists an element b € R
with ab = 1. The set of all invertible elements in R is denoted by R*. R* C R and
R* is an abelian group with respect the multiplication. We say that R is reduced, if
a =0 for any a € R and any i € Z, satisfying a’ = 0. We say that R is an integral
domain, if 1 # 0 and a = 0 or b =0 for any a € R and any b € R satisfying ab = 0.
We say that R is a field, if R is an integral domain and R* = R — {0}. Any ring
with a unique maximal ideal is called a local ring.

We consider any r € Zy and any mapping = : {1,2,...,7} — R. For any
s €40,1,...,r} we define inductively

oo 1 if s =0,
gw(z) B {(l_ﬁll z(i))z(s) if s #0.

1=
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Note that [];_, z(i) € R, [],_, z(i) = 1 if r = 0 and [[,_, z(i) = []\_, z(v(4)) for
any bijective mapping v : {1,2,...,7} — {1,2,...,7}.

We consider any finite set J and any mapping = : J — R. Let r € Zg be the
number of elements in J. Choosing a bijective mapping v : {1,2,...,r} — J, we
define

[120) =[] =) € k.

jeJ

Note that Hje] 2(j) does not depend on the choice of the bijective mapping v :
{1,2,...,7} = J we used for the definition. If J = 0, then [, z(j) = 1.

We call [[;c; z(j) the product of z(j),j € J.

Let R be any ring and let I be any ideal of R. There exist a ring S and a
surjective ring homomorphism \ : R — S such that I = A=1(0). When a pair (S, \)
satisfies this condition, we denote S by a symbol R/I, we call the ring R/I a residue
ring of R by I and we call A : R — R/I the canonical homomorphism. If T is a
ring, 4 : R — T is a ring homomorphism satisfying I € p~1(0) and A\ : R — R/I
is the canonical homomorphism, then there exists uniquely a ring homomorphism
v: R/I — T satisfying vA = p. The ideal I is prime, if and only if, the residue
ring R/I of R by I is an integral domain. The ideal I is maximal, if and only if,
the residue ring R/I of R by I is a field.

A ring R is an integral domain, if and only if, the subset {0} of R is a prime
ideal of R.

A ring R is a field, if and only if, the subset {0} of R is a maximal ideal of
R, if and only if, the subset {0} of R is a prime ideal of R and any ideal I of R
satisfies I = R or I = {0}. Any field is an integral domain, it is a local ring and it
is noetherian.

Let R be any integral domain. The ring R is reduced. There exist a field K and
an injective ring homomorphism A : R — K such that for any ¢ € K there exist
a € R— {0} and b € R satisfying A(a)c = A(b). When the pair (K, \) satisfies this
condition, we call K a quotient field of R and we call A : R — K the canonical
homomorphism. If L is a field, u : R — L is an injective ring homomorphism, K
is a quotient field of R and A : R — K the canonical homomorphism, then there
exists uniquely an injective ring homomorphism v : K — L satisfying v\ = p.

A ring R is local, if and only if, R — R* is an ideal of R.

Let R be any local ring. The unique maximal ideal of R is denoted by M (R).
We have R = R*UM(R),R* N M(R) =0 and 1 # 0. If R is noetherian, then the
Krull dimension dim R € Zg of R is defined. A local ring R is called regular, if R is
noetherian, and the dimension dim R of R is equal to the dimension of the residue
module M (R)/M (R)? as a vector space over the residue field R/M(R). It is known
that a regular local ring is a unique factorization domain. A finite subset P of a
regular local ring R is called a parameter system of R, if P C M(R), PR = M(R),
and P = dim R.

Let S be a ring. The pair (R, ) of a ring R and a ring homomorphism A :
S — R is called an algebra over S, or an S-algebra. Let (R,\) and (R’,\') be
algebras over S. A ring homomorphism g : R — R’ satisfying uA = X is called
a homomorphism over S, an S-homomorphism or a homomorphism of S-algebras.
A ring isomorphism p : R — R’ satisfying pA = X is called an isomorphism over
S, an S-isomorphism or an isomorphism of S-algebras. We say that S-algebras
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(R, ) and (R, \) are isomorphic as S-algebras, if there exists an isomorphism
w:R— R over S.

Consider S-algebras (S,idg) and (R, ). Note that if g : S — R is an isomor-
phism of S-algebras, then we have y = A.

To avoid complication, often we avoid mentioning a ring homomorphism A : S —
R explicitly for an algebra R over S. When S is a subring of R, we consider the
inclusion homomorphism S — R. When an ideal I of a ring R is given, we consider
the canonical surjective homomorphism R — R/I to the residue ring R/I and we
regard R/I as an R-algebra. If (R, \) is an S-algebra and (Q, k) is an R-algebra,
we consider the composition kA : S — @ and we regard ) as an S-algebra.

Let R be any noetherian ring and let I be any ideal of R. We assume either I
is contained in any maximal ideal of R, or R is an integral domain and I # R. We
call the projective limit ]'&ni€Z+ R/I' the completion of R with respect to I. It is a

ring containing R as a subring. On the completion of R we can define a Hausdorff
topology called an I-adic topology.

Let R be any noetherian local ring. We call the completion of R with respect to
M (R) simply the completion of R, and we denote it by R°. R® = ]gliem R/M(R)".
The ring R is a noetherian local ring, it contains R as a subring, M (R) = M (R°)N
R, M(R®) = M(R)R®, dim R® = dim R, the induced homomorphism R/M(R) —
R¢/M(R°) by the inclusion homomorphism R — R° is an isomorphism, R° is
faithfully flat over R, for any prime ideal p of R, there exists a prime ideal q of R¢
satisfying p = q N R, and R® = (R)°. If, moreover, R is regular, then R is also
regular, and any parameter system of R is a parameter system of R€.

We say that any noetherian local ring R is complete, if R = R°.

Consider any complete regular local rings S and S’ containing a field k as a
subring. Rings S and S’ are isomorphic as k-algebras, if and only if, dim S = dim S’
and residue fields S/M(S) and S’/M (S’) are isomorphic as k-algebras. Assume that
dim S = dim S’, p: S/M(S) — S’/M(S’) is an isomorphism of k-algabras, P is
a parameter system of S, P’ is a parameter system of S’ and 0 : P — P’ is a
bijective mapping. Then, there exists uniquely an isomorphism p : S — S’ of k-
algebras such that the morphism S/M(S) — S’/M(S") induced by p coincides with
p and p(z) = o(x) for any x € P.

See Matsumura [20].

Let k be any field. Let A be any complete regular local ring such that dim A > 1,
A contains k as a subring, and the residue field A/M(A) is isomorphic to k as
algebras over k. Let P be any parameter system of A. We have PA = M(A) D P
and P = dim A.

We fix the above notations k, A and P throughout this article.

Let ¢ be any element of A. Then, there exists a unique element
¢ € map(map(P, Zy), k) with

o= Z c(A) H @),
A€map(P,Zo) zeP
The infinite sum in the right-hand side is the limit with respect to the M (A)-adic
topology on A. We take the unique element ¢ € map(map(P,Zg), k) satisfying
the above equality. The element ¢ depends on ¢ and P. Let A € map(P,Z).
We call A the indez, HmerA(x) € A a monomial over P, c¢(A) € k a coefficient
of ¢, c(A)[Lep2™® € A a term of ¢, and >, p A(z) € Zo the degree of the
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index A, of the monomial ], %@, or of the term ¢(A) [],.p2™®). Note that
0 € map(P,Zg). We denote ¢(0) = ¢(0) and we call ¢(0) € k, the constant term of
¢. ¢ —p(0) € M(A). p(0) =0< ¢ € M(A). We denote

supp(P, ¢) = supp(c) = {A € map(P,Zo)|c(A) # 0},

and we call supp(P, ¢) the support of ¢ over P. It is a subset of map(P,Zy). Note
that ¢ = 0 < ¢ = 0 < supp(P, ¢) = 0.

Below, we consider the case ¢ # 0 for a while.

We say that ¢ has normal crossings over P, if ¢ = uHmEP‘TA(I) for some
A € map(P,Zy) and some invertible element u € A*. We say that ¢ has normal
crossings, if ¢ has normal crossings over @ for some parameter system @ of A.

We define

' (P, ¢) = conv(supp(P, ¢)) + map(P, Ro),

and call T (P, ¢) the Newton polyhedron of ¢ over P. By definition we have
'+ (P, ¢) C map(P,Ry) C map(P,R). We can show that there exists a non-empty
finite subset Y of supp(P, ¢) with Ty (P, ¢) = conv(Y') + map(P,Ry), and I'y (P, ¢)
is a convex pseudo polyhedron in map(P,R). (Lemma [0.12] Lemma [I0.13}) By
V(T4 (P, ¢)) we denote the union of all vertices (in other words, zero-dimensional
faces. See Definition for the definition of vertices and faces.) of I'y (P, ¢). By
definition we have

V(T (P, ¢)) = {a € T+(P,¢)| There exists w € map(P,Rg)" such that for any
be T (P,¢) with (w,b) = (w,a), we have b = a}.

We call V(I'y (P, ¢)) the skeleton of T (P, ¢). The set V(I'y (P, ¢)) is a non-empty
finite subset of supp(P, ¢), and 'y (P, ¢) = conv(V(I'+ (P, ¢))) + map(P,Ry). We
denote ¢(T'1 (P, ¢)) = V(T4 (P, ¢)) € Z, and we call ¢(T'; (P, ¢)) the characteristic
number of T (P, ¢).

We know that 'y (P, ¢) has only one vertex< ¢(I'+ (P, ¢)) = 1 < ¢ has normal
crossings over P, and that these equivalent conditions always hold, if dim A = 1.

Let w € map(P,Rg)¥ be any element. We know that {(w,a)|a € supp(P,¢)}
C Ry, the minimum element min{{w, a)|a € supp(P, ¢)} of {(w,a)|a € supp(P, ¢)}
exists, and min{(w, a)|a € supp(P, ¢)} = min{{w, a)|a € V(I'+(P, ¢))}. We define

ord(P,w, ¢) = min{(w,a)|a € supp(P, ¢)} € Ry,
supp(P,w, ¢) = {a € supp(P, ¢)|(w, a) = ord(P,w, ¢)} C supp(P, ¢),
in(Pwg)= Y  cd) ][ ea
A€supp(P,w,¢) zeP

We consider the case ¢ = 0. We introduce a symbol oo, satisfying the following
conditions: for any t € R, we have co > t,00 > t,00 # t,t < oo,t < oo,t #*
00,00+t =t + 00 = 00, and moreover oo + co = co. Let w € map(P,Ry)Y be any
element. We define

ord(P,w,0) = oo,
in(P,w,0) = 0.
Let w € map(P,Ry)Y be any element. In the general case including the case

of ¢ = 0, we have defined ord(P,w, ¢) € Ry U {oc} and in(P,w,¢) € A. We call
ord(P,w, ¢) € Ry U {oo} the order of ¢ over P with respect to w. By definition
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ord(P,w, ¢) = oo if and only if ¢ = 0. We call in(P,w, ¢) the initial sum of ¢ over
P with respect to w. By definition in(P,w, ¢) = 0 if and only if ¢ = 0.
Let F' be any subset of map(P,R). We denote

pS(P r ¢) _ ZAGsupp(P,¢)ﬁF C(A) HxGP xA(I) if Supp(P7 (b) nr 7& @7
T 0 if supp(P,¢) N F =0,

and we call ps(P, F, ¢) € A the partial sum of ¢ over P with respect to F.
Here we assume dim A > 2 for a while. Again, we assume ¢ # 0. In addition,

let z be any element of P.
Note that for any a € V(I'y (P, ¢)), we have (fFV, a) € Zo. We define

height(z, T4 (P, ¢))
=max{(f", a)la € V(T4 (P, ¢))} — min{(f", a)la € V(T'+ (P, ¢))} € Zo,

and we call height(z, T (P, ¢)) the height of Ty (P, ¢) with respect to z, or simply z-
height of T (P, ¢). It is a non-negative integer. By definition, height(z, T4 (P, ¢)) =
0 if and only if the value (ffV,a) does not depend on a € V(I'1 (P, )).

Let a € V(I'+(P,¢)). We say that {a} is a 2-top vertex of T (P, ¢), if (fI'V,a) =
max{(fFV b)|b € V(I'+ (P, ¢))}. We say that {a} is a z-bottom verter of T'y (P, ¢),
if (f,a) = min{(fI"V,b)|b € V(I'4(P, ¢))}.

Any element ¢ in A such that ¢ = 2" + E?;(Jl ¢'(i)z* for some h € Zg and some
mappng ¢’ : {0,1,...,h — 1} = M(A’) is called a z- Weierstrass polynomial over
P, and the integer h is called degree of ¢.

We say that 'y (P, @) is of z- Weierstrass type, if there exists a € T (P, ¢) satis-
fying the equality (fFV,a) = ord(P, fFV, ¢) for any z € P — {z}.

Let b = ord(P, ffV, ¢) € Zy and let h = height(z, T4 (P, ¢)) € Zo. Let A’ denote
the completion of k[P — {z}] with respect to the maximal ideal k[P — {z}] N M (A).
The ring A’ is a local subring of A and M(A") = M(A)N A" = (P — {z})A’. The
completion of A’[z] with respect to the prime ideal zA’[z] is isomorphic to A as
A’[z]-algebras. The set P — {z} is a parameter system of A’.

Under the assumption that T'y (P, ¢) is of z-Weierstrass type, by Weierstrass’
preparation theorem we know the following (Lemma [I0.138):

(1) height(z,I'+(P,¢)) = 0 & I'L (P, ¢) has only one vertex < ¢(I'y(P,¢)) =
1 & ¢ has normal crossings over P.
(2) The Newton polyhedron I' (P, ¢) has a unique z-top vertex.

Below, by {a1} we denote the unique z-top vertex of I'y (P, ¢).

(3) Consider any a € I'y (P, ¢). The equality (fIV, a) = ord(P, fI'V, ¢) holds
for any z € P— {2} & a—a; € Rofrl.

(4) (fP¥,a1) =b+h.

(5) There exist uniquely an invertible element u € A* and a mapping ¢’ :
{0,1,...,h — 1} — M(A’) satisfying

h—1
p=ust [ oG+ ¢(0)2),
zeP—{z} i=0
and ¢'(0) #0if h >0
Under the above notations we know that the following two conditions are equiv-
alent (Lemma [T0.1319):
(1) The Newton polyhedron I'y (P, ¢) is of z-Weierstrass type.
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(2) There exist uniquely an invertible element u € A*, a mapping ¢ : P — Zy,
a non-negative integer g € Zy and a mapping ¢’ : {0,1,...,9—1} = M(A’)
satisfying

g—1
(b - H xc(m)(zg + Z(b/(z)zz),
zeP i=0

and ¢’'(0) 0 if g > 0.

The concept of z-removable faces is very important.

Assume that T'y (P, ¢) is of z-Weierstrass type. Let b, h and A’ be the same as
above. By {a;} we denote the unique z-top vertex of I' (P, ¢). Assume moreover
that h > 0. Under these assumptions we can give the definition of z-removable
faces.

A subset F' of map(P,R) is a face of I'{(P,¢), if and only if, there exists
w € map(P,Ry)" such that F' = {a € T'4(P, ¢)|{w,a) = ord(P,w, ¢)}. Any face of
T4 (P, ¢) is a non-empty closed subset of I'1 (P, ¢), and is a convex pseudo polyhe-
dron. (See Definition [0.2])

Let F be a face of T' (P, ¢). We say that F' is z-removable, if a; € F and there
exist an invertible element u € A* and an element x € M (A’) satisfying x # 0 and

ps(P, F, ¢) = uz’ H :E<f5v’a1>(z +x)".
zeP—{z}

We would like to explain the relation betwen the concept of z-removable faces
and Hironaka’s maximal contact here. We assume that the field k£ has characteristic
zero, and consider any z-Weierstrass polynomial i) € A of positive degree. We take
the unique pair of a positive integer h and a mapping ¢’ : {0,1,...,h—1} = M(A")
satisfying the equality ¢ = 2" + 317 ¢/(i)2%. Let 2 = z + (¢'(h — 1)/h) € M(A)
and let P = {2} U (P — {z}). We know that P is a parameter system of A and
the Newton polyhedron T'} (I:’, 1) is of Z-Weierstrass type and has no Z-removable
faces. Now, we assume moreover that i) has multiplicity A, in other words, ¥ €
M(A)" — M(A)"*1. This condition is equivalent to that v’(i) € M(A")"~* for any
i€{0,1,...,h—1}. We know that the smooth subscheme Spec(A/ZA) of Spec(A)
is Hironaka’s maximal contact of the subscheme Spec(A/$A). (See Giraud [10].)

Note that we cannot define the element 2 = z + (¢/(h — 1)/h) € A, if the
characteristic of k is positive and the characteristic divides h.

The concept of z-simple is also very important.

We say that T'y (P, ¢) is z-simple, if T (P, ¢) is of z-Weierstrass type and any
compact face F' of T'y (P, ¢) satisfies dim F' < 1.

If dim A = 2, then always 'y (P, ¢) is z-simple. If T'; (P, ¢) is z-simple, then
T4 (P, ¢) is of z-Weierstrass type.

3. BASIC SCHEME THEORY

We develop the basic scheme theory. By k we denote any field.

Let ¥ be a scheme. Any pair (I',7) where T is a scheme and v : T' — ¥ is a
morphism of schemes is called a scheme over X, or a X-scheme, and ~y is called
the structure morphism of Y-scheme I'. Let (T',v) and (IV,7’) be X-schemes. A
morphism 7 : T' — TV of schemes satisfying ' = ~ is called a morphism over
3, a X-morphism or a morphism of X-schemes. An isomorphism 7 : I' — IV of
schemes satisfying v'7 = v is called an isomorphism over X, a Y-isomorphism or
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an isomorphism of ¥-schemes. We say that two X-schemes (I',7) and (I',~') are
isomorphic, if there exists an isomorphism 7: I" — IV over X.

In case where a ring R is given, we say that a scheme over R, an R-scheme,
a morphism over R, an R-morphism, a morphism of R-schemes, an isomorphism
over R, an R-isomorphism, an isomorphism of R-schemes, instead of, a scheme
over Spec(R), a Spec(R)-scheme, a morphism over Spec(R), a Spec(R)-morphism,
a morphism of Spec(R)-schemes, an isomorphism over Spec(R), a Spec(R)-iso-
morphism, an isomorphism of Spec(R)-schemes, respectively.

Let X be a scheme, and let & € ¥ be a point. For any open subset U of X
containing o we have the restriction homomorphism Os(U) — Osx o from the
ring of regular functions Ox(U) on U to the local ring Os o of ¥ at a. The
restriction homomorphisms define the canonical morphism Spec(Os o) — X of
schemes.

Let ¥ be an irreducible scheme. There exists a unique point a € ¥ such that
{a} is dense in 3. The unique point satisfying this condition is denoted by [X], and
we call [X] the generic point of ¥. If moreover, ¥ is irreducible and reduced, then
the local ring Oy, [s) of ¥ at [¥] is a field, and we call Oy ;s the function field of
3.

Let I' and ¥ be an irreducible schemes, v : I' — 3 a morphism of schemes. We
say that v is dominant, if the image v(I") is dense in 3. If v is dominant, then for any
non-empty open set V of I' and any non-empty open set U of ¥ with v(V)) C U the
homomorphism v* : Ox(U) — Or(V) is injective, and an injective homomorphism
7" : Og 5] — Or,r] between the local rings at the generic point is induced. We say
that ~ is birational, if it is dominant and the induced homomorphism v* : Og [z —
Or,r) is an isomorphism. For any a € ¥ the canonical morphism Spec(Os o) — X
is dominant and birational, since ¥ is irreducible.

A scheme over k which is separated, irreducible, reduced and of finite type over
k is called a variety over k, or k-variety. Any k-variety is a noetherian scheme.

Let ¥ be any k-scheme, and let a € ¥ be any point. Note that the structure
morphism defines an injective ring homomorphism & — Oys 4, and Osx , is a k-
algebra. The point a € ¥ is called k-valued, if the residue field Ox /M (Ox o) is
isomorphic to k as k-algebras. The set of all k-valued points on ¥ is denoted by
Y(k). £(k) C X, and the topology on ¥ defines the relative topology on X(k). For
any o € X(k) and any ¢ € Oy, we can define the value ¢(a) € k of a function ¢
at a point « belonging to k, and ¢ — ¢(a) € M(Ox o).

If the local ring Oy, o of a scheme ¥ at a point «a € ¥ is noetherian and regular,
then we say that X is smooth at a € ¥. We say that a scheme ¥ is smooth, if ¥ is
smooth at any point a € X.

Let X be any scheme, and let Z be any ideal sheaf in the structure sheaf Oy, in
other words, any sheaf of Ox-modules which is a subsheaf of Ox. The ideal sheaf 7
is called locally principal, if for any o € ¥ there exists ¢ € Oy, o such that ¢ is not
a zero-divisor of Oy, , and Z, = ¢Oy, ,, where Z,, denotes the stalk of 7 at a. Note
that for any scheme I' and for any morphism « : I' — ¥ of schemes, the pull-back
~v*Z of Z as an ideal sheaf is defined, and «*Z is a sheaf of Op-modules which is a
subsheaf of Or.

Grothendieck showed that there exists a scheme ¥’ and a morphism o : ¥/ — X
satisfying the following universal mapping property:

(1) The ideal sheaf ¢*Z is locally principal.



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 15

(2) If ' is a scheme, v : I' = X is a morphism, and the ideal sheaf v*Z is locally
principal, then there exists a unique morphism 7 : I' — ¥/ with o7 = ~.

By the universal mapping property we know that the pair (X', ) satisfying the
above conditions is unique up to isomorphism of schemes over . The pair (X', o)
satisfying the above conditions is called the blowing-up with center in an ideal sheaf
T, or the blowing-up with center in ®, where ® denotes the closed subscheme of 3
defined by the ideal sheaf Z. Note that any closed subscheme of ¥ has a unique
ideal sheaf in Oy, defining it. If Z is locally principal, then ¢ is an isomorphism.

Let (X',0) be the blowing-up with center in Z. By ® we denote the closed
subscheme of ¥ defined by the ideal sheaf Z. We call the inverse image o~ (®)
the exceptional divisor of 0. By Grothendieck’s description we know moreover the
following:

(1) The morphism o is surjective. The exceptional divisor of o is a subscheme
of ¥’ of codimension one defined by the locally principal ideal sheaf ¢*Z,
and the induced morphism o : ¥/ — 071(®) — X — ® is an isomorphism.

(2) If X is locally noetherian, then o is proper.

(3) If X is separated, then Y/ is also separated. If X is noetherian, then %' is
also noetherian.

(4) If ¥ is irreducible, then ¥’ is also irreducible and o is birational.

(5) If ¥ is a k-variety, then ¥’ is also a k-variety.

(6) If X and ® are smooth, then %' and o0~ (®) are also smooth. If ¥ and
® are smooth and irreducible, then ¥’ and o~!(®) are also smooth and
irreducible.

Let X be a separated irreducible noetherian smooth scheme with dim > > 1. We
denote
prm(X) = The set of non-empty closed irreducible reduced subschemes
of codimension one of X,
map’ (prm(X), Z) = {A € map(prm(X), Z)|supp(A) is a finite set.},
o = map’ (prm(X), Zo) = {A € map(prm(X), Zo)|supp(A) is a finite set.},

div(X)
div(X)
)

div(X)y = The union of the set of non-empty closed subschemes

of codimension one of ¥ and {the empty subscheme}.

We know that div(X) is a subgroup of map(prm(X), Z), and div(X)o is a semisub-
group of div(X) containing 0 and generating div(X). We call div(X) the divisor
group of ¥. Any element of div(X) is called a divisor of X, any element of div(X)g
is called an effective divisor of ¥, and any element of prm(X) is called a prime
divisor of 3. Let A be a divisor of £. Any element A € prm(X) with A(A) # 0 is
called a component of A. The set of all components of a divisor A is denoted by
comp(A), which is a finite set of prime divisors. For any A € prm(X) the integer
A(A) is called the multiplicity of A in A. The divisor A is effective, if and only
if, for any prime divisor A of ¥ the multiplicity A(A) of A in A is non-negative.
The union of all components of A is denoted by supp(A), and we call supp(A) the
support of A.

For any I' € div(X)[, the ideal sheaf in Oy defining T is locally principal. Con-
versely, for any locally principal ideal sheaf 7 in Oy, there exists a unique element
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I € div(X){, whose defining ideal sheaf is equal to Z. Thus, the set div(X); is iden-
tified with the set of locally principal ideal sheaves in Ox. The empty subscheme
in div(X); is identified with Os; itself.

We have a unique one-to-one correspondence @ : div(X), — div(X)o satisfying
the following conditions: Let I' € div(X). We write A = ®(T") € div(X)o. By Z we
denote the ideal sheaf in Oy defining I'. For any A € prm(X) by Ja we denote the
ideal sheaf in Oy, defining A. Then, we have Z =[], ccomp(a) jAA(A). IfT e div(X)
and A = ®(T") € div(X)o, then the set of irreducible reduced components of T" is
equal to comp(A), and T'yeq = supp(A), where I'yoq denotes the reduced subscheme
corresponding to I'. Using @ : div(X)j — div(X)e we identify div(X); and div(X)o.
The empty scheme is identified with 0.

Let T and X be separated irreducible noetherian smooth schemes with dimI" > 1
and dim¥ > 1, and let v : ' = ¥ be a dominant morphism. Since « is dominant,
we know that the pull-back v*Z of any locally principal ideal sheaf Z in Ox; by v is a
locally principal ideal sheaf in Or. Thus, we can define a semigroup homomorphism

v div(E)e — div(T)g

such that if A € div(X)o, and the ideal sheaf defining A is Z, then the ideal sheaf y*Z
defines v*A € div(T")g. We know v*0 = 0. We have a unique group homomorphism

v div(Z) — div(T),

extending v* : div(X)o — div(l")p. For any divisor A € div(X) the divisor v*A €
div(I") is called the pull-back of A by v. If A is effective, then v*A is also effective.

Let T and X be separated irreducible noetherian smooth schemes with dimI" > 1
and dim¥ > 1; and let v : ' — X be a surjective birational morphism, and let A
be any prime divisor of ¥. Since 7 is surjective and birational, we have a unique
component A’ of v*A with y(A’) = A. This unique component A’ is called the strict
transform of A by . The multiplicity of A’ in 7*A is always equal to one.

Let X be a separated irreducible noethrian smooth scheme with dim > > 1; let
A be an effective divisor of X; and let o € ¥ be a point. Since X is irreducible, the
canonical morphism Spec(Oyx o) — ¥ is dominant. The inclusion homomorphism
from Os o to its completion 0%, , is faithfully flat, and the induced morphism
Spec(0%, ,) — Spec(Ox,q) of affine schemes is surjective. Their composition ¢ :
Spec(0%, ,) — ¥ is defined, it is dominant, and the pull-back 6*A of A by this
composition morphism ¢ is defined. We say that A has normal crossings at o € 3,
if there exist a parameter system P of the completion 0%, , of the local ring Os o
of ¥ at «, and an element A € map(P,Zy) such that

0*A = Spec(0% ./ [ [ +* 05 ).
zeP

We say that A has normal crossings or A is a normal crossing divisor, if it has
normal crossings at any point of X.

Here we give the definition of the concept of normal crossing schemes over an
algebraically closed field and introduce some notations associated with it. We
assume that the field k is algebraically closed below in this section.

A pair

(2,4),

satisfying the following five conditions is called a normal crossing scheme over k.
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(1) The first item ¥ is a separated irreducible noetherian smooth scheme over
k with dim¥ > 1 such that for any closed point o € ¥ the residue field
Os,o/M(0Os,o) is isomorphic to k as k-algebras.
(2) The second item A is a non-zero effective normal crossing divisor of X.
We use the following notations: The set of components of A is denoted by
comp(A). For any point o € ¥ we denote comp(A)(a) = {A € comp(A)|a € A},
and (A)g = {a € X|tcomp(A)(a) = dimX}. For any a € (A)y we write

U, Aa)=3%—( U A).
A€ecomp(A)—comp(A)(w)

We write simply U(«), instead of U(X, A, a), when we need not refer to the pair
(3, A).
(3) For any non-empty subset @ of comp(A) with (.o A # 0, the intersection
scheme Acq A is irreducible and smooth.
(4) For any non-empty subset @ of comp(A) with ﬂAeQA # (), there exists
a € (A)g such that @ C comp(A)(«).
(5) For any a € (A)g, U(w) is an affine open subset of X.

Let (X, A) be a normal crossing scheme over k. We call ¥ the support of (3, A).
For any « € (A)g, we consider a mapping

&a : comp(A)(a) = Os(U(w)).

Let o € (A)g. If &, satisfies the following two conditions, then we call &, the the
coordinate system of (X, A) at a:

(1) For any A € comp(A)(«) we have
ANU(a) = Spec(Os(U(a))/£a(A)Ox(U(a))).

(2) For any k-valued point 8 € U(a)(k), the set {{a(A)—Ea(A)(B)|A € comp(A)(a)}
is a parameter system of the local ring OU(Q)”@.

If &, is the coordinate system of (3, A) at « for any a € (A)g, then we call the
collection & = {&y|a € (A)o} the coordinate system of (X,A). For a coordinate
system £ of (X, A) we denote the element of £ corresponding to a € (A)g by &,.

A triplet (2, A, &) such that the pair (X,A) is a normal crossing scheme over
k and ¢ is the coordinate system of (X, A) is called a coordinated normal crossing
scheme over k.

Example 3.1. Let A be any complete regular local ring such that A contains k as a
subring, the residue field A/M(A) is isomorphic to k as k-algebras, and dim A > 1;
let P be any parameter system of A; and let A € map(P,Z.).

Note that M(A) € Spec(A) and M(A) is the unique closed point of Spec(A).
Let A = Spec(A/ [[,cp z*® A). The pair (Spec(A), A) is a normal crossing scheme
over k. We have (A)g = {M(A)}, comp(A) = comp(A)(M(A)) = {Spec(A/zA)|z €
P}, and U(Spec(A), A, M(A)) = Spec(A). For any x € P, we put {y7(4)(Spec(A/zA
)) = x. We obtain a mapping &ys(a) : comp(A)(M(A)) — Ogpec(a)(U(Spec(4), A,
M(A))). The mapping &pr(a) is a coordinate system of (Spec(A), A) at M(A), and
the triplet (Spec(A), A, {a(a)}) is a coordinated normal crossing scheme over k.

Note that P is algebraically independent over k. We consider the subring k[P)
of A. We denote My = k[P] N M(A). Note that My = Pk[P], My € Spec(k[P])
and My is a closed point of Spec(k[P]). Let A = Spec(k[P]/[[,cp 2@ k[P]). The
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pair (Spec(k[P]), A) is a normal crossing scheme over k. We have (A)y = {Mo},
comp(A) = comp(A)(My) = {Spec(k[P]/zk[P])|xz € P}, and U(Spec(k[P]), A,
My) = Spec(k[P]). For any z € P, we put &, (Spec(k[P]/zk[P])) = z. We

obtain a mapping n, : comp(A)(Mo) = Ogpeciiip)) (U(Spec(k[P]), A, Mo)). The

mapping {u, is a coordinate system of (Spec(k[P]),A) at Mo, and the triplet
(Spec(k[P]), A, {&n,}) is a coordinated normal crossing scheme over k.

The four lemmas below easily follow from definitions.

Lemma 3.2. Let (X,A) be a normal crossing scheme over k.
(1) The set comp(A) is non-empty and finite.
(2) For any non-empty subset Q of comp(A) with (yeqA # 0, Npeg A is a
closed irreducible smooth subscheme of 3, and dim ﬂAGQ A =dimX¥ — £Q.
(3) The set (A)g is a non-empty finite set of k-valued points of .
(4) For oo € (A)g and 8 € (A)g, comp(A)(a) = comp(A)(B), if and only if,
a=p.
(5)
= |J Ul
aE(A)o
(6) For any open set U of ¥ with 3(k) C U, we have U = X.
Let @ be any subset of comp(A) with §Q > 2 and ycqA # 0. We denote
P = ﬂAeQ A, and the blowing-up with center in ® by o : ¥ — X. Furthermore, by
©’ we denote the exceptional divisor of o, and by A" we denote the strict transform
of A € comp(A) by o for any A € comp(A).
(7) The pair (¥',0*A) is a normal crossing scheme over k.
(8) © € comp(c*A). comp(c*A)—{O'} = {A’|A € comp(A)}. fcomp(c*A) =
fcomp(A) + 1.
(9) For any A € comp(A) — Q, we have c*A = A’'. For any A € Q, we have
c*A=N+0.
(10) o((6"A)o) = (A)o-
(11) For any a € (A)g with a € ®, we have fo~1(a) N (6*A)g = 1, and the
unique element o' in o1 (a) N (0*A)g satisfies {a'} = Naccomp(aya A’
comp(a*A)(a’) = {A|A € comp(A)(a)}, and U(X',0*A, /) = o1 (U(Z, A,

a)).

If moreover, a mapping &, : comp(A)(a) = Os(U(X, A, @) is a coor-
dinate system of (X, A) at «, then there exists a unique coordinate system
&, comp(c*A) (o)) = Ox (U(E,0*A,d))) of (X/,0*A) at & satisfying
0 (€a(A)) = &L, (A) for any A € comp(A)(a), whereo* : Os(U(Z, A, a)) —
Os/ (U(X,0*A,a’)) denotes the ring homomorphism induced by o.

(12) For any o € (A)y with a € ®, we have fo~(a) N (6*A)y = tQ > 2,
and there exists a unique one-to-one mapping o : Q — o *(a) N (¢*A)g
such that for any E € Q we have {o/(E)} = ©' N Nxccomp(a)a)—=3 N
comp(c*A)(a/(B)) = {©'} U{A/|A € comp(A)(a) — {E}}, and
U, o*Ad(2) = H U, A ) — Z.

If moreover, a mapping &, : comp(A)(a) — Os(U(Z, A, a)) is a coor-
dinate system of (3X,A) at «, then for any E € Q, there exists a unique
coordinate system &,z : comp(c*A)(/(E)) = Ox (U(X',07A, o/ (2))) of
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(X', 0*A) at o/ (E) satisfying

&) (@) ifA=E,
0" (Ea(M) = { €10 (M) ) (©) i A€ Q—{E),
&) i A € comp(A)(a) - @,

for any A € comp(A)(a), where o* : Os(U(Z, A, a)) —
Os/ (U(X,0*A, 0/ (2))) denotes the ring homomorphism induced by o.

Let (3, A) be a normal crossing scheme over k.

We call a non-empty closed subscheme ® of ¥ such that there exists a non-empty
subset @ of comp(A) satisfying ® = (.o A a stratum of A. We call a blowing-up
whose center is a stratum of A an admissible blowing-up over A.

Let @ be any subset of comp(A) with §Q > 2 and (o A #0. Let 0: X' — %
denote the admissible blowing-up with center in ) A€Q A. We call the normal
crossing scheme (X', 0*A) over k the pull-back of (£,A) by 0. Let o € (6*A)gy be
any element, and let {5(4/) : comp(A)(a(a’)) = Os(U(X, A, 0(a’))) be a coordinate
system of (X,A) at o(c’). We have the coordinate system &/, : comp(A)(a/) —
Os/ (U(X,0*A,a’)) of (X',0*A) at o’ described in Lemma[32111 or Lemma[B:2112.
The coordinate system &, is called the transformed coordinate system of £,y at
o' by 0. Let £ = {&u]a € (A)p} be a coordinate system of (X, A). We denote

7€ = {€lsla’ € (" Ao},
and call 0*¢ the transformed coordinate system of € by o. Note that triplets (X, A, £)
and (X',0*A,0*¢) are coordinated normal crossing scheme over k. We call the
coordinated normal crossing scheme (X', 0*A, 0*¢) over k the pull-back of (X, A, €)
by o.

Let X’ be a scheme, and let o : ¥’ — ¥ be a morphism. We call ¢ an admissible
composition of blowing-ups over A, if there exist a non-negative integer m, (m+ 1)
of normal crossing schemes (X(i),A(7)),¢ € {0,1,...,m}, and m of morphisms
o(i) : X)) = X —1),7 € {1,2,...,m} satistying the following two conditions:

(1) £(0)=3,A0)=A,%(m) =% and 0 =o(1)c(2)---o(m).
(2) For any ¢ € {1,2,... m}, o(i) is an admissible blowing-up over A(i — 1)
and A(i) = o(i)*A®i — 1).
If moreover, for any i € {1,2,... m}, the center of (i) has codimension two, then
we call o an admissible composition of blowing-ups with centers of codimension two
over A.

Lemma 3.3. 1. Let (3, A) be a normal crossing scheme over k; let ¥/ be a scheme,
and let o : X' — X be an admissible composition of blowing-ups over A. Then, the
pair (X', 0*A) is a normal crossing scheme over k.

2. Let (3, A, ) be a coordinated normal crossing scheme over k; let ¥’ be a scheme,
and let o : ¥/ — X be an admissible composition of blowing-ups over A. Assume
that m € Zg, (m + 1) of normal crossing schemes (X(i), A(7)),i € {0,1,...,m},
and m of morphisms o(i) : £(i) — X(i — 1),5 € {1,2,...,m} satisfy the above
two conditions. We write 0*¢ = a(m)*o(m — 1)*---0(1)*¢. Then, the triplet
(X', 0*A,0*¢) is a coordinated normal crossing scheme over k, and the coordinate
system o*€ of (X', 0*A) does not depend on the choice of m € Zy, (m+1) of normal
crossing schemes (X(3), A(4)),i € {0,1,...,m}, and m of morphisms o (i) : (i) —
(i —1),i€{1,2,...,m} satisfying the two conditions.
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Let (X,A) be a normal crossing scheme over k; let ¥’ be a scheme, and let
o : ¥ — ¥ be an admissible composition of blowing-ups over A. We call the
normal crossing scheme (X', 0*A) over k the pull-back of (X, A) by o.

Let (2, A, €) be a coordinated normal crossing scheme over k; let 3 be a scheme,
and let o : ¥ — ¥ be an admissible composition of blowing-ups over A. Choosing
m € Zg, (m + 1) of normal crossing schemes (X(3), A(4)),7 € {0,1,...,m}, and
m of morphisms o (i) : £(i) — X(i — 1),¢ € {1,2,...,m} satisfying the above two
conditions, we define the coordinate system o*¢ of (¥',0*A) by putting o*¢ =
o(m)*a(m — 1)*---o(1)*¢. The coordinate system o*¢ does not depend on the
choice of m € Zgy, (m+1) of normal crossing schemes (X(7), A(¢)),¢ € {0,1,...,m},
and m of morphisms o(i) : £(i) = X(i — 1),i € {1,2,...,m} satisfying the above
two conditions. We call ¢*¢ the transformed coordinate system of € by o. We
call the coordinated normal crossing scheme (X', 0*A, 0*€) over k the pull-back of
(3,A,¢) by o.

Lemma 3.4. Let (3,A) and (X,A") be normal crossing schemes over k with the
same support ¥ such that supp(A) C supp(A’).
(1) comp(A) C comp(A').
(2) comp( )(e) C comp(A)(«) for any « € T.
(3) (A)o < (Ao
(4) For any B € (A')g there exists a € (A)g with B € U(Z, A, ).
(5) If € (A)g,a € (A)g and € U(Z, A, ), then U(E, A, B) CU(Z, A, ).
(6) If supp(A) = supp(A’), then comp(A) = comp(A’), comp(A)(a) =
comp(A’)(a) for any o € B, (A)g = (A)g, and U(Z, A", a) = U(Z, A, )
for any o € (A)og.
Let £ = {&q|a € (A)o} be a coordinate system of (3, A).

(7) If supp(A) = supp(A’), then (X,A’,€) is a coordinated normal crossing
scheme over k.

Let (2, A) and (X, A") be normal crossing schemes over k with the same support
¥ such that supp(A) C supp(A’). Let £ = {&a]a € (A)o} be a coordinate system
of (3,A). For any o € (A)g we have &, : comp(A)(a) = Os(U(Z, A, a)).

If for any 8 € (A')g, there exists a € (A)g and a coordinate system & :

comp(A”)(8) = Oxs(U(E, A, B)) of (£,A’) at 3 such that 8 € U(Z, A, «) and for
any A" € comp(A’)(8)Ncomp(A)(a), E5(A) = resgg 2/0,‘3)) (€ (A)) where resggjﬁlfg) :

Os(U(Z,A,a)) = Ox(U(X,A’,«)) denotes the restriction homomorphism, then
we say that the coordinate system ¢ is extendable to (X, A’). In the case where &

is extendable to (X, A’), choosing an element o € (A)g and a coordinate system
£+ comp(A')(B) — Oxs(U (X, A", B)) of (¥,A") at 8 such that 8 € U(X, A, a) and
§p(A) = resgg i/%)(ﬁa( )) for any A’ € comp(A)(5) N comp(A)(«), we define a
coordinate system £ of (¥, A") at § for any 3 € (A"). We call ' = {8 € (A")o}
an extension of £ to (X, A’).

Let (X, A, €) be a coordinated normal crossing scheme over k. Let 3 be a scheme,
and let 0 : ¥ — ¥ be a morphism. We call o a weakly admissible composition of
blowing-ups over the pair (A, €), if there exist a non-negative integer m, (m+ 1) of
coordinated normal crossing schemes (2(7), A(2),£(4)),¢ € {0,1,...,m}, and m of
morphisms o (i) : (i) — (i — 1),7 € {1,2,...,m} satistying the following three
conditions:



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 21

(1) 2(0)=3,A00)=A,¢(1)=¢,%(m) =% and 0 = o(1)o(2) - - - o(m).
(2) For any ¢ € {1,2,... m}, o(i) is an admissible blowing-up over A(i — 1)
and supp(A(4)) D supp(o(i)*A(i — 1)).
(3) For any i € {1,2,... m}, the coordinate o*§(i — 1) of (X(4),0(i)* At —
1)) is extendable to (3(i), A(7)), and £(7) is an extension of 6*&(i — 1) to
(S(0), A(D).
If moreover, for any ¢ € {1,2,... m} the center of ¢(7) has codimension two, then we
call o a weakly admissible composition of blowing-ups with centers of codimension
two over (A, €).
Let (X, A,¢) and let (X', A, £') be a coordinated normal crossing schemes over
k. Let o : ¥ — ¥ a weakly admissible composition of blowing-ups over (A, ¢).
We say that (X, A, ¢') is an extended pull-back of (X,A,£) by o, if there ex-
ist a non-negative integer m, (m + 1) of coordinated normal crossing schemes
(3(2), A(i),£(4)),i € {0,1,...,m}, and m of morphisms o (i) : £(i) — X(i — 1),i €
{1,2,...,m} satisfying the following three conditions:
(1) 2(0) = %,A(0) = A,4(1) = &%(m) = X, A(m) = A%, §(m) = £ and
oc=0c(1)o(2) - a(m).
(2) For any ¢ € {1,2,... m}, o(i) is an admissible blowing-up over A(i — 1)
and supp(A(7)) D supp(o(i)*A(i — 1)).
(3) For any i € {1,2,... m}, the coordinate o*§(i — 1) of (X(4),0(i)* At —
1)) is extendable to (3(i), A(i)), and £(7) is an extension of 0*&(i — 1) to
(5(0), A(0).

Lemma 3.5. Recall that k denotes any algebraically closed field. Let A be any
complete regular local ring such that A contains k as a subring, the residue field
A/M(A) is isomorphic to k as algebras over k, and dim A > 2, let P be any
parameter system of A, and let z € P be any element.

Let A’ denote the completion of k[P — {z}] with respect to the mazimal ideal
k[P —{z}]NM(A). The ring A’ is a local subring of A and M(A") = M(A)NA" =
(P — {z})A’. The completion of A’[z] with respect to the prime ideal zA'[z] is
isomorphic to A as A'[z]-algebras. The set P — {2z} is a parameter system of A’.

Let o/ : XY — Spec(A’) be any composition of finite blowing-ups with centers
in closed irreducible smooth subschemes. We consider a morphism Spec(A) —
Spec(A’) induced by the inclusion ring homomorphism A’ — A, the product scheme
Y = ¥ Xgpeo(ar) Spec(A), the projection o : ¥ — Spec(A), and the projection
m: % — Y. We know the following:

(1) The morphism o is a composition of finite blowing-ups with centers in closed
trreducible smooth subschemes.

(2) The pull-back o*Spec(A/zA) of the prime divisor Spec(A/zA) of Spec(A)
by o is a smooth prime divisor of ¥, and o*Spec(A/zA) D o~ (M(A)).

(3) The projection 7 : ¥ — ¥/ induces an isomorphism o*Spec(A/zA) — ¥'.

Let A = Spec(A/[],cpzA), and let A" = Spec(A'/[[,ep_(. zA’). For any
x € P, we put {pa)(Spec(A/zA)) = x. We obtain a coordinate system Epr(ay
comp(A)(M(A)) = Ogpec(a)(U(Spec(A), A, M(A))) of (Spec(A), A) at M(A), and
a coordinate system & = {&nray} of (Spec(A),A). For any x € P — {z} we put
Ehrany(Spec(A’/zA")) = x. We obtain a coordinate system ;4 comp(A”) (M (
A")) = Ogpec(ar)(U(Spec(A’), A', M(A"))) of (Spec(A’),A") at M(A"), and a coor-
dinate system & = {4} of (Spec(A'), A').
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(4) If o' is an admissible composition of blowing-ups over A’, then o is an
admissible composition of blowing-ups over A.

(5) If o’ is a weakly admissible composition of blowing-ups over (A’,£'), then
o is a weakly admissible composition of blowing-ups over (A, €).

Below we assume that o’ is a weakly admissible composition of blowing-ups over
(A",€), and we consider any extended pull-back (X', A',¢") of a coordinated normal

crossing scheme (Spec(A’), A’ ¢') by o’. We denote A = n* A’ + 0*Spec(A/zA) €
div(X).

(6) The pair (¥,A) is a normal crossing scheme over k. (A)g = 7= 1((A")g) N
o*Spec(A/zA). For any a € (A)g we have w(a) € (A')g. The mapping
71 (A)g — (Ao induced by 7 is bijective.

(7) For any o € (A)g, we have comp(A)(a) = {7*A|A € comp(A')(n(a))} U
{0*Spec(A/zA)}, and U(Z, A, a) = 7~ H(U(X, A, 7())).

Consider any o € (A)g. We put £ (7*A) = ﬂ'*(_;(a) (A)) for any A € comp(A’)(

m()), and we put £a(0*Spec(A/zA)) = 0*(2). We have a mapping €, : comp(A)(a)
— Os(U(E,A ). Let £ ={&,]a € (A)o}.

(8) For any o € (A)o the mapping & is a coordinate system of (3,A) at o,
and & is a coordinate system of (X, A).

4. MAIN RESULTS

We state our main results. Their proofs will be given in Section20]and Section 211

We fix notations used throughout this section.

Let k be any algebraically closed field; let A be any complete regular local ring
such that A contains k as a subring, the residue field A/M(A) is isomorphic to k
as k-algebras, and dim A > 2; let P be any parameter system of A, and let z € P
be any element.

Let A’ denote the completion of k[P — {z}] with respect to the maximal ideal
k[P —{z}]NM(A). The ring A’ is a local subring of A and M(A") = M(A)NA" =
(P — {z})A’. The completion of A’[z] with respect to the prime ideal zA’[z] is
isomorphic to A as A’[z]-algebras. The set P — {z} is a parameter system of A’.

Let A = Spec(A/[[,cpzA), and A’ = Spec(A’/[[,cp_ .y TA"). We define a co-
ordinate system (4 : comp(A) — A of the normal crossing scheme (Spec(A), A)
at M(A) by putting &pra)(Spec(A/zA)) = x for any x € P. Let £ = {{ar¢a) ). We
define a coordinate system §§V[(A,) : comp(A’) — A’ of the normal crossing scheme
(Spec(A’), A') at M (A') by putting &/ 4\ (Spec(A’/zA’)) = x for any x € P—{z}.
Let & = {&);a)}- The triplets (Spec(A), A, §) and (Spec(A’), A',¢’) are coordi-
nated normal crossing schemes over k.

For any ¢ € A with ¢ # 0 the Newton polyhedron I'} (P, ¢) of ¢ over P is
defined.

Furthermore, we denote
PW)={seAlp=u[[(z+x*™ [ 2@
XEX zeP—{z}
for some u € A*, some finite subset X of M (A’),
some mapping a : X — Z,, and some mapping b: P — {z} = Zo}.
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For any h € Z, with h > 2 we denote

h—1
Wh)={seAlp=2"+% &)
i=0
for some mapping ¢’ : {0,1,...,h — 1} — M(A’) satisfying

h—1
X"+ ()X # 0 for any x € M(A').},
=0

PW (h) ={¢ € Alp = ¢}’ for some p € W (h) and some ¢’ € PW (1).},
EW(h) = {¢ € A| with ¢ =)’ for some ¢ € W(h) and some )’ € PW (1),
I, (P,v) has no z-removable faces.},
SW(h) ={¢ € Alp = ¢’ for some ¢p € W(h) and some ' € PW (1),
T4 (P, ) has no z-removable faces, and ' (P, ¢) is z-simple.}.

Note that 1 € PW(1) # 0, A = {0} U Upez, PW(h) if dimA = 2, and A
is a unique factorization domain. We consider any integer h with h > 2. 0 #
W(h) c PW(h) 0,0 # SW(h) C EW(h) C PW(h). For any ¢ € W(h), the
Newton polyhedron T'y (P, ) is of z-Weierstrass type, and the integer h is equal
to the z-height height(z,I'+(P,¢)) of T4 (P, ). For any ¢ € PW (h), the Newton
polyhedron T'; (P, ¢) is of z-Weierstrass type, and there exist uniquely » € W (h)
and ¢’ € PW(1) with ¢ = ¢,

For the proof of our main theorem below we apply the theory of convex sets and
the theory of torus embeddings. By our main theorem any element in SW(h) is
reduced to an element in PW(g) with g < h.

Theorem 4.1. For any h € Zy with h > 2 and any ¢ € SW(h), there exist a
smooth scheme % over Spec(A) and an admissible composition of blowing-ups o :
3 — Spec(A) with centers of codimension two over A such that for any closed point
a € ¥ with o(a) = M(A), there exist B € (0*A)o, an isomorphism p : 0%, , — A
of k-algebras, and g € Z, satisfying the following four conditions:

(1) aeUX,0*A,B).

We denote P = {(c*¢)(A) — (67¢)s(A)(a)|A € comp(c*A)(B)}, which is a
parameter system of O, ,, and we consider the ring homomorphism o* : A — O%, ,
induced by o.

(2) p(P)=P.
(3) po*(¢) € PW(g).
(4) g < h.

By the theorem below any element in PW (h) is reduced to an element in EW (h).

Theorem 4.2. For any h € Z4 with h > 2 and any ¢ € PW(h), there exists
an element x € M(A’) satisfying p(¢) € EW (h) where p denotes the unique iso-
morphism p : A — A of k-algebras satisfying p(z + x) = z and p(x) = x for any
x € P—{z}.

We would like to solve the following problem:

Problem 4.3. Show that for any ¢ € A with ¢ # 0, there exists a weakly admissible
composition of blowing-ups o : ¥ — Spec(A) over (A, §) and an extended pull-back



24 TOHSUKE URABE

(3, A, €) of the coordinated normal crossing scheme (Spec(A), A, §) by o satisfying
supp(c*(Spec(A/pA) + A)) C supp(A).

Note here that dim A’ = dimA — 1 < dim A, and any ¢ € A’ with ¢’ # 0 has
normal crossings over P’ if dim A = 2. Therefore, we decide that we use induction
on dim A, and we can assume the following claim (x):

() For any ¢/ € A" with ¢’ # 0, there exists a weakly admissible composition
of blowing-ups ¢’ : ¥’ — Spec(A’) over (A’,¢’) and an extended pull-back
(X', A7, €") of the coordinated normal crossing scheme (Spec(A4’), A’,¢') by
o’ satisfying supp(c’*(Spec(A’/¢' A’) + A')) C supp(A).

In the case of dim A = 2, putting (X', A’, ') = (Spec(A’), A’, ¢') and considering
the identity morphism ¢’ : ¥’ — Spec(A’) = X', we know that ¢’ is a weakly
admissible composition of blowing-ups over (A’, &) and supp (o’ (Spec(A4’/¢'A") +
A")) C supp(A’) for any ¢’ € A’ with ¢’ # 0.

Let o’ : ' — Spec(A’) be any weakly admissible composition of blowing-ups over
(A’,¢'), and let (X', A’,¢") be an extended pull-back of the coordinated normal
crossing scheme (Spec(A’), A’;¢') by o’. We consider a morphism Spec(4) —
Spec(A4’) induced by the inclusion ring homomorphism A’ — A, the product scheme
Y = ¥ Xgpec(ar) Spec(A), the projection o : ¥ — Spec(A), and the projection
m: X — Y. We know the following (See Lemma [B.5]):

(1) The morphism o is a weakly admissible composition of blowing-ups over

(4,8).
(2) The pull-back o*Spec(A/zA) of the prime divisor Spec(A/zA) of Spec(A)
by o is a smooth prime divisor of X, and o*Spec(A/zA) D o~ (M (A)).
(3) The projection 7 : ¥ — ¥’ induces an isomorphism o*Spec(A/zA) — X'.
Let A = m*A’ 4+ 0*Spec(A/zA).
(4) The pair (¥, A) is a normal crossing scheme over k. (
o*Spec(A/zA). For any o € (A)o, we have 7(a) € (
71 (A)g — (A')g induced by 7 is bijective.
(5) For any o € (A)p, we have comp(A)( ) = {7*A|A € comp(A')(w(a))} U
{o*Spec(A/zA)}, and U(Z, A, o) = m~ YU (X', A, n(a))).

Consider any o € (A)g. We put &, (7*A) = 7* (57/7(04) (A)) for any A € comp(A’)(
m(a)), and we put & (0*Spec(A/zA)) = *(z). We have a mapping &, : comp(A)(c)
— Os(U(Z,A, ). Let £ = {&,|a € (A ) }.

(6) For any o € (A)g, &, is a coordinate system of (X,A) at «, and £ is a
coordinate system of (2, A).

o=7"1((A")0) N
)o- The mapping

A)o =
A/

By the theorem below any element in EW (h) is reduced to an element in SW(h).

Theorem 4.4. Assume the above (x). For any h € Zi with h > 2 and any
¢ € EW(h), there exist a smooth scheme ¥’ over Spec(A'), a weakly admissible
composition of blowing-ups o' : &' — Spec(A’) over (A’,¢') and an extended pull-
back (X', A", &) of the coordinated normal crossing scheme (Spec(A’), A, ¢") by o’
with the following properties:

We consider the product scheme ¥ = %' Xgpec(ar) Spec(A), the projection o :
Y — Spec(A) and the projection w: % — X', Let A = A’ + 0*Spec(A/zA). We
have a normal crossing scheme (3, A) with (A)o C 0*Spec(A/zA).

Consider any a € (A)g. We put &y (n*A) = 7 (¢! (o) (N)) for any A € comp(A’)(

m(a)), and we put &, (0*Spec(A/zA)) = 0*(z). We have a coordinate system &, :
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comp(A)(a) = Os(U(X,A,)) of (X,A) at a, and a coordinate system & =
{Sala € (A)o} of (3,A).

Under the above notations, at any closed point o € ¥ with o(a) = M(A) there
exist B € (A)g and an isomorphism p : 0%, — A of k-algebras satisfying the
following three conditions: 7

(1) a e U(T,A,B).

We denote P = {£5(A) — &5(A)(a)|A € comp(A)(B)}, which is a parameter
system of O%, ., and we consider the ring homomorphism o* : A — O%, , induced
by o. 1 1

(2) p(P) = P and po*(z) = z.
(3) po*(¢) € SW(h) or po*(¢) € PW(g) for some positive integer g € Z with
g < h.

By the theorem below any non-zero element in A is reduced to an element in
Uh€Z+ PW(h).

Theorem 4.5. Assume the above (x). For any ¢ € A with ¢ # 0, there exist a
smooth scheme ¥’ over Spec(A’), a weakly admissible composition of blowing-ups
o' : ¥ — Spec(A") over (A’ &) and an extended pull-back (X', A, &) of the coordi-
nated normal crossing scheme (Spec(A’), A', &) by o’ with the following properties:

We consider the product scheme ¥ = %' Xgpec(ar) Spec(A), the projection o :
¥ — Spec(A) and the projection w: % — X', Let A = A’ + 0*Spec(A/zA). We
have a normal crossing scheme (3, A) with (A)g C o*Spec(A/zA).

Consider any o € (A)g. We put £ (7*A) = w*(f;(a) (A)) for any A € comp(A’)(
m(a)), and we put &, (0*Spec(A/zA)) = 0*(z). We have a coordinate system &, :
comp(A)(a) = Os(U(X,A,)) of (X,A) at a, and a coordinate system & =
{Sala € (D)o} of (5, 4).

Under the above notations, at any closed point o € ¥ with o(a) = M(A), there
exist B € (A)o and an isomorphism p : 0%, — A of k-algebras satisfying the
following three conditions:

(1) a € U(S, A, B).

We denote P = {£5(A) — &5(A)(a)|A € comp(A)(B)}, which is a parameter
system of O%, ,, and we consider the ring homomorphism o* : A — O, , induced
by o.

(2) p(P) =P and po*(z) = z.
(3)
prt(6) € | PW)

heZ

By the theorem below any element in PW(1) is reduced to an element with
normal crossings.

Theorem 4.6. Assume the above (x). For any ¢ € PW(1), there exist a smooth
scheme X over Spec(A), a weakly admissible composition of blowing-ups o : ¥ —
Spec(A) over (A,€) and an extended pull-back (3,7, &) of the coordinated nor-
mal crossing scheme (Spec(A), A, &) by o satisfying supp(c™(Spec(A/pA) + A)) C
supp(A).

Conjecture 4.7. Let (X, Ag, &) be any coordinated normal crossing scheme over
k, and let ®y be any effective divisor of 3y. There exist a weakly admissible



26 TOHSUKE URABE

composition of blowing-ups o : ¥ — X over (Ag,&p) and an extended pull-back
(2,A,€) of the coordinated normal crossing scheme (g, Ag, &) by o satisfying
supp(a* (®o + Ag)) C supp(A).

Obviously solution of Conjecture 7] implies solution of Problem

Now, to solve Conjecture .7 we have to glue up local blowing-ups obtained
by repeated application of theorems in this section, and have to construct global
blowing-ups. In case dim >y < 2 it is easy to glue up them. We would like to solve
Conjecture 7 in case dim Xy > 3 and would like to write forthcoming articles,
cooperating with Professor Heisuke Hironaka and young mathematicians.

5. RING THEORY
We explain some basic theory on rings. (Matsumura [20], Hironaka et al [I§].)

Lemma 5.1. Let k be any field. Let A be any complete regular local ring such that
dim A > 1, A contains k as a subring, and the residue field A/M(A) is isomorphic
to k as algebras over k. Let P be any parameter system of A.

(1) The ring A is a unique factorization domain.
(2) The set P is a non-empty finite subset of A with P = dim A € Z,. For
any element ¢ of A, there exists a unique element ¢ € map(map(P, Zg), k)

satisfying
o= Z c(A) H @),
A€map(P,Zo) zeP
The infinite sum in the right-hand side is the limit with respect to the M(A)-
adic topology on A. P is algebraically independent over k.
In Section[2 we defined the constant term ¢(0) € k of ¢ and the support supp(P, ¢)
of ¢ over P for any ¢ € A.
(3) Consider any ¢ € A. ¢(0) € k and ¢ — #(0) € M(A). ¢ € M(A), if and
only if, $(0) = 0.
(4) If ¢ € A, ¢ € map(map(P,Zo), k) and ¢ = 3\ cpmap(pzo) €N [ucp A @),
then ¢(0) = ¢(0) and supp(P, ¢) = supp(c) = {A € map(P,Zo)|c(A) # 0}.
(5) Consider any ¢ € A. supp(P,¢) C map(P,Zy). supp(P, ¢) = 0, if and only
if ¢ =0.
(6) é’ﬁlsider any ¢ € A, any 1y € A and any o € k with a # 0.
supp(P, —¢) = supp(P, ¢) = supp(P, ag),
supp(P, ¢ + 1)) C supp(P, ¢) U supp(P, ),

supp(P, ¢1p) C supp(P, ¢) + supp(P, ¥).
(7) The set map(P,R) is a finite dimensional vector space over R with dim map(P,
R) =t#P. The set map(P,Z) is a lattice of map(P,R). The set map(P,Ry)
is a simplicial cone over map(P,Z) in map(P,R) with dimmap(P,Ry) =
#P. (See Definition[6-7) map(P,Zo) = map(P,Ro) Nmap(P,Z). The set
map(P,Zg) is a semisubgroup of map(P,R) containing 0.
In Section[2 we defined an element fI € map(P,Zg) for any x € P.
(8) The set {fF|z € P} is a basis of map(P,R) over R. It is a basis of
map(P,Z) over Z. map(P,Rg) = convcone({fF |z € P}) =Y cpRofr.
map(P, Zo) = Y ep Lofs -
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We denote the dual basis of {fF|x € P} by {fFV|z € P}. For any conver cone
S in map(P,R) we denote the dual cone S¥|map(P,R) in map(P,R)* simply by
SY.
(9) The set {fFV|x € P} is a basis of map(P,R)* over R. It is a basis of
map(P, Z)* over Z. map(P,Rg)" = convcone({fIV|z € P}) =Y . pRoflV.
(10) Consider any ¢ € A with ¢ # 0 and any w € map(P,Ry)".
0 # {{w,A)|A € supp(P, @)} C Ry. For any t € Ry, the intersection
{{w, A)|A € supp(P, @)} N {u € Rolu < t} is a finite set. There exists the
minimum element min{(w, A)|A € supp(P, ¢)} of the subset {{w,A)|A €
supp(P, ¢)} of Ro, and min{{w, A)|A € supp(P, ¢)} € Ry.

According to definitions in Section [Q, for any ¢ € A with ¢ # 0 and any w €
map(P, Rg)"

ord(P,w, ¢) =min{{w, A}|A € supp(P, ¢)} € Ry,
supp(P, w, ¢) ={A € supp(P, ¢)|(w, A) = ord(P,w, ¢)} C map(P, Zo),

in(P,w, ¢) = Z c(A) H M) e A,

A€supp(P,w,¢) zepP

where ¢ € map(map(P, Zo), k) is the unique element satisfying ¢ = 3 cimap(pz,) €(A)
HmEP ‘TA(m)

Furthermore, for any w € map(P,Ry)Y, ord(P,w,0) = co and in(P,w,0) =0 €
A, where oo is a symbol satisfying co + 00 = 00, co +t =t + 00 = 00, t < 00,
00>t t<oo, 00>t t# 00 and oo £t for anyt € R.

(11) Consider any ¢ € A and any w € map(P,Rp)".

in(P,w,in(P,w, ¢)) = in(P,w, ¢). ord(P,w,in(P,w,$)) = ord(P,w, ¢).
ord(P,w, ¢ —in(P,w, ¢)) > ord(P,w, ¢), if ¢ #0.
If v € A, in(P,w,v) = v, and ord(P,w,¢$ — ¥) > ord(P,w, ), then
P#0,9#0 and ¢ = in(P,w, d).
(12) Consider any ¢ € A and any w € map(P,Rp)".
If ¢ € A*, then ord(P,w, ¢) = 0.
If ord(P,w, ¢) = 0 and (w, fF') > 0 for any x € P, then ¢ € A* and
n(P,w, (b) = (;5(0)
(13) Consider any ¢ € A, any w € map(P,Ry)Y and any « € k with o # 0.
ord(P,w,—¢) = ord(P,w, ¢). in(P,w, —¢) = —in(P,w, ¢).
ord(P,w, a¢) = ord(P,w, ¢). in(P,w, ap) = ain(P,w, ¢).
(14) Consider any ¢ € A, any 1 € A and any w € map(P,Rq)V.

ord(P,w, ¢ + ) > min{ord(P, w, ¢), ord(P,w, %)}

ord(P,w, ¢ + ¢) = min{ord(P,w, ¢), ord(P,w, )}, if and only if,
ord(P,w, ¢) # ord(P,w, ) or in(P,w, @) +in(P,w,) # 0.
If ord(P,w, ¢) < ord(P,w, ), then in(P,w,d + v¢) = in(P,w, ¢).
If ord(P,w, ¢) > ord(P,w, ), then in(P,w,d + ¢) = in(P,w, ¥).
If ord(P,w, ¢) = ord(P,w, ) and in(P,w, ¢) + in(P,w, ) # 0, then
in(P,w, ¢+ ) = in(P,w, d) + in(P,w, ).
(15) Consider any ¢ € A, any ¢ € A and any w € map(P,Rq)".

ord(P, w, ¢vp) =ord(P,w, ¢) + ord(P,w, ).
in(P,w, ¢9) =in(P,w, ¢)in(P,w, ).
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(16) Consider any parameter system P of A and any bijective mapping o : P —
P.

Take the unique isomorphism p: A — A of k-algebras satisfying p(z) =
o(z) for any x € P.

Note that o induces an isomorphism o* : map(P,R) — map(P,R) of
vector spaces over R, and it induces an isomorphism (o*)* : map(P,R)* —
map(P,R)* of vector spaces over R. (o*)*(map(P,Rg)Y) = map(P,Rg)Y
|map(P, R).

Consider any w € map(P,Rg)".

If ord(P,w,o(x)) = ord(P,w,x) for any x € P, then, ord(P,w,$) =
ord(P, (6*)*(w), ¢) and p(in(P,w, $)) = in(P, (6*)*(w), ¢) for any ¢ € A.

(17) Consider any ¢ € A with ¢ # 0, anyw € map(P,Rq)", any x € map(P,Ry)Y
and any t € R with 0 < ¢t < 1. (1 — t)w + txy € map(P,Ro)Y and
ord(P, (1 — t)w + tx, ¢) > (1 — t)ord(P,w, ¢) + tord(P, x, ¢).

Proof. See Matsumura [20] for the proofs of claim 1 and 2. Below we give the proof
only to claim 10 and 15. (Hironaka et al [I8].) Other claims follow easily.
10. Consider any ¢ € A with ¢ # 0 and any w € map(P,Rg)V.

By 5 0 # supp(P, ¢) C map(P,Zy) C map(P,Rg). Since w € map(P,Ry)Y, we
know 0 # {{w, A)|A € supp(P, ¢)} C Ry.

Put P = {z € P|{w, fF') # 0}. P C P. Let 7 : map(P,R) — map(P,R) denote
the surjective homomorphism of vector spaces over R induced by the inclusion map-
ping P — P. The dual homomorphism 7* : map(P,R)* — map(P,R)* is injective.
Since w = 3", . plw, fF) fFV, there exists a unique element @ € map(P,R)* with
w = 7 (w). We take the unique element @ € map(P,R)* with w = 7*(w). Since
w € map(P,Ry)Y, (@, fF) = (w, fF) > 0 for any x € P.

Consider any t € Rg. If P = (), then w = 0. If w = 0, then {{w,A)|A €
supp(P, ¢)} = {0}, and {{w, A)|A € supp(P,¢)} N{u € Roju < ¢t} = {0} is a finite
set.

Below we assume w # 0. P # (). Put e = min{(w, fI')|z € P} € R;. We know
W(SUEP(B d))) C W(map(P, ZO)) = IT{&p(P,Zo)l and {<w5A>|A € Supp(Pa d))} =
{(@, M)A € n(supp(P, &)} © {(@ M)A € map(P,Zo)}. ,

Assume A € map(P,Zg) and (w,A) <¢. We have t > (w0, A) =3 _p(@, fT)
(20 Z e e p (£ ).

We know {(w, A)|A € supp(P,¢)} N{u € Rolu <t} C {{@

« ,A)|A € map(P,Z),
Sen(fEYV,A) < t/e}. Since {A € map(P,Zo)| > cp(fLY,A) < t/e} is a finite
set, we know that {{w, A)|A € supp(P,¢)} N{u € Ro|u < ¢} is a finite set.

Since {{w, A)|A € supp(P, ¢)} N{u € Ro|u < t} is finite for any ¢ € Ry, we know
that the minimum element min{(w, A)|A € supp(P, ¢)} of {(w, A)|A € supp(P, ¢)}
exists and min{(w, A)|A € supp(P, @)} € Ry.

15. Consider any w € map(P,Rg)V.

Put P = {z € P|{w, ff') # 0}. P C P. Let 7 : map(P,R) — map(P,R) denote
the surjective homomorphism of vector spaces over R induced by the inclusion
mapping P — P. The dual homomorphism 7* : map(P,R)* — map(P,R)* is
injective. We take the unique element @ € map(P,R)* with w = 7*(@). Since
w € map(P,Ry)Y, (@, fF) = (w, fF) > 0 for any z € P. For any t € Ry, sets
{A € map(P,Z)|(w, A) <t} and {A € map(P,Z)|(w, A) = t} are finite.
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We define a total order called the lezicographic order on the vector space map(P,
R). Let r = §P € Zy. Take any bijective mapping z : {1,2,...,7} — P. Let A €
map(P,R) and T € map(P, R) be arbitrary elements. We write A < T or I > A, if
there exists ¢ € {1,2,...,r} such that ( m(])’r Ay =0foranyje {1,2,...,i—1}

and(fwl),I‘ A>>O We write A <TorT'>A,if A<TorA=T. Weknowthat

the relation < is a total order on the abelian group map(P,R), in other words, the
following five conditions hold for any A € map(P,R), any T' € map(P,R) and any
A € map(P,R).

Consider any A € map(P, Zo). We denote

§(A) = {(T,A)|T € map(P,R), A € map(P,R),[' + A = A}
C map(P,R) x map(P,R).

We know that §(A) is a non-empty finite subset of map(P,R) x map(P,R).

Let B denote the completion of k[P — P] with respect to the prime ideal k[P —
PN M(A). B and B[P] are subrings of A. B is a complete regular local ring such
that dim B < dim A, B contains k as a subring, and the residue field B/M (B) is
isomorphic to k as algebras over k. P — P is a parameter system of B. B is an
integral domain. P is algebraically independent over B. The completion of B[P]
with respect to the prime ideal PB[P] is equal to A.

Consider any ¢ € A. By 2 we know that there exists uniquely an element
¢ € map(map(P, Zo), B) satisfying

o= > ah) [

A€map(P,Zo) z€P

We take the unique element ¢ € map(map(P, Zo), B) satisfying the above equality.
We denote

supp(P, ¢) = supp(¢) = {A € map(P, Zo)[c(A) # 0} C map(P, Zo).
We know that the following claims hold:

(1) supp(P, ¢) = 7(supp(P, ¢)).
2) {(@ M)A € supp(P, ¢)} C Rq.
(3) {{@,A)|A € supp(P, ¢)} = 0, if and only if, ¢ = 0.
(4) If ¢ # 0, then the minimum element min{(w, A)|A € supp(P,¢)} of the
non-empty subset {(@, A)|A € supp(P,¢)} of RO exists.
(5) If ¢ # 0, then ord(P,w, ¢) = min{(w, A)|A € supp(P, ¢)}.

Consider any ¢ € A and any ¢ € A. We would like to show the equality
ord(P,w, ¢1p) = ord(P,w, ¢) + ord(P,w, ¥).

If ¢ =0 or ¢ = 0, then we have ¢1p = 0, ord(P,w, ) = oo or ord(P,w, 1)) = oo,
and ord(P,w, ) = co = ord(P,w, ¢) + ord(P, w, V).

Below we assume ¢ # 0 and 1 # 0. We know ¢ # 0, since A is an integral

domain.
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Take elements ¢ € map(map(P,Zg), B), d € map(map(P,Z),B), and é €
map(map(P, Z), B) satisfying

o= Y ) [

A€map(P,Zo) z€P
p= Y A ]+
A€map(P,Zo) xcP
o= > el [+,
A€map(P,Zo) zeP

We know that é(A) = Z(F Avesa) I [')d(A) for any A € map(P,Zy).

We take any A € supp(P, ¢) with ord(P,w, ¢p) = (0, A). 0 # é(A) =
2o A)es(n) C ¢(T)d(A). We know that there exists (T, ) 0(A) satistying E( ) #

#0
and d(A) # 0. We take an element (I', A) € §(A) satisfying ¢(I') # 0 and d(A) # 0.
We know A = '+ A, A € supp(P, ¢), A € supp(P,¢), (@,A) > ord(P,w, ),
and (0, A) > ord(P,w,®). Therefore, ord(P,w,¢?)) = (@,A) = (@, + A} =
(@,T) + (@, A) > ord(P,w, ¢) + ord(P,w, ).

We know ord(P,w, ¢1p) > ord(P,w, ¢) 4+ ord(P, w, ).

Now, the set {T' € supp(P, ¢)|(@,T) = ord(P,w ¢)} is a non-empty finite subset
of supp(P, ¢). Let T'y denote the minimum element in this set with respect to the
lexicographic order <. Ty € supp(P, ¢) (0,To) = ord(P,w,¢). If T € supp(P, ¢)
and (@,I) = ord(P,w, ), then Ty < T. The set {A € supp(P,¢)[(w,A) =
ord(P,w, 1)} is a non-empty finite subset of supp(P,v). Let Ay denote the mini-
mum element in this set with respect to the lexicographic order <. A € supp(P, )
(@, Ag) = ord(P,w, ). If A € supp(P,¢) and (@, A) = ord(P,w, ), then Ag < A.

Let AO =T+ Ao S map(P Zo)

&(ho) = X, A)es(ry Al)d 1(A). (To, Ag) € 8(Ao), &(To) # 0, and d(Ag) # 0.

Consider any (I', A) € §(Ao) satisfying &(T') # 0, and d(A) # 0.

We know I' € supp(P,¢), A € supp(P,v), (@,T) > ord(P,w,¢), (@, A)
ord(P,w, ), and T + A = Ay = [y + Ay.

Therefore, (@,T) + (@, A) = (0, + A) =
ord(P,w, $) + ord(P,w, 1)), and (@ 1"> = ord(P,

Weknow ' > Tyand A > Ay. SinceT =T+
Ty, we know I’ =T'y. Therefore, A=T+ A —

We conclude T =T and A Ap.

Y

P o(T) #0.d(A) # 0} = {(To, Ag)}, (A
Do (F.A)es(Rg) I A) = &([9)d(Ag) # 0, and Ag € supp(P,¢rp). Therefore,
ord(P,w, ¢) < (@,Ao) = (@0, T + Ag) = (@,T0) + (@,A¢) = ord(P,w,¢) +
ord(P,w, v).

We conclude ord(P,w, ¢p) < ord(P,w, @) + ord(P,w,v) and ord(P,w, pyp) =
ord(P,w, ¢) + ord(P, w, ¥).

We know that for any ¢ € A, any 1 € A and any w € map(P,Rp)", the equality
ord(P,w, ¢1p) = ord(P,w, ¢) + ord(P,w, ) holds.

Consider any ¢ € A, any ¢ € A and any w € map(P,Ry)Y. We would like to
show the equality in(P,w, ¢1p) = in(P,w, ¢)in(P,w, ).

If 9 =0 or ¢ = 0, then ¢1p = 0, in(P,w,¢) = 0 or in(P,w,v) = 0, and
in(P,w, ¢v) = 0 = in(P,w, ¢)in(P,w, ¥).



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 31

Below we assume ¢ # 0 and ¢ # 0. By 11 we have ord(P,w, ¢ — in(P,w, ¢)) >
ord(P,w, @), ord(P,w,in(P,w, ¢)) = ord(P,w, @), ord(P,w, v — in(P,w,)) >
ord(P,w, ), ord(P,w,in(P,w,¥)) = ord(P,w, ¥).

Therefore, ord(P, w, (p—in(P,w, ¢))(Yv—in(P,w,v))) = ord(P,w, p—in(P,w, ¢))+
ord(P,w, ) —in(P,w,v)) > ord(P,w, ¢) + ord(P,w, ) = ord(P,w, ¢1),
ord(P,w, in(P,w, ¢)(¢v — in(P,w,))) = ord(P,w, in(P,w, ¢)) + ord(P, w,p—
in(P,w,¥)) > ord(P,w, ¢) + ord(P,w, ) = ord(P,w, ¢pb), and ord(P,w,

(¢ — in(P,w, ¢))in(P,w,v)) = ord(P,w, ¢ — in(P,w, ¢)) + ord(P,w, in(P,w,v)) >
ord(P,w, ¢) + ord(P,w, ) = ord(P,w, ).

Since ¢ — in(P,w, ¢)in(P,w, ) = (¢ — in(P,w, ¢))(¢p —in(P,w, 1)) +in(P,w, ¢)
(Y —in(P,w,v¥)) + (¢ — in(P,w, ¢))in(P,w, 1), we know ord(P,w, ¢pvp — in(P, w, ¢)
in(P,w,¥)) > ord(P,w, ¢1p) by 14.

Take the elements ¢ € map(map(P,Zo),k), d € map(map(P,Zy), k) satisfy-
ing ¢ = > remap(pzo) €0 aep o™ and ¢ = 2 Acmap(P.zo) UA) [oep 2.
We know supp(P,w,$) = {I" € map(P, Z0)|C(I‘) # 0,{(w, ) = ord(P,w, )} # 0,
in(P,w, ¢) = ZFEsupp(Pw ¢ c(D) [ Leep 2" 20, supp(P,w, ) =
{A € map(P, Zo)|d(A) # 0, (w, A) = ord(P,w, )} # 0, in(P,w,v) =
ZAEsupp(P,w,w) d(A) HmEP IA(I) 7£ 0.

We know

0 #in(P,w, ¢)in(P,w, 1))

= > ™[ Do d@) [T«

I'esupp(P,w,¢) zeP Aesupp(P,w,) zeP
= Z Z c(T)d(A) H 2@,
A€map(P,Zo) (I',A)€esupp(P,w,¢) xsupp(P,w,y), I+ A=A zeP

Conside any A € supp(P,in(P,w, ¢)in(P,w,v)). A € map(P,Zy) and we know

> c(D)d(A) # 0.

(T,A)€esupp(P,w,¢) Xxsupp(P,w,), T+ A=A

We know that there exist T' € supp(P,w, ®) and A € supp(P,w, ) satisfying T’ +
A = A. We take T' € supp(P,w, @) and A € supp(P,w, ) satisfying ' + A = A.
We know (w,T') = ord(P,w, ) and (w,A) = ord(P,w,t). Therefore, (w,A) =
(W, T+ A) = {w,T) + (w,A) = ord(P,w, ¢) + ord(P,w, ) = ord(P,w, in(P,w, ¢)) +
ord(P,w, in(P,w,v)) = ord(P, w,in(P,w, ¢)in(P,w, 1)).

We know that for any A € supp(P, in(P,w, ¢)in(P,w, v)), (w,A) = ord(P,w,
in(P,w, ¢)in(P,w, 1)), supp(P, in(P,w, ¢)in(P,w,¥)) = supp(P, w, in(P,w, ¢)
in(P,w, 1)), and in(P,w,in(P,w, ¢)in(P,w,)) = in(P,w, ¢)in( P, w, 1).

By 11 we conclude in(P,w, ¢v) = in(P, w, ¢)in(P, w, ).

We know that for any ¢ € A, any ¢ € A and any w € map(P,Ry)", the equality
in(P,w, ov) = in(P,w, ¢)in(P,w, 1) holds. O

6. BASIC THEORY OF CONVEX SETS

In this section to develop the theory of torus embeddings we begin the study of
convex sets. The theory of convex sets will be applied to the proof of our main
theorem, Therem [4.1] in Section

Let V' be any finite dimensional vector space over R.
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In Section 2l we defined eight mappings

conv, affi, cone, convcone, vect, Q-vect, clos, stab : 2V — 2V

Lemma 6.1. Let X be any subset of V.

(1)
conv() =affi(0) = clos(d) = 0,
cone(()) =conveone(()) = vect () = Q-vect(d) = {0},
stab(0) =V.

(2)

conv(X) ={a € V]a = Z A@)z for some X € map' (X, Rg) with
N

zEsupp
> Aw@=1}
z€supp(\)
affi(X) ={a € V]a = Z Ax)x for some X € map' (X, R) with
z€supp(\)
> @) =1}
z€supp(A)
cone(X) = {{a € Via = \x for some XA € Ry and some z € X'} z:fX # 0,
{0} if X =0,
conveone(X) ={a € V]a = Z Az)z for some X € map’(X,Ry)},
z€supp(N)
vect(X) ={a € Vi|a = Z Ax)z for some X € map'(X,R)},
zesupp(A)
Q-vect(X) ={a € V]a = Z M)z for some X € map'(X,Q)}.
zesupp(A)

(3) If X is a finite set, then we have convcone(X) = 3 .y Roz, vect(X) =

> wex Rz, and Q-vect(X) = > Qu.

(4) For any finite dimensional vector space W over R and for any homo-
morphism m : V. — W of vector spaces over R, we have 7(conv(X)) =
conv(m(X)), w(affi( X)) = affi(n(X)), 7(cone(X)) = cone(n (X)), w(convecone(X)) =

conveone(m(X)), m(vect(X)) = vect(n(X)), and 7(Q-vect(X)) = Q-vect(w(X)).
(5) For any a € V, we have conv(X + {a}) = conv(X) + {a}, afli(X + {a}) =
affi(X) + {a}.
(6)
X C conv(X) C affi(X) C vect(X),
X U{0} C cone(X) C convcone(X) C vect(X),
conv(X) C convcone(X),
X U {0} C Q-vect(X) C vect(X),
X C clos(X).
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(7) For any subsetY of V with X C'Y, we have conv(X) C conv(Y), affi(X) C
affi(Y"), cone(X) C cone(Y), convcone(X) C convecone(Y), vect(X) C
vect(Y), Q-vect(X) C Q-vect(Y), and clos(X) C clos(Y).

(8) conv(conv(X)) = conv(X), affi(affi(X)) = affi(X), cone(cone(X)) = cone(X),
conveone(conveone(X )) = conveone(X ), vect(vect(X)) = vect(X),
Q-vect(Q-vect(X)) = Q-vect(X), and clos(clos(X)) = clos(X).

(9)

conv(vect(X)) = vect(X),
affi(vect(X)) = vect(X),
cone(vect(X)) = vect(X),
conveone(vect(X)) = vect(X).

vect(conv (X

(X))
vect(affi( X))
(X))
(X))

vect(cone(X

vect(conveone(X

>

convcone(conv nv(convcone(X)) = convcone(X),

ne(convcone(X)) = convecone(X).

cone(conv(X conv(cone(X)) = convcone(X),

conveone(affi(X)) = cone(affi( X)) Caffi(convcone(X)) = affi(cone(X)) = vect(X),
(11) affi(conv(X)) = conv(affi(X)) = affi(X).

(X))
convcone(cone(X))
(X))
(X))

(12)
clos(affi(X)) =affi(clos(X)) = affi(X),
clos(Q-vect(X)) =clos(vect(X)) = vect(clos(X)) = vect(X),
clos(conv(X)) =conv(clos(conv(X))),
clos(cone(X)) =cone(clos(cone(X))),
)

clos(conveone(X)) =convcone(clos(conveone(X))).

Lemma 6.2. Let X and Y be any subsets of V.

(1) conv(X) + conv(Y) = conv(X +Y).

(2) affi(X) + affi(Y) = affi(X +Y).

(3) cone(X UY) C cone(X) + cone(Y') C conv(cone(X UY)).

(4) convcone(X) + conveone(Y) = convecone(X UY).

(5) vect(X) + vect(Y) = vect(X UY).

(6) For any finite dimensional vector space W over R and for any homomor-
phism w : V — W of vector spaces over R we have (X )+7n(Y) = n(X+Y).

In Section 2] we defined concepts of segments, lines, convex sets, affine spaces,
cones, convex cones, vector spaces, vector spaces over Q, and closed subsets.

Lemma 6.3. Let S be any non-empty subset of V.

(1) The following three conditions are equivalent;

(a) S is convew.

(b) S D conv(S).

(¢) S =conv(X) for some non-empty subset X of V.
(2) If S is convez, then clos(S) is also convezx, and affi(S) = affi(clos(S9)).
(3) The following three conditions are equivalent;

(a) S is an affine space.

(b) S D affi(S).
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(c) S = affi(X) for some non-empty subset X of V.
(4) The following three conditions are equivalent;
(a) S is an affine space containing 0.
(b) S is an affine space with S = stab(S).
(c) S is a vector space.
(5) Assume that S is an affine space. Then, stab(S) is a vector space, and for
any x € S we have S = stab(S) + {z} and stab(S) = S + {—z}.
(6) Any affine space is closed and conve.
(7) 0 € stab(S) C stab(affi(S)) C vect(S). stab(S) + stab(S) = stab(S).
(8) The following three conditions are equivalent;
(a) S is a cone.
(b) S D cone(S).
(¢) S = cone(X) for some non-empty subset X of V.
(9) Any cone contains 0.
(10) If S is a cone, then clos(S) is also a cone, and vect(S) = vect(clos(S)).
(11) The following four conditions are equivalent;
(a) S is a convex cone.
(b) S is convex and S is a cone.
(c) S D convcone(S).
(d) S = convcone(X) for some non-empty subset X of V.
(12) Any convex cone contains 0.
(13) If S is a convex cone, then clos(S) is also a convex cone, and vect(S) =
vect(clos(9)).
(14) If S is a convex cone, then SN (—=S) is the mazimal vector space contained
in S with respect to the inclusion relation.
(15) The following three conditions are equivalent;
(a) S is a vector space.
(b) S D vect(S5).
(¢) S =vect(X) for some non-empty subset X of V.
(16) Any vector space contains 0.
(17) Any vector space is closed, it is an affine space containing 0, and it is a
convez cone.
(18) The following three conditions are equivalent;
(a) S is a vector space over Q.
(b) S D Q-vect(S).
(c) S = Q-vect(X) for some non-empty subset X of V.
(19) Any vector space over Q contains 0.
(20) The following three conditions are equivalent;
(a) S is closed.
(b) S D clos(S).
(¢) S =clos(X) for some non-empty subset X of V.

Lemma 6.4. Let S and T be any subsets of V.

(1) If S and T are convez, then S + T is convex. If S and T are conver and
SNT #(, then SNT is convex.

(2) If S and T are affine spaces, then S+ T is an affine space. If S and T are
affine spaces and SNT # (), then SNT is an affine space.

(3) If S and T are cones, then S+ T and SNT are cones.

(4) If S and T are convex cones, then S+ T and SNT are convexr cones.
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(5) If S and T are vector spaces, then S +T and SNT are vector spaces.

(6) If S and T are vector spaces over Q, then S+T and SNT are vector spaces
over Q.

(7) If S and T are closed, then SNT is closed.

For any vector space S over R of V', the dimension dim S of .S over R is defined.
dim S € Zg and 0 < dim S < dim V.

Definition 6.5. For any affine space S of V', we define
dim S = dimstab(S) € Zy,
and we call dim S the dimension of S.

Lemma 6.6. (1) Let S be an affine space of V.. dim S € Zg, and 0 < dim S <
dim V. If S contains 0, then the dimension of S as an affine space and the
dimension of S as a vector space are equal.

(2) Let S and T be affine spaces of V with S C T. We have dim S < dim T,
and dim S = dimT if and only if S =1T.

Definition 6.7. Let S be any convex subset of V. We define
dim S = dim affi(S) € Zo,

and we call dim S the dimension of S.
We define

95 =S Nclos(affi(S) — 9),
S° =S — clos(affi(S) — 9),
we call 0S the boundary of S, and we call S° the interior of S.

Lemma 6.8. (1) Let S be a convex subset of V. dim S € Zg, and 0 < dim S <
dim V. If S is an affine space, then the dimension of S as a convex set and
the dimension of S as an affine space are equal.

(2) For any convez set S of V, we have dim S = dim affi(S) = dim clos(S).

(3) Let S and T be convex subsets of V with S C T. We have dim S < dimT.
(4) Let S be a convex subset of V. SUS° = S. SN S° = 0. S° isa
non-empty open subset of affi(S). If S is closed, then S is also closed.

(5) For any convex cone S of V, we have affi(S) = vect(S), dim S = dim vect(S),

95 = S Nclos(vect(S) — 5), and S° = S — clos(vect(S) — 5).

Remark . It does not follow S = T from only the assumptions S C T and dim S =
dim T for convex subsets S, T of V.

In Sectionlwe defined concepts of convex polyhedrons, convex polyhedral cones,
and convex pseudo polyhedrons.

Lemma 6.9. (1) Any convex polyhedron in 'V is convex, compact and closed.
(2) Any convex polyhedral cone in 'V is a closed convex cone.
(3) Any convex pseudo polyhedron in 'V is convex and closed.
(4) Any vector space in 'V is a convex polyhedral cone.
(5) Any affine space in V is a convex pseudo polyhedron. Any convex polyhedral
cone in 'V is a convex pseudo polyhedron. Any convex polyhedron in V is a
convex pseudo polyhedron.
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Proof. 1. We consider any convex polyhedron S in V. We take any non-empty
finite subset X of V' with S = conv(X). By Lemma [6.116 we have S = conv(X) D
X # 0. Therefore, S # (. By Lemma [6.118 we have conv(S) = conv(conv(X)) =
conv(X) = S. By Lemma 631 we know that S is convex.

Let A = {\ € map(X,Ro)| >, cx A(x) = 1}, which is a compact subset of the

finite dimensional vector space map(X,R). Putting m(A) = > .y A(x)z € V for
any A € map(X,R), we define a homomorphism 7 : map(X,R) — V of vector
spaces over R. By Lemmal[6.112 we know S = conv(X) = m(A). Since A is compact
and 7 is continuous, we know that S is compact and closed.
2. We consider any convex polyhedral cone S in V. We take any finite subset X of
V with S = convcone(X). By Lemma [6.116 we have S = convcone(X) 5 0. There-
fore, S # (. By Lemma [6.118 we have convcone(S) = convcone(conveone(X)) =
conveone(X) = S. By Lemma [63111 we know that S is a convex cone.

Let W = SN (—S). By Lemma [63114 we know that W is the maximal vector
space contained in S. Let 7 : V' — V/W denote the canonical surjective homomor-
phism of vector spaces to the residue vector space V/W, and ¢ : V/W — V be an
injective homomorphism of vector spaces satisfying 7o (z) = Z for any z € V/W.
Putting ¢(x) = (x — on(z),n(x)) € W x (V/W) for any € V, we have an iso-
morphism of vector spaces ¢ : V. — W x (V/W). We have ¢(S) = W x 7(S),
and 7(S) N (—7(S)) = {0}. Therefore, in order to show that S is closed, it suffice
to show that 7(S) is closed, applying the condition 7(S) N (—=(S)) = {0}. By
Lemma [6114 we know 7(S) = m(conveone(X)) = conveone(n(X)) and 7(X) is a
non-empty finite subset of V/W.

We show that 7(S) is closed. If w(S) = {0}, then obviously 7(S) is closed. Below
we assume 7(S5) # {0} and denote X = 7(X) — {0}. We know that X is a non-
empty finite subset of V/W, 0 ¢ X, and 7(S) = convecone(X) = {x € V/W|x =
> e A(@)z for some A € map(X,Rp).} by Lemma G112.

For any A € map(X,Rg) we denote |A\| = > _¢A(z) € Ryg. For any A €
map(X,Rg) we have [A| > 0 if and only if A # 0. We denote A = {\ € map(X,Ry)|
I\l = 1}. The set A is a non-empty compact subset of map(X,Rg). For any
A € map(X,Rg) — {0} we have \/|A\| € A.

Let a € clos(w(S)) be any point. If @ = 0, then obviously we have a = 0 € 7(S5).
Below we assume a # 0. We take an infinite sequence \(i),7 € Zg of elements of
map(X,Ro) satisfying a = lim;i0c >, ¢ A(i) (7).

Assume that there exists ig € Zg such that A(7) = 0 for any i € Zg with i > 4.
We have 0 # a = 0, a contradiction. We know that for any ip € Z there exists
i € Zg with i > ig and A(Z) 7§ 0.

Below we assume that A(i) # 0 for any ¢ € Zg, replacing A(¢),i € Zy by some
subsequence. We have an infinite sequence A(¢)/|A(i)|,7 € Zo of elements of A.

Below we assume that there exists the limit lim; oo A(¢2)/|A(7)| € A, replacing
A(i),i € Zo by some subsequence. We denote A = lim; o, A(i)/|\(i)| € A. We
know that there exists the limit lim; o0 D0, ¢ (A(@)(2)/|A()|)x € V/W, and
lims oo Sy x AD(@)/AD)E = ez M)

‘We have

We have two cases, the case where {|A(7)|]i € Zo} C Ry is not bounded, and the
case where {|A(i)|]¢ € Zo} C Ry is bounded.

a = lim [\(i)| Z(A%ﬁ))“"
zeX
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We consider the case where {|A(7)|]¢ € Zo} C Rg is not bounded.
Below we assume that lim;_, o |A(2)| = oo, replacing A(¢),¢ € Zg by some subse-
quence. We have

a _
0= ——+ = Az)z.
limy; o0 [A(2)] aanX (z)
Since A € A, there exists z € X with A(z) > 0. We take z € X with A(Z) > 0,
and putting u(z) = A(z)/A(Z) € Rg for any z € X — {7}, we define an element
w € map(X — {z},Rp). We know that

zeX—{z}

7 € X C conveone(X) = 7(S), and — Y vex—(z} H(T)T € —convecone(X) = —7(S)
by Lemma [6.112. We conclude Z € 7(S) N (== (S)) = {0} and = 0. On the other
hand, since # € X # 0, we have Z # 0, which is a contradiction. The case under
consideration never occurs.

We consider the case where {|A(7)||i € Zo} C Rg is bounded.

Below we assume that there exists the limit lim;,o |A(7)] € Ro, replacing
(%), € Zo by some subsequence. We have

a= Z (lim |A(3)|)A(x)z € conveone( X, Rg) = m(S),
< "j—00
zeX
by Lemma [6.1]2.

We know that clos(7(S)) C #(S). By Lemma [6.3120 we conclude that «(S5) is

closed, and S is closed.
3. We consider any convex pseudo polyhedron S in V. We take any finite subsets
X,Y of V with S = conv(X) + convecone(Y) and X # (. By Lemma [6I16 we
know convecone(Y) 2 0 and S = conv(X) + conveone(Y) D conv(X) D X # (.
Therefore, S # 0. By Lemma 6211, Lemma [E118 and Lemma [61110 we have
conv(S) = conv(conv(X)+ convcone(Y')) = conv(conv(X))+ conv(convcone(Y)) =
conv(X) + conveone(Y) = S. By Lemma [6311 we know that S is convex.

We consider any element a € clos(S). We take an infinite sequence b(i),i € Zg
of elements of S with a = lim;_,+ b(7). For any i € Zg we take ¢(i) € conv(X) and
d(i) € conveone(Y) with b(i) = ¢(i) + d(¢). Note that conv(X) is compact by 1.

Below we assume that there exists the limit lim; .o ¢(i) € conv(X), replacing
b(i),1 € Zy by some subsequence.

Since d(i) = b(i) — c(4) for any i € Zo, we know that there exists the limit
lim;_, o d(i) € clos(convcone(Y)).

By 2 we know clos(convcone(Y')) = convcone(Y'). We know that a = lim;_,
b(i) = lim; o0 (c(3) +d(7)) = lim;_, 00 (i) +1im;_00 d(i) € conv(X)+convcone(Y) =
S.

By Lemma [6.3120 we conclude that clos(S) C S and S is closed.

4, 5. Easy. O

In Section 21 we defined concepts of lattices, dual lattices and simplicial cones.
By definition we know that there exists a lattice N of V. Let N be any lattice
of V.

Definition 6.10. Let S be any subset of V.
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(1) We say that S is a rational convex polyhedral cone over N, or a convex
polyhedral cone S is rational over N, if there exists a finite subset X of
Q-vect(N) with S = conveone(X).

(2) We say that S is a rational convex pseudo polyhedron over N, or a convex
pseudo polyhedron S is rational over N, if there exist finite subsets X,Y
of Q-vect(N) with S = conv(X) 4 convcone(Y) and X # ().

The dual lattice N* is defined. We have
N*={weV*|{w,a) € Zforanya e N} C V",
by definition.

Lemma 6.11. (1) N is a submodule of V, N is a free module of finite rank
over Z with rankN = dim V', and vect(N) = V.
(2) Any basis of N over Z is a basis of Q-vect(N) over Q, and is a basis of V
over R.
(3) For any non-empty finite subset F' of N, the following three conditions are
equivalent:
(a) F is linearly independent over Z.
(b) F is linearly independent over Q.
(¢) F is linearly independent over R.
(4) The dual lattice N* of N is a lattice of the dual vector space V* of V.. The
dual lattice N** of N* is equal to N.
(5) A convex polyhedral cone S in V is rational over N, if and only if, S =
conveone(X) for some finite subset X of N.
(6) For any vector space S in V the following three conditions are equivalent:
(a) S is a rational polyhedral cone over N.
(b) S = vect(X) for some finite subset X of N.
(¢c) NNS is a lattice of S.
(7) For any rational polyhedral cone S over N in V', vect(S) is a rational vector
space over N in V.
(8) Any simplicial cone S over N in V is a rational convex polyhedral cone
over N in V satisfying S N (=S) = {0}.
(9) For any non-empty subset S of V', the following two conditions are equiva-
lent:
(a) S is a simplicial cone over N in'V and dim S = 1.
(b) S is a rational convexr polyhedral cone over N in V, dimS = 1, and
Sn(=S)={0}.
(10) A convex pseudo polyhedron S in 'V is rational over N, if and only if, S =
conv(X) 4 conveone(Y') for some non-empty finite subset X of Q-vect(N)
and some finite subset Y of N.
(11) For any affine space S in V the following two conditions are equivalent:
(a) S is a rational convex pseudo polyhedron over N.
(b) S ={a} + vect(Y) for some x € Q-vect(N) and some finite subset Y
of N.
(12) For any rational affine space S over N in V, stab(S) is a rational vector
space over N in V.
(13) For any rational conver pseudo polyhedron S over N in V, affi(S) is a
rational affine space over N in V.
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We consider any finite dimensional vector space W over R and any homomor-
phism w : V. — W of vector spaces over R. The dual homomorphism «* : W* — V*
is defined, and is a homomorphism of vector spaces over R. The kernel 7=1(0) of
7 1s a vector subspace of V, the image w(V') is a vector subspace of W, the image
7*(W*) of ™ is a vector subspace of V*, and the kernel 7*~1(0) of ©* is a vector
subspace of W*.

(14) The following seven conditions are equivalent;
(a) 7=1(0) 4s rational over N.

)

(¢) m(N) is a lattice of m(W).

(d) There exists a lattice Q of W satisfying Q@ Nw(V) = w(N).

) ™ (W*) is rational over N*.

) N*Na*(W*) is a lattice of m*(W™*).

(g) There exists a lattice Q of W* satisfying 7*(Q) = N* Nw*(W*).

(15) Assume that equivalent seven conditions in the above 14 hold. For any
lattice Q of W* satisfying m*(Q) = N* N 7*(W*), Q N7*~(0) is a lattice
of T~1(0).

(16) For any lattice Q of W, the following two conditions are equivalent:

(a) QO (V) = 7(N).
(b) T(Q") = N* N (W),

(17) For any lattice Q of W*, the following two conditions are equivalent:

(a) 7*(Q) = N* A (W),
(b) Q*N7(V) = x(N).

7. CONVEX CONES AND CONVEX POLYHEDRAL CONES

We study convex cones and convex polyhedral cones.
Let V' be any finite dimensional vector space over R, and let N be any lattice of
V.
In Section 2] we defined the dual cone SV|V of any convex cone S in V. By
definition
SYIV ={w € V*[{w,a) >0 for any a € S} C V*,

for any convex cone S in V.

Lemma 7.1. Let S be any convex cone in V.

(1) The dual cone SV|V of S is a closed convex cone in the dual vector space
V* of V.
(2) Let W be any vector subspace in V. with S C W. S is a convex cone in W
and the dual cone SY|W of S in W* is defined.
Let v : W — V denote the inclusion homomorphism. The dual homo-
morphism * : V* — W* is defined, which is surjective.
SVIV = LSV W).
(3) SV|VV|V* = clos(9).
(4) SVIVV|V* =S, if and only if, S is closed.

Proof. 1,2. Easy.
3. We know (w, a) > 0 for any w € SV|V and for any a € clos(S), and SV|VV|V* D
clos(9).

We have to show the opposite inclusion relation.
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We take any positive definite symmetric bilinear form (, ) : V x V — R, and
putting |z| = \/(z,x) € Ry for any € V, we define a norm | | : V' — Ry.

We consider any point a € V' — clos(5).

It is easy to show that there exists a point b € clos(S) satistying |a—b| = min{|a—
c|le € clos(S)}. We take a point b € clos(S) with |a — b| = min{]a — ¢||c € clos(S)}.
Since a & clos(S), we have a — b # 0, and |a — b] > 0.

We consider any point ¢ € clos(S). Furthermore, we consider any ¢t € R with
0 <t<1andany u € Ryg. Since clos(S) is a convex cone, we have (1 — )b +
tuc € clos(S) and |a —b| < |a — (1 —¢)b — tuc| = |a — b+ t(b — uc)|. Therefore,
la — b < |la—b+tb—wuc)* = |a—b*+ 2t(a — b,b — uc) + t2|b — uc|?, and
0 < 2t(a — b,b — uc) + t2|b — uc|?. Since t € R is any element with 0 < ¢t < 1, we
know 0 < (a — b,b — uc) = (a — b,b) — u(a — b, ¢). Since u € Ry is any element, we
know (a — b,b) > 0 and (a — b, ¢) < 0. Furthermore, considering the case ¢ = b, we
know (a —b,b) < 0. Therefore, we conclude (b —a,b) =0 and (b — a,c) > 0 for any
¢ € clos(9).

We take the point w € V* satisfying (w,z) = (b — a,z) for any x € V. We have
(w,e) = (b—a,c) > 0. Since ¢ € clos(S) is any point and clos(S) D S, we know
we SY|V.

Since (w,a) = (b—a,a) = (b—a,a—b)+(b—a,b) = —|a—b*+0 = —|a—b|> < 0,
we conclude a & SV|VV|V* and a € V — (SV|VV|V*).

Since a € V — clos(S) is any point, we conclude V —clos(S) C V — (SV|VV|V*),
SYIVVIV* C clos(S), and SY|VV|V* = clos(S).

4. It follows from 3. O

When we need not refer to V, we also write simply SV, instead of SV|V.

Lemma 7.2. Let S and T be any convex cones in V.

) IfSCT, then SV D TV.

) Assume that S and T are closed. S C T, if and only if, S¥ D TV.

Yy (S+T)V=8VNnTV.

) Assume that S and T are closed. (SNT)V = clos(SY +TV).

) Assume that S is a vector space. By ¢ : S — V we denote the inclusion
homomorphism. * : V* — S*.

SY ={w e V*|(w,a) =0 for any a € S} =*"1(0) C V*,

SV is also a vector space, and dim S + dim SV = dim V.

(6) vect(S)Y =SVN(=SY). vect(S)V is the mazimal vector space contained in
SV with respect to the inclusion relation.

(7) Assume that S is closed. vect(SY) = (SN (=9))Y and dim SY = dimV —
dim(S N (=9)).

(8) dimS + dim SV > dimV. dim S + dim SV = dim V, if and only if, S is a
vector space.

(9) We denote n = dimV € Zg. Let e : {1,2,...,n} — V be any mapping
such that the image e({1,2,...,n}) of e is a basis of V, and let I,J, K, L
be any subset of {1,2,...,n} such that ITUJUK UL = {1,2,....,n} and
the intersection of any two of I, J, K, L is empty. We denote the dual basis
of {e(i)i € {1,2,...,n}} by {eV(i)|i € {1,2,...,n}}. We assume

\/,L' e - — 1 ZfZ:],
(€ (0),¢(7) {0 e

(1
(2
(3
(4
(5
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foranyie{1,2,....,n} and any j € {1,2,...,n}.

If
S = {0}e(i) + Y Re(j) + > Roe(k) + Y Ro(—e(¥)),
iel jeJ keK teL
then
SY = ZRev(i) + Z{O}ev(j) + Z Roe (k) + ZRO(—eV(ﬁ)).
iel jeJ keK teL

(10) If S is a simplicial cone over N with dim S = dim V, then SV is a simplicial
cone over N* with dim SV = dim V*.

Remark . There exists an example of two closed convex cones S, T in a finite
dimensional vector space V' such that S + T is not closed.

Definition 7.3. Let S be any convex polyhedral cone in V. We consider the dual
cone S¥ = SY|V C V*of S.

(1) For any w € SY we denote
A(w,S|V) ={z € S|{w,z) =0} C S.

When we need not refer to V or to the pair (S, V'), we also write simply
A(w, S) or A(w), instead of A(w, S|V).
(2) Let F be any subset of S. We say that F is a face of S, if F = A(w, S|V)
for some w € SV.
It is easy to see that any face F' of S is a closed convex cone, and the
dimension dim F' € Zg of F, the boundary OF of I’ and the interior F*° of
F are defined.
(3) By F(S) we denote the set of all faces of S.
For any i € Z, the set of all faces F' with dim F' = 4 is denoted by F(5);,
and the set of all faces F' with dim F = dim S — i is denoted by F(S)".
(4) Let F be any face of S. We denote

A°(F,S|V) = {we §Y|F = Alw, S|V)} € SY c V*,
A(F,S|V) = {w e SY|F C A(w, S|V)} ¢ §¥ ¢ V™.

We call A°(F,S|V) the open face cone of F, and we call A(F,S|V) the
face cone of F.

When we need not refer to V or to the pair (S, V'), we also write simply
A°(F,S) or A°(F), A(F,S) or A(F) respectively, instead of A°(F,S|V),
A(F,S|V).

Proposition 7.4. Let S be any convex polyhedral cone in V', and let X be any finite
subset of V with S = conveone(X). We consider the dual cone S¥Y = SY|V C V* of
S. For simplicity we denote s = dimS € Zg, L=SN(=S) C S, { =dim L € Zy,
M=5"Nn(-SY)cSsv.

(1) We consider any finite dimensional vector space U over R with dim S <
dimU < dimV, any injective homomorphism v : U — V of vector spaces
over R such that S C v(U), and any subset F' of S. The inverse image
v=1(S) is a convex polyhedral cone in U. The set F is a face of S, if and
only if v=1(F) is a face of v™1(9).
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(2) We consider any finite dimensional vector space W over R with dimV <
dim W, any injective homomorphism w : V. — W of vector spaces over R,
and any subset F' of S. The image 7(S) is a convex polyhedral cone in W.
The set F is a face of S, if and only if w(F) is a face of 7(S).

B)l<s. l=seL=5<S5=vect(S9).

(4) Let F be any face of S.

(a) F = convcone(X N F) = SNvect(F). vect(F) = vect(X N F).

(b) F is a convex polyhedral cone in V.

(c) If S is rational over N, then F is also rational over N. If S is a
stmplicial cone over N, then F is also a simplicial cone over N.

(d) L=FnNn(-F)CF.¢{<dimF <s.

(e) Let G be any face of S with G C F. We have dim G < dim F'. dim G =
dim F', if and only if, G = F.

(f) Let G be any subset of F. G is a face of the convex polyhedral cone F,
if and only if, G is a face of S with G C F.

(5) Assume £ < s. For any face G of S with G # S there exists a face F
of S with dimF = s —1 and G C F. There exists a face F' of S with
dimF =s—1.

(6) F(S) is a finite set. S € F(S)s and F(S)s = {S}. S contains any face
of S. L € F(S); and F(S)e = {L}. L is contained in any face of S.
L = conveone(X NL) = vect(X NL). For any i € Zo, F(S); # 0 if and
only if £ <i < s.

(7) Let F and G be any face of S with F C G. We denote f =dim F and g =
dimG. £ < f < g <s. There exist (s—0+1) of faces F(£), F({+1),...,F(s)
satisfying the following three conditions:

(a) Foranyie {¢,L+1,...,s—1}, F(i) C (2—1—1).
For anyie {{,L+1,...,s}, dim F(i)

) =
(c) F(£) =L, F(f) = F, F(g) = G, F(s) S

(8) Let F be any face of S.
(a) F=0FUF°. 0FNF°=4.
(b) F°P=F < J0F=0<F=1L.
()

OF = U G.

GeF(F)—{F}

(d) F° is a non-empty open subset of vect(F'). For any a € F° and for
any b € F, conv({a,b}) — {b} C F°. F° is convez. clos(F°)=F.
(9) Consider any m € Zy and any mapping F : {1,2,...,m} — F(S). The

intersection Nic(1,2,...m}F (i) is a face of S.

(10) We consider any two faces F\G of S. F° NG # 0, if and only if, F C G.
F°NG° #0, if and only if, F =G.

(11) M = A(S) = vect(S)V. If S is rational over N, then M is rational over
N*.

(12) Assume £ < s. Let F € F(S)! be any element.
(a) M C A(F). M # A(F).
(b) For any wp € A(F) — M we have A(F) = Rowp + M.
(c) If S is rational over N, then (A(F)— M)NN* # (.
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(13) Note that £ < s, if and only if, F(S)' # 0. In case £ < s we take any
element wp € A(F) — M for any F € F(S)!.

SV = conveone({wr|F € F(S)'}) + M, S = m (Rowr)Y Nvect(S).
FeF(S)!

(14) SY is a convex polyhedral cone in V*. If S is rational over N, then SV is
rational over N*.

(15) Let F be any face F of S.

(a) A(F) is a face of SV.
(b) A(F) = vect(F)¥V N SY. vect(A(F)) = vect(F)V.
(c) A°(F) =A(F)°. A(F) = clos(A°(F)).

(16) For any face F of S, A(F,S|V) is a face of SV, and dim A(F,S|V) =
dimV — dim F. For any two faces F, G of S with F C G, A(F,S|V) D
A(G, S|V).

For any face F of SV, A(F, SV |V*) is a face of S, and dim A(F, SV|V*) =
dim V —dim F. For any two faces F, G of S¥ with F C G, A(F,SV|V*) D
A(G, SVIV*).

The mapping from F(S) to F(SY) sending F € F(S) to A(F,S|V) €
F(SY) and the mapping from F(SV) to F(S) sending F € F(SY) to
A(F,SV|V*) € F(S) are bijective mappings reversing the inclusion relation
between F(S) and F(SY), and they are the inverse mappings of each other.
Furthermore, if F € F(S) and F € F(SV) correspond to each other by
them, dim F + dim F = dim V.

(17) Assume £ < s. Let F € F(S)e4+1 be any element.

(1) LCF. L#F.
(b) For anytp € F — L we have F = Rotp + L.

(18) In case £ < s we take any element tp € F' — L for any F € F(S)¢y1. Note
that ¢ < s, if and only if, F(S)e+1 # 0.

S = conveone({tp|F € F(S)ep1}) + L, S¥= (] (Rotr)” Nvect(SY).
FE.F(S)g+1

(19) The family {F°|F € F(S)} of subsets of S gives the equivalence class de-
composition of S. In other words, the following three conditions hold:
(a) F° #0 for any F € F(S).
(b) If F e F(S), Ge F(S), and F°NG® # 0, then F° = G°.
()
S = Fe.
FeF(S)
(20) F(S) is a convex polyhedral cone decomposition in V', and the support of
F(S) is equal to S. In other words, the following four conditions hold:
(a) F(S) is a non-empty finite set whose elements are convex polyhedral
cones in V.
(b) For any F € F(S) and for any G € F(S), FNG is a face of F, and
FNGisa face of G.
(¢) If F € F(S) and G is a face of F, then G € F(S).

(d)
S = U F.

FeF(S)
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(21) If S is rational over N, then any F € F(S) is rational over N. If S is a
simplicial cone over N, then any F € F(S) is a simplicial cone over N.

(22) Consider any finite dimensional vector space W over R and any homomor-
phism © : V. — W of vector spaces over R. The image w(S) is a convex
polyhedral cone in W, and it satisfies w(S)° = 7(S°).

Proof. We give proofs only to claims 4, 5, 8, 13 and 15. Other claims follow easily.
4. Let F be any face of S. We take w € SY with F = A(w) = {z € S|{w,z) = 0}.
(a). We consider any point a € F'. a € F' C S = conveone(X ) = {D_ .y A(z)z|\ €
map(X,Ro)}. We take A € map(X,Ro) with a = >° _ Mz)z. Since X C
conveone(X) = S and w € SY, (w,z) > 0 for any z € X, and (w,z) > 0 for
any x € X — F. Since )y A(z)(w,z) = (w,a) =0, A(z) = 0 for any z € X — F.
We know a = > vnp M)z € conveone(X N F), and F' C convcone(X N F).

Since F is a convex cone and F D X NF, F = convcone(F) D convcone(X N F).
We know F' = convcone(X N F'), and vect(F) = vect(convcone(X NF)) = vect(X N
Obviously F' C S Nvect(F).

We consider any a € SN vect(F). a € vect(F) = {3, coppon AM@)Z|A €
map’(F,R)}.  We take A € map/(F\R) with a = > ., A@)z. We have
(w,2) = 0 for any z € supp(A) C F. Therefore, (w,a) =3, cquppr) A(@){w,2) =0
and a € F, since a € S. We know F' D S Nvect(F) and F = S Nvect(F).

(b), (¢). They follow from (a).

(d). Obviously L=SnN(=S) D FN(=F).

We consider any a € L. Since {a,—a} C L C S and w € SV, (w,a) > 0 and
—{w,a) = (w,—a) > 0. Therefore, (w,a) =0 and a € F. We know L C F. Since
L=-LcC—-F,weknow LC FN(—F)and L=FN(-F)CF.

Since LCFCS,{=dmL<dimF <s=dimS.

(e). Let G be any face of S with G C F. We have vect(G) C vect(F) and
dim G = dim vect(G) < dim F = dim vect(F).

Assume dim G = dim F. We have dim vect(G) = dim vect(F'), and vect(G) =
vect(F'). By (a) we have G = S Nvect(G) = SNvect(F) = F.

Conversely, assume G = F. Obviously, we have dim G = dim F'.

(f). Let G be any face of the convex polyhedral cone . G C F' C 5. We take
X € FY CV* with G = A(x, F).

Since X C conv(X) = S, (w,z) > 0 for any z € X. (w,z) = 0, if and only if,
ze€XNF. (w,z) >0 forany z € X — F.

Since X NF C F, (x,z) > 0for any x € X NF. {(x,z) = 0, if and only if,
zr€XNG. (x,z) >0foranyz € (XNF)—(XNG).

We consider any A € R. (x + dw,z) = (x, ) + Mw, z) for any € X. For any
x € XNG, (x,z) =0, {w,z) =0, (x, )+ w,z) =0, Forany z € (XNF)—(XNG),
(x,z) > 0,(w,z) = 0,{x,z) + Mw,z) = (x,z) >0. Forany x € X — F, (x,z) €
R, (w,z) > 0, (x,z) + Mw,z) > 0, if and only if, A > —(x, z)/{w, z).

Note that X — F'is a finite set. We take any A\ € R satisfying

@)
(w,z)

A > max{—

|z € X — F},

if X — F # 0.
We know that (x + Mw,z) = 0 for any x € X NG, and (x + Aw,z) > 0 for any
reX—-G.
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We consider any point a € S = convcone(X) = {3y pu(x)z|pn € map(X,Ro)}.
We take any p € map(X,Ro) with a =7 p(x)z. (X +Iw,a) = > ¢ pw(x)(x+
Aw,z) > 0, and if (x + A\w,a) = 0, then p(x) = 0 for any z € X — G. We know
X+ w e SY. Ifa € A(x+Mw, S), thena =" v u(x)r € conveone(XNG) = G.
We know A(x + Mw, S) C G.

We consider any point a € G. a € G C F C S. a € G = conveone(X NG) =
{Dsexna #(@)z|p € map(X NG, Rg)}. We take any p € map(X NG, Ry) with a =
Yowexng M@)T (X +Aw,a) =0 cxne (@) (X +Aw,z) =0, and a € A(x+ Iw, ).
We know G C A(x + Mw, S), and G = A(x + \w, 9).

We know that G is a face of § with G C F.

Conversely, we consider any face G of S with G C F. We take any x € SV with
G = A(x,S). Since S D F, wehave x € SY C FV. G=GNF =A(x,S)NF =
{z € Slx,x) =0}NF={zeF|(x,z) =0} = A(x, F).

We know that G is a face of the convex polyhedral cone F'.

5. Assume £ < s. We consider any face G of S with G # S.

Assume moreover, that a face F of S satisfying G C F' C S and dim F' = dim S—1
does not exist. We will deduce a contradiction from this assumption.

Ge{FeFS)|GCcFcCSF#S}#0.

We consider any F € F(S) with G C FF C S and F # S. By 4.(e) we know
dimG < dim F' < s — 1. By assumption we know dim F' < s — 2. Put

0 = max{dim F|F € F(S),G C F C S,F # 5}.

We know dimG < § < s — 2.

Let F be any face of S with dimF = ¢ and G C F C S. Let w € SV be any
element with F = A(w).

F = conveone(X N F). Since FF # S, X — F # (. X — F is a non-empty finite
set. (w,x) =0 for any z € X N F, and (w,z) > 0 for any x € X — F.

We denote D, = {z € vect(S)|(w,z) = 0}. D, is a vector subspace of vect(S)
with dim D, > s — 1. Take any element zp € X —F # 0. zp e X —-FCcX CcSC
vect(S) and {(w, zo) > 0. We know that D,, # vect(S) and dim D, = s — 1.

vect(F) C vect(S). dimvect(F) =dim F =6 < s — 2. dimvect(S) = s.

We know that there exists a vector subspace E of vect(S) of dimension s — 1
such that vect(F) C E C vect(S) and E # D,,. We take a vector subspace E of
vect(S) of dimension s — 1 such that vect(F) C E C vect(S) and E # D,,. We take
x € V* with E = {z € vect(S)|(x,z) = 0}. Since X NF C F C vect(F) C E =
{z € vect(S)|{x,z) =0}, (x,z) =0forany z € X N F.

Let
06 )
)
For any z € X — F, (w,z) > 0, A > —(x,2)/{w,z) and (x + dw,z) = (x,z) +
Mw,z) > 0. There exists ¢ € X — F with (x + Aw,z) = 0. For any z € X N F
(x,z) =0, (w,z) =0, and (x + \w,z) = (x,2) + Aw,z) = 0.

Let

A = max{— lre X —F} eR.

Y=(XnNF)U{zeX —Fl(x+,z)=0}.
XNFCcYcCcXand XNF #Y. Foranyz € X, (x+ w,z) > 0, and (x+ w,z) =0,
if and only if, x € Y.

We consider any point a € S = {} .y u(@)r|p € map(X,Rg)}. We take

p € map(X,Ro) with a = 7 ¢ pu(z)r. We have (x + dw,a) = > oy p(x)(x +
Aw, ) > 0, and if (x + \w,a) =0, then p(x) =0 for any z € X — Y.
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We know x + Aw € SV and conveone(Y) D A(x + Aw, S).

We consider any point a € conveone(Y) = {3 .y p(z)z|p € map(Y,Ro)}. a €
conveone(Y') C conveone(X) = 5. We take p € map(Y,Ro) with a = >y p(z)z.
We have (x + Aw,a) = > oy p(x)(x + Aw,z) = 0, and a € A(x + Iw, ).

We know convcone(Y) C A(x+ 2w, S) and conveone(Y) = A(x+w, S) € F(S5).

Since XN F C Y, F = convcone(X N F) C convcone(Y). Since ¥ — (X N
F) Y C convecone(Y) and § # Y — (X NF) ¢ F, F # conveone(Y). By
4.(e) we have § = dim F' < dim convcone(Y'), convcone(Y) = S, and vect(Y) =
vect(conveone(Y)) = vect(S).

We consider any a € vect(S) = vect(Y) = {>° oy p(z)z[n € map(Y,R)}. We
take u € map(Y,R) witha = Yy p(x)z. (x+Iw,a) =3, oy p(2){(x+Iw,z) = 0.
We know that (x + \w,a) = 0 for any a € vect(S).

We consider any point a € D,,. a € D,, C vect(S) and (w,a) = 0. Therefore
(x,a) = (x,a) + Mw,a) = (x + \w,a) =0, and a € E.

We know D, C E. Since dim D, = dimFE = s — 1, we know D, = F, which
contradicts D, # E.

We know that there exists a face F' of S with G C F'C S and dim F' = s — 1.

Assume that A(w) = S for any w € S¥. For any a € S and for any w € SV we
have {(w,a) = 0.

We consider any a € S and any x € vect(SY) = {3, coppon) MW)wIA €
map’(SY,R)}. We take A € map’(SV,R) with y = > wesupp(n) Mw)w.  For any
w € supp(A) C SY we have (w,a) =0, and (X, @) = > cqupp(r) AW){w, @) = 0.

We know that for any a € S and for any x € vect(SY) (x,a) = 0, and S C
vect(SV)Y = LYY = L. Since S D L, we know that S = L and £ = s by 2, which
contradicts the assumption ¢ < s.

We know that there exists w € SY with A(w) # S. We take w € SV with
A(w) # S. Putting G = A(w), we apply the above result.

We know that there exists a face F' of S with ' C S and dim F' = s — 1.

(a). It follows from definitions.
(b), (¢). By (a) F° =F < 0F =0.

First, we consider the case F' = L. We have F = L = vect(L) = vect(F), a
OF = F Nclos(vect(F) — F) = F Nclos(@) = (. For any w € FY = vect(F)Y
have A(w) = {x € Fl{w,z) = 0} = F. Therefore, F(F) = {F}, F(F) — {F}
and UGe]—"(F)—{F}G =(=0F.

We consider the case F # L. By 5 we know F(F)' # 0, and Uger(p)—{r}G =
UgerrpG # 0. We consider any point a € UgerrpG. We take G € F(F)*!
with a € G, and w € FY with G = A(w,F). a € G C F, and a € G C vect(G) C
vect(F'). Since dimvect(G) = dim G = dim F—1 = dim vect(F)—1, vect(G) = {z €
vect(F)|(w, z) = 0} and F C {x € vect(F)|(w,z) > 0}. We know that there exists
an infinite sequence b(i),i € Zg of elements in vect(F) such that a = lim;_, b(7)
and (w,b(z)) < 0 for any ¢ € Zy. We take an infinite sequence b(i), i € Zg of elements
in vect(F) such that a = lim; o b(¢) and (w,b(7)) < 0 for any i € Zy. Since
(w,b(7)) < Oforanyi € Zo and F C {z € vect(F)|{w,z) > 0}, b(i) € vect(F)—F for
any i € Zg. Therefore, a € FNclos(vect(F)—F) = 0F. We know 0F D Ugerr) G,
and OF # ().

We consider any point a € OF = F Nclos(vect(F) — F). a € F. We take infinite
sequence a(i), i € Zg of elements of vect(F) — F with a = lim;_, o a(i).
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We take any positive definite symmetric bilinear form (, ) : V x V — R, and
putting |z| = v/(z,z) € Ry for any x € V, we define a norm | | : V' — Ry. We know
lim; o0 |a — a(i)] = 0.

We consider any i € Zg. We take any point b(i) € F with |a(i) — b(i)| =
min{|a(i) — ¢|lc € F}. By the proof of Lemma [[ 114, we know |a(i) — b(¢)| >
0,(b(¢)—a(i),b(i)) = 0, and (b(i)—a(i),c) > 0 for any ¢ € F. We take w(i) € V* such
that (w(7),z) = (b(¢) — a(i),z) for any = € V. Since (w(i),c) = (b(¢) — a(i),c) > 0

for any ¢ € F, w(i) € FY. Since b(i) € F and (w(i),b(i)) = (b(i) — a(i),b(i)) = 0,
we know b(i) € A(w(i), F)

Now, Aw(i), F) = {& € Fl{w(i),z) = 0} = {z € FI(b(i) — a(i), ) = 0}
{z € vect(F)|(b(2) — a(i ) 0}. Since b(i) € F C vect(F),a(i) € vect(F) — F

)
vect(F'), we know b(i) — a(i) € vect(F) and {z € vect(F)|(b(i) — a(i),z) =
is a vector subspace of vect(F') of codimension one. Therefore dim A(w(?), F)
dim{z € vect(F)|(b(i) — a(i),x) =0} =dim F' — 1 and A(w(i), F) # F.

Since a € F, |a(i) — b(3)] < |a(i) —a] = |a —a(i)]. 0 < |a—b()| < |a —a(d)| +
la(i) — b(3)| < 2la — a(i)].

Now, since lim;, o |a — a(i)] = 0, we know lim; o |a — b(i)] = 0 and a =
lim;_,, b(i). Note that F(F) is a finite set. Below we assume that A(w(i), F) €
F(F)—{F} does not depend on i € Zy, replacing b(i),i € Zo by some subsequence.
Put Gy = A(w(0), F) € F(F) — {F}. For any i € Zy we have b(i) € A(w(7), F) =
Go. Therefore a = lim;_,» b(i) € Gy C UGE]—‘(F)—{F}G-

We know OF C UGE}'(F)f{F}Gu and OF = UGG}'(F)f{F}G'

(d). By Lemma [6.814 we know F° # (.

We consider any a € F° and any b € F. We would like to show that
conv({a,b}) — {b} C F°. If a = b, then conv({a,b}) — {b} = 0 C F°. Below we
assume a # b. We consider any point ¢ € conv({a,b}) — {b} and we take ¢t € R such
that c=ta+ (1 —t)band 0 < ¢t < 1.

Since {a,b} C F and F is convex, ¢ € conv({a,b}) C conv(F) = F. Assume
cg F°. ce OF. We take G € F(F) with ¢ € G and G # F, and we take w € F
with G = A(w, F). We know that ¢ € A(w, F) and (w,c) = 0. Since {a,b} C F,
(w,a) > 0 and {w,b) > 0. Since a € F°, a & OF, a ¢ G and (w,a) > 0. We have
0= (w,c) = (w,ta+ (1 —t)b) = t{w,a) + (1 —t){w,b) > 0, which is a contradiction.
We know ¢ € F° and conv({a,b}) — {b} C F°.

Consider any a,b € F°. By the above conv({a,b}) = (conv({a,b}) —{b})U{b} C
F°. We know that F° is convex.

Since F° C F and F is closed, clos(F°) C clos(F') = F. Consider any b € F. We
take an a € F° # () with a # b. Since conv({a,b}) — {b} C F°, ta+ (1 —t)b € F°
for any t € R with 0 < ¢t < 1. Therefore, b = lim; o ta 4+ (1 — )b € clos(F°). We
know clos(F°) D F and clos(F°) = F.

13. In case £ < s we take any element wp € A(F) — M for any F' € F(S)!. Note
that ¢ < s, if and only if, F(S)! # 0.

Consider any F' € F(S)!. Since wr € A(F) C SV, we have Rowp C SV and
S =S8V cC (Rowp)v.

Since S C vect(S), we know

C
C
0}
<

S C ﬂ (Rowr)Y Nvect(S).
FeF(S)!
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If £ = s, then we have S = vect(S) by 2, F(S)! = 0 by 5, and S = vect(S) =
mFe]—"(S)l(ROwF)v N vect(S).

Assume

() ®Rowr)” Nvect(S)) — S # 0.
FeF(S)*
We will deduce a contradiction from this assumption.

It follows ¢ < s and F(S)! # 0.

Take any a € (Nper(s) (Rowr)Y N vect(S)) — 5, and take any b € S° # 0.
a € vect(S) — S5, be S°C S Cvect(S) and a # b.

We denote [0,1] = {¢t € R0 < ¢ < 1}. We know {(1 — t)a + tb|t € [0,1]} =
conv({a,b}) C vect(S). Let I = {t € [0,1]|(1—¢t)a+tbe S}. 0,1 €Tand[isa
closed interval contained in [0, 1], since S is a closed convex cone. Since b € S° and
S° is an open subset of vect(S), we know that there exists t1 € [0, 1] such that ¢; # 1
and {t € [0,1]]t; < ¢t < 1} C I. We know that there exists to € [0,1] such that
to# 1,to #0and {t € [0,1]]to <t <1} =I. Let ¢ = (1—tg)a+tob € vect(S). Since
toel,ceS. Foranyt € R with 0 <t <tg,t¢ I and (1 —¢)a+the vect(S)—S.
We know ¢ = limy_,4, 4 (—g) € clos(vect(S) —S), and ¢ € SNclos(vect(S) — ) = IS.
By 8 we know that there exists a face Gy of S satisfying Gy # S and ¢ € Gy.
We take a face Gg of S satisfyingt Gp # S and ¢ € Gyg. By 5 we know that
there exists Fy € F(S)! with Gy C Fy. We take Fy € F(S)! with Gy C Fp.
c € Gy C Fy C Alwg,), since wr, € A(Fp). We know (wp,,c) = 0.

Now, since a € Nper(sy(Rowr)” Nvect(S) C (Rowr, )", (wry,a) > 0. Since
be S°C S andwr € A(Fy) C SV {wr,,b) > 0. Since b € 9S = UGeF(S)—{S}G7
b ¢ Fy. Fo C Alwg,) € S. If A(wg,) = S, then wr, € A(S) = M, which
contradicts wg, ¢ M. Therefore, A(wp,) # S and dim A(wp,) < s — 1 by 4.(e).
Since dim Fy = s — 1, we have Fy = A(wg,) by 4.(¢) and b € A(wp,). We know
(Wry,b) > 0. Since 0 < ¢y < 1, we have 0 = (wg,,¢) = (Wr,, (1 — to)a + ted) =
(1 —to){wr,,a) + to{wr,, b) > 0, which is a contradiction.

We know (Npez(s)1 (Rowr)Y Nvect(S)) — S =0 and

S= [ Rowr)” Nvect(S).
FeF(S)!

By Lemma [7.214 and Lemma [6.912 we know
SY = ( ﬂ (Rowr)Y Nvect(9))Y
FeF(S)!

= clos( Z Rowr + vect(S)Y)
FeF(S)!

= Z RQQ}F + Vect(S’)V
FeF(S)t

= conveone({wr|F € F(S)'}) + M.

15. Let F' be any face of S.

(a). Takeanya € F°. a € F° C F C S = SYY. Consider any w € A(F,S). we SV,

a€F C Aw) and (w,a) = 0. We know w € A(a,SV) and A(F,S) C A(a, SV).
Consider any w € A(a,SY). w € §Y, (w,a) = 0 and a € A(w,S). Since

a € F°NA(w,S) # 0, we know F C A(w,S) by 9, w € A(F,S), and A(F,S) D

A(a, SY).
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We know A(F) = A(F,S) = A(a, SV) is a face of SV.

(b). By definition A(F) C SV. Consider any w € A(F'). By definition F' C A(w)
and (w,a) = 0 for any a € F. Consider any b € vect(F) = {3, cquppn) M@)alA €
map’(F,R)}. We take any A € map/(F,R) with b = }° ., Ala)a. For any
a € supp(A), a € supp(A) C F and (w,b) = 3, cquppr) AMa)(w, @) = 0. We know
w € vect(F)V, and A(F) C vect(F)¥ NSY.

Consider any w € vect(F)¥ N SY. w € SY. Since w € vect(F)Y, (w,a) = 0 for
any a € vect(F). Since F' C vect(F)NS, a € S and (w,a) = 0 for any a € F.
Therefore, FF C A(w), w € A(F), and A(F) D vect(F)Y N SY.

We know A(F) = vect(F)V N SY.

Now, A(F) = vect(F)VNSY = (vect(F)+S5)" by Lemmal[l213. We denote W =
(vect(F) +.S) N (—(vect(F) +5)). W is a vector subspace of V' with vect(F) C W.
Consider any a € W. a € vect(F)+S. We take b € vect(F') and ¢ € S with a = b+c.
—a € W C vect(F) + S. We take b’ € vect(F') and ¢ € S with —a = 0 + (.
O=a+(-a)=b+V)+(c+d)and c+ = —(b+ V) € SNvect(F) = F.
We take any w € SV with F = A(w). {(w,c+ ) = 0. We have (w,c) > 0, and
(w, ') > 0. Since (w,c) + (w, ) = (w,c+ ) = 0, we know (w,c) = (w, ) = 0,
¢ € Alw) = F C vect(F). Therefore, a = b+ ¢ € vect(F), vect(F) D W and
vect(F) = W. vect(A(F)) = vect((vect(F) + S)V) = WV = vect(F)V.

We know vect(A(F)) = vect(F)V.

(¢). By (b), dim A(F) = dim vect(A(F)) = dim vect(F)" = dim V — dim vect(F') =
dim V —dim F. Replacing the pair (F,S) by (A(F),SY), we know A(A(F)) € F(S)
by (a). By (b), dim A(A(F)) = dim vect(A(A(F))) = dim vect(A(F))Y = dimV —
dimvect(A(F)) =dimV — dimA(F) =dimV — (dimV —dim F) = dim F.

Consider any a € F. For any w € A(F), a € F C A(w), {x,a) = 0, and
w € A(a). We know A(F) C A(a), and a € A(A(F)). We know F C A(A(F)).

Since dim F' = dim A(A(F)), we know A(A(F)) = F.

Consider any w € A°(F). w € SY and F = A(w). We know w € A(F).

Consider any A € F(A(F)) with A # A(F). Assume w € A. We will deduce
a contradiction from this assumption. Replacing the pair (F,S) by (A,SY), we
know A(A) € F(S) by (a). We denote G = A(A). Furthermore, by (a) we know
A(G) € F(SY).

By (b) we know vect(G) = vect(A)Y and vect(A(G)) = vect(G)Y = vect(A).
Therefore, dim G = dim vect(G) = dim vect(A)Y = dim V — dim vect(A) = dim V —
dimA > dimV —dim A(F) = dim F, and dim A(G) = dim vect(A(G)) = dim vect(
A) = dimA.

We consider any x € A. For any a € G = A(A), x € A C A(a). Therefore,
(x,a) =0, G C A(x), and x € A(G). We know A C A(G). Since dimA(G) =
dim A, we know w € A = A(G), and G C A(w) = F. We have dim F < dim G <
dim F', which is a contradiction.

We know w & A. w & OA(F) by 8.(c). Therefore, w € A(F) — A(F) = A(F)°.

We know A°(F) C A(F)°.

Consider any w € A(F)°. Since w € A(F)° C A(F), F C A(w). Consider any
a € Alw). (w,a) =0 and w € A(a) N A(F)° # 0. By 10 we know A(F) C A(a)
and a € A(A ( )) = F. We know F D A(w), F = A(w) and w € A°(F).

We know A°(F) D A(F)°, and A°(F) = A(F)°.

By 8.(d) we know A(F) = clos(A(F)°) = clos(A°(F)). O
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Corollary 7.5. (1) For any convex polyhedral cone S in V, the dual cone SV

(2)

is a convex polyhedral cone in V*. If moreover, S is rational over N, then
SV is rational over N*.

For any convex polyhedral cones S and T in V., S+T and SNT are convex
polyhedral cones in V. If moreover, S and T are rational over N, then
S+ T and SNT are rational over N.

For any convex polyhedral cones S and T in V, (S+T)V =SV NTY and
(SNT)Y =SV +1TV.

For any convex polyhedral cone S in 'V, any finite dimensional vector space
W over R and any homomorphism © : V. — W of vector spaces over R,
7(S) is a conver polyhedral cone in W. If moreover, S and 7=1(0) are
rational over N, then w(S) is rational over Q for any lattice Q of W with
m(N)=Qnx(V).

For any convex polyhedral cone S in 'V, any finite dimensional vector space
U over R and any homomorphism v : U — V of vector spaces over R,
v=1(S) is a convex polyhedral cone in U. If moreover, S and v(U) are
rational over N, then v=1(S) is rational over K for any lattice K of U
with v(K) = Nnv(U).

Lemma 7.6. Let m € Z, be any positive integer, and let S be any mapping from
the set {1,2,...,m} to the set of all convex polyhedral cones in V. We denote

(1)
(2)

S= () SGcw
ie{1,2,...,m}
S is a convex polyhedral cone in V. SV = icqiz,..my S@)Y. If S(3) is
rational over N for any i € {1,2,...,m}, then S is rational over N.

If Nieqi,2,....myS(@)° # 0, then Se = Nic{1,2

Let F be any face of S.

(3)

There erists uniquely a face F(i) of S(i) with F° C F(i)° for any i €
{1,2,...,m}.

Below, we assume that F(i) € F(S(i)) and F° C F(i)° for anyi € {1,2,...,m}.

(4)
(5)

(6)

(7)

(8)

F C F(i) for any i € {1,2,...,m}.

F= (] F@.

i€{1,2,...,m}

vect(F) =[] vect(F(i)).

i€{1,2,...,m}

AF,S) =Y A(F(>),5()).

i€{1,2,...m}

Let G(i) be any face of S(i) for any i € {1,2,...,m}.

(9)

The intersection Nie(1,2,...m}G(i) is a face of S.

(10) If F C G(i) then F(i) C G(i), for any i € {1,2,...,m}.
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(1) 1
F= (] G,
i€{1,2,....,m}
then F(i) C G(i) for anyi € {1,2,...,m} and the following three conditions
are equivalent:

(a)
(N GG #0.
i€{1,2,...,m}
((bg F(i) = G(@i) for anyi e {1,2,...,m}.
FP= (] GGy
i€{1,2,....,m}

8. SIMPLICIAL CONES

We study simplicial cones.
Let V' be any finite dimensional vector space over R, and let N be any lattice of

V.

Lemma 8.1. Let S be any simplicial cone over N in V.

(1) The cone S is a rational polyhedral cone over N in'V satisfying SN(—S) =
{0}.

(2) £F(S)1 =dimS. 0 <dimS < dimV.

(3) The intersection N Nvect(S) is a lattice of vect(S). S is a simplicial cone
over N Nvect(S) in vect(S). The residue module N/(N Nvect(S)) is a free
module over Z of finite rank. rank(N/(N Nvect(S))) = dimV —dim S.

(4) Any face of S is a simplicial cone over N in'V. The set {0} is a face of S.
For any face F of S, F(F) C F(S) and F(F)1 C F(S)1.

(5) Ifdim S = 1, then there exists uniquely an element bg/n of SNN satisfying
SN = Zobg)y.

Definition 8.2. Let S be any simplicial cone over N in V.
If dim S = 1, we take the unique element bg,n of SNN satisfying SNN = Zobg/n-
If dim S # 1, we put
bS/N: Z bE/NGSﬁN
EeF(S)
We call bg,ny € SN N the barycenter of S over N. When we need not refer to
N, we also write simply bg, instead of bg/y-

Lemma 8.3. Let S be any simplicial cone over N in V.

(1) The set {bg|E € F(S)1} is a basis over Z of the lattice N N vect(S) of
vect(S), and it is a basis over R of the vector space vect(S).

S = Z Robg = conveone({bg|E € F(S)1}),
EeF(S)

S°= > Ryibg.

EeF(S)
For any E € F(S)1, E =Robg. F(5)1 = {Robr|E € F(S)1}.



52 TOHSUKE URABE

(2) If a basis B over Z of N and a subset C of B satisfies S = convcone(C),
then §C = dim S and C = {bg|E € F(5)1}.

(3) F(F), € 271 and $F(F); = dim F for any F € F(S). F(F); € F(G)
for any F € F(S) and any G € F(S) satisfying F C G.

Y pex E € F(S) anddim(Y pex E) = 81X forany X € 27 S (EC
Y pey E for any X € 27 and any Y € 275 satisfying X C Y.

The mapping from F(S) to 2751 sending F € F(S) to F(F); € 27
and the mapping from 27 to F(S) sending X € 2751 to Yeex E €
F(S) are bijective mappings preserving the inclusion relation between F(S)
and 2751 and they are the inverse mappings of each other.

Furthermore, if F € F(S) corresponds to X € 2751 by them, then
dim F = tX. The element {0} € F(S) corresponds to § € 271 by them,
and S € F(S) corresponds to F(S); € 2751 by them.

(4) For any X € 2751 and any Y € 2751

(B pn=- Y &

BeX Eey Eexny
QB+ _B= > E
Eex Eey EeXuy

(5) For any F € F(S) and any G € F(S) the following claims hold:
(a) FNG e F(S) and F(FNG)1 = F(F)1 N F(G);.
(b) F+G e F(S) and F(F+G)1 = F(F)1 UF(@)1. F C F+G and
G C F+G. IfH € F(S) satisfies F C H and G C H, then F+G C H.
(F+G)° =F°+G°.
(c) FNG={0} and F+ G =S, if and only if, F(F)1 N F(G)1 =0 and
]:(F)l U]:(G)l :]:(S)l

Definition 8.4. Let S be any simplicial cone over NV in V', and let F' be any face
of S. We denote

FOP|S = > E € F(9),
EeF(S)1—F(F)1

and we call F°P|S the opposite face of F over S. When we need not refer to S, we
also write simply F°P, instead of F°P|S.

Lemma 8.5. Let S be any simplicial cone over N in V.

(1) For any face F of S, the following claims hold:
(a) F°P = F°P|S is a face of S. dim F + dim F°P = dim S.
(b) FAF® = {0} and F + F = S. If G € F(S), FN G = {0} and
F+G=S, then G = F°P.
(c) (FoP)P = F.
(d) F(FP) = F(Sh—=F (). If G € F(S) and F(G)1 = F(S)1—F(F)1,
then G = F°P
(2) {0}°p =S. S°P = {0}.
(3) For any F € F(S) and any G € F(S), the following claims hols:
(a) F C G, if and only if, F°P D G°P.
(b) (FNG)P = FoP 4+ Gop.
(c) (F+ G)°P = F°PNGeP.



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 53

(4) Consider any F € F(S) and any G € F(S) with F C G. F € F(G),
F°P|G = (F°P|S)NG, F°P|S = (F°P|G)+(G°P|S) and (F°P|G)N(G°P|S) =
{0}.

(5) The mapping from F(S) to itself sending F € F(S) to F°P € F(S) is a
bijective mapping reversing the inclusion relation. Its inverse mapping s
equal to itself.

Lemma 8.6. For any simplicial cone S over N in V with dim S = dim V', the set
{bp|E € F(S)1} is a basis of N over Z.

For any basis B of N over Z, convcone(B) is a simplicial cone over N in V with
dim convcone(B) = dim V.

The mapping sending any simplicial cone S over N in V with dim S = dimV to
{be|E € F(S)1} and the mapping sending any basis B of N over Z to convcone(B)
are bijective mappings between the set of all simplicial cones S over N in V with
dim S = dimV and the set of all bases B of N over Z, and they are the inverse
mappings of each other.

Below we consider any simplicial cone S over N in V with dimS = dim V.
Note that {bg|E € F(S)1} is a basis of N over Z and it is a basis of V' over R. By
{b}|E € F(S)1} we denote the dual basis of {bg|E € F(S)1}, which is a basis of
V* over R. We assume that for any D € F(S)1 and any E € F(S):

(1) The set {b}|E € F(S)1} is a basis of N* over Z.
(2) SY is a simplicial cove over N* in V* with dim SV = dim V*.
SY = convcone({b};|E € F(5)1}).

For any E € F(S)1, Roby, € F(SY)1 and bgypy = by F(SY)1 = {Robp|E €
F(S)1}, and {bp|D € F(SY)1} = {b}|E € F(S)1}.
(3) For any subset X of F(S)1

A Robe)®, ) = Y Roby,

1 ifD=EF,
0 ifD+E.

EecX EeX
A((Y Rob)P,8¥) = 3 Rob.
EeX EeX

Lemma 8.7. Let S be any simplicial cone over N in V.

(1) Let W be any finite dimensional vector space over R; let Q be any lattice of
W, and let T be any simplicial cone over @Q in W. dim S = dim T, if and
only if, there exists an isomorphism ¢ : vect(S) — vect(T') of vector spaces
over R satisfying ¢(S) =T and ¢(N Nvect(S)) = Q N vect(T).

(2) bs = bS/N € S°NN. Robs "N = Zgbgs.

(3) Consider any a € SN N with RoaN N = Zoa. ¢(a) = a for any homomor-
phism ¢ : vect(S) — vect(S) of vector spaces over R satisfying ¢(S) = S
and ¢(N Nvect(S)) = N Nvect(S), if and only if, a =0 or a = bg.

(4) bs = 0 < dimS = 0. Robs C S. Robs = S < Robs is a face of S <
dimS <1

(5) Assume F € F(S),dimF > 1,A € F(S), and F ¢ A.

(a) A+Robr is a simplicial cone over N in' V. dim(A+Robp) = dim A+1.
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(b) Robr € ]'—(A —|—R0bp)1. A€ ]:(A—FR()Z)F)l Robr.NA = {0} Robr =
A°PI(A + Robp). A = (Robp)°P|(A + Robr).
(c) F(A) c {N e F(S)|F ¢ N'}. F(A) = {A € F(A+ Rpbp)|Robr ¢
Ay AN + Robp|A € F(A)} = {A € F(A +Robr)|Robr C A'}.
(d) A4+Robp CA+F e F(S). (A+Rpbr)° C (A+ F)°.
(e) If dim F > 2, then A +Robp ¢ F(S). If dim F = 1, then A + Robp =
A+F e F(9).
(6) Assume F € F(S),dimF > 1,A e F(S),F ¢ A,A' € F(S), and F ¢ A'.
(a) (A+RQbF) NA'=ANA e ]:(A) C ]:(A +]R0bp)
(b) (A +R0bF) N (AI + ]Robp) = (A n A/) + Robp € ]:(A +RQbF).
(¢) A+ Robp C A +Rpbp, if and only if, A C A'.
(d) A+Robp = A 4+ Robp, if and only if, A = A’.
(7) Assume F € F(S) and dim F' > 1.
(a) {E°P|S | E € F(F)1} is equal to the set of mazimal elements in {A €
F(S)|F ¢ A} with respect to the inclusion relation.

S= |J @+Rbrp) = |J ((E®IS)+Robp).
AEF(S),FZA EeF(F)

(c)

s- U vn= U »r-= (A + Robr)
AEF(S),FZA AEF(S),FCA AEF(S),FZA
(d) Ifdim F = 1, then {A + Robp|A € F(S),F ¢ A} = {A € F(S)|F C

A},

9. CONVEX POLYHEDRAL CONE DECOMPOSITIONS

We begin the study of convex polyhedral cone decompositions. We define nota-
tions and concepts to develop our theory.

Let V' be any finite dimensional vector space over R, and let N be any lattice of
V. Let £ be any finite set whose elements are convex polyhedral cones in V.

We say that £ is rational over N, if any A € £ is rational over N. We say that
& is simplicial over N, if any A € £ is a simplicial cone over N.

We denote

El=JAacy,
A€

g =JAacw
Ae€

We call || and |€|° the support of £ and the open support of € respectively. We
denote

g ={Ae&|IfAefand A CA,then A=A} CE.
We call any element in £™%* a mazimal element of £ and we call £™%* the set of
maximal elements of &.
Note that F(A) is a non-empty finite set whose elements are convex polyhedral
cones in V for any A € £. We denote

ge= | Fa) ceY,
A€
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and we call £ the face closure of £.

In case € # () we define

dim € = max{dim A|A € &} € Z,,

and we call dim € the dimension of £. In case £ = () we do not define dim €. For
any i € Z we denote

& ={A€&ldimA =i},

ci {A € &ldimA =dim& —i} if £#0,
IR if £ =10.

E; and £ are subsets of &.

Consider any subset F' of V. We denote

E\F={Aecl|ACF}CE,
E/F={A€lADF}CE.

Consider any finite dimensional vector space W and any homomorphism 7 : V' —

W of vector spaces over R. We denote

& = {m(A)A € &}y c 2,

and we call 7€ the push-down of £ by .

Consider any finite dimensional vector space U and any homomorphism v : U —

V of vector spaces over R. We denote

vE={vH(A)A e} c2Y,

and we call v*& the pull-back of £ by v.

Lemma 9.1. Let £ be any finite set whose elements are convex polyhedral cones in

V.

(1)
(2)
(3)
(4)

(5)

|E| is a closed subset of V.. If |E| # 0, || is a cone in V.

IE]° C I€]. clos(|€]°) = |€].

gmax C 8 (5max)max — gmax' |5max| — |g|.

£ is a finite set whose elements are convex polyhedral cones in V. £ C £,
(Efeyfe = gl |gf| = |&|. If £ is rational over N in V, then £ is also
rational over N in V. If € is simplicial over N in V, then £ is also
simplicial over N in V.

Consider any finite dimensional vector space W and any homomorphism
m V. — W of vector spaces over R. The set m.€ is a finite set whose
elements are convex polyhedral cones in W. |m.&| = w(|€]). If € and
71(0) are rational over N, then w.E is rational over Q for any lattice Q
of W with mn(N) = Q Nn=w(V).

idy.€ = &. For any finite dimensional vector spaces W, W' and any
homomorphisms w : V. — W, o' : W — W' of vector spaces over R,
(') & = mimiE.

Consider any finite dimensional vector space U and any homomorphism
v : U — V of vector spaces over R. The set v*E is a finite set whose
elements are convex polyhedral cones in U. |v*E| = v=1(|&]). If € and
v(U) are rational over N, then v*E is rational over K for any lattice K of

U with v(K) = NNnv(U).
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(8) idj,€ = £. For any finite dimensional vector spaces U, U’ and any homo-
morphisms v : U — V, v : U — U of vector spaces over R, (vv/')*€ =
V*UrE.

(9) Consider any finite dimensional vector spaces W, U and any homomor-
phisms w:V = W, v:U — V of vector spaces over R.

E=Dell=0c0gflelflf =0t =)ct=0cnrf=
0= v€=0.

(10) Consider any subset D of £, any i € Z, any subset F of V, any finite
dimenstonal vector spaces W, U and any homomorphisms = : V. — W,
v:U =V of vector spaces over R.

|D| C |&|, |D]° C |E]°, D c &, D; c &, D\F C E\F, D/F C §/F,
D C m.&, and v*D C V*E.

(11) Let F and G be any subsets of V. If F D G, (E\F)\G = &\G. If F C G,

(E/F)/G=E/G. E\F=E<|E|CF.

Definition 9.2. (1) Any subset D of 2" satisfying the following three condi-
tions is called a convex polyhedral cone decomposition in V.
(a) The set D is a non-empty finite set whose elements are convex poly-
hedral cones in V.
(b) For any A € D and any A € D, AN A is a face of A, and ANA is a
face of A.
(c) For any A € D and any face A of A, A € D.

(2) We say that D is a rational convex polyhedral cone decomposition over N in
V', if D is a convex polyhedral cone decomposition in V' and D is rational
over N.

(3) We say that D is a simplicial cone decomposition over N in V, if D is a
convex polyhedral cone decomposition in V' and D is simplicial over V.

(4) Let D and & be any finite sets whose elements are convex polyhedral cones
in V.

If for any A € D there exists A € & with A C A, then we say that D is
a subdivision of £.

If D is a subdivision of £ and |D| = |£], we say that D is a full subdivision
of £.

(5) Let D be any convex polyhedral cone decomposition in V. We call an
element L € D the mimimum element of D, if dimL < dim A for any
A eD.

(6) Let J be any finite set and let £ be any mapping from J to the set of all
finite sets whose elements are convex polyhedral cones in V. For any j € J,
E(j) is a finite set whose elements are convex polyhedral cones in V. We
denote

A
ﬂ E(j) = {A € 2V|A = NjesA(j) for some mapping A : J — 2V
JjeJ

such that A(j) € £(j) for any j € J} € 2V,
and we call Nje;E(j) the real intersection of £(j),j € J.

Note that N sE(j) is different from the intersection Nje sE(5) of £(j), 7 €
J.
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When J = {1,2,...,m} for some m € Z,, we also denote

A
EMNER)N---NEm) = () £(j).
jeJ
(7) Let D be any convex polyhedral cone decomposition in V; let W be any
finite dimensional vector space over R; let T' be any subset of W; and let
¢ : |D] — T be any mapping.

We say that ¢ is piecewise linear, if for any A € D there exists a
homomorphism ¢a : vect(A) — W of vector spaces over R such that
d(a) = pa(a) for any a € A.

(8) Let D be any convex polyhedral cone decomposition in V, and let ¢ : |D| —
R be any piecewise linear function.

Assume that D is rational over N. We say that ¢ is rational over N, if
for any A € D, there exists a linear function ¢a : vect(A) — R such that
¢(a) = pa(a) for any a € A and pa (N Nvect(A)) C Q.

Assume that the support |D| of D is convex. We say that ¢ is convex
over D, if the following two conditions are satisfied:

(a) For any a € |D|, any b € |D| and any t € R with 0 < ¢ <1, ¢((1 —
t)a +th) > (1 — t)p(a) + to(b).

(b) Ifae |D|,be |D|,teR,0<t<1and ¢((1—-t)a+th) = (1—t)p(a)+
to(b), then {a,b} C A for some A € D.

Example 9.3. Let S be any convex polyhedral cone in V. F(S) is a convex
polyhedral cone decomposition in V. |F(S)| = S. If S is a simplicial cone over N
in V, then F(S) is a simplicial cone decomposition over N in V.

Lemma 9.4. Let D be any convex polyhedral cone decomposition in V.

(1) ANA €D for any A € D and any A € D.

(2) Consider any A € D and any A € D. The following three conditions are
equivalent:

(a) ACA.
(b) A is a face of A.
(c) A°NA # 0.

(3) Consider any A € D and any A € D. The following three conditions are

equivalent:

(a) A=A.

(b) dimA =dimA and A C A, or dimA =dim A and A D A.
(c) A°NA°#0.

(4) D = Df = (D), |D| = |D|° = |D™*|. The suppart |D| is a closed
subset of V. For any subset £ of D, £ = D\|E| € D. For any A € D,
F(A) = {A}Yc=D\A CD.

(5) The family {A°|A € D} of subsets of V' gives an equivalence class decom-
position of |D|, in other words, the following three conditions hold:

(a) A° £ for any A € D.
(b) If A°NA° £, then A° = A° for any A € D and any A € D.

()
D= ] A
AeD
(6) For any subset £ of D, the following three conditions are equivalent:
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(a) & is a convex polyhedral cone decomposition in V.
(b) £ # 0 and D\A C & for any A € €.
(c) E# 0 and & = &,

(7) For any non-empty subset & of D, £ is a convex polyhedral cone decom-
position in V.

(8) Consider any subset F' of V.. If D\F # (), then D\F is a convez polyhedral
cone decomposition in V. If D — (D/F) # 0, then D — (D/F) is a convex
polyhedral cone decomposition in V.

(9) For any subset X of |D|, the following three conditions are equivalent:

(a) X is a closed subset of V.
(b) X is a closed subset of |D].
(¢) XN A is a closed subset of A for any A € D.
(10) For any subset Y of |D|, the following two conditions are equivalent:
(a) Y is an open subset of |D|.
(b) Y NA is an open subset of A for any A € D.
(11) A e D™= if and only if, A° is an open subset of |D| for any A € D.
(12) Dmax 5 DO £ (). Dmax = DO if and only if, dim A = dimD for any
A € Dmax,
(13) There exists a unique element L € D such that dim L < dim A for any
AeD.

Below, we assume that L € D satisfies dim L < dim A for any A € D.

(14) The minimum element L is a vector subspace over R of V. If A € D and
A is a vector subspace over R of V., then A =L. L =AN(=A) C A for
any A € D. dim L < dimD.

(15) Daimr = {L}. D; # 0, if and only if, dim L < i < dimD for any i € Z.
D' 40, if and only if, 0 <i < dimD — dim L for any i € Z.

(16) A+ L =A, A°+ L =A° and vect(A) + L = vect(A) for any A € D.

(17) D is rational over N, if and only if, one of the following two conditions
hold:
(a) dim L = dim D and L is rational over N.
(b) dimL < dimD and any A € D with dimA = dim L + 1 is rational

over N.

Below, we consider any finite dimensional vector space W over R and any homo-
morphism w: V. — W of vector spaces over R satisfying 7=1(0) C L.

(18) The push-down 7D is a convex polyhedral cone decomposition in W, and
™. D =D.
(19) For any A € D, n(A) € m,/D.

For any A € m, D, n~1(A) € D.

The mapping from D to m, D sending any A € D to w(A) € m.D and the
mapping from 7. D to D sending any A € 7, D to 7 1(A) € D are bijective
mappings preserving the inclusion relation between D and 7, D, and they
are the inverse mappings of each other.

Furthermore, if A € D and A € w,D correspond to each other by them,
the following equalities hold:

(a) dimA = dim A — dim71(0).

(b) vect(A) = w(vect(A)), 771 (vect(A)) = vect(A).
(©) A° = (A7), 7-1(A%) = A®

(d) F(A) =mF(A), m*F(A) = F(A).

LLH



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 59

Lemma 9.5. Let £ be any non-empty finite set whose elements are convex polyhe-
dral cones in 'V satisfying the following two conditions Z:

(a) ANA is a face of A, and ANA is a face of A for any A € € and any
Aecé.
(b) AN(=A)=AN(=A) forany A € € and any A € E.
Choosing any element A € €, we put L =AN(—A) C V. L does not depend on
the choice of A € €. Put D = £'.

(1) D is a convex polyhedral cone decomposition in V.

(2) DD E. |D| = |E|. Dmax = gmax,

(3) L €D. L is the minimum element of D.

(4) If € is rational over N, then D is rational over N. If £ is simplicial over
N, then D is a simplicial cone decomposition over N.

Assume dimV > 2. Let S be any convexr polyhedral cone in V with dimS =
dim V'; let m € Zo; let H be any mapping from {1,2,...,m} to the set of all vector
subspaces of V' of codimension one satisfying the following three conditions:

(c) H(i) # H(j) for any i € {1,2,...,m} and any j € {1,2,...,m} with
i1# 7.

(d) HG@)NS° # 0 for any i€ {1,2,...,m}.

(e) Hi)NH(j)NS° =0 for any i € {1,2,...,m} and any j € {1,2,...,m}
with i # j.

(5) The difference S° —(Ujeq1,2,....m} H (7)) is a non-empty open set of V.. It has

(m+1) connected components. The closure of any connected component of
it is a convex polyhedral cone in V whose dimension is equal to dim V.

Let € denote the finite set whose elements are (m + 1) of closures of connected
components of S° — (Uieqi,2,....m}H (1)), Let D=E&% andlet L = SN (=9)N
(Nieq1.2,....myH(1)).

(6) & satisfies the above two conditions Z.

(7) D is a convex polyhedral cone decomposition in V. dimD = dimV. |D| =
S. Dmax = PV = &, L is the miminum element of D. {A € D|A ¢ 0S} =
{H@{@)NSli€{1,2,...,m}}. D° = 4{A € D'|A ¢ 0S} +1=m+ 1. For
any A € D with dim A < dimV —2, A € 8S. If S is rational over N and
H (i) is rational over N for any i € {1,2,...,m}, then D is rational over

N.

Lemma 9.6. Let D, £ and F be convex polyhedral cone decompositions in V.

(1) The following three conditions are equivalent:
(a) D is a subdivision of £, in other words, for any A € D there exists
A€ & with A C A.
(b) For any A € D there exists uniquely A € £ with A° C A°.
(c) ID| C |€], and if A € D, A € £ and A° N A° # () then A° C A°.
(2) If D is a subdivision of £, and £ is a subdivision of D, then D = &.
(3) If D is a subdivision of £, and D is a subdivision of F, then D is a subdi-
vision of F.
(4) If D is a subdivision of £, then |D| C |&].
(5) Assume that D is a subdivision of £. For any A € D and any A € & the
following three conditions are equivalent:

(a) A° C A°.
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(b) A CA, and for any A’ € € with A C A" we have A C A'.
(c) A°NA°#D
(6) If AeD, A€ & and A° C A°, then A C A, and dim A < dimA.
(7) The following three conditions are equivalent:
(a) D is a full subdivision of £, in other words, D is a subdivision of £
and |D| = |€].
(b) |D| = |&| and for any A € E, A° = Uaep, accpoA°.
(c) |D| = |&| and |D — D™ D |E — Emax|,
(8) Assume that D is a full subdivision of E. For any A € £ there exists A € D
with A° C A°. For any A € E™** there exists A € D™ with A° C A°.
(9) Assume that D is a full subdivision of £, A € D, A € £ and A° C A°.
A € D™ if and only if, A € E™* and dim A = dim A.

Lemma 9.7. Let D be any convex polyhedral cone decomposition in V' such that
the support |D| of D is a convex polyhedral cone in V. By L € D we denote the
minimum element of D.

(1) D is a full subdivision of F(|D]).

(2) dimD = dim |D|. D™ = DO,

(3) The following four conditions are equivalent for any A € D:

(a) A eDmax,

(b) dim A = dimD.

(¢) dim A = dim |D|.

(d) vect(A) = vect(|D]).

Furthermore, if A € D satisfies the above equivalent four conditions, then
A° C |D|°.

(4) For any A € D, A ¢ 9|D|, if and only if, A° C |D|°.

(5) Consider any A € F(|D]). |D\A| = A. D\A is a full subdivision of F(A).
dim(D\A) = dim A. (D\A)™#* = (D\A)? = {ANAJA € D?,dim(ANA) =
dim A}.

(6) Consider any A € D. Take the unique A € F(|D|) with A° C A°. Then,
A e D\A, (D\AN)™ /A # 0, A = Nacp\aymax/ad, and [D/Al+vect(A) =
|D| + vect(A) = |D| + vect(A).

(7) L C |D|Nn(—=|D)). dim L < dim(|D| N (—|DP])) < dim |D].

(8) Assume dim |D| — dim L > 1. Consider any A € D!,

vect(A) C vect(|D]), and dimvect(|D|) = dimvect(A) + 1. Let H*
and H°" denote two connected components of vect(|D|) — vect(A). Let
H' = clos(H®"), and let H" = clos(H°"). H' UH" = vect(|D|). HNH" =
vect(A).

We consider the case where A ¢ O|D|. #(D°/A) = 2. Let A’ and
A" denote the two elements of D°/A. {A’ + vect(A), A" + vect(A)} =
{H',H"}, and A" + vect(A) # A" + vect(A).

We consider the case where A C 8|D|. #(D°/A) = 1. Let A’ denote the
unique element of D°/A. A’ +vect(A) = |D|+vect(A). |D|+vect(A) = H’
or |D| + vect(A) = H”.

Lemma 9.8. Let J be any finite set and let £ be any mapping from J to the set
of all finite sets whose elements are convex polyhedral cones in V. For any j € J,
E(j) is a finite set whose elements are convex polyhedral cones in V. We consider
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the real intersection N;c;E(j) of £(j),j € J. By definition

A
ﬂ E(j) =1{A €2V |A = njcsA(j) for some mapping A : J — 2V
JjeJ

such that A(j) € E(j) for any j € J} c 2Y.

(1) NjesE(J) is a finite set whose elements are convex polyhedral cones in V.
(2) NjesE(J) is a subdivision of E(j) for any j € J.
Let D be any finite set whose elements are convex polyhedral cones in
V. If D is a subdivision of £(j) for any j € J, then D is a subdivision of
Njes€()-
(3)

A
I EGDI= [ IEG)I-
jeJ jeJ
(4) If J =0, then Nje E(7) = {V}. NjesE() =0, if and only if, J # 0 and
E(7) =0 for some j € J.
(5) If £(j) is a convex polyhedral cone decomposition for any j € J, then
NjesE(J) is also a convex polyhedral cone decomposition.
(6) If £(j) is rational over N for any j € J, then Nje E(4) is also rational
over N.
(7) For any subsets J',J" of J with JJUJ" =J and J' N J" =,

(EG) = () €GN £G))-

jeJ jeJ’ jeJgr

(8) For any bijective mapping o : J — J

(N E@() = () EG).

jeJ jeJ
Lemma 9.9. Let m € Zy be any positive integer, and let D be any mapping from
the set {1,2,...,m} to the set of all convex polyhedral cone decompositions in V.
For any i € {1,2,...,m}, D(i) is a convex polyhedral cone decomposition in V.
We denote R
D= () DH)c2".
i€{1,2,....,m}

Let A be any element of D.
(1) There exists uniquely an element A(i) € D(i) with A° C A(i)° for any
ie{1,2,...,m}.
Below, we assume that A(i) € D(i) and A° C A(i)° for any i € {1,2,...,m}.
(2) A C A(4) for any i € {1,2,...,m}.
(3)
A= ) AG).

(4)
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(5)
vect(A) = m vect(A(7)).
i€{1,2,...,m}
(6) Consider any subset A of V.. A is a face of A, if and only if, there exists
a mapping A : {1,2,...,m} — 2V such that A = Nie{1,2,....m}A(7) and A(i)
is a face of A(i) for any i€ {1,2,...,m}.
Let A(i) be any element of D(i) for anyi € {1,2,...,m}.
(7) The intersection Nic(1,2,... .m}A(i) is an element of D.
(8) If A C A(3) then A(i) C A®3), for any i € {1,2,...,m}.

9) 1If
A= (] A,
i€{1,2,...,m}
then A(i) C A(7) for any i € {1,2,...,m} and the following three conditions
are equivalent:
(a)
() AG)° #0.
i€{1,2,...,m}
(b) A(i) = A(@) for any i e {1,2,...,m}.
(c)
A= () AG)”

i€{1,2,...,m}
(10) D is a convex polyhedral cone decomposition in V. |D| = Nie{1,2,....m}|D()].
If D(i) is rational over N for any i € {1,2,...,m}, then D is rational over
N

(11) D is a subdivision of D(i) for any i € {1,2,...,m}. B
Let & be any convex polyhedral cone decomposition in V. If € is a sub-
division of D(i) for any i € {1,2,...,m}, then & is a subdivision of D.

Lemma 9.10. Let D be any convex polyhedral cone decomposition in V' ; let U be
any finite dimensional vector space over R; and let v : U — V be any homomor-
phism of vector spaces over R.

The pull back v*D of D by v is a convex polyhedral cone decomposition in U.

10. CONVEX PSEUDO POLYHEDRONS

We study convex pseudo polyhedrons.
Let V' be any finite dimensional vector space over R, and let N be any lattice of
V.

Lemma 10.1. Let S be any convex pseudo polyhedron in V, and let X and Y be
any finite subset of V' satisfying S = conv(X) + convcone(Y) and X # 0.

(1) stab(S) = convcone(Y'). stab(S) is a convex polyhedral cone in V. If S is
rational over N, then stab(S) is also rational over N.
(2) vect(stab(S)) C stab(affi(9)).
(3) The following three conditions are equivalent:
(a) S is a convex polyhedron.
(b) S = conv(X).
(c) stab(S) = {0}.
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(4) The following three conditions are equivalent:
(a) S is a convex polyhedral cone.
(b) conv(X) Nstab(S) N (—stab(S)) # 0 and conv(X) C stab(S).
(c) S = stab(9).
(5) We consider the dual vector space V* of V' and the dual cone stab(S)Y =
stab(S)V|V C V* of stab(9).
For any w € V'*, the following three conditions are equivalent:
(a) w € stab(S)V.
(b) There exists the minimum element min{(w,z)|x € S} of the subset
{{w, )|
x € S}t of R.
(¢) The subset {{w,x)|z € S} of R is bounded below.

Definition 10.2. Let S be any convex pseudo polyhedron in V. We consider the
dual cone stab(S)Y = stab(S)Y |V C V* of stab(95).

(1) For any w € stab(S)Y we denote
ord(w, S|V) =min{{w, z)|z € S} € R
Aw, S|V) ={x € S|{w,x) = ord(w, S|V)} C S.

When we need not refer to V or to the pair (S, V'), we also write simply
ord(w, S) or ord(w), A(w,S) or A(w) respectively, instead of ord(w, S|V),
A(w, S|V).

(2) Let F be any subset of S. We say that F' is a face of S, if F = A(w, S|V)
for some w € stab(S)V.

It is easy to see that any face F' of S is a closed convex subset of V', and
the dimension dim F' € Zg of F', the boundary OF of F, and the interior
F° of I are defined.

Any face F of S with dim F' = 0 is called a vertex of S. Any vertex of S
is a subset of S with only one element. Any face F' of S with dim F' =1 is
called an edge of S.

(3) By F(S) we denote the set of all faces of S.

For any i € Z, the set of all faces F' with dim F' = 4 is denoted by F(5);,

and the set of all faces F' with dim F' = dim S — i is denoted by F(S)".
(4) Let ¢ = dim(stab(S) N (—stab(S))) € Zo. We denote

C(S) :ﬂ‘F(S)Z S ZO)
vs)= |J Fcs,
FG]:(S)e

we call ¢(S) the characteristic number of S, and we call V(S) the skeleton
of S. We call any face F' of S with dim F' = ¢ a minimal face of S.
(5) Let F be any face of S. We denote

A°(F, S|V) ={w € stab(S)"|F = A(w, S|V)} C stab(S)" C V*,
A(F,S|V) ={w € stab(S)V|F C A(w, S|V)} C stab(S)¥ c V*.
We call A°(F,S|V) the open face cone of F, and we call A(F,S|V) the
face cone of F.
When we need not refer to V' or to the pair (S, V'), we also write simply
A°(F,S) or A°(F), A(F,S) or A(F) respectively, instead of A°(F,S|V),
A(F, S|V).
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(6) We denote
D(S|V) = {A(F, S|V)|F € F(S)} C 25t(8)"  2V"

and we call D(S|V) the face cone decomposition of S.

When we need not refer to V', we also write simply D(S5), instead of
D(S|V).

Let W be any finite dimensional vector space over R containing V' as vector
subspace over R with dim W =dimV + 1, and let z € W — V be any point.

Let w : V — W denote the inclusion homomorphism. Putting 7/(t) = tz € W
for any ¢ € R we define an injective homomorphism 7’ : R — W of vector spaces
over R.

For any a € W, choosing the unique pair b € V and ¢t € R with a = b+ tz
and putting p(a) = b and p'(a) = t we define homomorphisms p : W — V and
P+ W — R of vector spaces over R.

Putting ¢(w) = w(1) € R for any w € R* = Homg(R,R), we define an isomor-
phism ¢ : R* — R of vector spaces over R. For any w € R* and any ¢ € R we have
(w,t) = t(w)t. Below, using this isomorphism ¢ we identify R* with R. For any
t € R=R* and any u € R we have (t,u) = tu.

We have eight homomorphisms of vector spaces over R.

0 V=W, ™ R—=W,
p: W =V, o W =R,
WS VR 7 W* SR,
pro VE W P TR W™

Four homomorphisms 7,7, p*, p’* are injective. The other four p, p’,7*, n'* are
surjective. We denote H =V +Rpz C W and ¢ = p™*(1) € W*.

Lemma 10.3. (1) pr = idy, p'n’ = idg, mp + 7'p = idw, V = «(V) =
p'710), Rz = 7'(R) = p~1(0), 7T’(1) =z. Foranyx e W, p'(z) = ((,x).

(2) m*p* = idy«, 7™ p™* = idg, p*r* —|—p’*ﬂ"* = idw~, (Rz) = p*(V*) =
m*7H0), VY =R = p"(R) = x*71(0). For any & € W*, *(§) = (¢, 2).
(¢, 2) =

(3) N + Zz is a lattice of W. H is a rational convex polyhedral cone over
N+Zz inW. dmH =dimW =dimV + 1. H = {z € W|p'(x) > 0}.
W =HU(-H)=vect(H) =vect(—H). V=HnN(-H)=0H = 9(—H).
z€ H* =V 4+Riz={z e Wl|p(z) > 0}.

(4) (N + Zz)* = p*(N*) + Z{. HY is a simplicial cone over (N + Zz2)* in
W* with dim HY = 1. HY N (N + Zz2)* = Zo¢. HY =Ro¢. V¥V = HV U
(—HY) =vect(HY) =vect(—H"). {0} = HYN(—HY)=0HY =9(—H").
—HY =(-H)".

Putting o(a) = p(a)/p’(a) € V for any a € H®, we define a mapping o : H° — V.
Ifae H°, beV,teRand a =0b+tz, thent >0 and o(a) = b/t.

Lemma 10.4. (1) o is surjective. For any a € H°, {o(a) + 2z} = (Rya) N
(V+1{z}) = Ra) N (V + {2}) and 0~ (0(a)) = Rya. For any b € V,
o L) =Ry (b+ 2).
(2) Consider any convex polyhedral cone A in W satisfying A C H and AN
H° # ( and any finite subset Z of H satisfying A = convcone(Z).
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(a) o(ANH®) = conv(c(Z N H®))+ convcone(Z NV).
o(ANH?) is a convex pseudo polyhedral cone in V.
If A is rational over N + Zz, then o(A N H®) is rational over N.
dimA =dimo(ANH®)+1. ANV =stab(o(AN H®)).
(b) ANH° =0"Yo(ANH®)). A =clos(c™!(c(AN H®))).
(3) Consider any convex pseudo polyhedron S in V and any finite subsets X,
Y of V satisfying S = conv(X) + convcone(Y) and X # (.
(a) clos(c™1(S)) = convcone((X + {z})UY).
clos(c=1(S)) is a convex polyhedral cone in W. clos(c=1(S)) C H.
clos(c™1(S)) N H® # 0. clos(c=1(S)) NV = stab(9).
If S is rational over N, then clos(o=1(S)) is rational over N + Zz.
(b) clos(c™1(S)) N H® = o7 (S). o(clos(c™1(S)) N H°) = S.
(4) For any subsets A, A of H satisfying ANH® # 0, ANH® # () and A C A,
o(ANH®) Co(ANH®).
For any non-empty subsets S, T of V satisfying S C T, clos(c=1(S)) C
clos(c=1(T)).
For any non-empty closed subsets S, T of V, SNT =0, if and only if,
clos(c™1(S)) Nclos(e=X(T)) N H® = 0.
(5) For any convex polyhedral cone A in W satisfying A C H and ANH® # ),
o(ANH®) is a convezx pseudo polyhedron in V.
For any convex pseudo polyhedron S in V, clos(c~1(S)) is a convex
polyhedral cone in W, clos(o=1(S)) C H and clos(c=1(S)) N H® # 0.
The mapping sending any convex polyhedral cone A in W satisfying A C
H and AN H® # 0 to o(AN H®) and the mapping sending any convex
pseudo polyhedron S in V to clos(a~1(S)) are bijective mappings preserving
the inclusion relation between the set of all convex plyhedral cones A in
W satisfying A C H and AN H° # ) and the set of all conver pseudo
polyhedrons in V, and they are the inverse mappings of each other.
Furthermore, if a convex polyhedral cone A in W satisfying A C H and
ANH® # 0 and a convex pseudo polyhedron S in V correspond to each
other by them, then A = clos(c~1(S)), S = o(A N H®°) and the following
claims holds:
A is rational over N + Zz, if and only if, S is rational over N.

dim A > 1.
dim A =dim S + 1.
ANV = stab(9).
ANH® =o"1(8).
ANV +{z})=5+{z}.
vect(A) N (V + {z}) = afli(S) + {z}.
vect(A) N H® = o~ ! (affi(S)).
o(vect(A) N H®) = affi(S).
vect(A) = vect(affi(S) + {z}).
OANH® =0"1(09).
A° = o 1(S°).
o(A°) = S°.
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Corollary 10.5. Consider any convexr pseudo polyhedrons S, T in V.

IfSNT #0, then SNT is a conver pseudo polyhedron in V and stab(SNT) =
stab(S) N stab(T).

If S and T are rational over N and SNT # (), then SNT is also rational over
N.

If S and T are convex polyhedrons and SNT # (), then SN T is also a conver
polyhedron.

If S and T are convex polyhedral cones, then S NT is also a convexr polyhedral
cone.

Proposition 10.6. Let A be any convex polyhedral cone A in W satisfying A C H
and AN H® # (). We denote

L=AnN(-A)CA,
{=dim L € Zy,
S=o(ANH) CV,
HY = HY|W c W*,
AV = AW C W,
O_AY ={we AY|({w} +vect(HY))NAY c {w}+ HY} C AY,
F(A). = {A € F(A)ANH® 0} € F(A),
F(AV)Y* = F(AV)\O_AY C F(AY).

(1) L= (ANV)N(—(ANV)) = stab(S)N(—stab(S)) C V. L € F(A)—F(A)..
AeFA) #0. If A € F(A),, T € F(A) and A C T, then T € F(A)..
For any A € F(A), there exists ' € F(A)s such that A DT and dimT" =
£+ 1.

(2) HY C AV. —HY ¢ AV. AV +7*710) = (ANV)V|W = m*~LH((ANV)V|V).
T (AY) = (ANV)V|V = stab(S)V|V.

(3) 0 75 O_AY C AV =90_AV+ HY. W*((?,Av) = stab(S)V|V. The mapping
™ O_AY — stab(S)V|V induced by 7 is bijective.

(4) For any face A of A the following three conditions are equivalent:

(a) A€ F(A)..
(b) A(A,A[W) € F(AY)".
(c) A°(A, A|W)ﬂ3 AV #0.

(5) |[F(AV)*| = 0_AV. N(—AY) e F(AY)* £ 0. dim F(AV)* = dim AY —
1 = dimstab(S)Y = dimV 0. (F(AV)*)max = (F(AV)*)O.

(6) For any w € 0_AV the following claims hold:

(a) Alw, AW) € F(A)..

(b) ord(m ( )7S|V) = _<w72>'

(c) A(w, A|[W)N H®° = o HA(r* (w), S|V)).

() o(Afw, AIW) N H®) = A(r (), S|V).

(7) For any A € F(A),, c(ANH°) e F(S).

For any F € f(S), clos(c7H(F)) € F(A)..
The mapping from F(A). to F(S) sending A € F(A), to c(ANH®) €

F(S) and the mapping from F(S) to F(A). sending F € F(S) toclos(c™(F)) €

F(A). are bijective mappings preserving the inclusion relation between F(A),

and F(S), and they are the inverse mappings of each other.
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(8) Assume A € F(A)., F € F(S), F = o(AN H®) and A = clos(c™(F)).

The following claims hold:

(a) F is a convexr pseudo polyhedron in V. If S is rational over N, then
F is also rational over N. stab(F) is a face of stab(S).

(b) dimA =dim F + 1.

(c) A°(A,A|W) C A(AA|W) C H_AVY.

(d) A(F,S|V) =a*(AA, AW)). 7 HA(F, S|V))NI-AY = A(A, A|W).
A(F, S|V) is a convex polyhedral cone in V*.

(e) A°(F,S|V) = m*(A°(A, A[W)). 7 H(A°(F, S|V))NI_AY = A°(A, A[W).

A°(F,S|V) = A(F, S|V)°.
(f) vect(A(A, A|W)) N7*=1(0) = {0}. vect(A(F,S|V)) =
7 (vect(A(A, A|W))) = stab(affi(F))V|V.
(9) For any A* € F(AY)*, 7*(A*) € D(S|V).
For any A* € D(S|V), 7L (A*)NI_AY € F(AV)*.
The mapping from F(AY)* to D(S|V') sending A* € F(AY)* ton*(A*) €
D(S|V) and the mapping from D(S|V) to F(AY)* sending A* € D(S|V) to
T L(A*) N O_AY € F(AY)* are bijective mappings preserving the dimen-
sion and the inclusion relation between F(AV)* and D(S|V'), and they are
the inverse mappings of each other.

(10) The face cone decomposition D(S|V') of S in V is a convex polyhedral cone
decomposition in V*. |D(S|V)| = stab(S)V|V. If S is rational over N,
then D(S|V) is rational over N*.

(11) For any F € F(S), vect(A(F,S|V)) = stab(afi(F))V|V and dim F +
dim A(F,

S|V) = dim V.

For any F € F(S) and G € F(S), F C G, if and only if, A(F,S|V) D
A(G, S|V).

The mapping from F(S) to D(S|V) sending F' € F(S) to A(F,S|V) €
D(S|V) is a bijective mapping.

(12) The function ord( ,S|V) : stab(S)V|V — R sending & € stab(S)V|V to
ord(w, S|V) € R is a piecewise linear convex function over D(S|V).

If S is rational over N, then this function ord( ,S|V) is rational over
N*.
(13) Denote
E(D(S|V),ord(,S|V)) ={& € W*|§ = p(w) +t¢ for some w € [D(S|V)]
and some t € R with t > —ord(@, S|V)}.

Then, Y(D(S|V),ord( ,S|V)) = AV, S(D(S|V),ord( ,S|V))V|W* = A,
and o((X(D(S|V),ord(,S|V))V|IW*)NH®°) =S.
Proof. We give only the proof of 4.
Since L C V = {x € W|((,z) =0}, (¢,b) =0 for any b € L.
Consider any face I' of A with dimI" = ¢+ 1. We take any point ep € I' — L.
We have I' = Roer + L. Sinceer e I' C A C H = {z € W|((,z) > 0}, (¢,er) > 0.
We know A = 371 z),,, Roer + L. Take any point a € ANH® # 0. a €
A = ZFEF(A)HlROeF + L. Take any function ¢ : F(A)ey1 — Rp and b € L
with @ =3 re7(a),,, t)er +b. Since a € H° = {z € W|(¢,z) > 0}, 0 < (¢, a) =
Porera)e,, LN er)+H (G b) = Yorera),,, HI){C, er). We know that there exists
I'e F(A)g+1 with <<,€1“> > 0.
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Consider any face A of A. We know A =} e (), ,\a Roer + L.

(a) = (b). Assume (a). AN H°® # (. Take any point a € AN H°. Since a €
H® ={z e W[(,2) >0}, (C,a) > 0. a € A =3 rc7a),, \a Roer + L. Take any
function ¢ : F(A)e41\A = Ro and b € L with a = 3 e 7a),, \a tTer +0. 0 <
(¢ a) = Zref(A)Hl\A t(I){C, er) + (¢, b) = ZFG}'(A)HI\A t(I')(¢, er). We know
that there exists I' € F(A)g41\A with (¢,er) > 0. We take any I' € F(A)p41\A
with ((,er) > 0.

Note that HY = Ro¢ and vect(H) = R(.

Consider any w € A(A, A|W). ep €' C A C A(w, A|W). (w,er) =0.

Consider any x € ({w}+ vect(H))NAY. Take t € R with x = w +¢(. Since x €
AV ander e I' C A C A, we have 0 < (x,er) = (w+t(,er) = (w,er) + t{C,er) =
t(¢,er). Since (C,er) > 0, we know t > 0 and x = w + ¢ € {w} + Ro¢ = {w} + H.

We know ({w} + vect(H)) NAY C {w}+ H and w € _AV.

We know A(A, A|[W) C 9_AY and A(A, A|W) € F(AY)*.

(¢) = (a). Assume (a) does not hold. ANH° = 0. Since A C A C H, AC
H—-H° =0H =V = {x € W|{{,a) = 0}, and (¢,a) = 0 for any a € A. In
particular, (¢,er) = 0 for any I' € F(A)p1\A. If T’ € F(A)p41 and ((,er) > 0,
then I' Z A.

Consider any w € A°(A,A|W). w € AV, Since L C A = A(w, A|W), {w,b) =0
for any b € L. Consider any I' € F(A)g41. IfT' C A, thener € I' C A = A(w, A|WWV)
and (w, er) = 0. It is easy to see that if I' ¢ A, then (w,er) >0

Consider any ¢t € R. For any b € L we have (w+1¢(,b) = (w,b)+¢((,b) = 0410 =
0. For any I € F(A)y1, (w+t¢,er) = {w,er) + t((,er). w+t¢ € AV, if and only
if, (w,er) +t((,er) > 0 for any I" € F(A)p41.

Consider any I' € F(A)gy1. If T C A, then (w,er) + t(C,er) = 0+t0 = 0.
T ¢ A and ((,er) = 0, then (w,er) + t(¢,er) = (w,er) > 0. We consider
the case I' ¢ A and (C,er) > 0. We have (w,er) > 0, —(w,er)/{C,er) < 0 and
(w,ery +t{C,er) > 0, if and only if, ¢ > —(w, er)/{C,er). Put

(w,er)
<<7 eF>

to = max{— T € F(A)ps1,{C,er) >0} € R.

to < 0and w+t¢ € AV, if and only if, ¢ > to for any t € R.

Since vect(H) = R¢ and H = Ry(, we know {w + |t € R,t > to} = {w} +
vect(H))NAY ¢ {w} +Ro¢ ={w}+ H, and w & I_AV.

We know A°(A, A[W)NI_AY = (. Claim (c) does not hold.
(b) = (c). Trivial.
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Lemma 10.7. Denote
X (V) = the set of all convex pseudo polyhedrons in 'V,

X(V,N) = the set of all rational convex pseudo polyhedrons over N in V,
Y(V)={(D,9)|D is a convex polyhedral cone decomposition in V* such that

the support |D| of D is a convex polyhedral cone in V* and there
exists a piecewise linear convex function |D| — R over D,
¢ : |D] = R is a piecewise linear convex function over D},

Y(V,N) ={(D,®)|D is a rational convex polyhedral cone decomposition over N*
in V* such that the support |D| of D is a convex polyhedral cone in
V* and there exists a piecewise linear function |D| — R which is
convex over D and rational over N* ¢ : |D| — R is a piecewise

linear function which is convexr over D and rational over N*}.

X(V,N)c X(V). Y(V,N) Cc Y(V). Putting ®(S) = (D(S|V),ord(,S|V)) € Y(V)
for any S € X, we define a mapping ® : X(V) — Y(V). @ induces a mapping
o' X(V,N) = Y(V,N).
For any (D, ¢) € Y we denote
(D, ¢) = {£ € W*|€ = p* (@) + t¢ for some @ € |D| and some t € R
with t > —¢(0)}.

(1) Consider any (D,¢) € Y(V).
X(D,¢) is a convex polyhedral cone in W*. HY C %(D,¢). —HY ¢
(D, ¢).
(D, ¢)V|W* is a convex polyhedral cone in W. %(D, ¢)V|W* C H.
(X(D, )" W )N H® #0. o((X(D,¢)"|W*) N H?) € X(V).
If (D, ¢) € Y(V,N), then X(D, ¢) is rational over (N+7Zz2)*, (D, ¢)V |W*
is rational over N + Zz and o((3(D, ¢)V|W*)N H®) € X(V,N).
Putting V(D,¢) = o((X(D, )Y |W*) N H®) € X(V) for any (D,¢) € Y(V), we
define a mapping V¥ : Y(V) — X(V). U induces a mapping V' : Y(V,N) —
X(V,N).
(2) ® and U are bijective mappings, and they are the inverse mappings of each
other.
O and V' are bijective mappings, and they are the inverse mappings of
each other.

Proposition 10.8. Let S be any convex pseudo polyhedron in V', and let X,Y be
any finite subsets of V satisfying S = conv(X) + convcone(Y) and X # 0. We
consider the dual cone stab(S)Y = stab(S)Y|V C V* of stab(S). For simplicity we
denote s = dim S € Zg, L = stab(S) N (—stab(S)) C stab(S), £ =dim L € Zy.
(1) We consider any finite dimensional vector space U over R with dim S <
dimU < dimV, any injective homomorphism v : U — V of vector spaces
over R, any point a € V such that S C v(U) + a, and any subset F of S.
Putting v(z) = v(z) +a € V for any x € U we define an injective mapping
v:U—V.ScCuU). The inverse image v~*(S) is a convex polyhedral
cone in U. The set F is a face of S, if and only if v=*(F) is a face of
v 1(S).
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(2) We consider any finite dimensional vector space W over R with dimV <
dim W, any injective homomorphism w : V. — W of vector spaces over R,
any point b € W and any subset F' of S. Putting T(x) = w(x) + b for any
x € V we define an injective mapping © : V. — W. The image 7(S) is a
convex polyhedral cone in W. The set F is a face of S, if and only if 7(F)
is a face of ©(S).

3)l<s. t=s< L+{a} =8 for someacV < S =affi(9).

(4) Let F be any face of S.

(a) F is a convex pseudo polyhedron in V. stab(F') is a face of stab(S).

(b) If w € stab(S)Y and F = A(w, S), then stab(F) = A(w, stab(S)).

(c) stab(F') = convcone(Y Nstab(F)). vect(stab(F)) = vect(Y Nstab(F)).

(d) F = conv(X NF) +stab(F) = SNaffi(F). affi(F) = affi(X N F) +
vect(stab(F)).

(e) If S is rational over N, then F is also rational over N.

(f) L =stab(F)N(—stab(F)) C stab(F) C vect(stab(F)) C stab(affi(F)).
¢ < dimstab(F) < dim F < s.

(g) Let G be any face of S with G C F. We have dim G < dim F. dim G =
dim F', if and only if, G = F.

(h) Let G be any subset of F. G is a face of the convex pseudo polyhedron
F, if and only if, G is a face of S with G C F.

(5) Assume £ < s. For any face G of S with G # S there exists a face F
of S with dimF = s —1 and G C F. There exists a face F' of S with
dimF =s—1.

(6) F(S) is a finite set. S € F(S)s and F(S)s = {S}. S contains any face of
S. For any i € Zo, F(S); # 0 if and only if £ <1i < s. The characteristic
number ¢(S) of S is equal to §F(S)e. ¢(S) is a positive integer.

(7) L = convecone(Y N L) =vect(Y NL).

Any face G of S with dim G = € is an affine space in V with stab(G) = L.

For any face F' of S and any face G of S with dimG =¥¢, F D G, if and
only if, FNG # 0.

For any faces F, G of S with dimF = dimG = ¢, F = G, if and only
if, FNG #0.

For any face F of S, there exists a face G of S such that dim G = ¢ and
F>dG.

Consider any face G of S with dim G = ¢ and any point w € vect(stab(S)V).
The function (w, ) : G — R sending x € G to (w,x) € R is a constant func-
tion on G.

(8) The skeleton V(S) of S is a non-empty closed subset of S. Any connected
component of V(S) is an affine space G in V with stab(G) = L. The set of
connected components of V(S) is equal to F(S)s. The number of connected
components of V(S) is equal to c(S5).

For any point w € vect(stab(S)Y), the function (w, ) : V(S) — R sending
x € V(S) to {w,z) € R is constant on each connected component of V(S5),
and this function has only finite number of values.

For any face F of S, the intersection F NV(S) is non-empty and union
of some connected components of V(S).
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(9) Let F and G be any face of S with F C G. We denote f =dim F and g =
dimG. £ < f < g <s. There exist (s—0+1) of faces F(£), F({+1),...,F(s)
satisfying the following three conditions:

(a) Foranyie {{,0+1,...,s=1}, F(i) C F(i+1).
(b) Foranyie {{,{+1,...,s}, dim F(i) = .
(c) F(f)=F,F(g9) =G, F(s) = S.

et F' be any face of S.

a) F=0FUF°. OFNF°=1.

b) F°=F < 0F =)< dimF = ¢.

)

or= ) @G
GeF(F)—{F}

(d) F° is a non-empty open subset of affi(F'). For any a € F° and any
be F conv({a,b}) — {b} C F°. F° is convez. clos(F°) = F.
(11) For any face G of S satisfying dim G = £ we take any point ac € G.
(a) S = conv({ag|G € F(S)¢}) + stab(S).
(b) For any w € vect(stab(S)Y), {{w,z)|z € V(S)} =
{{w,00)[G € F(S),).
(¢c) For any w € stab(S)Y, ord(w, S|V) = min{{w, ag)|G € F(S)}.
(d) For any face F of S, F = conv({ag|G € F(S)¢, G C F}) + stab(F).
(12) Consider any m € Zi and any mapping F : {1,2,...,m} — F(S). If
Nie{1,2,....m}F (1) # 0, then the intersection Nicq1 2. .m}F(i) is a face of S.
(13) The face cone decomposition D(S|V) of S is a convex polyhedral cone de-
composition in V*. |D(S|V)| = stab(S)Y. dimD(S|V) = dimstab(S)Y =
dimV —£. ¢(S) = tD(S|V)°. If S is rational over N, then D(S|V) is ratio-
nal over N*. The minimum element of D(S|V') is A(S, S|V). A°(S,S|V) =
A(S, S|V) = stab(affi(S))V|V. dim A(S,S|V) =dimV — s.
For any i € Z, D(S|V); # 0 if and only if dimV — s <i < dimV — ¢,
and D(S|V)! # 0 if and only if 0 <i < s—{.
(14) Let F be any face of S.
(a) A(F,S|V) e D(S|V).
(b) vect(A(F,S|V)) = stab(affi(F))"|V.
(¢) dim F + dim A(F, S|V) =dim V.
(d) A°(F,S|V)=A(F,S|V)°.
(e) A(F,S|V) = clos(A°(F,S|V)).
(f) A°(F,S|V) C A°(stab(F),stab(S)|V) € F(stab(S)V).
(15) For any faces F,G of S, F C G, if and only if, A(F,S|V) D A(G, S|V).
The mapping from F(S) to D(S|V) sending F € F(S) to A(F,S|V) €
D(S|V) is a bijective mapping reversing the inclusion relation.
(16) Consider any two faces F,G of S. The following four conditions are equiv-
alent:
(a) FCQG.
(b) F°NG # 0.
(c) A(F) D A(G)
(d) A(F)NA°(G) #0.
The following six conditions are also equivalent:
(e) F=G.
(f) F°=G°.
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8F(S)e = the number of connected components of

The following three conditions are equivalent:
(a) c(5)=1.
(b) D(S|V) = F(stab(S)Y).
(c) There exists a € V satisfying S = {a} + stab(S).
The family {F°|F € F(S)} of subsets of S gives the equivalence class de-
composition of S, in other words, the following three conditions hold:
(a) F° #0 for any F € F(S).
(b) F° = G°, if and only if, F° N G° # 0 for any F € F(S) and any
G e F(S5).
()
S = Fe.
FeF(S)
The family {A°(F)|F € F(S)} of subsets of stab(S)Y gives the equiva-
lence class decomposition of stab(S)Y, in other words, the following three
conditions hold:
(a) A°(F) # 0 for any F € F(S).
(b) A°(F) = A°(G), if and only if, A°(F)NA°(G) # 0 for any F € F(S)
and any G € F(S).
(©)

FeF
The function ord( , S|V) : stab(S)¥ — R sending w € stab(S)" to ord(w, S|
V) € R is a piecewise linear convex function over D(S|V).
If S is rational over N, then this function ord( ,S|V) is rational over
N*.
Let m = dim A(S) € Zg. m =dimV —s. For any A € D(S|V)m+1 we take
any point wp € A — A(S). Then,

S = m {z € V|{w,x) > ord(w, S|V)} N affi(S)
westab(S)V

= (1 {z€Vlwa,z) > ord(wa, S|V)} Naffi(Ss).
AE'D(S‘V)M+1

stab(9)Y = A°(F).
(5)

Consider any finite dimensional vector space W over R and any homomor-
phism © : V. — W of vector spaces over R. The image m(S) is a convex
pseudo polyhedron in W, and w(S)° = w(S°).

If S is a convex polyhedron in V, then w(S) is a convex polyhedron in
W. If S is a convex polyhedral cone in V', then w(S) is a convex polyhedral
cone i W.

Lemma 10.9. Consider any convex pseudo polyhedrons S, T in V.
S + T is a conver pseudo polyhedron in V, stab(S + T) = stab(S) + stab(T),
stab(S + T)V = stab(S)Y Nstab(T)Y, and D(S + T|V) = D(S|V)"D(T|V).
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If S and T are rational over N, then S+ T is also rational over N.

If S and T are convex polyhedrons, then S + T is also a convex polyhedron.

If S and T are convex polyhedral cones, then S + T is also a convex polyhedral
cone.

Corollary 10.10. Consider any convex pseudo polyhedron S in 'V and any conver
polyhedral cone A in V.

S+ A is a convex pseudo polyhedron in V, stab(S + A) = stab(S) + A, stab(S +
A)V = stab(S)V NAY and D(S + A|V) = D(S|V)NF(AV|V).

If S and A are rational over N, then S + A is also rational over N.

S CS+A. For any w € stab(S + A)Y, we have w € stab(S)Y, ord(w, S) =
ord(w, S+ A), and A(w, S) = Alw,S+A)NS.

Definition 10.11. We call any convex pseudo polyhedron S in V satisfying the
following three conditions a Newton polyhedron over N in V:

(1) The stabilizer stab(S) of S is a simplicial cone over N.

(2) dimstab(S) =dimV.

(3) V(S) C N.

Let S be a Newton polyhedron S over N in V. stab(S) N (—stab(S)) = {0}, and
S has a vertex. The skeleton V(S) of S is a non-empty finite subset of S, and V(.5)
is the union of all vertices of S.

Lemma 10.12. Consider any simplicial cone A over N in'V with A = dimV and
any subset X of N such that X C {a} + A for somea € V.

There exists a finite subset Y of X satisfying conv(X)+ A = conv(Y) 4+ A, and
conv(X) + A is a Newton polyhedron over N in V.

Remark . The subset X of N above is not necessarily finite.

Lemma 10.13. Let k be any field. Let A be any complete reqular local ring such that
dim A > 1, A contains k as a subring, and the residue field A/M(A) is isomorphic
to k as algebras over k. Let P be any parameter system of A. Let ¢ be any non-zero
element of A.

(1) The Newton polyhedron Ty (P, ®) of ¢ over P is a Newton polyhedron over
map(P,Z) in map(P,R) in the meaning of Definition[I0 Tl stab(T' (P, ¢)) =
map(P,Ry). I'y (P, ¢) C map(P,Ry).

(2) The face cone decomposition D(T' 1 (P, ¢)|map(P,R)) of T (P, ¢) is a ratio-
nal convex polyhedral cone decomposition over map(P,Z)* in map(P,R)*.
DT+ (P, ¢)|map(P,R))| = map(P,Rp)"|map(P,R).

(3) The Newton polyhedron T (P, ) has a vertex. The skeleton V(T4 (P, ¢))
of T1(P, ¢) is a non-empty finite subset of map(P,Zg), and V(I'y(P,¢)) is
the union of all vertices of T (P, ¢).

V(T (P, ¢)) ={a € T (P, ¢)| There exists w € map(P,Rg)" |map(P,R) such that
for any b € T (P, ¢) with (w,b) = (w,a), we have b = a}.

= the number of vertices of T4 (P, ¢).
(5) For any w € map(P,Ry)Y |map(P,R), we have

ord(P,w, ¢) =ord(w, T+ (P, ¢)[map(P, R)), and
in(P,w, $) =ps(P, A(w, T+ (P, ¢)/map(P,R)), ).
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(6) (T4 (P,¢)) =1, if and only if, ¢ has normal crossings over P.

(7) If dim A = 1, then ¢(T4 (P, ¢)) = 1.
Let z € P be any element.
Let b= ord(P, fFV, ¢) € Zo and let h = height(2,T' (P, $)) € Zo. Let A’ denote
the completion of k[P — {z}] with respect to the mazimal ideal k[P — {z}] N M (A).
The ring A’ is a local subring of A and M(A") = M(A)NA" = (P —{z})A’. The
completion of A'[z] with respect to the prime ideal zA'[z] is isomorphic to A as

A'[z]-algebras. The set P — {z} is a parameter system of A’.

(8) Assume that T (P, ¢) is of z- Weierstrass type.

(a) height(z,T'+(P,¢)) =0 < T'1(P, ¢) has only one vertex < c(T1 (P, ¢)) =
1 < ¢ has normal crossings over P.

(b) The Newton polyhedron T'y (P, ¢) has a unique z-top vertexr.

Below, by {a1} we denote the unique z-top vertex of T (P, ).

(c) Consider any a € T+ (P, ¢). The equality (fIV,a) = ord(P, fFV, $)
holds for any x € P — {2} & a —a; € Rofr.

(d) (fFY,a1) =b+h.

(e) There exist uniquely an invertible element u € A* and a mapping

¢ :{0,1,....,h — 1} = M(A) satisfying

h—1
¢ =uz’ H g (h 4 Z ¢ (i)2"),
zeP—{z} =0
and ¢'(0) #0 if h > 0
(9) The following two conditions are equivalent:
(a) The Newton polyhedron Ty (P, $) is of z- Weierstrass type.
(b) There exist uniquely an invertible element u € A*, a mapping ¢ : P —
Zo, a non-negative integer g € Zo and a mapping ¢' : {0,1,...,9 —
1} = M(A') satisfying

g—1
(b = H xc(m)(zg + Z(b/(z)zz),
z€P i=0
and ¢'(0) #0 if g > 0.
(10) If dim A = 2, then Ty (P, @) is z-simple.
(11) If T (P, ¢) is z-simple, then T (P, @) is of z- Weierstrass type.
(12) Let r = (T (P, ¢)) € Zy. The Newton polyhedron Iy (P, ) is z-simple, if
and only if, the following three conditions are satisfied:
(a) For anya € V(T (P,6)) and anyb € V(T4 (P, ), (fF¥,a) # (f7V,b).
Below we take the unique bijective mapping a : {1,2,...,r} = V('L (P,¢))
satisfying (fFV,a(i)) > (fFV,a(i+1)) for anyi € {1,2,...,r—1}, if r > 2.
(b) For any x € P—{z}, (fFV,a(2) —a(1)) >0, if r > 2.
(¢) Foranyie€ {1,2,...,r—2} and any x € P — {2z},
UL sali+1) ~ ali) _ (F,ali+2) ~ afi+1)
(f£Y,a(i) —ali+1)) = (fFY,a(i+1) —a(i+2))’
ifr > 3.
Furthermore, if the above equivalent conditions are satisfied, then the
following claims hold:
(d) There exists x € P — {2} with (fFV,a(2) —a(1)) > 0.
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(e) For any i€ {1,2,...,r — 2}, there exists x € P — {z} with
(fiVsa(i+1) —a(i)) _ (£ a(i+2) —a(i+1))
(f£Y,a(i) —ali+1)) ~ (fFY,a(i+1) —a(i+2))’
if r > 3.
(13) Assume that T'y (P, ¢) is of z- Weierstrass type. Let {a1} denote the unique

z-top vertex of Ty (P,¢). We take an invertible element u € A* and a
mapping ¢ : {0,1,...,h — 1} = M(A’) satisfying

h—1
¢ =uz’ H g (h 4 Z ¢ (i)2"),
i=0

zeP—{z}

and ¢'(0) # 0 if h > 0. Then, T (P, ¢) is z-simple, if and only if, there exist
positive integer v, and a mapping ¢ : {1,2,...,r} — map(P,Zg) satisfying
the following conditions:

(a) 1<r<h+1l.r=1<h=0.

(b) (1) =nfl. (fIV,c(r)) =0.

(c) For any i € {1,2,...,r — 1}, we have (fFV c(i) — c(i + 1)) > 0, if

r> 2.
(d) For any x € P — {z}, we have

(£, e(2) = e(1)) 2 0,
if r > 2.
(e) There exists x € P — {z} with
(fFY,e(2) = (1)) > 0,
if r > 2.

(f) For anyie {1,2,...,7r —1} and any x € P — {2z}, we have
(fEV c(i+1)—c(@i)) _ (fEV,e(i+2) —c(i+1))
(f£Y,e(i) —c(i+ 1)) = (fFY,eli+1) —c(i +2))

if r > 3.

(g) For anyiec {1,2,...,r — 1}, there exists x € P — {z} with
(fo s+ 1) —ci)) _ (fa*eli+2) —ci+ 1))
(fEV,ei) —c(i+ 1))~ {fFVie(i+1) — (i +2))

ifr > 3.
(h) For any i€ {2,3,...,r} and any x € P — {z}, we have
ord(P, ffv7¢/(<fzpvvc(7’)>)) = <ffvvc(i)>7
if r > 2.
(i) For anyie€ {1,2,...,r =1}, any j € Z with
(7Y eli+ 1)) <j < (fIY, @)
and any x € P — {z}, we have
ord(P, 7V, ¢'(5)) =
(1Y, cli)) —
(f2Y,e(i) = c(i+1))

if r > 2.

<

J =Y ei+ 1))

PV e(i
<fz ) ( +1)>+<ffv7c(i)—0(i+1)>

(fei)),
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(14) For any non-zero element ¢ € A and any non-zero element ¢ € A,
F+(Pa QW’) :F+(P7 (b) + F+(Pa 1/})5
D(I'4 (P, )|l map (P, R)) =D(I'4 (P, ¢)[map(P, R))"D(I'+. (P, )[map(P, R)).

11. BARYCENTRIC SUBDIVISIONS

We study barycentric subdivisions of simplicial cone decompositions.

Let V be any finite dimensional vector space over R; let N be any lattice of V;
let D be any simplicial cone decomposition over N in V with dimD > 1; and let
F € D be any element with dim F' > 1. For simplicity we denote the barycenter
bp/n of F'over N by b. b€ F°NN.

Lemma 11.1. Consider any element A € D satisfying A+ F € D and F ¢ A.

(1) A + Rob is a simplicial cone over N in V. Rob € F(A + Rpb)1. A €
F(A+Rob)'. RobNA = {0}. Rob = A°P|(A+Rob). A = (Rob)°P|(A +Rob).

(2) A+Reb CA+F € D/F. (A+Rpb)° C (A+F)°. If dimF = 1, then
Rob=F, and A+ Rob= A + F. Ifdim F > 2, then A + Rob # A + F.

(3) dim(A+Rob) = dimA+1 < dim(A+F). A|(A+F) € F(F) C F(A+F).
dim(A°P|(A+F)) > 1. dim(A°P|(A+F)) = 1 & dim(A+Reb) = dim(A+F).

(4) For any A’ € F(A), we have N' + F € D, and F ¢ A'. F(A) C (D/F)* —
(D/F).

(5) {A" + Rob|A" € F(A)} = F(A + Rob)/Rob C F(A +Rob). F(A) = F(A+
Rob) — (F(A +Rgb)/Rob) C F(A + Rgbd).

(6) For any A" € D— (D/F), we have (A +Rpb) NA'=ANA" € F(A'), and
ANA" € F(A) C F(A+Rpd).

Lemma 11.2. Consider any element A € D satisfying A+ F € D and FF ¢ A and
any element N’ € D satisfying A' + F € D and F ¢ N\'.

(1) (ANAN)+FeD. FgANA.

(2) (A+Rpb) N (A +Rpb) = (ANA) +Rpb € F(A+ Rpb)/Rpb.

B) A+F)N(AN+F)=(ANA)+F.

(4) AM+RobC AN+ Rob= AC A

(5) A+ Rob=AN +Rpb= A=A
Lemma 11.3. Consider any element A € D/F.

(2) {EPIA|Ee F(F1} C{Ae FIQA)IF ¢ AA+F=A}Cc{Ae F(A)|F ¢

A} C{AeD|F ¢ A,A+ F € Dj}.

(3)

U (EPA)+Reb) = U (A+Rob) = [ J  (A+Rebh) =A
EeF(F), AEF(A),FZAA+F=A AEF(A),FZA

(4)

U (A 4 Rgpb)° = A°
AEF(A),FZAA+F=A
Definition 11.4. We denote
DxF = (D~ (D/F))U{A €2V|A = A + Rgb for some A € D
satisfying A+ F € D and F ¢ A} c 2V,

and we call D x F the barycentric subdivision of D with center in F.
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Lemma 11.5. (1) DxF is a simplicial cone decomposition over N in V. DxF

is a full subdivision of D. |Dx F| =|D|. dimD x F = dim D.

(2) Rob€ (D« F)y. |Dx F/Rpb|° = |D/F|°.

(3) (D+F)— (D* F/Rob) = D— (D/F). Dx F/Rob = {A € 2V|A = A +
Rob for some A € D satisfying A+ F € D and F ¢ A}.

(4) If dim F = 1, then Rob = F € D1 and Dx F = D. If dim F > 2, then
Robgp, D*F#D, (D*F)l :Dlu{Rob}, andﬁ(D*F)l :ﬂD1+1

(5) Consider any A € D x F/Rob. We denote A = (Rpb)°P|A € F(A).
(a) A=A+Rpb. ANRpb = {O} RQbEI(A)l AE]‘—(A)l
(b) A+HF=A+FeD. A°C(A+F)°=(A+F)°.

(6) (DxF)max—(DxF/Rob) = D™**—(D/F). (D*xF)™*N(DxF/Rob) = {A €
2V|A = (E°P|A) + Rob for some E € F(F); and some A € D™ /F}.

Example 11.6. Assume dimV > 3. Consider any simplicial cone S over N in
V with dim S = 3. Let E(1), E(2), E(3) denote the three edges of S. We denote
b(i) = bpw)n € E(i)°NN for any i € {1,2,3} for simplicity. E(i) = Rob(i) for any

i€ {1,2,3).
Put

T(1) =Rob(1) + Ro(b(1) + b(2)) + Ro(b(1) 4 b(3)),
T(2) = Rob(2) + Ro(b(2) + b(3)) + Ro(b(2) + b(1)),
T(3) = Rob(3) + Ro(b(3) + b(1)) + Ro(b(3) + b(2)),
T(4) = Ro(b(1) 4+ b(2) + b(3)) + Ro(b(1) + b(2)) + Ro(b(1) 4 b(3)),
T(5) =Ro(b(1) + b(2) + b(3)) + Ro(b(2) + b(3)) + Ro(b(2) + b(1)),
T(6) =Ro(b(1) +b(2) + b(3)) + Ro(b(3) + b(1)) + Ro(b(3) + b(2)).

For any i € {1,2,...,6}, T(4) is a simplicial cone over N in V with dimT'(:) = 3.

Let £ = Uieqi2,...60F (T(3)) C 2V. £ is a simplicial cone decomposition over
NinV. dim€ = 3 and || = S. £ is a full subdivision of the simplicial cone
decomposition F(S).

For any F € F(S)2, Robp/y € €, and £ is not a subdivision of F(S)  F.

Robg/n € €, and £ is not a subdivision of F(S) * S.

12. ITERATED BARYCENTRIC SUBDIVISIONS

We study iterated barycentric subdivisions of simplicial cone decompositions.
Let V be any finite dimensional vector space over R; let N be any lattice of V;
and let D be any simplicial cone decomposition over N in V with dimD > 1.

Definition 12.1. Let m € Zy be any non-negative integer. We call a mapping
F from {1,2,...,m} to the set 2V of all subsets of V satisfying the following two
conditions a center sequence of D of length m:

(1) F(i) is a simplicial cone over N in V and dim F(i) > 2 for any i €
{1,2,...,m}.

(2) There exists uniquely a mapping D from {0,1,...,m} to the set of all
simplicial cone decompositions over N in V satisfying the following two
conditions:

(a) D(0) = D.
(b) F(i) € D(i — 1) and D(i) = D(i — 1) * F(3) for any i € {1,2,...,m}.
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Consider any m € Zg and any center sequence F' of D of length m. There
exist uniquely a mapping D from {0,1,...,m} to the set of all simplicial cone
decompositions over N in V satisfying the above two conditions (a) and (b). Since
simplicial cone decomposition D(m) is uniquely determined by D and the center
sequence I of D, we denote D(m) by the symbol

DxF(1)« F(2)*---x F(m),

and we call D x F(1) « F(2) * - -- x F(m) the iterated barycentric subdivision of D
along the center sequence F' of D.

Consider any simplicial cone decomposition € over N in V. If £ = D * F(1) %
F(2) %--- % F(m) for some m € Z and some center sequence F of D of length m,
then we call £ an iterated barycentric subdivision of D.

Lemma 12.2. Consider any m € Zg and any center sequence ' of D of length m.

(1) Dx F(1) %« F(2) -+ % F(m) is a simplicial cone decomposition over N in
V. dmD+«F(1)«F(2)*---xF(m) =dimD. DxF(1)x F(2)x---x F(m) is
a full subdivision of D. |D* F(1)* F(2)x---x F(m)| = |D|. If D™ = DO,
then (D F(1)* F(2) % -+ F(m))™® = (D F(1) % F(2) % ---x F(m))°.

(2) DxF(1)« F(2)*---x F(m) =D, if m = 0.

If m =1, then Dx F(1) x F(2) % --- % F(m) is equal to the barycentric
subdivision D *x F(1) of D with center in F(1).

(3) IfdimD =1, then m =0 and Dx F(1) x F(2) % ---x F(m) = D.

(4) For any i € {0,1,...,m}, the composition of the inclusion mapping
{1,2,...,i} = {1,2,....m} and F : {1,2,...,m} — 2V is a center se-
quence of D of lemgth .

(5) Assume m > 1 and consider any i € {1,2,...,m}. dim F(i) > 2. F(i) €
DxF(1)«F(2)*---xF(i—1). Fi)C|D|. (D« F(1)*F(2)*---xF(i —
1)« F(i) =D« F(1)« F(2)%---x F(3).

(6) Assume m > 2 and consider any i € {2,3,...,m}. The mapping G :
{1,2,...,m — i+ 1} — 2V satisfying G(j) = F(i +j — 1) for any j €
{1,2,...,m—i+1} is a center sequence of Dx F(1)« F(2)*---x F(i—1) of
length m—i+1, and (DxF (1) F(2)*- - -« F(i—1))«F (i)« F(i+1)%- - «F(m) =
D« F(1)*« F(2)%---x F(m).

(7) (D*+F(1)*« F(2)%---% F(m))1 = D1 U{Robpgy/nli € {1,2,...,m}}. D1 N
{Robpaynli € {1,2,...,m}} = 0. For any i € {1,2,...,m} and any
Je{1,2,...,m}, Robpgyn = Robpyy/n, if and only if, i = j.

f(DxF(1)*« F(2)*---x F(m)); = 4D1 + m.

(8) For any ¢ € Zo and any center sequence G of D+ F(1)« F(2)*---% F(m) of
length ¢, the mapping H : {1,2,...,m+{} — 2V satisfying H (i) = F(i) for
anyi € {1,2,...,m} and H(i) = G(i—m) for anyi € {m+1,m+2,...,m+
L} is a center sequence of D of length m+£{ and D+« F (1)« F(2)*- - -x F(m)x
G(1)*G2)x---xG) = (D+xF(1)xF(2)*-- -« F(m))*G(1)xG(2) - - -xG({).

Consider any non-empty subset £ of D satisfying £ = £. € is a simplicial cone
decomposition over N in V. |E| C |D]|.

(9) Let ¢ = t{i € {1,2,...,m}|F(i) C |E]} € Zo and let v : {1,2,--- £} —

{1,2,...,m} be the unique injective mapping preserving the order and sat-

wsfying v({1,2,--- ,£}) ={i e {1,2,..., m}|F(i) C|E|}.
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The composition Fv is a center sequence of € of length £, and €« Fv(1) =
Fv(2)x---xFv(l) = (D« F(1)* F(2)*---x F(m))\|E]| C Dx* F(1) x F(2) %
(10) If F(i) C |&| for any i € {1,2,...,m}, then the sequence F is a center
sequence of £ of length m, and € * F(1) %« F(2) % --- % F(m) = (D * F(1) %
F2)x---x Fm)\|E| CD*F(1)* F(2)*---x F(m).
(11) For any n € Zo and any center sequence G of € of length n, the sequence
G is a center sequence of D of length n, and € G(1) « G(2) x---x G(n) =
(D+xG(1)*G2)x---xGM)\|E| CD+«G(1) * G(2) *---* G(n).

Example 12.3. Assume dimV > 3. Consider any simplicial cone S over N in
V with dim S = 3. Let E(1), E(2), E(3) denote the three edges of S. We denote
b(i) = bpu)n € E(i)°NN for any i € {1,2, 3} for simplicity. E(i) = Rob(i) for any
ie€{1,2,3}.

Let

F(1) = Rob(1) + Rob(3), F(2) = Rob(2) + Rob(3),
G(1) =Ro(b(1) +b(3)) + Rob(2), G(2) =Rp(b(2) +b(3)) + Rob(1).

dim F'(1) = dim F(2) = dim G(1) = dim G(2) = 2.

We consider two mappings H and H from {1,2,3} to 2" satisfying (H (1), H(2),
H(3)) = (F(1),F(2),G(1)) and (H(1),H(2),H(3)) = (F(2),F(1),G(2)). Map-
pings H and H are center sequences of the simplicial cone decomposition F(.5) of
length 3.

F(S) * F(1) * F(2) x G(1) = F(S)  F(2) * F(1) * G(2).

13. SIMPLENESS AND SEMISIMPLENESS

Simpleness and semisimpleness are very important concepts.

Let V be any finite dimensional vector space over R with dimV > 1; let IV
be any lattice of V; let D be any convex polyhedral cone decomposition in the
dual vector space V* of V such that the support |D| of D is a simplicial cone over
the dual lattice N* of N in V* and dim|D| > 1; let H € F(|D|)1 be any edge
of the simplicial cone |D|; let S be any convex pseudo polyhedron in V' such that
|D(S|V)| = stab(S)V|V is a simplicial cone over N* in V* and dim [D(S|V)| > 1,
and let G € F(|D(S|V)])1 be any edge of the simplicial cone |D(S|V).

We denote L = stab(S) N (—stab(S)) = vect(|D(S|V))V|V* C V and ¢ =
dim L € Zy. L is the maximum vector subspace over R in V contained in stab(S).

Note that for any E € F(|D(S|V)|)1, any F € F(S)¢, any a € F and any
be F, ECI|D(S|IV) C vect(|D(S|V)]), and we have (bg/n-,a) = (bg/n+,b).
(Proposition [I0.817.)

Definition 13.1. (1) We say that D is semisimple, if dim A > dimD — 1 for
any A € D satisfying A° C |D|°.
(2) We say that D is of H-Weierstrass type, if D\(H®P||D|) = F(H°P||D)).
(3) We say that D is H-simple, if D is semisimple and D is of H-Weierstrass

type.
(4) We say that S is semisimple, if dim F' < £+ 1 for any face F of S satisfying
stab(F') = L.

(5) We say that S is of G- Weierstrass type, if there exists only one face F of S
satisfying stab(F) = A(G°P||D(S|V)], |D(S|V)||[V*).
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(6) We say that S is G-simple, if S is semisimple and S is of G-Weierstrass
type.
(7) Let F' € F(S), be any minimal face of S.
We say that F' is G-top, if (bg/n+,a) = max{(bg/n-,c)lc € V(S)} for
some a € F.
We say that F' is G-bottom , if (bg/n+,a) = min{({bg/n+,c)|c € V(S)}
for some a € F.
(8) We define
height(G, S) = max{(bg/n+,c)|c € V(S)} — min{(bg/n+,c)|c € V(S)} € Ry,
and we call height(G, S) G-height of S.
Lemma 13.2. (1) S is semisimple, if and only if, D(S|V) is semisimple.

(2) S is of G-Weierstrass type, if and only if, D(S|V) is of G- Weierstrass type.

(3) Note that L C vect(G°P||D(S|V)|)V|V* C V and dim vect(G°P||D(S|V)|)¥
[V* =£+1. Let W = V/vect(G°P||D(S|V)|)V|V* denote the residue vector
space, and let p : V. — W denote the canonical surjective homomorphism
of vector spaces over R to W.

p(N) is a lattice in W, p(S) is a convex pseudo polyhedron in W,
stab(p(S)) is a simplicial cone over p(N) in W, and dimstab(p(S)) =
dimW =dimV — /¢ —1.

S is of G-Weierstrass type < c(p(S)) = 1 < there exists ¢ € S satisfying
ord(bg/n=,S|V) = (bg/n=,c) for any E € F(ID(S|V)|)1 — {G}.

(4) Assume that S is of G-Weierstrass type. S has a unique G-top minimal
face. ¢(S) =1, if and only if, height(G,S) = 0.

(5) S is G-simple, if and only if, D(S|V) is G-simple.

(6) If dim|D| =1, then D = F(|D|).

If dim |D| < 2, then D is H-simple.

If dim |D(S|V)| = 1, then S = {a} + stab(S) for some a € V.

If dim |D(S|V)| < 2, then S is G-simple.

(7) Let k be any field. Let A be any complete regular local ring such that
dim A > 1, A contains k as a subring, and the residue field A/M(A) is
isomorphic to k as algebras over k. Let P be any parameter system of
A. Let z € P be any element. Let ¢ € A be any non-zero element.
We consider the Newton polyhedron Ty (P,$) over the lattice map(P,Z)
in the vector space map(P,R). (See Section [2.) Let G, = RoffV €
F(map(P,Ro)Y|map(P,R));.

T (P, ¢) is of z-Weierstrass type, if and only if, it is of G- Weierstrass
type.

Ty (P, ¢) is z-simple, if and only if, it is G,-simple.

height(z, ' (P, ¢)) = height(G,, T+ (P, ¢)).

(8) Let F € F(S)¢ be any mimimal face of S.

F is G-bottom < F C A(bg/n+,S|V) & G C A(F,S|V).

If F is G-top, then dim(A(F, S|V)N(G°?||D(S|V)|)) = dim |D(S|V)|-1
and A(F, S|V) C (A(F,S|V)N (G°P||D(S|V)])) + G.

(9) If D is semisimple, then §D° = #{A € D}|A° C |D|°} + 1.

(10) Let A be any simplicial cone over N* in V* satisfying A C |D| and dim A >
1. If D is semisimple, then DOF(A) is also semisimple.
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(11) If D is semisimple, then D\A is also semisimple for any A € F(|D|) with
dimA > 1.

(12) Assume that D is of H-Weierstrass type. For any A € DV,
dim(A N (H°P||D|)) = dim |D| — 1, if and only if, A D H°P||D|, and there
exists only one element A € DY satisfying these equivalent conditions.

(13) If D is of H-Weierstrass type, then D\A is also of H-Weierstrass type for
any A € F(|D|)/H.

(14) If D is H-simple, then D\A is also H-simple for any A € F(|D|)/H.

(15) Assume that D is H-simple. We denote D' = {A € D'A° C |D|°} U
{H°P[|Dl}.

(a)
(b)

(c)

H°P||D| € D'. D' c D'. $D° = 4D,

We denote A < A, if A+H D A+H for any A € D° and any A € D°.
Then, the relation < is a total order on D°.

We denote A < A, if A+H D A+H for any A € D' and any A € D*.
Then, the relation < is a total order on DL

Letr = 4D =4D' € Z,.

We consider the total order on D° described in (b). Let A : {1,2,...,r} —
DY denote the unique bijective mapping preserving the order.

We consider the total order on D' described in (c). Let A:{1,2,...,r} —
D' denote the unique bijective mapping preserving the order.

()

Consider any i € {1,2,...,r} and any E € F(|D|); — {H}. There
exists a unique real number ¢(D, i, E) € R depending on the pair (i, E)

satisfying bg N+ + c(D, i, E)bg/n- € vect(A(i)).

Below we assume ¢(D, i, E) € R and by /n-+¢(D, i, E)by n+ € vect(A(i))
for any i€ {1,2,...,7} and any E € F(|D|)1 — {H}.

(e)

f)
g)
h)

—~

(
(

(a)

E e

Foranyic {1,2,...,r}, A(i) = conveone({bg,n++c(D, i, E)bg/n+
F(DD): — (H))).

For any T € D', T = vect(I') N|D|.

For any E € F(|D|)1 —{H}, ¢(D,1,E) = 0.

If r > 2, then ¢(D,i,E) < ¢(D,i+ 1, E) for anyi € {1,2,...,r — 1}
and any E € F(|D|)» — {H}.

Ifr>2andi€ {1,2,...,r — 1}, then ¢(D,i,E) < ¢(D,i + 1, E) for
some E € F(|D]); —{H}.

D is rational over N*, if and only if, ¢(D,i,E) € Q for any i €
{2,3,...,r} and any E € F(|D|)1» — {H}.

Ifr > 2, then A(i) = A(i) + A(i + 1) for any i € {1,2,...,r —1}.
A(r) = A(r)+ H.

{AeDIA ¢ |F(D)/H} = D° UD".

A(1) = H°P||D| C 9|D|. D°/A(1) = {A(1)}.

For any i € {2,3,...,7}, A(@)° C |D|°, A(i) ¢ O|D|, and D°/A(i) =
{AG—1),A%)} B

H C A(r). DN\A(r) = {A(r)}.

For anyi€ {1,2,....,r — 1}, H ¢ A(i), D'\A®) = {A®i), A(i +1)}.
If r > 2, then A1) NA() = A + 1) NA(H) for anyi € {1,2,...,
r—1} and any j € {2,3,...,7} with i < j.

Consider any w € vect(HP||D]).
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Take the unique function & : F(HP||D|)1 — R satisfying w =
ZEEF(HOPIIDI)l W(E)bg N+ For any i€ {1,2,...,r}, put t(i) =
Yo perner| o)), ©(E)e(D,i, E) €R.
(i) (1) =0.
(ii) For any i€ {1,2,...,r}, the following claims hold:
(A) ({w}+Rbgn-) Nvect(A(i)) = {w + t()bm/n~}-
(B) w + t(Z)bH/N* S A(’L) S we H0p||D|.
(C) w+t(i)br/n- € A(4)° & w € (HP||D])°.
(iii) The following claims hold for any i € {1,2,...,r — 1}, if r > 2.
(A) If w e HP||D|, then t(i) < t(i +1).
(B) ([} + By ) N AG)

 JH{w A tbg -t e Rt(1) <t < t(i+1)} if we HP|D|,
R if w & HP||D).

(C) Ifw e (H|[D|)°, then t(i) < t(i + 1).
(D) ({w} + Rbgn+) N A(4)°

_ {w+tbgn-|t € R, t(i) <t <t(i+1)} ifwe (HP[D])°,
0 if w ¢ (H°P||D)°.

(iv) ({w} +Rbg/n-) NA(r)
J{wHthgn-lt €R () <t} ifw e HP||D),
e if w & HoP||D|.
(v) ({w}+Rbgn+) NA(r)°

_ {w+tbg/n-|t € R t(r) <t} if we (HP||D])°,
0 if w ¢ (H®|[D])°.

(r) Let 7 : vect(|D|) — vect(H®P||D|) denote the unique surjective homo-
morphism of vector spaces over R satisfying m=1(0) = vect(H) and
7(x) = x for any = € vect(H°P||D|).
7(|D|) = H°P||D|. For any A € D, w(A) € F(H°P||D|), 7~ (x(A)) N
D] € F(ID))/ 1.

For any A € D with vect(H) C vect(A), dim7(A) = dim A — 1.
For any A € D with vect(H) ¢ vect(A), dimw(A) = dim A.
For any A € D with A ¢ H°P||D|, A° C (7~} (x(A)) N |D|)°.

(s) If AeD, Ae F(ID|), A° C A° and A ¢ HP||D|, then H C A, and

dim A = dimA or dimA =dim A — 1.
IfAe D, Ae F(|D]), A° C A° and A C HP||D|, then A = A and
dim A = dim A.
(16) Assume that D is H-simple. Consider any A € F(|D|)/H.
We use the same notations D', r, A and A as above. We denote D—\A1 =
{T' e D\A|l'°* C A°} U{H°P|A}.

(a) re{ie{1,2,...,r}dim(AG)NA) =dim A} # 0.

Put 7 = t{i € {1,2,...,7}dim(A(%) N A) = dimA} € Z,. Let v :
{1,2,...,7} = {1,2,...,7} be the unique injective mapping preserving the



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 83

order and satisfying v({1,2,...,7}) = {i € {1,2,...,r}dim(A®G) NA) =
dim A}.
(b) 1<7<r. v(F)=r.
(c) #(D\A)? = #D\A! =7
(d) (D\A)? = {Av(i)NAli € {1,2,...,7}}.
We consider the total order on (D\A)® described in 15.(b).
The bijective mapping {1,2,...,7} — (D\A)? sending i € {1,2,...,7}
to Av(i) N A € (D\A)® preserves the order.
(e) D\A' = {Av(i)NAli € {1,2,...,7}}.
We consider the total order on D\A! described in 15.(c). The bijective
mapping {1,2,...,7} — D\A! sending i € {1,2,...,7} to Av(i)NA €
D\A! preserves the order.
(f) For any j € Z with 1 < j <wv(1), A(j)NA = Av(1)NA.
For any i € {2,3,...,7} and any j € Z with v(i — 1) < j < v(i),
A(H)NA = Av(i) NA.
(g) For any j € Z with 1< j <wv(1), A(j)NA=Av(1)NA.
For any i € {2,3,...,7} and any j € Z with v(i — 1) < j < v(i),
A(H)NA = Av(i)NA.
Consider any A € F(S)e and any E € F(|D(S|V)|)1. For any a € A, the real
number (bg/n+,a) does not depend on the choice of a € A and it depends only on
A and E. We take any a € A and we define (bg/n+, A) = (bp/n+,a).

(17) S is G-simple, if and only if, the following three conditions are satisfied:
(a) For any A € F(S); and any A € F(S)e, (bg/n+, A) = (b n+, A), if
and only if, A= A.

We assume that the first condition is satisfied. Let r = ¢(S). Let A :
{1,2,...,7} = F(S)¢ be the unique bijective mapping satisfying (bg/n-, A(i—
1)) > (bg/n=, A7) for any i€ {2,3,...,7}, if r > 2.

() (e A@) > (byne, AQL) for any B € F(D(SIVID: — (G}, if
r> 2.
(©)
(bp/N+, A7) — (bg N, A(i — 1)) < (bp/Nn+, Ali + 1)) — (bg/n-, A(7))
(ba/n+, A(i — 1)) = (bg/n~, A1) ~ (ba/n=, A(i)) — (bg/n+, A(i + 1))’

foranyi € {2,3,...,r—1} and any E € F(|D(S|V)|)1 —{G}, ifr > 3.
(18) Assume that S is G-simple. Let r = ¢(S) € Zy. Let A : {1,2,...,r} —
F(S)e be the unique bijective mapping satisfying (bg/n=, A(i—1)) > (ba/n+, A(i))
foranyie{2,3,....r}, if r > 2.

We denote D(S|V)* = {A € D(S|V)A° C |D(S|V)[°YU{G°P||D(S|V)|} C
D(S|V)!, and Ag = A(GP|[D(S|V)],|D(S|V)|[V*) € F(stab(S))et1. The
following claims hold:

(a) There exists E € F(|D(S|V)|)1 —{G} with (bp N+, A2)) > (b N+,
A)), if r > 2.
(b) For any i € {2,3,...,7 — 1} there emists E € F(stab(S)V|V)1 — {G}
with
(bp/N+, A7) — (bg/n=, A(i — 1)) < (bp N+, Ali + 1)) — (bg/n+, A(i))
e, AG = 1)) = (g AD) ~ Doyove, AQ) = (sywe, Al + 1))
ifr > 3.
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(¢) A(1)+Ag € F(S)et1- stab(A(1)+Ag) = Ag. A(A(1)+Ag,S|V) =
G°P||D(S|V)| € D(S|V)!.

If A € F(S)ey1 and stab(A) = Ag, then A= A(1) + Ag.

(d) conv(A(i — 1) U A(i)) € F(S)e+1, stab(conv(A(i — 1) U A(7))) = L,
A(conv(A(i—1)UA(4)), S|V) € D(S|V)!, and A(conv(A(i—1)UA(:)),
S|V)°e C |ID(S|V)|° for any i€ {2,3,...,r}, if r > 2.

IfAe F(S)ey1 and stab(A) = L, then r > 2 and A = conv(A(i —1)U
A(7)) for some i€ {2,3,...,1}.

(e) D(SIV)r = {A(A(1) + Ag, S|V)}U{A(conv(A(i — 1) U A(i)), S|V)|i €
{2,3,...,r}}.

(f) We define a bijective mapping A : {1,2,...,r} = D(S|V)! by putting
A1) = A(A(1) + Ag, S|V) and A(i) = A(conv(A(i — 1) U A(i)), S|V)
forany i€ {2,3,...,r}. Foranyi€ {1,2,...,r} and any E €
F(D(S|V)|)1—{G}, we take a unique real number c(D(S|V),i, E) € R
satisfying bp/n+ + c(D(S|V), i, E)bg/n~ € vect(A(i)).

For anyi € {2,3,...,7}, Ali — 1)+ G D A®i) + G, if r > 2.
If we define a total order described in 15.(c) on D(S|V)*, the mapping
A preserves the order.

For any i€ {2,3,...,r} and any E € F(|D(S|V)|)1 — {G},

(bp N+, A(@)) — (bg/n-, A(i — 1))
(g N+, A(i = 1)) = (ban~, A(7))’

e(D(S|V),i, E) =

ifr > 2.

Definition 13.3. Assume that D is H-simple. We denote D' = {A € D!A° C
[DI°} U{H|| D[}
(1) We call D the H-skeleton of D.
(2) We call the total order on D described in Lemma [[3.2115.(b) the H-order.
(3) We call the total order on D! described in Lemma [[3.2115.(c) the H-order.
(4) We consider the H-order on D*. Let r = D' € Z,. Let A: {1,2,...,r} —
D' be the unique bijective mapping preserving the order. Consider any
i€{1,2,...,r} and any F € F(|D|)1 — {H}. By Lemma [[3:2115.(d) there
exists uniquely a real number ¢(D, i, E) € R depending on the pair (i, F)
satisfying bg/n+ + ¢(D, i, E)by/n+ € vect(A(i)).
We call ¢(D, i, F) the structure constant of D corresponding to the pair
(i, E).

14. BASIC SUBDIVISIONS

We define the concept of basic subdivisions.

Let V be any finite dimensional vector space over R with dimV > 2; let N be
any lattice of V; let H be any one-dimensional simplicial cone over NV in V; let C be
any simplicial cone decomposition over N in V satisfying dim C = dim vect(|C]) > 2,
cmax =0 H € Cy and C = (C/H).

Example 14.1. Let A be any simplicial cone over N in V such that dim A > 2
and H € F(A);. Let C = F(A). C is a simplicial cone decomposition over N in
V, and it satisfies dimC = dimvect(|C|) = dimA > 2, C™a* = CY H € C; and
C = (C/H)*. Furthermore, we know C — (C/H) = F(H°P|A).
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Lemma 14.2. (1) {0} e ¢ - (C/H) c C. C— (C/H) is a simplicial cone
decomposition over N in V. (C — (C/H))1 # 0.
(2) For any A € C/H, H € F(A); and H®|A € C — (C/H). For any A €
C-(C/H), A+ HeC/H.

The mapping from C/H to C — (C/H) sending A € C/H to HP|A €
C—(C/H) and the mapping from C—(C/H) to C/H sending A € C—(C/H)
to A+ H € C/H are bijective mappings preserving the inclusion relation
between C/H and C — (C/H), and they are the inverse mappings of each
other.

Furthermore, if A € C/H and A € C — (C/H) correspond to each other
by them, then dim A = dim A + 1.

(3) [Cl = IC = (C/H)|U[C/H[*. |C = (C/H)|NIC/H|* = 0.

(4) ¢™>* C C/H. For any A € C™, vect(A) = vect(|C|).

Let mg V. — V/vect(H) denote the canonical surjective homomorphism of
vector spaces over R to the residue vector space V/vect(H).

(5) 7 (N) is a lattice of V/vect(H).

(6) ma«C = T« (C — (C/H)). w.C is a simplicial cone decomposition over
7 (N) in V/vect(H). dim7y,.C = dimvect(|mg.C|) = dimC—1. vect(|rp.C|) =
m (vect(|C])). (ma.C)™™ = (mh.C)°.

(7) Forany A € C— (C/H), mg(A) € mu.C.

For any A € m.C, 75 (A)n|C — (C/H)| € C - (C/H).

The mapping from C—(C/H) to w.C sending A € C—(C/H) to i (A) €
7i«C and the mapping from mg.C to C — (C/H) sending A € 7p.C to
5 (A)N|C— (C/H)| € C — (C/H) are bijective mappings preserving the
inclusion relation and the dimension between C — (C/H) and mp.C, and
they are the inverse mappings of each other.

(8) mu(IC]) = 7u(IC — (C/H)|) = |7u.C|. The mapping 7 : |C — (C/H)| —
|m«C| induced by wpr is a continuous bijective mapping whose inverse map-
ping is also continuous.

In addition, we consider any non-negative integer m € Zy and any mapping
E:{1,2,....m} = (C—(C/H));.
For any i € {1,2,...,m}, E(i) € (C — (C/H))1.
For any i € {0,1,...,m} and any E € (C — (C/H))1, putting
s(i, B) =4({1,2,...,i} N E~Y(E)) € Zy,
we define a mapping
s:{0,1,...,m} x (C— (C/H))1 — Zo.
The mapping s is uniquely determined depending on the mapping F.
For any i € {1,2,...,m}, we put
F(i) =Ro(bpg)n + s(i = 1, E(i))bayn) + H CV,
G(i) =Ro(bg(iy/n + s(i — 1, E(i))bg/n) C V,
H (i) =Ro(bpg)/n + s(i, E(0)ba/n) C V.
We put
Hm+1)=HCV.
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Three mappings are defined.
F,G:{1,2,...,m} =2V,
H:{1,2,....,m,m+1} = 2",
They are uniquely determined depending on the mapping E.
Lemma 14.3. (1) For any E € (C— (C/H))1, s(0,E) =0

For anyi € {1,2,...,m} and any E € (C — (C/H))1,
o B) _{ si=LE) i B E()
(i—1,E)+1 if E=E(®).

(2) Foranyic€{1,2,...,m}, E(i),F(i),G(i),H
are simplicial cones over N in V, dim E(7)
dim F(i) = dim(G(:) + H(7)) = dlm( (i) +
F(i) C E(i)+ H € Cy/H.

(3) For any i € {1,2,...,m}, F(G(\) + H(i))1 = {GG),H()}, F(F(i))1 =
{G(i), H}, F(E(i)+H)1 = {E(i), H}, bG(i)/N = bE(i)/N +s(i—1, E)bH/N7
brgy/n = beayN + 50, E)bg/n = bayn + ba/n = bray/n, and H(i) =
RObF(i)/N C F(z)

(4) F is a center sequence of C of length m such that dim F(i) = 2 and F(i) ¢
|IC— (C/H)| for any i € {1,2,...,m}, and it is determined by the sextuplet
(V,N,H,C,m, E) uniquely.

C+xF(1)xF(2)%---xF(m) is an iterated barycentric subdivision of C, and
it is a simplicial cone decomposition, and it is determined by the sextuplet
(V,N,H,C,m, E) uniquely.

)
(1),G(i)+ H(i) and E(i) + H
dimG(i) = dim H (i) = 1,
) = 2,

?{ and G(i) + H(i) C

Below, for simplicity we denote

B=CxF(1)*F(2)%---xF(m)c2".
For any i € {1,2,...,m}, we put

B(i) = (B/(GH) + H(i)))* c Bc 2",
For m + 1, we put

B(m+1) = (B/H(m+ 1) c Bc2".
We obtain a mapping

B:{1,2,....m+1} — 22"

Lemma 14.4. (1) B is a simplicial cone decomposition over N in' V. dim B =
dim vect(|B]) = dimC. vect(|B|) = vect(|C|). B™** = BY. B is an iterated
barycentric subdivision of C. |B| =|C|.

(2) For any i € {1,2,...,m}, G(i) € By, G(i) + H(i) € B2, and F(i)° C
|C/HI|°. For anyie€ {1,2,...,m+ 1}, H(i) € B;.

(3) For any A € C/H, |B\A| = A and B\A is H-simple.

(4) B\[C - (C/H)| =C - (C/H).

(5) For anyi€{1,2,...,m+ 1}, B(i) is a simplicial cone decomposition over
N in V, dimB(i) = dimvect(|B(¢)]) = dimC, vect(|B(7)]) = vect(|C|),
B(i)max = B(i)°, H(i) € B(i)1, and B(i) = (B(i)/H (i)).
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(6) For any i € {1,2,..., m}, G(i) + H(i) = |B(i)
G(i) = |B(i) — (B(i)/H())| N (G(
B(i)1, B(i) = (B(i)/(G(i) + H(i)
(B(i)/G (i) N (G(i) + H(i)) € (B
(7) Foranyic{1,2,..., m} anyj € {2,3,..., m+
(B(i) — (B(i)/G(i)) N (B(j) — (B(j '

c—c/mu U \B(:)/H(i)[°) = |C|
i€{1,2,...,m+1}
(9) For any i€ {0,1,..., m+1}, |C— (C/H)|N|B(i)/H(3)|° = 0.
For any i € {0,1,..., m+ 1} and any j € {0,1,..., m+ 1} with @ # j,
[B(i)/H (i)]° N IB()/H(5)|° = 0.

(10)
Cc—(/Hyu( |J BG/HG) =8
i€{1,2,....m+1}
(11) For any i€ {0,1,..., m+1}, (C—(C/H))N (B@:)/H(i)) = 0.
For any i € {0,1,..., m+ 1} and any j € {0,1,..., m+ 1} with @ # j,
(B(i)/H (i) N (B(j)/H(j)) = 0.

(12)
U B( )max — pmax
i€{1,2,...,m+1}
(13) For any i € {0,1,..., m+ 1} and any j € {0,1,..., m+ 1} with i # j,
B(i)™ax N B(j)max = ().
For any i € {0,1,..., m + 1}, we denote

X(@) =lc—c/mluC |J BG/HEGI) CCl

(8)

Fe{1,2,....i}
(14) X(0)=|C - (C/H)|. X(m+1)=C|.
For any i € {1,2,..., m+1}, X(i—1) C X(%), X(i —1) # X (i), and

B(i)|N X (i —1) = [B(i) — (B(i)/H(i))]-
(15) For any i€ {0,1,..., m+1},

X@=lc—-c/mu J 1BGD,
je{1,2,...,i}
[B\X ()| = X (i),
and X (i) is a closed subset of |C|.
For any i € {1,2,..., m}, we put
B°(i) = B(i)/G(i) c B(i) c 2".

For m + 1, we put

B°(m+1)=B(m+1) c 2.
We obtain a mapping

B {1,2,....om+1} — 22 .

Lemma 14.5. (1) For anyic{1,2,..., m+ 1}, the fqllowmg claims hold:
(a) B(i)™= C B°(i) C B(i). (B(i)™™)* = B°(i)f = B(i). |[B(i)™>] =
B°(0)| = [B(@)| > [B°(2)[°-
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(b) B°(i) = B(i) < [B°(i)|° =

(¢) If i # m+ 1, then B(i) =
(B(i)/G(i))) = 0, |B(i)| =
|B(i) — (B(i)/G ()] = 0.

(d) For any © € B°(i)/H(i), H(i)°?|© € B°(i) — (B
A B(5) — (B°()/H(i)), A+ H(i) € B°(i)/H(i).
The mapping from B°(i)/H (i) to B°(i) — (B°(i)/H(i)) sending
© € B°(i)/H(i) to H(1)°P|® € B°(i) — (B°(1)/H(i)) and the map-
ping from B°(i) — (B°(i)/H(i)) to B°(i)/H(i) sending A € B°(i) —
(B°(i)/H(i)) to A+ H(i) € B°(i)/H(i) are bijective mapping preserv-
ing the inclusion relation between B°(i)/H (i) and B°(1)—(B°(i)/H (7)),
and they are the inverse mappings of each other.

Furthermore, if © € B°(i)/H (i) and A € B°(z) — (B°(:)/H(3)) corre-
spond to each other by them, then dim© = dim A + 1.

|B(i :
B°(i) U (B(i) — (B(i)/G(i))), B2(1) N (B(i) —
|B°(#)|°UIB(i) = (B(i)/G(i))], and [B°(#)[*N

°(i)/H(i)). For any

(2)
U BOr=ic
i€{1,2,....,m+1}
(3) For any i € {0,1,...,m + 1} and any j € {0,1,...,m + 1} with i #
JIBe(@)° N B°()|° = 0.

(4)
U B°(i) =B
i€{1,2,....,m+1}
(5) For any i € {0,1,...,m+ 1} and any j € {0,1,...,m + 1} with i # j,
B°(i) N B°(j ) =0.
For any i € {0,1,...,m+ 1}, we denote
Y(i) = U 1B°(7)[° < [Cl.

je{i+1,i+2,..., m+1}
(6) Y(0)=|C|]. Y(m+1)=0.
Foranyie{1,2,....m+1},Y(i—-1)DY(:),Y(i—1)#Y(i). Forany

ie{l,2,...,m}, |B(@)|NY ) =|B) — (B()/G(i))].
(7) For any i€ {0,1,...,m+ 1},

Y (i) = U IB()!,
je{i+1,i+2,...,m+1}
IB\Y (i)| = Y (i),

and Y (i) is a closed subset of |C|.
Definition 14.6. We denote B =&« F(1) x F(2) - - - F(m) above by the symbol
B(V,N,H,C,m,E) c 2",

and we call it the basic subdivision associated with the sextuplet (V, N, H,C,m, E),
because B is uniquely determined depending on the sextuplet (V, N, H,C,m, FE).
B(V,N,H,C,m, E) is an iterated barycentric subdivision of C, it is a simplicial
cone decomposition over N in V, and for any A € C/H, B(V,N,H,C,m, E)\A is
H-simple. |B(V,N,H,C,m,E)| =IC|.
Note that depending on the sextuplet (V, N, H,C,m, F) six mappings

s:{0,1,...,m} x (C— (C/H))1 — Zo,
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F,G:{1,2,...,m} =2V,
H:{1,2,....m,m+1} = 2",
B:{1,2,....mym+1} — 22"

B°:{1,2,...,mm+1} — 22,
are defined.
We denote these six mappings by s(V, N, H,C,m, E), F(V,N,H,C,m, E),
G(V,N,H,C,m,E), HV,N,H,C,m,E), B(V,N,H,C,m, E) and
B°(V,N,H,C, m, E) respectively, and we express the dependence explicitly.

Remark . We denote two different objects by the same symbol B(V, N, H,C,m, E).
One satisfies B(V, N, H,C,m, E) € 22" and the other B(V,N,H,C,m, E) is a map-
ping from {1,2,...,m+ 1} to 22" . It is easy to distinguish them.

Lemma 14.7. Consider any subset C of C satisfying dimC = dimvect(|C]) > 2
Cmax = (€Y H e € and C = (C/H)'.
We know that ) # C=CkandC isa stmplicial cone decomposition over N in
V.
Note that O # (C—(C/H))1 C (C—(C/H))1 and E-*((C—(C/H))1) C {1,2,...,m}.
Let n = tE~Y((C — (C/H))1) € Zo. Let # : {1,2,...,m} — {1,2,...,m} be
the unique injective mapping preserving the order and satisfying 7({1,2,...,m}) =
E~Y(C — (C/H))1). Putting 7(0) = 0 and 7(1h + 1) = m + 1, we define an ex-
tension 7 : {0,1,2,...,7m,m+ 1} = {0,1,2,...,m,m+ 1} of 7 : {1,2,...,7m} —
{1,2,...,m}. Let E : {1,2,...,7} — (C — (C/H)), be the unique mapping sat-
isfying 1B = E7, where v : (C — (C/H))1 — (C — (C/H)), denotes the inclusion
mapping.
(1) B(V,N,H,C,m,E\|C| = B(V,N,H,C,i, E).
(2) Let s =s(V,N,H,C,m,E) and § = s(V,NH,C, 1, E).
Forany E € (C—(C/H))1, anyi € {0,1,...,1m} and any j € {0,
with #(i) < j < 7(i + 1), 5(,E) = S(j,E), 5(,E) = s(7(i
5(i, ) =s(7(i+1)— 1, E).
(3) Let F = F(V,N,H,C,m,E), G = G(V,N,H.C,m,E),
F= F(VNHCmE) and G = G(V,N,H,C,m, E).
F=F7 and G = G7.
(4) Let H=H(V,N,H,C,m,E), B=B(V,N,H,C,m,E),
B° =B°(V,N,H,C,m,E), H = H(VN H,C,m,E), B=B(V,N,H,C,m,E),
and B° = B°(V,N,H,C,m, E).
(a) H=H*.
(b) Bl + 1) = B (1 + D\|C| = B(m + 1)\|C].
(c) Foranyie {1,2,...,Mm},
B(i) € BF(i)\|C|, and
(BF()\IC]) — B(i)
C (B7(i) — (B7(2)/G7(2)) N (BT (i) — (B7(i)/H7(7)).
(d) For any j € {1,2,...,m} —7({1,2,...,1m}),
)

BEGNCI < (B(7) = (B()/G(7) N (B()) = (BG)/H ()

L,...,m}
) E), and
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(e) For anyi € {1,2,...,m,m + 1}, B°(i) = B°7(i)\[C|, and |B°(i)|° =
|B°7(4)|° N |[C]. o
(5) For any j € {1,2,...,m}, j € 7({1,2,...,1m}) & E(j) € (C = (C/H)h &

(')C|C|<:>G(’)C|C|@H(j)C|C|@G(j)+H( ) c[c].
{F@)]ie{1,2 ompr={Fi@i)li € {1,2,....m}} =

{F()lj €{1,2 my, F() € O]}
{G()|Z€{1,2,.. ;i ={G7(i)li €{1,2,...,m}} =

(GG € {1.2,....,m},G(j) C [C]}-
{H@)|i € {1,2,...,m,m +1}} = {H7 ()i € {1,2,...,m,m +1}} =

(HG) € {1,2,...;m,m+ 1}, H(G) < [C1}. )
(6) For any j € {1,2 ,...,m+1},jef({l,z,...,ml})@|B°<j>|°r1|6|7é@.
For anyi € {1,2,...,7m+1} and any © € B°7(i)/H7(i), © C |C|, if and

only if, H7(i)°P|© C |C|

(7) Ifie{1,2,...,m}, 5€{1,2,....,m} and 7(i) < j < 7(i + 1), then
xX@nlel=ie-¢/miu |J I1BH)D,
ke{1,2,...,i}
Y(G)nicl = U B(k))),

ke{i+1,i+2,...,m+1}

where X (j) and Y (j) are subsets of |C| defined in Lemma[I{4) 14 and in
Lemma [T4.5) 6 respectively.

Lemma 14.8. Consider any A € C/H with dim A > 2.

Note that F(A) is a simplicial cone decomposition over N in V, F(A) C C,
|IF(A)] = A, dim F(A) = dimvect(|JF(A)|) = dimA > 2, F(A)™> = F(A)?,
H e F(A)y, and F(A) = (F(A)/H)f.

Note that ) # (F(A) — (F(A)/H)), € (C — (C/H)); and
BN (F(A) — (FIA)/H)) € {1,2,...,m}.

Letn = $E~1((F(A)—(F(A)/H))1) € Zg. Let7:{1,2,...,m} — {1,2,...,m}
be the unique injective mapping preserving the order and satisfying 7({1,2, ...,
m}) = E7Y((F(A) — (F(A)/H))1). Putting 7(0) = 0 and 7(m + 1) = m + 1,
we define an extension 7 : {0,1,2,...,m,m+ 1} = {0,1,2,....m,m + 1} of 7 :
{1,2,...,m} = {1,2,....,m}. Let E: {1,2,...,1m} = (F(A) = (F(A)/H)); be the
unique mapping satisfying LE = E7, where v : (F(A)—(F(A)/H))1 — (C—(C/H)),
denotes the inclusion mapping.

Let H® = HP|A € F(A)', B=B(V,N, H, ]—‘(A) m, E),
§=s(V,N,H,F(A),m,E), F = F(V,N,H, F(A),m, E),

G =G(V,N,H,F(A),m,E), H=H(V,N,H,F(A),m, E),
and B = B(V,N,H, F(A),m, E).
For any i € {1,2,...,7 + 1}, we denote

(i) = |B(i)| € A, and

(i) = |B(i) — (B(i)/H(i))| < ©(i).
(1) Ifdim A = 2, then §F(HP); =1, and for the unique element E € F(H°P);
andanyzG{O,l,.. ,m}, §(i
(2) Foranyi€{1,2,..., ,m
cones over N in V, d1rn (i

—|— 1}, @( ), ©@) + H and O(i) are simplicial
) = dimA — 1, dim(©(i) + H) = dim0(i) =



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 91

dimA, ©(i) C ©(i) C O(i) + H C A, (i) + H = O(i) + H, H(i) €
(i)°Ple(i) € F(O3i)', (i) = 6(i) + H(i) C A

F(O@), 0@) = H(i)P )
vect(©(i)) = vect(A), Vg ct(H) ﬁvect(@( )) = {0}, vect(H) + vect(O(i)) =
vect(A), O(i) = vect(O(i)) N A, O(i) + vect(H) = O(i) + vect(H) =
A+ vect(H), B(i) = F(O(0), B(i) — (B(i)/H(i)) = F(O(0), O(i)
conveone({bg n+ + 5(i — 1, E)og/n+|E € F(HP)1}) C A, and (F(A)

““‘*II

1,
F(1)x F(2) % F(i = 1))"* = {O(j)]j € {1,2,...,i = 1}}U{O@) + H
Consider any i € {1,2,...,m,m+ 1}.

For any E € F(HP), E+H € F(A)y/H, O()N(E+ H) € F(O(i))1.
The mapping from F(H°P); to F(O(i))1 sending E € F(H°P); to O(i) N
(E+ H) € F(O(i))1 is a bijective mapping.

Hco@l)ei=m+1.

0(i)° ¢ A° < O(i) COA < O(i) = H® < i= 1.

For any i € {1,2,...,m} and any j € {2,3,...,m + 1} withi < j, ©(i) N

0(j) =0 N(e(j) + H) =6(i + 1) N6(j ).

Consider any i € {1,2,...,mj}. F(i) = (0(i)+ H)n(E () H)e ( (1) +
H)y/H. O(i+1) = G(i )°p|9() F(O@@)'. H(i) =6(i+1) N (G(i) +
H(i)) € F(O(0))1. ©(i) N O(i + 1) = (G(i) + H(i))*|0(i). {A € F(O(D))

A° C AU (HP)°} = {O(i),0(),0( + 1)}. For any E € F(H 7)1—

{E(@0)}. @) n(E+H) =0()N6>i+1)n(E+H) e F(O>i) N6+

D)1 = F(O(i))r — {G(i), H(i)}. The mapping from F(H), = {E(i)} to

h
F(O(i))1 —{G(i), H(i)} sending E € F(HP)1 —{E(i)} to ©()N(E+H) €
f(@( N1 —{G@G), H(i)} is a bijective mapping. ©(i)N(E(i)+H) = G(i) +
() € F(O(). )
H = H(m+1) € F(O@n+1));. O(m+1) = H®|O(1m+1) € F(O(m+1))L.
{A e F(O(m+1))|A° € A° U (HP)°} = {O(m +1),0( 4+ 1)}. For any
E e F(H),, O(m+1)N(E+ H) € F(©(in+1))2/H. The mapping from
F(H°P); to F(O(m+1))2/H sending E € F(H°P); to ©(m+1)N(E+H) €
F(O(m +1))2/H is a bijective mapping.
B is the iterated barycentric subdivision of F(A), it is a simplicial cone
decomposztzon and it is determined by the sextuplet (V, N, H, F(A),m, E)
uniquely. |B| =

Bis H- szmple Let B! = {A € BYA° c A°} U {H®} denote the H-
skeleton ofB B

480 = #B' = m+1. B® = {0(0)|i € {1,2,...,m,m+1}}. B = {O(@i)]i €
{1,2,...,m,m+ 1}}.

We consider the H-order on B°. The bijective mapping from {1,2,...,m,
m + 1} to BY sending i € {1,2,...,7m,7m + 1} to ©(i) € B° preserves
the H-order. N

We consider the H-order on B*. The bijective mapping from {1,2,... 1,

m+ 1} to B sending i € {1,2,...,m,m + 1} to O(i) € B! preserves
the H-order.
Consider any E € F(HP)1 and any i € {1,2,....m,m + 1}. The

structure constant of B corresponding to the pair ( E) is equal to §(i —
1,E) € Zyp.
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15. UPPER BOUNDARIES AND LOWER BOUNDARIES

Let V be any finite dimensional vector space over R with dimV > 1; let IV
be any lattice of V; let H be any simplicial cone over N in V with dim H = 1;
let 7y : V. — V/vect(H) denote the canonical surjective homomorphism of vector
spaces over R to the residue vector space V/vect(H); and let A be any convex
polyhedral cone in V' such that vect(H) C vect(A).

Definition 15.1. Let X be any subset of V. We denote
"X ={a € X|({a} + vect(H)) N X C {a} + (—H)},
08X = {a € X|({a} + vect(H))N X C {a} + H},

and we call 8fX and 07 X the H-upper boundary of X and the H-lower boundary
of X respectively.

Lemma 15.2. (1)

OTA =|{A e F(A)H ¢ A+ vect(A)}|
=|{A e F(A)|H ¢ A+ vect(A),dim A = dim A — 1},
OHA =|{A e F(A)|— H ¢ A+ vect(A)}]
=|{A e F(A)|— H ¢ A+ vect(A),dim A = dim A — 1},
ONTAUOTA = |{A € F(A)|vect(H) ¢ vect(A)}]
= |{A € F(A)|vect(H) ¢ vect(A),dim A = dim A — 1}

C 0A.

(2) 0MA=0= HCA. 0A=0< —HCA.

(3) If O A # 0, then mu(02A) = 7u(A) and the mapping 7 + XA —
7w (A) induced by Tg is a continuous bijective mapping whose inverse map-
ping 1s also continous.

If OHA # 0, then ng (02 A) = 7y (A) and the mapping w7y : OHA —
mr (A) induced by T is a continuous bijective mapping whose inverse map-
ping is also continous.

(4)
OTANITA =|{A € F(A)A c O ANOTA,dim A < dim A — 2}|.

(5) Consider any a € V. Note that wg(a) € V/vect(H) and 7' (7r(a)) =
{a} + RbH/N
(a) If m(a) € mp(A) and OFA # 0, then there exists uniquely a real
number t1 € R satisfying a +t1bp/n € 8fA.
In the case where mp(a) € mu(A) and OHA # 0, we take the unique
ty € R satisfying a +t1by/n € BfA.
(b) If ma(a) € 7 (A) and OHA # 0, then there exists uniquely a real
number t_ € R satisfying a +t_by /N € OHA.
In the case where wy(a) € mr(A) and OHA # 0, we take the unique
t_ € R satisfying a +t_by/n € 07 A.
(¢) Ifru(a) € mu(A), OFA £ 0 and O A #0, then t_ < t,.
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(d) ({a} +Rby/n)NA

0 if mu(a) € T (A),

{a+tbynt eRt- <t <ty} ifmp(a) € mu(A), OFA £ and O A #10,
=q{a+tbgnlt e Rt <t} if tr(a) € m(A), OFA #0 and 08 A =0,

{a+tby/n|t € Rt <t} if tu(a) € T (A), OHA =0 and 0H A # 0,

{a+tby/n|t € R} if ma(a) € mp(A), OHA =0 and 07 A = 0.

(e) If mr(a) € mu(A)°, OFA £ D and O A #0, then t— < t,.
(f) ({a} +Rbp/y) N A°

0 if (@) € m (A,
{fa+tbyniteR i <t<ty} ifmu(a) € mu(A)°, OXA£D and OHA £10,
=q{a+tbgnlt e Rt <t} if 7 (a) € mp(A)°, OFA # 0 and OF A =0,
{a+tbg/nt e Rt <t} if mr(a) € ma(A)°, OFA =0 and 07 A # 0,
{a+tby Nt € R} if ri(a) € mp(A)°, OHA =0 and OFA = 0.

16. HEIGHT, CHARACTERISTIC FUNCTIONS AND COMPATIBLE MAPPINGS

In this section we consider the following objects: Let V' be any finite dimensional
vector space over R with dimV > 2; let N be any lattice of V'; let H be any one-
dimensional simplicial cone over the dual lattice N* of N in the dual vector space V*
of V; let C be any simplicial cone decomposition over N* in V* satisfying dimC =
dim vect(|C|) > 2, C™** = CY H € C; and C = (C/H)'; let S be any rational convex
pseudo polyhedron over N in V satisfying dim(|D(S|V)|) > 2 and |C| C |D(S|V)|;
and let T be any convex pseudo polyhedron in V satisfying dim(|D(T'|V)|) > 1 and
H C vect(|D(T|V)])-

Lemma 16.1. (1) {{ba/n=,a)la € V(T)} is a non-empty finite subset of R.
(2) 0 < #{{bun+,a)la € V(T)} < ¢(T).
(3) If T is rational over N, then the subset

{m € Z|ma € (N + (vect(|D(T|V))V|V*)) for any a € V(T)}
of Z is an ideal of the ring Z containing a positite integer.
Proof. Tt follows from Proposition [[0.87. O

Note that H C |C| C |D(S|V)| C vect(|D(S|V))).
We denote ¢ = dim vect(|D(S|V)|)V|V* = dim(stab(S) N (—stab(S))) € Zo.

Definition 16.2. (1) We define functions
L, []:R—Z,
by putting
7] = min{i € Z|r <i}, [r] =max{i e Z|r > i},

for any r € R.
(2) We define

H(H,T) = {(ban-alla € V(T)} C R,
height(H,T) = max H(H,T) —min H(H,T) € Ry,
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and we call H(H,T) and height(H,T), the H-height set of T and the H-
height of T respectively.

(3) Assume that T is rational over N. By den(7/N) we denote the minimum
positive integer in the ideal

{m € Z|ma € (N + (vect(|D(T|V)|)¥|V*)) for any a € V(T)},

and we call den(T'/N) € Z4 the denominator of T over N.
(4) We define

(C,F(S)e) ={F € F(S)e| dim(A(F,S|V)NA) = dim A for some A € C™**.}
C}—(S)z,

ve,s)= | Fcv),
Fe(C,F(S)e)

H(H,C, S) = {{by/n-a)|a € V(C,9)} CR,

height(H,C, S) = maxH(H,C,S) — minH(H,C,S) € Ry,

) €

and we call (C, F(S)¢), V(C,S), H(H,C,S) and height(H,C, S), the set of
minimal faces of the pair (C, S), the skeleton of the pair (C, ) the H-height
set of the pair (C,.S) and the H-height of the pair (C,.S) respectively.

(5) For any h € H(H,C,S) we denote

E(h) = {A(F, S[V)NA[F € (C, F(S)s), A € €™, dim(A(F, §|V) N A) = dim A,
(br/n+,a) = h for some a € F}¢ c D(S|V)AC,

D(h) = {A(F,S|V)NA|F € (€, F(S)e), A € C"™, dim(A(F, S|V) N A) = dim A,
(b N+, a) > h for some a € F} c D(S|V)AC.

Consider any A € C/H. S+ (AY|V*) is a rational conex pseudo polyhedron
over N in V. stab(S + (AY|V*)) = AV|V*. H C [D(S + (AY|V*)|V)] = stab(S +
(AVIV)VIV = A C [C] C |D(S|V)| C vect(|D(S|V)]). D(S + (AY|VH|V) =
D(S|V)NF(A).

Lemma 16.3. (1) The set H(H,T) is a non-empty finite subset of R. 0 <
fH(H,T) < c(T).
If T is rational over N, then H(H,T) C (1/den(T/N))Z C Q and
height(H,T) € (1/den(T/N))Zo C Qo.
If T is rational over N and V(T) C N + (vect(|D(T|V)|)V|V*), then
den(T/N) =1, H(H,T) C Z and height(H,T) € Zy.
(2) 0 # (C, F(S)e) € F(S)e-
0 # V(C,S) C V(S). The set V(C,S) is the union of some connected
components of V(S).
0+ H(H,C,S) C H(H,S) C (1/den(S/N))Z C Q. The set H(H,C,S)
is a non-empty finite subset of Q.
min H(H,C,S) = min H(H, S). height(H,C, S) < height(H, S).
height(H, S) € (1/den(S/N))Zy C Q.
helght(H C,S) e (1/den(S/N))Zy C Qp.
If V(S) C N + (vect(|D(S|V)|)V|V*), then den(S/N) =1, H(H,C,S) C
H(H,S) CZ, height(H, S) € Zy and height(H,C, S) € Zy.
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(3) Consider any A € C/H.
H(H,S+ (AV|V*)) C H(H,C,S) C Q.
minH(H, S + (AY|V*)) = min H(H,C, S).
height(H, S + (AY|V*)) < height(H,C, S).
den(S/N) is a multiple of den(S + (AV|V*)/N).
H(H, S+(AY|V*)) C (1/den(S+(AY|V*)/N))Z C (1/den(S/N))Z C Q.
height(H, S+(AY|V*)) € (1/den(S+(AV|V*)/N))Zo C (1/den(S/N))Zo
C Qq.
If V(S) € N + (vect(|D(S|V)|)VIV*), then den(S + (AV|V*)/N) =1,
H(H,S + (AV|V*)) C Z and height(H, S + (AY|V*)) € Z.
(4) maxH(H,C,S) = max{maxH(H,S + (AV|V*))|A € C™max}.
height(H,C, S) = max{height(H, S + (AV|V*))|A € C™ax},
(5) Consider any subset C of C satisfying dim C = dim vect(|C]) > 2, C™ax = (O,
HeC andC = (C/H).
Note that C is a simplicial cone decomposition over N* in V*, and |(f| -
ICl C [D(SV)]. ) A
V(,S)cVv(,S). H(H,C,S) C H(H,C,S). minH(H,C,S) =minH(H,

C,S). height(H,C, S) < height(H,C, S).

(6) D(S|V)AC is a rational convex polyhedral cone decomposition over N* in
V*. dim(D(S|V)NC) = dim(vect(|D(S|V)NC|)) = dimC. vect(|D(S|V)NC|) =
vect(|C]). (D(S|V)NC)™** = (D(S|V)NC)°.

(7) Consider any h € H(H,C,S). £(h) and D(h) are rational convex polyhedral
cone decompositions over N* in V*. dim £(h) = dimvect(|E(h)|) = dimC.
vect(|E(h)]) = vect(|C|). E(h)™** = £(h)°. dimD(h) = dim vect(|D(h)|) =
dim C. vect(|D(h)|) = vect(|C]). D(h)™® = D(h)°. £(h) C D(h) C
D(S|V)NC.

(8) Consider any g € H(H,C,S) and any h € H(H,C,S). g < h < D(g) D
D(h) & [D(g)| > [D(h)]. ¢ = h & D(g) = D(h) < [D(g)| = [D(h).

(9) We consider any F € F(S), and any G € F(S)e such that (by/n-,a) =
(br/Nn=,b) for some a € ' and some b € G.

I (A(F,S|VYUA(G,S|V)) = 0 A(F, S|V)UITAG, S|V), and
O (A(F, S|[V)UA(G,S|V)) =02 A(F, S|V)UdZA(G, S|V).
Below, in this section we assume moreover that D(S|V)NF(A) is H-simple for
any A € C™**. We denote
max = max H(H,C,S) € (1/den(S/N))Z, min = min H(H,C, S) € (1/den(S/N))Z.
By mg : V* — V*/vect(H) we denote the canonical surjective homomorphism of
vector spaces over R to the residue vector space V* /vect(H ).

Lemma 16.4. Consider any h € H(H,C,S).
(1) max > min. height(H,C,S) = max —min. height(H,C,S) = 0 & max =
min < C is a subdivision of D(S|V).
(2) 0H|E(R)| # 0 < h # min. 0 |E(h)| £ 0.
(3) If h # min, then w7 (021E(h)]) = m(|E(R)]) and the mapping Ty :
OMIER)| — mu(|E(R)]) induced by my is a continuous bijective mapping
whose inverse mapping is also continuous.
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m (0 E())) = s (1E(W]) and the mapping s - 0 |E(R)| = war(E(h)])
induced by T is a continuous bijective mapping whose inverse mapping is
also continuous.

(4) Consider any a € V*. Note that mg(a) € V*/vect(H) and 5 (1g(a)) =
{a} + RbH/N* .
(a) If ru(a) € mag(|E(R)|) and h # min, then there exists uniquely a real
number t1 € R satisfying a + t1by N~ € OFE(R)].

In the case where g (a) € m(|E(R)|) and h # min, we take the unique
ty € R satisfying a + t4by/n- € O |E(R)|.

(b) If g (a) € mu(|E(R)|), then there exists uniquely a real numbert_ € R
satisfying a +t_by/n- € OH|E(h)|.

In the case where wr(a) € T (|E(h)|), we take the unique t_ € R satis-
fying a+t_bpn- € OTIE(R)).

(¢) If m(a) € mg(|E(R)]) and h # min, then t_ < t,.
(@) ({a} + Rbsx-) 0 E(H)

0 if ru(a) € mu(I€(R)]),
=q{a+tbyn-lt eRt_ <t <ty} ifnp(a) €nyg(|E(h)]) and h # min,
{a+tby/n-|t e Rt <t} if ma(a) € mp(|E(R)|) and h = min.

(5) OHD(h)] £0 & h # min. 9¥[D(R)] = [D(W)| N |C — (C/H)] £0.

(6) If h # min, then T (0¥ |D(R)]) = mu(|D(h)|) and the mapping Tg
OM|D(h)| — mu(|D(h)|) induced by mp is a continuous bijective mapping
whose inverse mapping is also continuous.

7 (02 |D(R)|) = 7 (|D(h)|) and the mapping g : 07 |D(h)| — mu(|D(R)])
induced by Ty s a continuous bijective mapping whose inverse mapping is
also continuous.

(7) Consider any a € V*. Note that mg(a) € V*/vect(H) and 75" (g (a)) =
{a} + RbH/N* .

(a) If g (a) € g (|D(R)|) and h # min, then there exists uniquely a real
number t4 € R satisfying a + t1by/n- € O [D(h)|.

In the case where mg(a) € mg(|D(h)]) and h # min, we take the unique
t+ € R satisfying a + t by /v~ € OZ|D(R)].

(b) Ifru(a) € mu(|D(h)]), then there exists uniquely a real numbert_ € R
satisfying a +t_by /N~ € OH|D(h)].

In the case where wy(a) € mg(|D(h)|), we take the unique t— € R satis-
fying a+ t_bg N~ € 07|D(h)|.

(¢) If mg(a) € mg(|D(h)]) and h # min, then t_ < t4.
(@) ({a} + Rbgyn-) 1 [D(h)

0 if mu(a) € Tu(ID(R))),
=q{a+tbgn-lteRt_ <t <t} ifnu(a) € ma(|D(R)]) and h # min,
{a +tbg/n-t e Rt <t} if mg(a) € mg(D(R)|) and h = min.

(8) If h = max, then D(h) = E(h).
(9) Assume h # max. Put g =min{f € H(H,C,S)|f > h} € H(H,C,S).
D(h) = D(g)UE(h). |D(h)| = [D(g)|UIE(R)|. L |D(g)| # 0. dX|E(h)| #
0. D)l NIEMR)| = 0 D(g)| N oXIE(R)|. oF|E(h)| € 8 |D(g)| U IC —
(C/H)|. 0{|D(h)| = (8 |D(g)| — OZ|E(R)]) U DT IE(R)I.
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(10) If h = min, then D(h) = D(S|V)NC and |D(h)| = |C|.
(11)

ma(|D(h)]) C |7a.C].
mu([D(h)]) = {A € (7a.C)™™|A C 7 (|D(R)])}.

clos(|m.C| = mu (|D(h)]) = {A € (mm.C)™*™|A C clos(|mp.C| — mu (ID(R)])}-

(12) Consider any E € (C — (C/H))y. If height(H,C,S) > 0 and w7y (E) C
7 (D(max)), then there exists uniquely a real number y(E) € R satisfying
bE‘/N* +7(E)bH/N* S 8_?2)(111&)()

Below we assume moreover that height(H,C,S) > 0.

Definition 16.5. We define a function v : (C — (C/H)); —

Consider any E € (C — (C/H))1. If my(E) C WH(D(ID&X)) then we take the
unique real number v(E) € R satisfying bg/n+ + Y(E)by/n+ € 0¥ D(max). If
7 (E) ¢ mi(D(max)), then we put v(E) = 0 € R.

We call v the characteristic function of the triplet (H,C,S).

Lemma 16.6. Let v : (C — (C/H))1 — R denote the characteristic function of
(H,C,S).

(1) For any B € (C — (C/H))1, 7(B) € Qo. ]

(2) Consider any A € C™**. There exists E € F(HP|A); satisfying v(E) >
0 < mg(A) C mg(D(max)) < 7y (A) ¢ clos(|mg«C| — 7 (|P(max)|)).

(3) Consider any A € C™ satisfying Ty (A) C mg(D(max)). Note that H €
F(A)1 and F(HCP|A); C (C— (C/H));.

D(S+ (AV|VH|V) = D(S|V)NF(A) is H-simple, and c(S+ (AV|V*)) >
2.

For any E € F(H°P|A)1, v(E) = ¢(D(S + (AV|V*)|V),2, E), where
c(D(S+(AV|V*)|V),2, E) denotes the structure constant of D(S+(AY|V*)|V)
corresponding to (2, E).

(4) There ezists E € (C— (C/H))1 with y(E) >

(5) For any E € (C—(C/H)), satisfying g (E) C clos(|7rH*C| 7 (|D(max)|)),
~v(E) =0.

(6) Consider any E € (C — (C/H))1 satisfying v(E) ¢ Z. Then, there exists
uniquely h(E) € H(H,C,S) satisfying

{h e H(H,C,9)[bg/n- + [7(E)|br/n- € D(h) — 0/ D(h)}
={h € H(H,C,S)|h < h(E)},
and if h(E) € H(H,C,S) satisfies this equality, then h(E) # max.

Definition 16.7. Let v : (C — (C/H))1 — R denote the characteristic function

of (H,C,S). For any E € (C — (C/H)), satisfying v(E) ¢ Z, we take the unique
element h(E) € H(H,C, S) satisfying

{h e H(H,C,S)|bg/n- + [V(E)|brn- € D(h) — 07 D(h)}
={h € H(H,C,S)|h < h(E)}.
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Let
M= Y B,

Ee(C—(C/H))

m= Y [B)],

Be(C—(C/H)
R={E€(C~(C/H)1I(E)¢Z}.

Note that m € Z4, m € Zo, m < m, and m —m = {R.
Consider any mapping E : {1,2,...,m} — (C — (C/H))s.
We say that the mapping E is compatible with .S, if the following three conditions
are satisfied:
(1) For any E € (C (C/H))l 1({1,2,...,m} N E7Y(E)) = [v(E)].
(2) E{m+1,m+2,. })zR
(3) Ifm—m > 2, then h( (1)) > h(E(i+1)) for any i € {m+1,m+2,...,m—1}.

Lemma 16.8. Let v : (C — (C/H))1 — R denote the characteristic function of
(H,C,S). Let m = Y pe(c—c/my, [VE)] € Za, M= Y pec—c/my, [V(E)] € Zo,
and R ={E € (C— (C/H))|y(E) ¢ Z} C (C— (C/H))1.
(1) There exists a compatible mapping E : {1,2,...,m} — (C — (C/H))1 with
S.
(2) Assume that a mapping E : {1,2,...,m} — (C — (C/H))1 is compatible
with S.
(a) For any E € (C — (C/H))1, $E71(E) = [v(E)], and #({1,2,...,m} N
E-(B)) = [(B)].
(b) E{m + 1,m +2,...,m}) = R, and the mapping E : {m + 1,m +
2,...,m} = R induced by E is bijective.
(c) E{L,2,...,m})={E e (C—(C/H)h|y(E)>0}.
(d) For anyi € {1,2,...,m}, ng(E(i)) C my(D(max)) and 7y (E(i)) ¢
clos(|mg«C| — g (|D(max)|)).
Consider any subset C of C satisfying dimC = dimvect(|C|) > 2, ¢ = (O,
HeCy, andC = (C/H)f,
Note that C is a simplicial cone decomposition over N* in V*, ) # (C—(C/H)), C
(C—(C/H)) and [C| C [C| C [D(S|V)].
(3) height(H,C,S) < height(H,C, S).
helght(H C, S) = height(H,C,S), if and only if, v(E) > 0 for some
Ee(C—(C/H)h
(4) Ifv(E) > 0 for some E e (C— (C/H))1, then height(H,C, S) > 0 and the
composition (C — (C/H))1 — R of the inclusion mapping (C — (C/H)), —
(C—(C/H))1 and v : (C—(C/H))1 — R coincides with the characteristic
function of (H,C,S).
(5) Consider any compatible mapping: E : {1,2,...,m} — (C — (C/H))1 with
S.
Let i = 4E~Y((C — (C/H))1) € Zo and i = 4({1,2,...,m} N E~*((C —
(C/H)))) € Zo. Let 7: {1,2,...,m} — {1,2,...,m} be the unique injec-
tive mapping preserving the order and satzsfymg 7'({1, 2,...,m}) =
E~Y(C - (C/H))1). Let E: {1,2,...,m} — (C — (C/H)), be the unique
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: (é - (é/H))l — (C = (C/H))h

mapping satisfying LE = E7, where .
denotes the inclusion mapping.
—(C/H)), then 1 = DB my), VE)],

Ifw( E) > 0 for some E € (C
ZEe(C @/ 1Y (E)] and E is compatible with S.

— (C/H))1, then 1 = 0.

Ifw( ) =0 for any E € (C
Lemma 16.9. Assume §C™** = 1.
Let A € C™* denote the unique element. A is a simplicial cone over N* in V*
F(A), C—(C/H) = F(H°?|A), and

H e F(A); and dimA = dimC > 2, C =
height(H, S + (AY|V*)) = height(H,C, S) > 0.

Note that D(S+(AY|V*)|V) (SIV)AF(A) is H-simple and c(S+(AY|V*))
2.

Let y,m,m and R be the same as in above LemmalI6.8

For any i € {1,2,...,¢(S+ (AY|V*))} and any E € F(HP|A)1, we can con-

sider the structure constant ¢(D(S + (AV|V*)|V),i,E) € Qo of D(S + (AV|V*)|V)
corresponding to the pair (i, F)

Denote

|_ ( (S + (AV|V*)|V)727E)J € Z-l—u

e ¥

EeF(HeP|A),
[e(D(S + (AY[V)|V),2,E)] € Zo, and

m= Y
E€F(Her|A)q
E) ¢ Z} C F(H*|A),.

R = {E € F(H®|A)|e(D(S + (A [V)|V)

For any E € R, denote
(S (AYVIO) )
Le(D(S + (AY[VH)IV), 2, E) |}

é(E) = max{j € {2,3,.
co(D(S + (AY[VHV), 4. E)

€{2,3,...,c(S+ (AV|V)}.

c(D(S + (AY|[VH)|V),2 ,E) for any E € F(HP|A);.
F(HC°P|A); is compatible

(1) ¥(E) =c(
(2) m=m. m=m. R=TR.
(3) A mapping E : {1,2,...,m} — (C — (C/H))1 =
S, if and only if, the following three conditions are satisfied:
LmyNE"YE)) =

A
with
(a) For any E € F(H°P|A)q, #({1,2,
[e(D(S + (AV[V¥)[V), 2, E)].
(b) E({m+1,m+2,....m}) = R.
(c) If m —m > 2, then ¢(E(i)) < &(E(i + 1)) for any i € {m + 1,m +
m} — F(HP|A)y is compatible with

2,...,m—1}.
(4) Assume that a mapping E : {1,2,
S.

(a) For any E € F(H®|A);, 1E7Y(E) = [c(D(S + (AY|[V)[V),2,E)],
and §({1,2,...,m} N B \(E )) [e(D(S + (AY[V)[V), 2, E)].

(b) E{m + l,m —|— 2,...,m}) = R, and the mapping E : {m +1,m+
2,...,m}—>R inducgd by E is bijective. -

(c) E{1,2,...,m}) ={F € F(H°®|A)1|c(D(S + (AV|V*)|V),2, E) > 0}.

17. THE HEIGHT INEQUALITIES

We show the height inequalities
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In this section we consider the following objects: Let V' be any finite dimensional
vector space over R with dimV > 2; let N be any lattice of V; let H be any one-
dimensional simplicial cone over the dual lattice N* of NV in the dual vector space
V* of V; let C be any simplicial cone decomposition over N* in V* satisfying
dim C = dimvect(|C]) > 2, C™* = C° H € C; and C = (C/H); and let S be any
rational convex pseudo polyhedron over N in V satisfying dim(|D(S|V)|) > 2 and
C] € [D(SIV)]-

In this section we assume that D(S|V)NF(A) is H-simple for any A € C™** and
height(H,C, S) > 0.

Let v: (C—(C/H))1 — R denote the characteristic function of (H,C, S). Denote

m= Y LB ez,

Ee(c—(c/H))

m= Y [y(E)] €Z, and
Be(C—(C/H))

R=A{E€(C—(C/H)I(E)¢ZZL}C(C—(C/H)):.

@ We know height(H, S) € (1/den(S/N))Z,, height(H,C,S) € (1/den(S/N))Z4
and height(H,C, S) < height(H, S).

We denote ¢ = dim(vect(|C|)¥|V*) € Zy.

Consider any simplicial cone © over N* in V* satisfying © C |C| and any G €
F(O);. dim® < dimvect(|C|) = dimV — £. S + (©V|V*) is a rational conex
pseudo polyhedron over N in V. stab(S + (©V|V*)) = @V|V*. G C |D(S +
(OVIVH)|V)| = stab(S + (OV|V*)V|IV = © C |C| C |D(S|V)| C vect(|D(S|V)]).
D(S+(0V|VH)|V) =D(S|V)NF(O). stab(S+ (OV|V*))N(—stab(S+ (OV|V*))) =
vect(|D(S + (OV|VH)|[V))Y|V* = vect(©)V|V* D vect(|C|)V|V*.

If dim® = dimvect(|C|), then vect(|D(S + (OY|V*)|V)|)V|V* = vect(|C])V|V*
and dim(vect(|D(S + (@V|VH)|[V))V|V*) = L.

Theorem 17.1. Consider any compatible maping
E:{1,2,....m} = (C—(C/H))1
with S.
Let
B=B(V*,N*,H,C,m,E)
be the basic subdivision associated with the sextuplet (V*, N* H,C,m, E).

Let s = s(V*,N*,H,C,m,E), H = H(V*,N*,H,C,m,E),

and B=B(V*,N*, H,C,m,E). We have three mappings

$:{0,1,...,m} x (C— (C/H))1 — Zyo,
H:{1,2,....m+1} —» 2",

B:{1,2,....m+1} — 2% .

(1) meZo. meZy. m<m. m—m={R.

(2) Por any E € (C — (C/H))1, s(m, E) = [1(E)] and s(m, E) = [7(E)].

(3) B is an iterated barycentric subdivision of C, and it is a simplicial cone
decomposition over N* in V*. |B| = |C|] C stab(S)V|V = |D(S|V)].
dim B = dim vect(|B|) = dimC. vect(|B|) = vect(|C|). B™a* = BO.

(4) Consider any i € {1,2,...,m+ 1}.
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(a) B(i) is a simplicial cone decomposition over N* in V*. B(i) C B.
|B(i)| € |B|]. dimB(i) = dimvect(|B(7)|) = dimC. vect(|B(i)]) =
vect(|C|). B(i)™> = B(i)°. H(i) € B(i)1. B(i) = (B(i)/H(i))'.

(b) For any © € B(i), ©V|V* is a rational polyhedral cone over N in 'V,
dim©Y|V* =dimV, S+ (0V|V*) is a rational convez pseudo polyhe-
dron over N in 'V, stab(S+ (0V|V*)) = OV|V*, D(S+ (6V|V*)|V) =
D(S|V)NF(O), and D(S|V)NF(O) is semisimple.

(c) [The height inequality] height(H (), B(3), S) < height(H,C, S).

(5) Consider any i€ {1,2,...,m}.
For any © € B(i), D(S|V)NF(O©) = F(O) and S + (6V|V*) = {a} +
(©Y|V*) for any a € V(C,S) satisfying (b n~,a) = maxH(H,C,S).
height(H (), B(i), S) = 0.
(6) For any © € B(m + 1)™* D(S|V)NF(O) is H(m + 1)-simple.
(7) Consider any A € C™*, height(H, S + (AV|V*)) = height(H,C, S), if and
only if, v(E) > 0 for some E € F(H°P|A),
(8) Consider any A € C™* such that y(E) = 0 for any E € F(HP|A);.
height(H, S + (AY|V*)) < height(H,C, S).
A C |B(m+1)]. B\A =B(m+1)\A =F(A).
For any i € {1,2,...,m}, |B(i)|NA € F(H°P|A), |B(i)| N A # HP|A,
and B(i)\A = F(|B(@)| N A).

Below we consider any A € C™** such that y(E) > 0 for some E € F(HP|A);.
By 7 we know height(H, S + (AY|V*)) = height(H,C, S) > 0.

Note that D(S+(AY|V*)|V) = D(S|V)NF(A) is H-simple and the characteristic
number ¢(S + (AV|V*)) of S+ (AV|V*) satisfies c(S + (AV|V*)) > 2. Let D(S +
(AVIVHIVL = {A € D(S + (AY|VH)|V)LA° C A°} U {H°P|A} denote the H-
skeleton of D(S + (AV|V*)|V). $D(S + (AV|V*)|[V)? = ¢D(S + (AV|V*)|V)! =
c(S+ (AV|V*)) > 2.

We consider the H-order on D(S + (AV|V*)|V)°. Let

A:{1,2,...,¢(S+ (AY|V)} = D(S + (AV|VH|V)?,

denote the unique bijective mapping preserving the H-order.
We consider the H-order on D(S + (AY|V*)|V)!. Let

A:{1,2,...,¢(S+ (AVIV)} — D(S + (AV|VH)|V),

denote the unique bijective mapping preserving the H-order.

There exists uniquely a bijective mapping A : {1,2,...,c¢(S+(AV|V*))} — F(S+
AVIVV)e satisfying A7) = A(A(2), S+ (AVIV*)|V) for anyi € {1,2,...,¢(S +
AVIV*)}. We take the bijective mapping A : {1,2,...,¢(S+ (AY|V*)} = F(S+
AVIVHV)e satisfying A(i) = A(A(@), S+ (AV|V*)|V) for any i € {1,2,...,¢(S+
AV V), ]

For any i € {1,2,...,¢(S + (AV|V*)} and any E € F(H°P|A)1, we can con-
sider the structure constant c(D(S + (AV|V*)|V),i, E) € Qo of D(S + (AY|V*)|V)

corresponding to the pair (i, E).

A~ N N
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7)J € Z+a

m} N

)

Denote
m= Y [eD(S+ A VV)
E€F(Hor|A)y
> [e(D(S+ (AV|V)|V),2,E)] € Zo, and
R ={E € F(H®|A)i|e(D(S + (AY|V)|V),2,E) ¢ Z} € F(H|A)
= $E~H(F(HP|A)), m =1({1,2,.
1-
m} be the unique injective mapping preserving
(HP|A)1)

102

m} —

ﬁ’L =
EE€F(HP|A),

(10) 1h € Zy. m € Zo. m < 1. M
E~Y(F(H?|A))), and R = RN F(HP|A)
Let 7: {1 Jmp—{1,2,..., ]

the order and satisfying #({1,2,...,m}) = E7YF(HP|A);). Let B : {1,2,
be the unique mapping satisfying \E = E7 where v : F
(C/H))y denotes the inclusion mapping.

c22, G=G(V*,N* H, ]—‘(A) m, E),

m, E).

F(HP[A)
1
Let B=B(V*,N*, H,F(A), 1, E) C
H = H(V*, N*, H,F(A),in, E), and B = B(V*,N*, H, F(A),
m} — 2V,

(=

G:{1,2,...,
H:{1,2,....m+1} =2V
B:{1,2,....m+1} =22

For any i € {1,2,...,7 + 1}, we denote

O(i) = |B(i)| C A, and
O(i) = |B(i) — (B(i)/H(i))| € ©(i)
E(i))]}

(S + (AYV)H
2(i)) < Le(D(S + (AY[VH[V)

Denote
¢(i) =max{j € {2,3
(D(S + (AY[V)IV), 5,
€{2,3,...,c(S+ (AY|V)}
coy T}
,e(S + (AVIV*))}, for any i € {m +
m} If m—m > 2, then c() <¢(i+1) for anyi € {m+1,m-+
= {E € F(H°P|A)|c(D(S+
2,...,m}) = F(H°P|A);.
1(i)°°(0(i)

for anyi € {m+1,m+2
)1
E({1,

1) E is compatible with S.

2) If i —m > 1, thenc()€{23
. f((H°p|_A)ﬁ/_X(2)

(1
1,m+2,.
2 ... —1}.
H°P|A)NA(2) € F(H®P|A)
AVIVI|V),2, E) = 0}. F((HP|A)NA(2)):U
(HP|A)NA2)1 N E{L2,....m}) =0. )
oom+ 1}y, H(i) € F(O(3)), 03) =
dim vect(|C]), and
F(0(1). S+ (8()

0 < height(H, S+
(©(1)°UB(i)°) =

(1

V) =
W AG)n

—~~

(13)
f
(14) For any i € {1,2,
F(O(i))*, dimO(i)
dim vect(|D(S + (O@:)Y|V*)IV))V|V* = ¢.
(15) Consider any i € {1 .y} ’D(S|V)ﬁ]:( (i)
V*) = A(1)+(9(i)V|V*) helght( (i), S+(6()"
é)Avﬂ/*)). Foranyj € {2,3,...,c(S+(AV|V¥)
(S|VIAF(O( + 1)) is H(r + 1)-simple

(16) D
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(17) Assume 1 # m. Consider any i € {m+1,m+2,..., m}.
D(S|IVINF(O(i)) is semisimple.
F(S+O@)" V) ={AG) € {1,2,...,e(@)}}.
Take any point a(j) € A(j) for any j € {1,2,..., ¢(i)}. For any j €
{2,3,..., (i)}, 0 < by n-alf —1) —alf)) < (buyn=,alj—1) = al(f)).
0 < height(H (i), S + (©(i)V|V*)) < height(H, S + (AY|V*)).
For any j € {2,3,..., (S + (AYIV*))}, j € {2,3,..., é(i)} < e(D(S +
(AYIVV), 4, E(i)) < [e(D(S+HAY[V)IV),2, E(i))] < [e(D(S+(AY[VT)

V),2, E(0))] < e(D(S+(AVIV)|V), j. E@)) < [(D(S+(AY[V*)|V), 2, E(i))]
& AGN(GH+H()° #0 = AHNO(0)° # 0 = AH)N(O(i)°UB()°) # 0.
(18) D(S|V)NF(O(rn + 1)) is semisimple.
FS+©Om+1)V|IV))e = {AU)|j € {k,k+1,..., m+ 1}} for some
ke (2,3, m+1).
If i = ﬁz, then F(S+ (©(m+1)VIV*)e = {A(U)|j € {2,3,..., m+1}}.
height(H (m + 1), S + (©(r + 1)V|V*)) < height(H, S + (AV|V*)).
(19) The followmg three conditions are equivalent:
(a) B is a subdivision of D(S + (AY[VH|V).
(b) ¢(S+ (AV|V*)|V) = 2 and 7 = 1. B
(c) e(S+ (AY|VH)|V) = 2 and c(D(S + (AY|V*)|V),2,E) € Z for any
E € F(H°P|A);.
Below we assume that B is a subdivision of D(S + (AY|V*)|V).
(20) m =m > 1. ¢(S + (AV|V*)) = 2. A(1) = O(1) = HP|A. A(1)NA(2) =
A2) = 60 +1). A1) = Upegra, . O0). A2) = O+ 1),
(21) {© € B|O° C A°}
={e@@)lic{l,2,..., m+1}}u{e6))ie {2,3,..., m}u{0(m +1)}.
{© € B|©° C A®°, The unique element A € D(S + (AV|V*)|V) satisfying
©° C A° satisfies dirnA =dimA -1} = {60 + 1)}.
(22) H=H(in+1) € F(O(n +1))1. H € F(A)1. O(in+1) € F(O(rn + 1))L.
O+ 1)+ H=0(h+1)eB™", 0(m+1)NH ={0}.
O(m+1) C A(1). O(m+1) C A(2). O(m+1) ¢ A(1). O(m+1) C A(2).
Let a(1) € A(1) and a(2) € A(2) be any points. Let F = A(2) + (vect(©(1n +
D)YIVe).
(23) ©(m + 1) C O(m + 1) C |ID(S|V)|, and S + (O + 1)V|V*) D
S+ (O(m+1)V[V*) D ( VIV*) o S. B
S+(©O(m+1)V|v* ): A2)+(O>(n+1)V|V*) = {a(2)}+(O(m+
S+ (O(m+1)V|V*) = A2)+ (O©(m+1)Y|V*) = {a(2)} + (©(m
S+(AY|V*) = conv(A(1)UA(2 ))+(AV|V ) = conv({a(1),a(2)
(24) Fe F(S+ (O(m+1)V|V*). FN(S+ (O +1)V|V*) e F
DYIVH). FNO(S+ (AY|V*) € F(S + (AY]VH)).
A(F, S+(®(m+1) VIIV) = AFN(S+(O@n+1)Y|V*)), S+ (O(m+
DYIVIOIV) = AF N (S + (AY[VF), S+ (AY[V)V) = A@2).
F ={a(2)}+ (vect(O(1+1))"|V* )—afﬁ({a( ), a(2)}) + (vect(A)7 V).
FN(S+(©(m+1)V|V*)) = A(2) 1 {a
Ro(a(1) —a(2))+ (vect(A)¥[V*).
conv({a(1),a(2)}) + (vect(A)V|V
(25) (br/n+,a(1)) > (bu/n+,a(2)).

+A (2
Fn (S+(AV|V )) = conv(A(1)UA(2
")
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{{bu/n=,a)la € F} =R.

{(br/n-ra)la € FN(S+ (O0n+1)Y[V*))} = {t € Rl(bu/n+,a(2)) < t}.
{Ebz;/}zv sa)la € FN(S+ (AY|V)} = {t € R{{br/n+,a(2)) <t < (by/n-,
(26)

max{(bg/n+,a)la € FN(S+ (AVIV*)}
—min{(bg/n+,a)|la € FN(S+ (AYV)}
= (ba/n~,a(1)) — (br/n+,a(2))
— height(H, S + (AY[V*))

Proof. We show only claim 17. This is the most important. Claim 4.(c) follows
from claims 7,8,15,17 and 18.

Assume 7 # m. 1 —m > 1. Consider any i € {m + 1,m + 2,...,7m}. Since
O(i) ¢ A and D(S|V)NF(A) is H-simple, D(S|V)NF(A) is semisimple and we
know D(S|V)NF(O(i)) = D(S|V)ﬁ}'(A)ﬁ]—"(®(i)) is semisimple by Lemma[I3.2110.

Let § = s(V*, N*, H, F(A), i, E). §: F(HP|A)y x {0,1,...,m} — Z.

Note that D(S + (O(i)” |V*)|V) = (D(SIV)NF(©31))" = {A(j) N O(i)]j €
{1,2,...,c(S+ (AY[V))}, AGG)° N O3E)° # 0},

o"e(i)=0(@)= > Ro(bgu-+38(—1,E)byn-)
Ee€F(HoP|A),

Z Ro(bg/n~ +8(i — 1, E)bp n+)
EeF(Hor|A)1—{E(i)}
+Ro(bggy v+ + 80 — 1, E(i)brn-),
offe()=0@+1)= > Rolbgny- + 5, E)byyn-)
E€F(HeP|A)q
= Z Ro(bg/n+ +8(i — 1, E)bn+)
EeF(Hor|A)1—{E(i)}
+ Ro(bE(i)/N* =+ 5(4, E(i))bH/N*), and

5(i = 1LE(i)) = [e(D(S + (AY|VF)[V*), 2, E(i)))]
<e(D(S + (AY[VH)|VT),2 ()) < e(D(S + (AY[V)|V7),e(i), Ei))
< Le(D(S + (AY V) |[V* ), LE())] = 3(i, B(0)).
Consider any j € {1,2,---,e(i)} with j # (S + (AY|V*)). There exists a real
number r; satisfying §(7 — 1,E( )) <1 < §(i, E(i)) and ¢(D(S + (AY|V*)|V*), 4,

(7
E@)) <71 < ¢(D(S + (AV|V*)|V*),j + 1, E(i)), and there exist a mapping ; :
F(H°P|A); — Ry and a real number u; satisfying

Yoo 4B -1LE) <u;< Y t(E)3(i,E) and

EcF(HoP|A); Ee€F(HoP|A);
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Z ti(E)e(D(S + (AY|VHIV*), 4, E) < u;
E€F(HepP|A)q
<Y (E)(D(S + (AVIVH[VF), 5 + 1, E).
E€F(Ho?|A),

We take a mapping ¢; : F(H°?|A); — Ry and a real number u; satisfying
the above conditions. We know (3_ e z(gon|a), 1 (E)bz/n+) + ujbp/n+ € A(F)° N
O(i)° # 0.

We know that if ¢(i) # ¢(S + (AV|V*)), then for any j € {1,2,---,¢(i)}, A(F)°N

0(i)° # 0.

Consider the case ¢(i) = ¢(S + (AY|V*)). We denote j = ¢(i) = (S + (AV|V*)).
There exists a real number r; satisfying §(i —1, E(2)) < r; < §(¢, E(4)) and ¢(D(S +
(AV|V*)|V*), 4, E(i)) < 7, and there exist a mapping t; : F(H?|A); — R, and a
real number u; satisfying

Yo 4(E)E(-1LE) <u;< Y tj(E)3(i,E) and

E€F(HP|A)y E€F(HoP|A)y

Yo HE)ADS + (AVVIIVT), G E) < uj.
EeF(H®|A),
We take a mapping ¢; : F(H°P|A); — Ry and a real number u; satisfying the above
conditions. We know (3 e 7(sop|a), ti(E)bg/n+) + ujbmn- € A(5)° N O(>0)° # 0.

We know that if ¢(i) = ¢(S+ (AY|V*)), then for any j € {1,2,---,¢(i)}, A(j)°N
O(1)° # 0.

We know that for any j € {1,2,---,¢(i)}, A(j)° N O>)° # 0.

Consider any j € {1,2,---,¢(S + (AV|V*))} satisfying A(5)° N O(i)° # 0. We
know that there exists £ € F(HP|A); satisfying ¢(D(S + (AV|V*)|V*),4,E) <
5(i, E). We take E € F(H°P|A); satisfying ¢(D(S + (AV|V*)|V*),j ) < § 2

If E ¢ R, then e(D(S+(AY[V*)|[V*), 4, E) < 8(i, B) = e(D(S+(AV|V*)|V
and j =1 < ¢(4).

If E € R, then there exists k € {/+1,m + 2, ...,7m} satisfying E = E(k). We
take k € {m+1,m+2,...,m} satisfying £ = E(k)

Consider the case k < i. We have ¢(D(S + (AV|V*)|V*),j, E(k)) = ¢(D(S +
(AV[VHIV*),j, B) < 8(i, E) = 3(i, E(k)) = [(D(S + (AY|V*)[V*),2, E(k))] and

1§J§C(k)§0()

Consider the case k > i. We have ¢(D(S + (AV|V*)|V*), 4, E(k)) = c(D(S +
(AVIV)V*),4,E) < 3(i, E) = (i, E(k)) = [e(D(S + (AV[V)|V*),2, E(k)] <
c(D(S + (AV|V*)|V*),2, E(k)) and j =1 < ¢(z).

We know that for any j € {1,2,---,c¢(S+(AY
je{1,2,---,¢e(@)}

Therefore, D(S + (©(i)V|V*)|V)? = {A ( NNO®)7€{1,2,...,e(S+ (AY|V*))},
AG)NO>GE) 0 ={AG)NOGH)j € {1, .,¢(4)}}. Since dim©(i) = dim A =
dimC, we know F(S + (©(4)V|V*)), = {A ( )|] e{1,2,...,¢(i)}}.

For any j € {1,2,.. .,c(S + (AY|V*))} we take any point a(j) € A(j).

Consider any j € {2,3,...,¢(i)}. A
{bryn-,a(G = 1) —a(f)) > 0 and ¢(S + (AY[V7), 2, E(7))) < (S + (AY|V7), j,
E(i)) < oS + (AY[V*), &), ())) Le(S + (AV|V*)72,E )]0 < [e(S +
(AY|V*),2, E@))] = e(S + (AY|V*),2, B()) <

V*))} satisfying A(5)°NO(7)° # 0,
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By Lemma [I37218.(f) we have

by H(i)/N*> sa(j—1)) — (b H(i)/N*> ya(j)) = <bI:I(i)/N*7a(j —1) —a(j))

— (bigay - + 80, EQO)bay-alj — 1) — a(j)

= (bpgoy - ali = 1) = a(j)) + 36, E(0), 1) (bryn-, alj — 1) = a(j))
= — (S + (AY[V?), 4, E()(br/n-, alj — 1) — alj))

+[e(S + (A V), 2, E(0)) [ (bayn-, ali — 1) = a(5)

= (le(S + (AY|V"),2, E(3))] — C(S + (A V), 4, E)(bryn- alj = 1) = alj))
>0, and

(bizgey e ali — 1) — a(i))
([e(S + (AY[V*), 2, B ()] - e(S + (A V"), . E(@)){br/n-alj — 1) — a(3))
([e(S + (AY[V*), 2. B (@) — oS + (A [V*),2, E(0))) (bsy- alj — 1) — a(j))
<

<

<Abmu N+, 0(1—1)—G(J)>

We know

max{ (b e a7 € {12,201} = gy me-a()),

min (b e AT € {120, €0)}} = (b oy e alEi)),
height(F (1), S + (©(1)[V*)) = (byay - (1)) — (yay e aleli)))

&(d)
= (bggiyn>a(1) = a(@(@)) = > by n--ali = 1) — a(j))
j=2
>0, and
A &(4)
height(H (i), 5 + (©(0)[V*)) = Y~ (b - ali — 1) — alj)
e(i) c(SHAY|V™))
<D unsali-D=al) < D (bayv-ali—1) —al)

= (bayn-,a(l) = a(e(S + (AY[V™)))) = (buyn+,a(1)) = (ba/n=, a(c(S + (AY[VF))))
= height(H, S + (AY|V*)).

Consider any j € {2,3,..., c(S+ (AV|IV)}

~ By definition of ¢(i), we know j € {2,3,..., e(i)} < c(D(S + (AY[VH)[V), ],
E(i)) < [e(D(S + (AY[V*)|V),2, E(i))]. Since E@)eR, [

E(i)] < ¢(D(S + (AY[V)|V),2,E(1) < o(D(

fore, ¢(D(S + (AY[V*)|V), ], E(i)) < |e(D(S + (A
(AV[V)V), 2, B0))] < e(D(S + (AV]VV),
B(@))]. Since G(i)+ F1(3) = Ro(bjy s - + € (D(S+
Ro (b (s~ + (DS (AYIV)V),2, E(0)) b - ), we know [e(D(S (AV|V* |
2,E(i))] < e(D(S + (AVIV)|V), 4, E(i)) < [e(D(S + (AV[VHV &
A(G)N(G @)+ H(i))° # 0. Note that {k € {1,2,..., c(S+(AY|VF)} (k)ﬁ@(i)o #

S



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 107

0y =1{1,2,.. .,E(i)}, since F(S+(©@)VIV*)e = {AU)|j € {1,2,...,8(i)}}. There-
fore, j € {2,3,...,¢(i)} © A(j—1)NO>HE)° # 0 and A(5)NO( )O # (. Since A(j) =
AG1)NAG), we know A(i—1)n6(0)° # 0 and A()ne(i i A0 A0 4
Assume A(5) N O(i)° 75 (). Take any point w € A(j) N O(3)°. Let X =bpuy N T
(D(S+(AY V|V, 5, E(i i))br/n+ € A(j). We know that there exists a real number
€ with 0 < € < 1 such that (1 —t)w +tx € A(j) N O(7)° for any real number ¢ with
0 <t < since [¢(D(S+ (AV|V*)|V),2 JE(@)] < ¢(D(S + (AY|VH|V), 4, E(i)). Tt
gollows A(5) NO(i)° # (. Therefore, A(j) N O(>i)° # B < A(§) N (O(i)° U O(i)°) é

18. UPWARD SUBDIVISIONS AND THE HARD HEIGHT INEQUALITIES

Let V be any finite dimensional vector space over R with dimV > 2; let N be
any lattice of V; and let S be any rational convex pseudo polyhedron over N in V'
such that dim |D(S|V)| > 2.

By HC(V, N, S) we denote the set of all pairs (H,C) of a one-dimensional sim-
plicial cone H over the dual lattice N* of N in the dual vector space V* of V and a
simplicial cone decomposition C over N* in V* such that dim C = dim vect(|C]) > 2,
Cmax = 0 H € Cy, C = (C/H)', |C| C |D(S|V)| and D(S|V)NF(A) is H-simple
for any A € C™@*.

In this section we consider the case HC(V, N, S) # (). We assume HC(V, N, S) #
(0 below.

Note that height(H,C,S) € (1/den(S/N))Zo for any (H,C) € HC(V,N,S).
Therefore, for any infinite sequence (H (i), C(i)), i € Zg of elements of HC(V, N, S)
such that height(H (7),C(4),S) > height(H(i + 1),C(i + 1),5) for any i € Zo,
there exists iy € Zo such that height(H(7),C(i),S) = height(H (i¢),C(i0), S) for
any i € Zgy with ¢ > 1.

Consider any (H,C) € HC(V, N, S).

By SD(H,C,S) we denote the set of all pairs (M, F) of a non-negative integer
M € Zy and a center sequence F of C of length M such that dim F (i) = 2 for any
ie{l,2,....M}, F(i) ¢ |C — (C/H)| for any i € {1,2,..., M}, and C % F(1) %
F(2) % ---x F(M) is a subdivision of D(S|V)AC.

Below, we use induction on height(H,C, S), we will show that SD(H,C, S) # 0,
and we will define a non-empty subset USD(H,C, S) of SD(H,C,S).

Consider any (H,C) € HC(V,N,S) satisfying height(H,C,S) = 0. By 0¢c we
denote the unique center sequence of C of length 0. By Lemma[I6.4l1 we know that
C is a subdivision of D(S|V)AC and therefore (0,0¢) € SD(H,C,S) # 0. We define
{(0,0¢)} = USD(H,C, S). Obviously 0 # USD(H,C,S) c SD(H,C, S).

Consider any (H,C) € HC(V, N, S) satisfying height(H,C, S) > 0.

By induction hypothesis we can assume that a non-empty subset L{S’D(f[ ,C,9)
of SD(H,C, S) is defined for any (H,C) € HC(V, N, S) satisfying height(H,C, S) <
height(H,C, S). Below we assume this claim.

The characteristic function vy : (C — (C/H))1 — Qo of (H,C,S) is defined. Let
m =73 pec—c/my VE)] € Zy and m =3 pec_c/my), [V(E)] € Zo. Obviously
m < m.

Let € denote the set of all compatible mappings £ : {1,2,...,m} — (C—(C/H))1
with S. By Lemma[I6.81 we know &€ # (). Consider any F € .
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Let F = F(V*,N*,H,C,m,E) and B = B(V*,N*,H,C,m,FE). We have a

mapping
F:{1,2,...,m} = 2",

By Lemma[14.3/4 and 2 we know that F' is a center sequence of C of length m such
that dim F'(i) = 2, F(i) C E(i)+H and F(i) ¢ |C—(C/H)| for any i € {1,2,...,m}.
By definition B = C % F(1) * F(2) * ... * F(m). By Lemma 0441 we know that
B is a simplicial cone decomposition over N in V, dim B = dim vect(|B]) = dimC,
vect(|B]) = vect(|C]), Bma* = B°, B is an iterated barycentric subdivision of C, and
1B = [C].

We have mappings

H=HWV*N*HCmE):{1,2,...,m+1} - 2", and

B=B(V*N* HCmE):{1,2,....m+1} - 22"

By Lemma [[43 2, Lemma[[4414 and Theorem [I7.114.(c) we know that H (i) is a
one-dimensional simplicial cone over N* in V*, B(i) is a simplicial cone decompo-
sition over N* in V*, dim B(:) = dim vect(|B(2)|) = dim C, vect(|B(¢)|) = vect(|C]),
B(i)™ = B(i)°, H(i) € B(i)1, B(i) = (B(i)/H(i)), B(i) C B, |B(i)| € [B| =|C| C

|D(S|V)|, and height(H (7), B(i),S) < height(H,C, S) for any i € {1,2,...,m + 1}.
By Theorem [I7115 we know that B\|B(i)| = B(i) = D(S|V)NB(i) and B\|B(i)|
is a subdivision of D(S|V)NB(i) for any i € {1,2,...,m}.

Consider any element u € {m,m+1,...,m+ 1}.
By induction we will show that there exist mappings

M:{mm+1,...,u} = Z4, and

Fi{1,2,...,M(u)}— 2"
satisfying the following conditions:
(1) M(m)=m and M(i —1) < M(i) for any i € {m +1,m +2,...,u}.
(2) F(j) = F(j) for any j € {1,2,...,m} B
(3) F(j) is a simplicial cone over N* in V* and dim F(j) = 2 for and any
j€{1,2,...,M(p)}, and F is a center sequence of C of length M ().
(1) F(j) € 1B and F() ¢ [BG) — (BG)/H(0))| for any i € {m+1,m +
2,.. ,,u}andanyje{M(z—l)—Fl M@GE—-1)4+2,...,M(®)}.
(5) Cx F(1) % F(2) *--- % F(M(u)\|B(7)] is a subd1v151on of D(S|V)NB(i) for
any ¢ € {1,2 ...,u}.
(6) Consider any i € {m +1,m+2,...,u}.
Denote C(i) = C* F(1) x F(2) *---* F(M (i — 1))\|B(3)|.
Let F( y:{1,2,...,M(i) — M(i— 1)} — 2V denote the mapping satis-
fying F(i)(j) = F‘( (z—l)—i—j) for any j € {1,2,..., M (i) — M(i —1)}.
IC(i)| = |B(3)|, (H(i),C(i)) € HC(V, N, S), height(H (i),C(i), S) < height(

H,C,S) and (M(i) — M(i — 1), F(i)) € USD(H(i),C(i), S).
)

Consider the case u = m. We define M(m) = m and F(j
je{1,2,...,m}. We know that mappings

M :{m,m+1,...,u} ={m} = Z4,
F=F:{1,2,...,M(uw)}=1{1,2,...,m} =27
satisfy the above conditions.

<.

= F(j) for any
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Assume that g > m and there exist mappings
M :{mm+1,...,0—1} > Z4,

F:{1,2,....M(u—-1)}—2"
satisfying the above conditions in which y is replaced by p — 1. We take mappings
M:{mm+1,...,p—1Y = Zy, F:{1,2,...,M(u—1)} — 2" satisfying the
above conditions in which p is replaced by p — 1.

Let C(u) = C* F(1) x F(2) % -+ % F(M(u — 1))\|B(1)|. We know that C(u) =
Bx F(M(m)+1)% F(M(m)+2) -+ F(M(u—1))\|B()|, C(1) is a simplicial cone
decomposition over N* in V*, dim C(u) = dimvect(|C(u)|) = dimC, vect(|C(u)|) =
vect(|C|), C(u)™a* = C(u)?, C(u) is a subdivision of B(p) and |C(u)| = |B(w)|. Since
D(S|V)NF(O) is semisimple for any © € B(u)™**, we know that D(S|V)NF(O) is
semisimple for any © € C(u)™a*

Note that -
FG)cle—@//muc  |J  1BG)N
i€{1,2,...,u—1}
for any j € {M(m)+ 1, M(m)+2,...,M(u—1)},

(lc—/muC U I1BGD)NIBW)I = B(u) = (B(u)/H (),
i€{1,2,...,u—1}
and Bx F(M(m) + 1)« F(M(m) +2) -+ F(M(u— 1))\(|C — (C/H)|U
(Uicqi,2,...u—1y [B(@)])) is a subdivision of D(S|V). )

Let £ = §{j € {M(m)+1,M(m)+2,...,M(u—l)}|F( ) CB(p)—=(B(p)/H ()]}
and let 7 : {1,2,...,¢4} — {M(m)+ 1,M(m) + M(p — 1)} denote the
unique injective mapping preserving the order and satlsfymg T7{1,2,..., ) ={j €
(0 m)-+1, M) +2.... M(u=1)HP() € [Blo) = (B()/H ()] We knos that
C(p) = B(p )*FT( )*FT( ) %% Fr(). Since Fr(j) C |B(u) — (B(w)/H(p))| for
any j € {1,2,....,}, we know that H(u) € C(u)1. (1) = (C(u)/H(1)", |Cl)| =
B2, 1C(0) — (COu)/H ()] = |B(s) ~ (B(a)/H())] and height(H (1), C (1), 8) =
height(H (1), B(p), S) < height(H,C, S).

Consider any © € C(p)™®*. D(S|V)NF(O) is semisimple. ©

H(11)°P|© € C(u)—(C(p)/H (12)). On the other hand we know C (i

C(\B(p) = (B(p)/H(p))| = B F(M(m) + 1) x F(M(m )+2
DNIB() — (B(u) [ H ()| = (B F(M(m)-+ 1) F(M(m)+2)-- -5 F(M (u— 1)\
€/ U Urgrn, s IBODINB() — (Bla) [ H ()], and Clu) — (€} H(2)
is a subdivision of D(S|V'). Therefore D(S|V)NF (H (u)°P|©) = F(
we know that D(S|V)NF(O) is H(u)-simple.

We know that (H(u),C(u)) € HC(V, N, S), height(H (1),C(u), S) < height(H, C,
S), and a non-empty subset USD(H (11),C(i), S) of SD(H (1), C(1), S) is defined.

Take any element (L, G) € USD(H (n),C(p), S). Put M () = M(u—1)+ L, and
put F(j) =G(Hj—M(p—1)) forany je {Mp—-—1)+1,Mp—-1)+2,...,M(un)}.
We obtain extended mappings

M:{mm+1,....,u} = 2y,
F:{1,2,...,M(pn)} — 2"

satisfying the above conditions.
By induction on p we know that there exist mappings

M:{mm+1,....m+1} = Z;,

=
=
~
=
|
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F:{1,2,....M(m+1)} -2
satisfying the following conditions:

(1) M(m)=m and M(i — 1) SM(@) foranyie {m+1,m+2,...,m+1}.

(2) F(j) = F(j) for any j € {1,2,...,m}

(3) F(j) is a simplicial cone over N* in V* and dim F(j) = 2 for and any
j€{1,2,...,M(m+1)}, and F is a center sequence of C of length M (m+1).
(4) F(j) C |B(i)| and F(j) ¢ [B(i) — (B(i)/H(i))| for any i € {m + 1,m +

2,.. m—i—l}andanij{M(z—l)—i—l MGE—-1)4+2,...,M(i)}.

(5) Cx F( Yx F(2) %% F(M(m+1))\|B(3)] is a subd1v151on of D(S|V)NB(i)

<.

for any i € {1,2,...,m+ 1}.
()Con51deranyz€{m—|—1m+2 m+1}.
Denote C(i) = C x F(1) x F(2 ) cx F(M (i — 1)\|B(7)]
LetiF( i): {1, 2 L M(3) — M(z — 1)} — 2V denote the mapping satis-
fying F(i)(j) = |F' (i—1)4j) forany j € {1,2,..., M%) — M(i—1)}.

C@)| = [BG)], EH(Z% C(i)) € HC(V, N, S), height(H (i), 3, C(i)) <
height(H,C, S) and (M (i) — M(i — 1), F(i)) € USD(H i), C(i), S).
Put
USD(E,H,C,S) = {(M(m+1),F)|
M:{m,m+1,....m+1} = Z,,
F:{1,2,...,M(m+1)} = 2",
M and F satisfy the above conditions.}.

We know that ) #USD(E,H,C,S) Cc SD(H,C,S).
Recall that F € £ is an arbitrary element. Define

USD(H,C,S) = | J USD(E, H,C, S).
Ec&

We know that 0 # USD(H,C,S) c SD(H,C, S).

Consider any (H,C) € HC(V, N, S) and any (M, F) € USD(H,C,S). We call F
an upward center sequence of (H,C,S), and we call C * F(1) « F(2)*---x F(M) an
upward subdivision of (H,C,S).

Theorem 18.1. Assume HC(V, N, S) # 0, and consider any (H,C) € HC(V, N, S).

(1) USD(H,C,S) # 0.

(2) For any (M,F) € USD(H,C,S), F is a center sequence of C of length
M, dim F(i) = 2 and F(i) ¢ |C — (C/H)| for any i € {1,2,...,M}, and
CxF(1)x F(2)%---x F(M) is a subdivision of D(S|V)NC.

(3) By Oc we denote the unique center sequence of C of length 0. The following
three conditions are equivalent:

(a) height(H,C,S) = 0.
(b) (0,0¢) € USD(H,C,S).
(¢) {(0,0c)} =USD(H,C,S).
Consider any (M, F) € USD(H,C, S). We denote C = CxF(1)xF(2)x---xF (M)
for simplicity.
(4) For any A € CoUCy, C\A = D(S|V)AF(A)
(5) C\[C = (C/H)| = (D(SIV)NC)\|C - (C/H)| =

= F(A).
C—(C/H).
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(6) Consider any subset C of C satisfying dim C = dim vect(|C]) > 2, C™ax = (O,
HeC andC = (C/H)".
Let M = #{i € {1,2,...,M}|F(i) C |C|}, and 7 : {1,2,...,M} — {i €
{1,2,..., M} denote the unique injective mapping preserving the order and
satisfying 7({1,2,...,M}) = {i € {1,2,..., M} F(i) C [C|}.
Then, (H,C) € HC(V,N,S), (M,Fr) € USD(H,C,S), and C\|C| =
Cx Fr(1) « Fr(2) % ---% Fr(M).
(7) Consider any A € Co/H.
IC\A| = [D(SIV)NF(A)] = A.
C\A is the mimimum simplicial cone subdivision of D(S|V)NF(A) over
N* in V*, in other words, the following three conditions hold:
(a) C\A is a simplicial cone decomposition over N* in V*.
(b) C\A is a subdivision of D(S|V)AF(A).
(c) If € is a simplicial cone decomposition over N* in V* and € is a
subdivision of D(S|V)AF(A), then & is a subdivision of C\A.
Below, we consider the case height(H,C,S) > 0. Assume height(H,C,S) > 0.
The characteristic function v : (C — (C/H))1 — Qo of (H,C,S) is defined. Let
m =3 pec—c/mn Y E)] €Ly and m =3 5cc_c/my), [V(E)] € Zo. Obviously
m<m.
(8) m < M.
(9) There exists uniquely a pair (E, M) of a compatible mapping E : {1,2, ...,
m} — (C—(C/H)); with S and a mapping M : {m,m+1,..., m+1} = Z;
satisfying the following three conditions. We denote
Fg=F(V*N* H,C,m,E):{1,2,...,m} - 2"
Hg=H(V*,N*,H,C,m,E): {1,2,...,m+1} = 2", and
Bp = B(V*,N*,H,C,m,E): {1,2,...,m+1} — 22" .
(a) F(j) = Fr(j) for any j € {1,2,...,m}.
(b)y M(m) = m, M(m +1) = M and M(i — 1) < M(i) for any i €
{m+1,m+2,...,m+1}.
(©) F(j) € |Br(i) and F(j) ¢ () — (Bu(i)/He()| for any i € {m+
1,m+2,...,m+1} andanyj € {M@GE—-1)+1, M(—1)+2,...,M(i)}.
We take the unique pair (E, M) of a compatible mapping E : {1,2,...,m} —
(C—(C/H))1 with S and a mapping M : {m,m+1,....,m+ 1} — Zy satisfying
the above three conditions, and we denote

Fg=F(V*N* H,C,m,E):{1,2,...,m} - 2"
Hp =H\V* N* H,C,m,E):{1,2,....m+1} =2V, and

Bp = B(V* N*,H,Com,E): {1,2,...,m+1} » 22"

We put M (i) = m for any i € {0,1,...,m — 1}. We obtain an extension M :
{0,1,...,m+1} =5 Zy of M : {m,m~+1,...,m+1} - Z,. M(0) =m, M(m+1) =
M, M@ —1) < M%) for anyi € {1,2,...,m+ 1}.

Consider any i € {1,2,...,m + 1}. We denote C(i) = C % F(1) x F(2) -
F(M(i — D)\|Br(i)|. Let F(i) : {1,2,...,M(i) — M(i — 1)} — 2V denote the

mapping satisfying F(i)(j) = F(M(i—1)+j) for any j € {1,2,..., M (i)—M(i—1)}.
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(10) For any i€ {1,2,..., m+1}, |C(i)| = |Be(i)|, (Hg(i),C(i)) € HC(V, N, S),
height(H g (i), C(i), §) < height(H,C, S) and (M(i) — M(i — 1), F(i)) €
USD(Hp(i).C(i), S). )

(11) For anyi € {1,2,...,m+ 1}, C\|Bg(i)| = (Cx F(
\IBg(i)| = C(i)  F'(1) % F(2) % - - % F(M (i) — M (i —

(12) Foranyi€{1,2,..., m}, height(Hg(i),C(i),S) =0,
and C)|BE(2)| =(CxF(1) *Fj2)* <k F(m)\|Bg (i)

i~ ek F(M(i)— M —1)) =C»i) = Be(i).

C=-/mHyu( |J (C\Bs@)) - (C\[Br) — (Be(i)/Hp())])).
i€{1,2,....m+1}
(C — (C/H)) N ((C\|Bx(i)]) — (C\|Br(i) — (Be(i)/Hp(i)]) = 0,
forany i€ {1,2,..., m+ 1}.

((C\IBe(i)]) — (C\|Be(i) — (Be(i)/HE(i))])
N(C\IBe())) — C\IBe() — (Be()/He () =0,
forany~i€{1,2 ..... m+1} and any j € {1,2,..., m+ 1} with i # j.
(14) IfT' € C; andT ¢ |C—(C/H)|, then there exists uniquely i € {1,2,..., m+1}
satisfying I' C [Bgp(i)| and I' ¢ |Bg(i) — (Be(i)/HE(i))|-
IfT €Cy,i € {1,2 ..... m+1}, I'c |BE(Z)| andT ¢ |BE(Z)—(BE(’L)/HE(Z))|,
then T ¢ |C — (C/H)|.
For any i € {1,2,..., m},
{I'€ G| C [Br(i)|,T ¢ |Br(i) — (Be(i)/Hi (i)} = {He(i)}.
Foranyie {m+1,m+2,..., m+1},
{T eIl c 1Be(i)|,T ¢ [Be(i) — (Be(i)/He(i)|} =
{HEp ()} U{Robpgy/n+|j € Z, M (i — 1) < j < M(i)},
H{T € Ci[T C 1Be(i)|,T ¢ |Br(i) — (Be(i)/Hi(i)[} = M(i) = M(i— 1)+ 1,
Consider any (H,C) € HC(V, N, S) and any (M, F) € USD(H,C, S). We denote
C=CxF(1)*F(2)%---xF(M) and C = {T' € G,|T ¢ |C — (C/H)|} for simplicity.

We know Cy = M + 1.
By induction on height(H,C, S) we define three mappings

I(V,N,H,C,S,M,F):C°— {1,2,...,M +1},
A(V,N,H,C,S,M,F):C° — 2%, and

A°(V,N,H,C,S,M,F): ¢ — 22"

such that A(V,N,H,C,S, M, F)(T") is a simplicial cone decomposition over N* in
V*and A°(V,N,H,C,S,M,F)(T') c A(V,N,H,C,S,M,F)(T') CC for any I" € Cy.
Consider the case height(H,C,S) = 0.
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We know that M =0, C = C, and CNf = {H}. We define
I(V,N,H,C,S,M,F)(H) = 1,
A(V,N,H,C,S,M,F)(H) = C,

A°(V,N,H,C,S,M,F)(H) =C.

Consider the case height(H,C,.S) > 0.

The characteristic function v : (C — (C/H))1 — Qo of (H,C,S) is defined. Let
m =3 gec—c/m, VE)] € Zy and m =3 5ec_c/my), [V(E)] € Zo. We know
m<m<M.

We take the unique pair (E, M) of a compatible mapping F : {1,2,...,m} —
(C—(C/H)); with S and a mapping M : {m,m +1,...,m + 1} — Z, satisfying
the following three conditions. We denote

Fg=F(V*N* H,C,m,E):{1,2,...,m} - 2"

Hg=H(V*N*,H,C,m,E):{1,2,...,m+1} - 2", and

5=
Bp = B(V* N* H,Com,E): {1,2,...,m+1} — 22"
(1) F(j) = Fg(j) for any j € {1,2,...,m}.
(2) M(m)=m, M(m+1)=M and M(:—1) < M(i) for any i € {m+1,m+
2,.. m+1}
(3) F(j )C|BE()|aHdF(')¢|BE(') (B (i
2,...,m+1}and any j € {M(i — 1) + 1,
For any i € {0,1,...,m — 1}, we put M(i) = m. We obtain an extension
M :{0,1,....m + 1} = Zy of M : {m,m +1,.. m+1}—>Z+. For any
i€{1,2,...,m+1}, we denote C(i) = (C* F'(1) () F(M(i—1)\|Be(i)],
and we take the mapping F'(i) : {1,2,...,M(i) — M(z - 1)} — 2V satisfying
F(i)(j) = F(M(i — 1) + j) for any j € {1,2,...,M(i) — M(i — 1)}. We know
that (H (i), C(i)) € HC(V. N, 8), 1C(3)| = 1B, IC() — (C(0)/ Hr () = Br(i) -
(B()/H(0), height (). (0. 5) < beight (F.C. ), (M () ~M(i—1), F()
USD[5(0), C(). ). 0 ) U« F(2) - F(ME) = M= 1) = ()
for any i € {1,2,...,m+ 1}. We denote

)/Hg(i))| for any i € {m+1,m+
M@GE—-1)+2,...,M(®)}.

Gg=G(V* N* HCmE):{1,2,....m} = 2",

Consider any I' € C~1 Take the unique i € {1,2,...,m+1} satisfying T C |Bg(i)]
and T’ ¢ |Bp(i) — (Be(i)/Hp(i))|. We know I € (C(i) % F(1) % F(2) % - -« F(M (i) —
M(i—1))); and T ¢ |C(i) — (C(i)/Hg(7))|. By induction hypothesis we know that
I(V,N, Hp(i),C, 8, M(i) — M(i — 1), F(i))(T), AV, N, Hg(i),C, S, M(i) — M(i -
1), F(i))(T) and A°(V, N, Hg(i),C, S, M (i) — M(i — 1), F(i))(T) are defined.

We define

I(V,N,H,C,S,M,F)(T) =
i—1+M(@i—1)—m+I(V,N,Hg(i),C(i),S, M (i) — M
A(V,N,H,C, S, M,F)(T') = A(V,N, Hg(i),C(i), S, M (i) — M (i — 1), F(i))(T).
In case i # m + 1, we define
A°(V,N,H,C,S,M,F)(T) =
{6 € A°(V,N, Hp(i).C(i), S, M (i) — M(i — 1), F(i))(I)|©° C |Bp/GE(1)[°}.
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In case i = m + 1, we define

A°(V,N,H,C,S,M,F)(T) = A°(V,N, Hg(i),C(i), S, M (i) — M (i — 1), F(3))(T).

We call the mapping I(V, N, H,C,S, M, F) the H-ordered enumeration of C~f
Let I' € C?. We call the simplicial cone decomposition A(V,N, H,C,S, M, F)(T)
the H-lower part of C below I', and we call the subset A°(V, N, H,C,S, M, F)(T)
the H-lower main part of C below T
Lemma 18.2. Assume HC(V,N,S) # 0. Consider any (H,C) € HC(V,N,S)
and any (M,F) € USD(H,C,S). We denote C = C* F(1) x F(2) % ---x F(M),
Ci={real Z|C—(C/H)[},

I=1(V,N,H,C,S,M,F):C°— {1,2,..., M +1},
A= A(V,N,H,C,S,M,F):C° — 22", and
A° = A°(V,N,H,C,S, M, F): (> — 22" |
(1) The mapping I is bijective. H € C3. I(H) = M +1.
(2) Consider any T’ € C5.
A(T) is a simplicial cone decomposition over N* in V*. A() C C.
dim A(T") = dim vect(JA(T)|) = dimC > 2. vect(JA(T)|) = vect(|C]). T €

AD)1. AL) = (AT)/T)f. AT)™ ¢ A°(T) ¢ A(T).
e A°(I) & A°(T) = AT) & T = H.
(3)

cl=1Ic—/mu( [AT)/TP).
rece
For any T € (Z‘f, IC— (C/H)|N]AT)/T|> = 0.
For any T € C$ and any T € C{ with T # T, |A(T)/T|° n|A(T)/T|° = 0.

C=(C—c/H)u(J ATD)/I).
rece
For any T € G5, (C— (C/H)) N (A(I)/T) = 0.
For any T € C{ and any T € C? with T # T, (A(T)/T) N (A(T)/T) = 0.

(’:Tmax: U A(F)max.
rece

For any ' € 5‘f and any T € 5f with T # T, A(T)™ax 0 A(T)™ax = ().

el = 1em).
rece
For anyT € CNf and any T € 5f with T # T, |A°(T)|° N |A°(D)|° = 0.
c=J 4m.
recs

For any T € CN‘f and any T € 5f with T # T, A°(I') N A°(T) = 0.
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For any i € {0,1,..., M + 1}, we denote
X@=lc-c/mu( |J Am/mI°) v,

reC?,I(I)<i
Y(iy=|J |A@Pcv.
reCo,I(T)>i
(8) X(0) =|C - (C/H)|. X(M +1)=C|. Y(0) =|C =
For any i € {1,2,....,M + 1}, X(i — 1) C X(z), X(i—1) ;é X (1),
Yi—-1)DY(i), and Y(i — 1) # Y (i).
(9) For anyie€ {1,2,...,M + 1},
X(i = 1) N AT} ()] = JAT1(0)] — JAT ()T ),
Y (i) VAL (@)] = AT (@) — [A° T (D)]°.
(10) For any i€ {0,1,...,M + 1},

X@=lc—c/mluC |J ADD,

reCo,I(I)<i

Yy = |J A,
rece,I(I)>i
and X (i) and Y (i) are closed subsets of V*.
(11) Consider any. subset C of C satisfying dim C = dim vect(|C|) > 2, Cmax = (0,
HeC andC = (C/H)™.

Let M = t{i € {1,2,...,M}|F(i) C |C|}, and 7 : {1,2,...,M} — {i €
{1,2,..., M} denote the unique injective mapping preserving the order and
satisfying 7({1,2,...,M}) = {i € {1,2,..., M} F(i) C [C|}.

By Theoremﬂﬂé’ we know that (H C) € ’HC(V N,S), (M,Fr) e
USD(H,C, S), and C\|C| = C*FT( )% F7(2) % -« - % Fr(M).

(a) {T' € (C\ICI1|T ¢ € — (C/H)[} = CR\[C|.
We denote

I=1I(V,N,H,C,S,M,Fr):C\|C| — {1,2,...,M +1},
A=A(V,N,H,C,S, N, Fr):C\|C| — 22,
A° = A°(V,N,H,C, 8, N, Fr): Co\|C| — 22" .

(b) Let ki : {1,2,...,M +1} — {1,2,..., M + 1} denote the composition
mapping 1 I, where v : Co\|C| — €Y denotes the inclusion mapping.
The mapping k is injective and preserves the order. k(M +1) = M +1.

(c) ForanyI' € CP\|C|, A(T)/T" = (A(I')/T)\[C| and |A(I')/T|° = [A(T)/T[°N
C]

For any T € G5 — (C2\[€]), (A(T)/T

(d) For anyF€C1\|C| AO( )* °T
For any T € G5 — (C3\[C]), A°(D)\

(12) Consider any T € C5.

Ifee AD)/T,AeC and ©® C A, then HC A, and T C A.
Ifee A°(T), AeC/H and © C A, then T C A.

NC| =0 and JAT)/T° N [C] = 0
)\ICI nd | A°(D)|° = |4°(D)]°n|C].
€] =0 and |A°(T)[° N |¢] = 0



116 TOHSUKE URABE

Ifeo € A°(T) and ® C |C — (C/H)|, then T ¢ ©, ©+ H € C/H and
bF/N* — bH/N* S N* ﬂVGCt(@).
Ifee A°(T) and T ¢ O, then © + T € A°(I")/T.

Below, we consider the case height(H,C,S) > 0. Assume height(H,C,S) > 0.

The characteristic function «v : (C — (C/H))1 — Qo of (H,C,S) is defined. Let
m =3 pec—c/m, VE)] € Ly and m =3 5ec_c/my), [V(E)] € Zo. We know
m<m< M.

We take the unique pair (E, M) of a compatible mapping E : {1,2,...,m} —
(C—(C/H))1 with S and a mapping M : {m,m +1,...,m + 1} — Zy satisfying
the following three conditions. We denote

Fg=F(V*N* H,C,m,E):{1,2,...,m} = 2"
Hg=H(V*N*,H,C,m,E): {1,2,...,m+1} = 2", and
Bp = B(V*,N*,H,C,m,E): {1,2,...,m+ 1} — 22"
(a) F(j) = Fg(j) for any j € {1,2,...,m}.
(b) M(m) =m, M(m+1) = M and M(i —1) < M(i) for any i € {m +
IL,m+2,...,m+1}.

CB(i)| and F() ¢ 1BsG) — (Bo(i)/Hu(@)| for any i € {m +

IL,m+2,...om+1tandanyje {ME-1)+1,M@i—-1)+2,...,M(1)}.

For any i € {O,l,...,m — 1}, we put M (i) = m. We obtain an extension
M :{0,1,....om+ 1} = Zy of M : {mym +1,....m + 1} — Z;. For any
1€{1,2,...,m+1}, we denote C(i) = (Cx F(1)« F(2) x-- -« F(M(: — 1)))\|Bg(4)],
and we take the mapping F(i) : {1,2,...,M(i) — M(i — 1)} — 2V" satisfying
F(i)(j) = F(M(i — 1) + j) for any j € {1,2,...,M(i) — M(i — 1)}. We know
that (Hp(i),C(i)) € HC(V.N.S), C()| = By (i), 1CG) — (C(6)/ Hpi))] = 1Be(i) -
(Be(i)/Hp(1))], height(HE(i),C(i), S) < helght(H C.S), (M(i)—M(i—1),F(i)) €
USD(Hp(i),C(i), S), and C(i)  F(1) % F(2) - % F(M(i) = M(i — 1)) = C\|Bp(i)|
forany i€ {1,2,...,m+1}. We denote

Gp=GWV*,N* H,C,m,E):{1,2,...,m} =2V,

For anyi€{0,1,...,m+1}, we put L(i) = i+ M (i) —m. We obtain a mapping
L:{0,1,....m+1} = Zo.

(13) L(0) = 0. Lim+1) =M +1. L(i—1) < L(i) and L(i) — L(i — 1) =
M@E)—M@GE—1)+1 for any i € {1,2,....,m + 1}. L(i) = i for any
1€4{0,1,...,m}.

(14) For anyi € {1,2,...,m+ 1}, Hg(i) € C? and I(Hg(i)) = L(i).

For any i € {1,2,;. ,m}, I(Hg(i)) = 1.

(15) Consider any T' € C{ and any i € {1,2,...,m + 1}. T C |Bg(i)| and
I' ¢ |Be(i) - (Be(i)/Hp())| < L(i—1) < I(I') < L(i) < [AT)| C
Be(i)| & [A*(D)]° C |Be(i)-

(16) IfT € C?,i€{1,2,...,m+1},T C|Bg(i)| andT ¢ |Bg(i)—(Br(i)/ He(i))|,
then I(T') = L(i—1)+1(V,N, Hg(i),C(i), S, M (i) = M (i—1), F(i))(T"), and
A(T) = A(V,N, Hg(i),C(i), S, M (i) — M (i — 1), F'(3) )(T").

(17) IfT eC?,ie€{1,2,...,m}, T C|Bg(i)| and T ¢ [Be(i) — (Be(i)/He(i))|,
then A°(T') ={© € A°(V,N, Hg(i),C(i), S, M (i)— M (i—1), F(:))(I)|©° C
|Be/GE(i)]°}.
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IfT € C3, T C |Bp(m+1)| and T ¢ |Bg(m+1)—(Bg(m+1)/Hg(m+1))],
then A°(T) = A°(V,N,Hg(m+1),C(m+1),S,M(m+1)— M(m), F(m+
D)(T).

(18) Foranyi € {1,2,...,m}, A°(Hg(i)) = {0 € A(Hg(i))|0° C |Br/GE(i)|°}.

A°(Hg(m + 1)) = A(Hp(m + 1)).

(19) Consider any I' € CY and any i € {1,2,...,m + 1} satisfying T' C |Bg(7)|
and I' ¢ |Bg(i) — (Bp(i)/Hp(i))].

Ife e A(T)/T, A€C and © C A, then Hg(i) C A.

Ifoe AT), AcC/H and © C A, then Hg(i) C A.

Theorem 18.3. Assume HC(V,N,S) # 0. Consider any (H,C) € HC(V,N,S5)
and any (M, F) € USD(H,C,S). We denote C = C* F(1) * F'(2) x - -« F(M),
Ci={TeCil' ¢ |C—(C/H)|} and

A° = A°(V,N,H,C,S, M, F): C° — 22"

Consider any © € C satisfying © ¢ |C — (C/H)|.

(1) There exists uniquely an element A € D(S|V)NC satisfying ©° C A°.

(2) There exists uniquely an element A € C satisfying ©° C A°.

(3) There exists uniquely an element A € F(S + (0V|V*)) satisfying A(4, S +

(OVIVH|V) =0.

(4) There exists uniquely an element T’ € C3 satisfying © € A°(T).

We take the unique element A € D(S|V)NC satisfying ©° C A°, the unique
element A € C satisfying ©° C A°, the unique element A € F(S + (©V|V*))
satisfying A(A, S + (©V|V)|V) = © and the unique element T € C3 satisfying
0 e A°(T).

(5) ©° CA° CA°. Ae(C/H. dimA =dimA ordimA =dimA—-1. ' C A.

(6) dmA=dimV —-dimO. S+ (AY|V*) C S+ (0Y|V*). AN(S+(AY|V*)) €

F(S+ (AY|VF). A(AN(S+ (AY|V*)),S + (AV|[VH|V) = A.
(7) If dimA = dimA, then (w,a) = (w,b) for any w € vect(A), any a €
AN (S+ (AY|V*), and any b e AN (S + (AY|V*)).
(8) Ifdim A = dim A—1, then height(H, S+ (AV|V*)) > 0 and T € C, satisfies
the following five conditions: N
() TCA. T ¢vect(A). T¢A T ¢0. 4T € A°(I")/T CC.
(b) vect(A) + T = vect(A) + H.
(c) The subset {(br/n~,a)la € AN(S+ (AY|V*))} of R is a non-empty
bounded closed interval.
(d) [The hard height inequality]

max{(br/n-,a)la € AN (S + (AV|V*))}
— min{(by/n-,a)la € AN (S + (AY|V*))}
< height(H, S + (AY|V*)).
(e) The equality
max{(br/n+,a)la € AN (S + (AY|V))}
— min{(br/n-,a)la € AN (S + (AY|V*))}
= height(H, S + (AY|[V*)),
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holds, if and only if, ¢(S+ (AV|V*)) = 2 and the structure constant of
D(S|V)AF(A) corresponding to the pair (2, E) is an integer for any
E € F(A), — {H}.
(9) If dim A = dim A — 1 and the equivalent conditions in 8.(e) are satisfied,
then © = A and ' = H.

Proof. We show only claim 8 and 9.

Assume HC(V, N, S) # 0. Consider any (H,C) € ’HC(V N, S) and any (M, F) €
USD(H,C,S). We denote C = C* F(1) « F(2) % --- x« F(M), C = {T € C1|T" ¢
IC — (C/H)|} and A° = A°(V,N,H,C,S,M,F): 5; 92"

Consider any © € C satisfying © ¢ |C — (C/H)).

We take the unique element A € D(S|V)NC satisfying ©° C A°, the unique
element A € C satisfying ©° C A°, the unique element A € F(S + (©V|V*))
satisfying A(A4,S + (©V|V*)[V) = © and the unique element I' € C satisfying
0 € A°(T).

By 5 and 6 we know that ©° C A° C A°, A€ C/H, dimA =dim A or dimA =
dimA—-1,TCA,dimA=dimV —dim®©, S+ (AV|V*) C S+ (0Y|V*), AN(S+
(AV|V*)) € F(S+ (AY|V*)), and A(AN (S + (AY|V*)), S+ (AV|VHIV)=A

Furthermore, assume dim A = dim A — 1.

Note that H € F(A); and D(S + (AV|V*)|V) is H-simple, since A € C/H. Let
D(S + (AV|VHIV)E = {A € D(S + (AV|V*)|V)IA° C A°} U {H°P|A} denote the
H-skeleton of D(S + (AY|V*)|V). We know A € D(S + (AV|V*)|V)!, A # HOP|A,
c(S + (AV|V*)) = ¢D(S + (AV|V*)|V)! > 2, and height(H, S + (AV|V*)) >0

We consider the H-order on D(S + (AV|V*)[V)?. Let A : {1,2,...,¢(S +
(AV|V*)} = D(S + (AY|V*)|V)? denote the unique bijective mapping preserv-
ing the H-order. Let ¢ = dimvect(A)V|V* € Zy and let A : {1,2,...,¢(S +
(AV|V*))} = F(S+(AV)), denote the unique bijective mapping satisfying A(A(7),
S+ (AV|VH|V) = A@) for any i € {1,2,...,¢(S + (AY|V*))}. For any i €
{1,2,....¢(S + (AV|V*))}, we take any pomt a( ) e A(i).

We cons1der the H-order on D(S + (AV|V*)|V)L. Let A : {1,2,...,¢(S +
(AVIV*)} — D(S + (AY|V*)|V)! denote the unique bijective mapping preserv-
ing the H-order. We take the unique element iy € {2,3,...,¢(S + (AV|V*))}
satisfying A(ip) = A.

Now, by 5 we know I' C A.

IfT C O, then® =0 +T € A()/I. T ¢ O, then ©+T € A°(I)/T by
Lemma [I82/12. We know © +T € A°(T")/T c A°(T ) C.

Since A(AN (S + (AY|V*)), S + (AV|VH|V) = ( A) = (zA) NA(ipy —1)
and A° C A°, we know that AN (S + (AV|V*)) = conv(A(in) U A(ip — 1)) =
conv({a(ia),a(ian —1)}) + (vect(A)Y|V*). Therefore, if vect(A) + T = vect(A) + H,
then (bp/n-«,a(in)) < (bryn=,a(ia — 1)), {<bp/N*,a>|a e AN(S+ (AY|V*)} =
{t € R[{br/n+,a(ia)) < t < (bryn+,a(in — 1))}, and the subset {(br/n~,a)la €
AN (S+ (AY|V*)) of R is a non-empty bounded closed interval. If I' C vect(A),
then (br-, a(ia)) = (bryn-ra(in — 1), {{bry->@)la € AN (S + (A]V*)} =
{{br/n=,a(ia))}, and the subset {(bp/n-,a)la € AN (S 4+ (AY|V*)) of R is a non-
empty bounded closed interval. If I" ¢ vect(A) and vect(A) + T # vect(A) + H,
then (br/n«,a(in)) > (br/n=,a(ia — 1)), {(br/n=,a)la € AN (S + (AY|V*)} =
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{t € R[{br/n=,a(in)) > t > (bpr/n=,a(in — 1))}, and the subset {(br/n-,a)la €
AN (S+ (AY|V*)) of R is a non-empty bounded closed interval.

We know that the subset {(bp/n~,a)la € AN(S + (AY[V*)) of R is a non-empty
bounded closed interval.

Let M = #{i € {1,2,...,M}|F(i) C A} € Zy. We take the unique injective
mapping 7 : {1,2,...,M} — {1,2,..., M} preserving the order and satisfying
r({1,2,...,M}) = {i € {1,2,...,M}|F(i) ¢ A}. By Therem IR1l6 we know
that (H,F(A)) € HC(V,N,S), (M,Fr) € USD(H, F(A),S), and C\A = F(A) «
Fr(1)« Fr(2) % -« Fr(M).

We denote F(A) = F(A)«Fr(1)«Fr(2)%- - -« Fr(M), F(A)S = {T' € F(A)|T ¢
HOP|A} and A° = A°(V, N, H, F(A), S, M FT) L F(A)S — 22" A

Since T' € A, T' € F(A)S and A°(T) = A°(T)\A. Since © C A, © € A°(D).

For any j € {1,2,...,¢(S + (AV|V*))} and any E € }'(HOP|A)1, we denote
the structure constant of D(S + (AY|V*)|V) corresponding to the pair (j, E) by
co(D(S + (AY|VI)IV), j, E).

Let = 3 per(pov|a), L(D(S + (AV[VH)[V), 2 ,E)| € Z; and
=3 perimora), [A(D(S+(AY|V)V),2, E)] € Zo. We know that m < i < M.

We take the unique pair (E, M) of a compatible mapping E : {1,2,...,m} —
F(HP|A), with S and a mapping M : {i,m +1,...,7m + 1} — Z, satisfying the
following three conditions. We denote

Fp=F(V*,N* H,F(A),m, E): {1,2,...,m} - 2"

Hp=H(V*,N*" H F(A),m,E):{1,2,...,m+1} - 2", and

By = B(V*,N*, H,F(A), i, E) : {1,2,...,m+ 1} = 2"
(a) FlT(j): E(]) for any j EA{l, ,..A.,m}. A
(b) M(im) =1, M(m+1)= M and M(i—1) < M(i) for any i € {m+1,m+
2.+ 1)

() F "'()c|3'<)|andFT(>¢|3(> B <>/HE<z>>|foranyze{m+

1Lim+2,...,m+1}and any j € {M(i—1)+1, MG —1)+2,...,M()}.
For any i € {1,2,...,7 + 1}, we denote A(i) = |B;(i)] € A and A()

HE(Z)OP|A() c A(@). For any i € {0,1,...,7m — 1} we put M (i) = . For any
i_e {1,2,. m+1} let C( )= F(A)«Fr(1)Fr(2)%- - -« Fr(M(i—1))\A(i) and let
F@):{1,2 M) — M(@Gi—1)} — 2‘f denote the mapping satisfying F(i)(j) =

FT(M( ) )forany]6{1,2,...,M(i)—M(z—1)} Note that we have |C(i)| =

J
A(i), (Hp(i),C(i) € HC(V, N, S), (M(i) — M(i — 1), F(i)) € USD(H (i), C(i), S),
height(H (i), C(i), S) = height(Hz (i), S + (A(i)V|V*)) < height(H, S + (AY|V*))
for any i € {1,2,...,7m + 1} by Theorem [I8T110.
There exists uniquely ir € {1,2,...,7m + 1} satisfying I' € A(ip) and T ¢
A(ir) - Z(zp) We take the unique ir € {1,2,...,7m + 1} satisfying T' C A(ir) and
T ¢ A(ir) — A(ir).

By Lemma 8217 we know © € A°(T') € A°(V, N, Hp(ir),Clir), S, M M((ip) —
M (ir—i), F(ir))(T), and © C |A°(T)| € |A°(V, N, H(ir), C(ir), S g r M(ZF_
i), F(ir))(T)| € |C(ir)| = A(ir). Consider the case ip = 7+ 1. @° C A(ir)N
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A(ir)° U 5(ip)°. Consider the case ir # 7 + 1. We denote
Gp=G(V* N* H,F(A),m, E): {1,2,...,im} —2"".

By Lemma[I82117 ©° C |F(A(ir))/G g (ir)|° = A(ir) — (G4 (ir)°?|A(ir)). There-
fore, ©° C (A(ir) — (G 5 (ir)P|A(ir))) N A° = A(ir)° U A(ir)°.

We know ©° C A(ir)° U A(ip)°.

Since © € F(A), {A(ir), Alir)} C F(A)«Fr(1)«Fr(2)%- -« Fr(m), and F(A)
is a subdivision of F(A) % F7(1) % Fr(2) * - - - x Fr(1m), we know that ©° c A(ir)°
or ©° C A(ir)°.

We take the unique element Ag € C(ir)/H z(ir) satisfying ©° C AU (Hp(ir)°P
|A0)°. ©° C A(ir)°, if and only if, @ C AS. ©° C A(ir)°, if and only if,
O° C (HE(iF)Op|AQ)O.

Since © € A°(V, N, Hp(ir),C(ir), S, M (ir) — M (ir — i), F(ir))(T') and © C A,
we know I' C Ao. helght(H (ir), S + (Ay|V*)) < height( E(z ),C(ir), S) <
height(H, S + (AY|V*)). ANAg € D(S|V)ACAC(ir) = D(S|V)NC(ir). 0§ # ©° C
AN (Aip)° UA(ZF) ). © C AN Ay.

Let 8 = s(V*, N*, H, F(A), i, E) : {0, 1,..., 7} x F(HP|A) = Zo.

Assume that ip # m + 1. By Theorem m15 we know 1 — i > 1, ir €
(i + 1,7 +2,...,10}, since AN (A(ir)° UA(ir)°) # 0. Since A = A(ip) and
AN (A(ir)° UA(ir)°) # 0, we know ¢(D(S + (AY|V*)|V),ia, E(ir)) < [e(D(S +
(AV|V*)|V),2, E(ir))| = 3(ir, E(ir)) by Theorem I7.117.

It follows that if ip # 7 + 1, then Hy(ir) ¢ vect(A) and vect(A) + Hp(ir) =
vect(A) + H. Obviously, if ir = m + 17 then Hy(ir) = H, Hp(ir) ¢ vect(A)
and vect(A) + Hp(ir) = vect(A) + H. We know that Hpy(ir) ¢ vect(A) and
vect(A) + Hp(ir) = vect(A) + H. Furthermore, it follows that dimA N Ay <
dim AO —1.

We have two cases.

(1) © C Air)°.
(2) ©° C A(ir)°.

We consider the case ©° C A(ip)°. ©° C AS. AN Ay € DS|V)AF(Ao).
0° CA°NAJ=(ANAY?°, 0 #0°C (ANAp°NAS. Since D(S|V)NF(Ap) is
H (ir)-simple, we know dim(A N Ag) > dim Ay — 1, dim(A N Ap) = dimAg — 1
and vect(A N Ag) = vect(A) Nvect(Ap).

Since height(H (ir), S + (A§|V*)) < height(H, S + (AY|V*), by induction on
height we know that the following claims hold:

(a) I'cAy I ¢ VGCt(A N A())

(b) vect(ANAg) +I' = vect(A N Ag) 4+ H(ir).

(c) Thesubset {(br/n+,a)la € AN(S+(AF[V*))} of R is a non-empty bounded
closed interval.

()

1>

max{(br/n-,a)|a € AN (S + (Ag[V*))}
— min{(bp/n+,a)|a € AN (S + (AY[V*)}
< height(H 5 (ir), S + (Ay|[V¥))
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Since I' C Ag C vect(Ag) and T’ ¢ vect(A N Ag) = vect(A) Nvect(Ag), we know
I' ¢ vect(A). Since © C A C vect(A), we know I' ¢ A and I" Z O.

Note that A = vect(A) N A. Since Hy(ir) ¢ A and Hg(ir) C A, we know
Hp (ir) ¢ vect(A). Since vect(A N Ag) + 1" = vect(A N Ap) + H 5 (ir) and vect(A N
Ag) C vect(A), we know vect(A) +T' = vect(A) + Hy(ir) = Vect(A) + H.

Since Ag C A, we know that AN (S + (AV|V*) C A NS+ (AYIV*),
max{({bp/n-,a)la € AN(S+ (AY[V*))} < max{(bp/n+,a)la € AN(S+(Ay|V*))},
min{(br/n~,a)la € AN(S+ (AVIV*))} > min{(bp/n-,a)la € AN (S + (AYIV)}
max{(br/n+,a)la € AN(S+ (AVIV*)} —min{{bp/n-,a)la € AN(S+ (AVIVF)} <
max{(br v+, @la € AN (+ (A V")) —min{ br - @la € AN (S+ (A V) <
height(Hg (ir), S + (Ag|V*)) < height(H, S + (AY|V*)), and

max{(br/n+,a)la € AN (S + (AY|V))}
— min{(br/n+,a)la € AN (S+ (AY|V*))}
< height(H, S + (AY|V*))

We consider the case ©° C ﬁ(ip)o.

6 € C\A(ir) = (C\A(ir))\A(ir) = (Clir)*F (ir)(2)+F (ir)(1)*- - -+ F (ir) (M (ir)—
M (ir — 1)))\A(ir) = C(ir) — (C(ir)/H z(ir)) and we know © + H(ir) € C(ir).

Since © = Hg(ir)°?|(© + Hp(ir)), we know Ag = © + Hy(ir) and dim© =
dim AO —1.

Since ® C AN A, dimAg—1=dimO < dmANA; <dmAg—1,dimO =
dim ANAg = dim Ag—1, vect(©) = vect(ANAg) and ANAg C vect(ANAg)NAy =
vect(©) N Ag = vect(0) N (O + Hy(ir)) = ©. We know © = AN Ao.

Since I' ¢ A(ir) and © C A(ir), we know I' ¢ ©. Since I' ¢ © = AN A
and I' C Ag, we know I' ¢ A. Since I' ¢ A = vect(A) N A and I C A, we know
' ¢ vect(A).

Since I'° U Hp(ir)° C Ag — (Hg(ir)°P|Ag), we know vect(A) + T = vect(A) +
HE(ZF) = vect(A) + H.

We know vect(A) + ' = vect(A) + H, (bp/n+,a(in)) < (brn+,a(ia — 1)),
{{br/n+,a)la € AN (S + (AY|V))} = {t € R[(br/n+,a(in)) <t < (br/n+,a(ia —
1))}, and max{(bp N+, a)|la € AN (S + (AVIV*))} — min{(bp/n~,a)la € AN (S +
(AY[V))} = (bryn~, alia — 1)) = (br/n=, a(ia))-

By Lemma [I82112 we know by . S(ir)/N* — bryn+ € N* N vect(©) C vect(A) =
Vect(/i( A)). Since {a(ix—1),a(ip)} C conv(A(iy— 1)UA(2'A)) € F(S+(AYIV*)) e+
and A(conv(A(iy — 1) U A(in)), S + (AV[V*)|V) = A(ip), we know (b ir) N+ —
bF/N*,CAl(Z'A — 1)) = <bHE(ir)/N* — bp/N 5 (A)> We know <bF/N*,d(iA — 1)> —
(br/n=,a(in)) = (br ir)/ne»alin — 1)) = (br g (ip)/N+> Ain))-

We have two cases.

(1) A £ Ain).
(2) A= A(in).

Consider the case A # i(zlﬂ)

Since A(ia) = A # A(ir) = Hp(ir)*P|Alir), we know A(in)NA(ir)° # 0, Ain—
1)NA(ir)° # 0, {A(ir), A(ir —1)} € F(S+ (A(ir)Y[V*))e, and (bp (i) /n+, a(in —
1)) = (b, (/v (i) < height(H(ir), S + (A(ir) V|V*)) < height(H, 5 + (A
V).
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We know that max{(br/n+,a)la € AN (S + (AY|V*))} — min{(bp/n-,a)|a €
AN (S + (AY|V*)} < height(H, S + (AY|V*)).

Consider the case A = i(zlﬂ)

If ir = m+1, then HE(ZF) = H and <bHE*(’iF)/N*7d(iA_1)>_<bHE(iF)/N*7d(iA)> =
(Opr/n+, a(in — 1)) = (bp/n=, a(in)). R

We consider the case ir # 1 + 1. by (ip)/N+ — bra/N+ = bg  (ir) /N € A(ir) =

A= A(’LA) Therefore, <bHE(ir)/N* —bH/N*,fL(iA—l)> = <bHE(ip)/N* —bH/N*,fL(iA)>,
and <bHE(ip)/N* s d(iA_1)>_<bHE(ip)/N* s d(ZA)> = <bH/N* s d(iA—1)>—<bH/N* s &(iA)>.

We know that <bHE(ip)/N* —bH/N*,d(iA 1)) = <bHE(ir)/N* —bH/N*,fL(iA)>, and
(Orr (ir)/N=» @(in = 1)) = (brr (ip)/N+5 G(IA)) = (Opryn+,a(in — 1)) — (buyn-,a(in)).

Note that (bg/n+,a(in — 1)) = (bp/n+,a(in)) < (br/n=,a(1)) — (bp/n+,a(c(S +
(AYIV*)))) = height(H, S + (AV[V*)) and (byr/nera(in — 1)) — (g a(in)) =
(br/n+, (1)) = (bryn=, alc(S+(AY]V*)))), if and only if, ¢(S+(AY|V*)) =iy = 2.

We know that max{(br/n+,a)la € AN (S + (AY|V*))} — min{(bp/n~,a)|a €
AN (S + (AV|V*)} < height(H, S + (AY|V*)), and that max{(br/n-,a)|a € AN
(S+(AY|V*)} —min{(br N+, a)|a € AN(S+(AY|V*))} = height(H, S+ (AY|V*)),
if and only if, ¢(S + (AY|V*)) = ip = 2.

Now, by the arguments until here we know that the inequality max{(br N+, a)|a €
AN (S + (AYV*)} — min{(br/n+,a)la € AN (S + (AV|V*))} < height(H, S +
(AV|V*)) always holds, and the equality max{(br/y«,a)la € AN(S+ (AY|V*))} —
min{ (br/n+,a)|a € AN(S+(AY|V*))} = height(H, S+ (AY|V*)) holds, if and only
if, @ C A(ir)°, A = A(ir) and ¢(S + (AV|V*)) =iy = 2.

Assume ©° C A(ir)°, A = A(ir) and ¢(S + (AV|V*)) = iy = 2. We have
A(2) = A(ip) = A = A(ir), and for any E € F(H°P|A); = F(A); — {H},
c(D(S|V)NF(A),2,E) = c¢(D(S + (AV|V*)|V),2,E) = 3(ir — 1, E) € Z.

We know that if max{(br/n~,a)la € AN (S + (AV|V*))} — min{(bp/n~,a)la €
AN (S+ (AY|V*))} = height(H, S + (AY|V*)), then ¢(S + (AY|V*)) = 2 and the
structure constant of D(S|V)NF(A) corresponding to the pair (2, E) is an integer
for any E € F(A) — {H}.

Convesely, assume that ¢(S+(AY|V*)) = 2 and the structure constant of D(S|V)
AF(A) corresponding to the pair (2, E) is an integer for any E € F(A) — {H}. By
Theorem M7.1120-26 we know that /i = m = M, in =2, ir =m+1, 0 = A =
A(2) = A(m+1), T = H and the equality max{(br/n+,a)|a € AN(S+(AY|V*))} -
min{(br/n+,a)la € AN (S + (AY|V*))} = height(H, S 4 (AY|V*)) holds. O

19. SCHEMES ASSOCIATED WITH SIMPLICIAL CONE DECOMPOSITIONS

We develop the theory of torus embeddings (Kempf et al. [19], Fulton [8]). We
define schemes associated with simplicial cone decompositions and examine their
properties.

Let us begin with the ring theory.

Let R be any ring. The set of all prime ideals of R is denoted by Spec(R). If
R is a field, then Spec(R) = {{0}}. We define a topology on Spec(R) called the
Zariski topology. We define that a subset X of Spec(R) is closed, if there exists a
subset X of R satisfying X = {p € Spec(R)|X C p}. A subset U of Spec(R) is
open, if the complement Spec(R) — U of U in Spec(R) is closed. We say that a
point p € Spec(R) is a closed point, if the set {p} is a closed subset of Spec(R).
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For any ¢ € R we denote Spec(R)g = {p € Spec(R)|¢ & p} and we call Spec(R),
the principal open subset or the principal open set of Spec(R) associated with ¢.

Let @ be another ring and let A : R — @ be any ring homomorphism. We can
check easily that A=1(p) € Spec(R) for any p € Spec(Q). Putting \*(p) = A~"1(p) €
Spec(R) for any p € Spec(Q), we define a mapping A* : Spec(Q) — Spec(R).

Lemma 19.1. (1) Let R be any ring.

The empty set is an open subset of Spec(R). Spec(R) is an open subset
of Spec(R). For any open subset U of Spec(R) and any open subset V' of
Spec(R), the intersection U NV is an open subset of Spec(R). For any
non-empty set U whose elements are open subsets of Spec(R), the union
UueuU is an open subset of Spec(R).

The Zariski topology on Spec(R) is a topology on Spec(R).

(2) Let R be any ring and let p € Spec(R) be any prime ideal of R.

The closure of the subset {p} of Spec(R) is equal to {q € Spec(R)|p C q}.

The point p of Spec(R) is closed, if and only if, p is a maximal ideal of
R.

(3) For any ring R, any ring Q such that there exists a ring homomorphism
from R to Q and any ring homomorphism A : R — @, the mapping \* :
Spec(Q) — Spec(R) is continuous and preserves the inclusion relation.

(4) For any ring R, id}y is equal to the identity mapping of Spec(R).

(5) For any ring R, any ring Q, any ring P such that there exists a ring ho-
momorphism from R to @ and there exists a ring homomorphism from Q
to P and any ring homomorphism X : R — @ and any ring homomorphism

w:Q — P, (uN)* = \u*.

Let K be any field and let R be any subring of K.

A subset S of R is called a multiplicatively closed subset, if 1 € S, 0 ¢ S and
¢ € S for any ¢ € S and any ¢ € S.

Let S be any multiplicatively closed subset of R. We denote

RSZ{%lweR,GﬁES}CK,

and we call Rg the localization of R with respect to S. We can check easily that
Rg is a subring of K containing R.

Let p € Spec(R) be any prime ideal of R. We can check easily that the comple-
ment R —p of p in R is a multiplicatively closed subset of R. We denote

Rp:RR—p:{%|¢ER7¢ER_p}CK7

and we call R, the local ring of R at p. R, is a subring of K containing R.

Note that {0} is the unique ring contained in K and satisfying 1 = 0. The set
{0} is not a subring of K.

For any open subset U of Spec(R), we denote

Nyew Be U #0,
Or(U) = {{op}6 if U = (.

For any open subset U of Spec(R), Or(U) is a ring containd in K, and if U # 0,
then O (U) is a subring of K, it contains R and it is contained in R, for any p € U.
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Consider any open subset U of Spec(R) and any open subset V of Spec(R) satis-
fying U C V. If U # 0, then V # 0 and Op(U) > Og(V). If U = 0, then Og(U) =
{0} and there exists uniquely a surjective homomorphism Ogr(V) — Ogr(U). We
define a mapping res}; : Or(V) — Og(U) called restriction homomorphism by
putting

v the inclusion homomorphism if U # 0,
resy; =
v the unique surjective homomorphism if U = ().

The restriction homomorphism resY, is a ring homomorphism.
1% U 1%

We denote the pair of sets ({Or(U)|U is an open subset of Spec(R)}, {res};|U
and V are open subsets of Spec(R) with U C V}) by a simple symbol Op.

Consider any p € Spec(R) and any open subset U of Spec(R) with p € U.
We define a mapping resg : Or(V) — R, called restriction homomorphism by
putting resg = the inclusion mapping. The restriction homomorphism resg is a
ring homomorphism.
Lemma 19.2. Let K be any field; let R be any subring of K and let S be any
multiplicatively closed subset of R.

(1) {0} € Spec(R). U # 0, if and only if, {0} € U for any open subset U of
Spec(R). For any non-empty open subset U of Spec(R) and any non-empty
open subset V' of Spec(R), the intersection U NV is non-empty.

(2) Rs is a subring of K containing R. S C Rj.

By v: R — Rg we denote the inclusion ring homomorphism.

Consider any ring T such that there exists a ring homomorphism u :
R — T from R to T satisfying u(S) C T*. For any ring homomorphism p :
R — T satisfying u(S) C T, there exists uniquely a ring homomorphism
o Rs — T satisfying pv = L.

(3) For any p € Spec(Rs), PN R € Spec(R) and it satisfies (pNR)NS =0 and
(N R)Rs = p.

(4) For anyp € Spec(R) satisfying pNS = 0, pRs € Spec(Rg) and pRsNR = p.

(5) The mapping from Spec(Rg) to {p € Spec(R)|p NS = 0} sending p €
Spec(Rg) to p N R and the mapping from {p € Spec(R)|p NS = 0} to
Spec(Rg) sending any p € Spec(R) satisfying pNS = 0 to pRs € Spec(Rs)
are bijective mappings preserving the inclusion relation, and they are the
inverse mappings of each other.

Ifp € Spec(Rgs) and p € Spec(R) satisfying pNS = O correspond to each
other by these bijective mappings, then (Rg)s = Ry.

(6) Furthermore, if we define the topology on Spec(Rgs) and we define the topol-
ogy on {p € Spec(R)|pNS = 0} induced by the topology on Spec(R), then the
mapping from Spec(Rg) to {p € Spec(R)|p NS =0} sending p € Spec(Rs)
to p N R is a continuous bijective mapping whose inverse mapping is also
continuous.

(7) If R is noetherian, then Rg is also noetherian.

(8) Consider any prime ideal p € Spec(R) of R.

{a N R|q € Spec(Rp)} = {q € Spec(R)[q C p}.
The ring Ry is a local ring whose mazimal ideal is equal to pRy,. If R is
noetherian, then Ry is also noetherian.

(9) Consider any r € Z4 and any mapping ¢ : {1,2,...,r} - R — {0}.
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We denote $(¢) = {6(1)™ V(2 ... 4(ry™Olm € map({L2. ...}, 7o)} C
R. The subset S(¢) is a multiplicatively closed subset of R. ¢(1)p(2)--- ¢(r) €
R —{0}.

Rs(g)

={ Y
B(1)mD) (2)m(2) ... p(yr)m(r)

1. 1
Mgl e 2 = RGasa) o)
If R is noetherian, then Rg4) is also noetherian.
(10) Consider any ¢ € R. The principal open subset Spec(R)4 of Spec(R) asso-
ciated with ¢ € R is an open subset of Spec(R).
Spec(R)y = 0, if and only if, ¢ = 0.
{51 RJp € Spec(R[1/9])} = Spec(R)y if 6 £ 0.
(11) Consider any ¢ € R — {0} and any ¢ € R — {0}.
Spec(R)y = Spec(R)y, if and only if, {a € R|a™ = B¢ for some m €
Zo and for some € R} = {a € R|la™ = B for some m € Zgy and for some
B € R}.

If Spec(R)y = Spec(R)y, then R[%] = R[%]

[ € R,m € map({1,2,...,7},Zo)}

|]CK

¢ € R— {0} and Spec(R)gy = Spec(R)y N Spec(R)y.
(12)
1
N R[g] =R
peX
for any subset X of R — {0} satisfying XR = R.
(13)
(| Re=~R
pEeSpec(R)
(14)
1
N B =El)
peSpec(R) 4

for any non-zero element ¢ € R — {0}.
(15) Opg is a sheaf of rings on Spec(R), in other words, the following seven
conditions are satisfied:
(a) For any open subset U of Spec(R), Or(U) is a ring.
(b) For any open subsets U and V of Spec(R) with U C V, res}; is a ring

homomorphism.

(c) For any open subset U of Spec(R), res; is the identity mapping of
Or(U).

(d) For any open subsets U, V and W of Spec(R) with U C V. C W,

resY = resy;res}y .

(e) Consider any non-empty set U whose elements are open subsets of
Spec(R). We denote U = UyeyU. Consider any ¢ € Or(U).
Ifresg(@ =0 for any U € U, then ¢ = 0.

(f) Consider any non-empty set U whose elements are open subsets of
Spec(R). We denote U = UyeyU. Consider any ¢(U) € Or(U) for
any U € U.
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(16)

(17)

(18)
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IfresY v (o(U)) = resy (o(V)) for any U € U and any V € U, then
there exists ¢ € Op(U) satisfying res¥(¢) = ¢(U) for any U € U.
(g) Or(0) = {0}.
Ogr(Spec(R)) = R. Ogr(Spec(R)g) = R[1/¢] for any non-zero element
¢ € R—{0}.
Consider any non-zero element ¢ € R — {0} and any open subset U of
Spec(R) contained in Spec(R)y. Let U = {p € Spec(R[1/4])[p N R € U}.
U is an open subset of Spec(R[1/¢]) and OR[l/¢](U) = Or(U).
Note that the sheaf Or on Spec(R) is defined using the field K contain-
ing R. The sheaf Og is isomorphic to Grothendieck’s structure sheaf on
Spec(R), which depends only on R and independent of the choice of the
field K containing R, and the topological space with a sheaf (Spec(R), Or)
is identified with Grothendieck’s affine scheme Spec(R).
For any p € Spec(R) and any ¢ € R,, there exist an open subset U of
Spec(R) with p € U and an element ¢ € Or(U) satisfying respU(@/J) = ¢.
Consider any p € Spec(R).

Note that for any open subset U of Spec(R) with p € U and any open
subset V' of Spec(R) with p € V, there exists an open subset W of Spec(R)
withpeW CcUNV.

The pair (Ry,{res{|U is an open subset of Spec(R) with p € U}) is
the inductive limit of the inductive system ({Or(U)|U is an open subset
of Spec(R) with p € U}, {resl;|U and V are open subsets of Spec(R) with
p e U CV}), in other words, res;/ = resgres‘é for any open subsets U and
V of Spec(R) withp € U CV and the following condition is satisfied:

Assume that a ring T is given and a ring homomorphism N(U) : Or(U) —
T is given for any open subset U of Spec(R) with p € U. If A(V) =
A(U)resy; for any open subsets U and V of Spec(R) with p € U C V,
then there exists uniquely a ring homomorphism X : R, — T satisfying
AU) = )\respU for any open subset U of Spec(R) with p € U.

Let J be any field; let Q be any subring of J such that there exists a ring ho-
momorphism from R to Q and let A : R — @ be any ring homomorphism. The
continuous mapping N\* : Spec(Q) — Spec(R) is defined associated with \.

(21) For any p € Spec(Q), there exists uniquely a ring homomorphism A.(p) :

Ry-(py = Qp satisfying resﬁpCC(Q))\ = )\*(p)resifzgm.

For any open subset U of Spec(R), there exists uniquely a ring homo-
morphism M\ (U) : Or(U) = Og(X\*~H(U)) satisfying resiffi((%)))\ = \(U)

Spec(R)
I'eSU .

We take the unique ring homomorphism A\ (U) : Op(U) = Oq(\*~1(U)) satis-
fying resipcc(Q) A= )\*(U)res?]pcc(R) for any open subset U of Spec(R). We denote

—1(U)

the set {\.(U)|U is an open subset of Spec(R)} by a single symbol \.. We denote
the pair (\*, A\) by a single symbol X*.

(22) The pair (A\*, \«) s a morphism from the topological space with a sheaf

(Spec(
Q),0q) to the topological space with a sheaf (Spec(R), Or), in other words,
resi:ig‘é;)\ = M(U)resy; for any open subsets U and V of Spec(R) with
ucvVv.
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(23) The pair \* = (\*, \.) is identified with Grothendieck’s morphism \* :
Spec(Q) — Spec(R) of affine schemes associated with the ring homomor-
phism A.

(24) Assume that Q is a subring of K containing R and X\ : R — Q is the
inclusion ring homomorphism.

For any p € Spec(Q), Ry~p) C Qp and the homomorphism A.(p) :
Ry-(p)y = Qyp is equal to the inclusion homomorphism.

For any open subset U of Spec(R), Or(U) C Og(A\*~1(U)) and the
homomorphism A\ (U) : Or(U) — Og(v*~1(U)) is equal to the inclusion
homomorphism.

Recall that we denote the set of all mappings from X to Y by map(X,Y") for any
sets X and Y. When Y is a subset of an abelian group Z with 0 € Y, we denote

map’(X,Y) = {a € map(X,Y)|supp(a) is a finite set.}.

(Section[2)

Note that for any set X and any ring R, the set map(X, R) has the natural
structure of an R-module, and map’(X, R) is an R-submodule of map(X, R).

Let R be any ring; let S be any subring of R, and let P be any finite subset of
R.

We call P a variable system of R over S, if for any ¢ € R there exists uniquely
an element ¢ € map’(map(P,Zy), S) satisfying

o= Z c(A) H M@,

A€map(P,Zo) zeP

Any element of a variable system of R over S is called a variable of R over S. We
call R a polynomial ring over S, if there exists a variable system P of R over S.
We call any element ¢ in R a polynomial over S, if R is a polynomial ring over S.
Assume that R is a polynomial ring over S and P is a variable system of R
over S. We consider any element ¢ € R. We take the unique element ¢ €
map’ (map(P, Zo), S) satisfying ¢ = 3- ) c.nap(pze) €M) [Locp ) We denote

supp(P, ¢) = supp(c) = {A € map(P, Zo)|c(A) # 0} C map(P, Zo),

and we call supp(P, ¢) the support of ¢ over P. supp(P,¢) is a finite subset of

map(P, Zy).
Note that ¢ = 0 < ¢ =0 < supp(P, ¢) = 0.
We introduce a symbol —oco satisfying (—oo) + (—00) = —o0, (—00) = —(00),

—(—00) = 00, —00 < 00, 00 > —00, —00 # 00, 00 # —00, —00 < 00, 00 > —00
and satisfying (—o0) +t =t + (—00) = —00, —00 < t, t > —00, —00 £ t, t #£ —00,
—o00 <t,t > —oo for any t € R.

Putting do(A) = >, cpAlx) € R for any A € map(P,R), we define an ele-
ment §y € (map(P,Rp)Y|map(P,R))° N map(P,Z)* C map(P,R)*. The element
8o is equal to the barycenter of the simplicial cone map(P,Ry)Y |map(P,R) over
map(P,Z)*.

Let w € map(P,R)* be any element. We denote

max{(w, A)|A € supp(P,¢)} if ¢ #0,

deg(P,w, 6) = {_Oo o0
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and

deg(P7 ¢) = deg(P7 507 (b)
We call deg(P,w, ¢) € RU{—o0} the degree of ¢ over P with respect to w, and we
call deg(P, ¢) € Zo U {—oc} the degree of ¢ over P.

Lemma 19.3. Let R be any ring; let S be any subring of R, and let P be any finite
subset of R.

(1) The following two conditions are equivalent:
(a) P is a variable system of R over S.
(b) For any ring T such that there exists a ring homomorphism from S to
T, any ring homomorphism p: S — T and any k € map(P,T), there
exists uniquely a ring homomorphism X : R — T satisfying u(s) = A(s)
for any s € S and p(x) = k(x) for any x € P.
Below, we assume that P is a variable system of R over S and R is a polynomial
ring over S.

(2) Let (R,\) be an S-algebra isomorphic to R and let i : R — R be any
S-isomorphism.
Then, X : S — R is injective, R is a polynomial ring over \(S), and
u(P) is a variable system of R over A(S).
(3) For any variable system P of R over S, {P = {P.
(4) Let I denote the set of all ideals I in R such that the residue ring R/I is
isomorphic to S as S-algebras.
For any a € map(P,S), the subset {x — a(z)|x € P} of R is a variable
system of R over S and {x — a(z)|z € P}R € T.
The mapping from map(P,S) to T sending a € map(P,S) to {x —
a(z)|z € P}R € T is bijective.
If S is an integral domain, then T C Spec(R). If S is a field, then T is
equal to the set of S-valued points Spec(R)(S) on Spec(R). (Section[3.)
(5) Consider any w € map(P,R)*, any ¢ € R, any ¥ € R and any non-zero
element a € S — {0}.
(a) supp(P,¢) = 0 < deg(P,w,d) = —c0 & ¢ = 0.
(b) Supp(f’¢-+1b)Cisupp(f’¢0LJsupp(F’w)
(c) supp(P,a¢) C supp(P, ¢). If S is an integral domain, then supp(P, ad) =
(P,

supp(P, ¢).

)
(e) deg(P,w, ¢+ v¥) < max{deg(P,w, ¢),deg(P,w,)}.
(fg deg(P,w, ¢) = deg(P,w, —¢).

deg(P,w, ¢ + ¢) = max{deg(P,w, ¢), deg(P,w,¥)}.

(h) deg(P,w,a¢p) < deg(P,w, ). If S is an integral domain, then
deg(P,w, a¢) = deg(P,w, ).
(i) deg(P,w, ¢v) < deg(P,w, ¢)+deg(P,w, ). If S is an integral domain,
then deg(P,w, o) = deg(P,w, ¢) + deg(P,w, ).
(6) R is an integral domain, if and only if, S is an integral domain.
If these equivalent conditions are satisfied, then R* = S*.
(7) R is noetherian, if and only if, S is noetherian.

Below, furthermore, we assume that S is a field.
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(8) R is a noetherian integral domain. dim R = §P.

Let K denote the quotient field of R. Let . : R — K denote the canonical
homomorphism. The homomorphism v is an injective ring homomorphism. Using
t, we regard R as a subring of K.

(9) PR € Spec(R) and the local ring Rpr of R at PR is defined.

The ring Rpgr is a subring of K, it is a reqular local ring, it contains S
and R as subrings, the residue field Rpr/M(RpRr) is isomorphic to S as
S-algebras, and P is a parameter system of Rprg.

(10) map(P,Rg)Y|map(P,R) C map(P,R)*.
(11) ord(P,w,¢) = —deg(P,—w, @) for any w € map(P,Ry)"|map(P,R) and
any ¢ € R.
(12) Consider any w € map(P,Rg)Y|map(P,R) and any ¢ € R.
If ¢ # 0, then ord(P,w, ¢) < deg(P,w, d).
ord(P,w, ¢) = deg(P,w, ®), if and only if, » # 0 and ¢ = in(P,w, ¢).

Let R be any ring and let .S be any subring of R. Assume that R is a polynomial
ring over S.

If n € Zy and there exists a variable system P of R over S with n = P € Zy,
then we say that R is a polynomial ring over S with n variables. By the claim 3
of the above lemma, if n € Zg and R is a polynomial ring over S with n variables,
then n = #P for any variable system P of R over S.

Below, we consider any integral domain S, any finite dimensional vector space
V over R and any lattice N of V.

Note that map’(N, S) is an S-module.

For any e € N we denote

Ale) ={(f,9)lf e N,ge N, f+g=e} CN xN.

Ifee N, feN,ge Nand (f,g) € Ale), then (g,f) € Ae). Ale) =
{(f,e=Nf eN}={(e—g,9)|lg € N} for any e € N. If dimV > 1, then A(e) is
an infinite set for any e € V.

Consider any ¢ € map’(N,.S) and any ¢ € map’(N, S).

supp(¢), supp(y)) and supp(¢) + supp(y)) are finite subsets of N. supp(¢) x
supp(?)) is a finite subset of N x N.

Comside wy ¢ & N {(J,0)lf € Neg € M.(J.0) € A0 610(5) £ 0}
{(L9)f € Nog € N,(f.9) € A(e),6(f) £ 0,6(9) # 0} = Afe) N (supp(9)

X
supp(¢)). We know that the set {(f,9)|f € N,g € N,(f,g) € () o(Hv(g) # 0}
is a finite set and an element 3 .y e n (1. gea(e) P(f)P(g) € S is defined.

Putting

(d¥)(e) = > $(f)i(g) € S

fEN,gEN,(f.g)EA(e)

for any e € N, we define an element ¢y € map(N, .S).

Ife € N and A(e)N(supp(¢) xsupp()) = 0, then ZfeN,ggN,(f,g)eA(e) o(fb(g) =
0. For any e € N, A(e)N(supp(¢) x supp(v))) # 0 < e € supp(¢)+supp(¢). There-
fore, supp(¢tp) C supp(¢) + supp(y), supp(¢y) is a finite set, and we know that
¢ € map’ (N, S).

We call the element ¢p € map’(N, S) the product of ¢ and .



130 TOHSUKE URABE

Putting
1 ife=f,

rO)f) = {O et

for any e € N and any f € N, we define a mapping
x: N — map/(N, S).
Putting
v(a) = az(0) € map'(N, S)
for any a € S, we define a mapping
v:S — map’(N,S).
For any subset © of V| we denote
map’(N, S)\© = {¢ € map'(N, 5)[supp(¢) C O}.

Lemma 19.4. Consider any integral domain S, any finite dimensional vector space
V over R and any lattice N of V. We consider the S-module map’'(N,S) and the
product on map’(N,S) defined above.

(1) map’(N,S) is an integral domain. The identity element of map’(N,S)
is equal to x(0). The mapping v : S — map'(N,S) is an injective ring
homomophism.

Below, using v : S — map’(N, S), we regard S as a subring of map’(N, S). Let K
be any field such that there exists an injective ring homomorphism from map’(N, S)
to K and let v : map’ (N, S) — K be any injective ring homomorphism. We fix such
a pair (K, 1) and using ¢, we regard map’ (N, S) as a subring of the field K.
(2) For any ¢ € map’(N,S) and any 1 € map’ (N, S),

supp(¢ + 1) C supp(¢) Usupp(v), and

supp(¢y) C supp(¢) + supp(¥)).
(3) supp(l) = {0}. For any ¢ € map’'(N,S), supp(¢) = 0 < ¢ = 0 and
supp(¢) C {0} & ¢ € 5.
(4) z(0) =1. For anye € N and any f € N, z(e+ f) = z(e)z(f).
For any e € N, z(e)z(—e) = 1, x(e) € map’(N,S)* and supp(z(e)) =
{e}.
The mapping x : N — map’ (N, S) is injective.
For any ¢ € map’(N,S), ¢ =3 oy ole)z(e).
For any ¢ € map’(N,S) and any e € N, supp(¢) C {e} < there exists
a € S with ¢ = ax(e) < there exists uniquely a € S with ¢ = ax(e).
(5) For any ring T such that there exists a ring homomorphism from S to
T, any ring homomorphism p : S — T and any homomorphism kK :
N — T* of abelian groups, there exists uniquely a ring homomorphism
A :map’ (N, S) = T satisfying Ma) = p(a) for any a € S and Az(e) = k(e)
for any e € N.
(6) If a subset © of V satisfies 0 € © and © + 0O C ©, then map’ (N, S)\O is a
subring of map’ (N, S) containing S.
(7) Consider any simplicial cone © over N inV. We denote Po = {x(bg/n)|E €
F(©)1} C map’(N,S). Putting

o(l)= Y T(a(bg/n))bp/n € vect(©),
EcF(©),
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for any T' € map(Pg,R), we define a mapping
®g : map(Po,R) — vect(O).
(a) map' (N, S)\O is a subring of map’(N, S) containing S. Po C map’(N,S)

\O. Pg is a variable system of map’(N, S)\O over S, and map’ (N, S)\©
is a polynomial Ting over S with dim © wvariables.
(b) ®g is an isomorphism of vector spaces over R. ®g(map(Po,Rp)) = ©.
Pg(map(Pe,Z)) = N Nvect(0). Po(supp(Pos, d)) = supp(¢) for any
¢ € map’(N, S)\O.
If S is a field, then the Newton polyhedron T4 (Peo, ¢) over Pg is defined
and ®o (T (Ps, ®)) = conv(supp(¢)) + © for any ¢ € map’(N,S)\O.
(¢) map’(N, S)\vect(0) = (map’(N, S)\O)[{1/x(bg/n)|E € F(O)1}].

(8) Consider any simplicial cone A over N* in V* and any simplicial cone
A over N* in V* satisfying dim A = dimV and A € F(A). The set
{bg/n+|E € F(A)1} is a basis of the vector space V* over R. We denote
the dual basis of {bg/N+|E € F(A)1} by {bE/N*X|E e F(A)}.

1 if E =D
(bg/n+bp/N+ L) = l.f ’
0 ifE+D,

for any E € F(A)1 and any D € F(A)1. The set {bp/n+|E € F(A)1}
is a Z-basis of the lattice N* and {bE/N*X|E € F(A)1} is a Z-basis of
the lattice N. We denote Pa = {ZC(bE/N*X”E € F(A)1} C map'(N,S).
Putting
Pa(l) = Z C(z(bg/n+x))bp/n €V,
EeF(A)
for any T' € map(Pa,R), we define a mapping

DA : map(Pa,R) — V.

(a) AV|V* is a simplicial cone over N in V. dim AV|V* = dim V.
map’ (N, S)\(AV|V*) is a subring of map’(N,S) containing S.
Pa C map’ (N, S)\(AV|V*). Pa is avariable system of map’(N, S)\(AY

[V*) over S, and map'(N,S)\(AY|V*) is a polynomial ring over S
with dim V' variables.

(b) ®a is an isomorphism of vector spaces over R. ®a(map(Pa,Ry)) =
AY|V*. @g(map(Pa,Z)) = N. ®o(supp(Pa,¢)) = supp(¢) for any
¢ € map/(N, S)\(AY|V").

If S is a field, then the Newton polyhedron T 1 (Pa,$) over Pa is de-
fined and ®A(L4(Pa,¢)) = conv(supp(¢)) + (AV|V*) for any ¢ €
map’ (N, S)
\(AY[VR).

() map' (N, §) = (map'(N, S)\(AY|[V*)[{1/x(be/n- )|E € F(A)1}].

(d) AV|V* > AY|V. map'(N, S)\(AY|V*) is a subring of map’(N,S) con-
taining . map! (N, S)\(AY [V'*) = (map! (N, S\(AY V) {1 /(b )| E €
F(A)1 — F(A)1)] > map! (N, )\ (AV[V*).

(e) For any A € F(A), map’(N,S)\(AV|V*) = map’(N,S)\(AV|V*)

{1/2(be/n- QIE € F(A)r = F(A)1}] D map'(N, S)\(AY[V).



132 TOHSUKE URABE

(f) Furthermore, consider any simplicial cone A’ over N* in V* satis-
fying dim A’ = dimV and A € F(A'). We denote the dual basis of
{bE/N*|E S ]:(Al)l} by {bE/N*X/|E S ]:(Al)l}

For any E € F(A)1, there exists uniquely a mapping r(E) : F(A); —
F(A)1 — Z satisfying

z(bg/n+ X)) = @(bg/n+ X ) H x(bD/N*X)T(E)(D).
DeF(A)1—F(A)1

For any E € F(A)4, x(bE/N*X,)(map’(N, SIN(AV|V*)) = x(bE/N*X)
(map’(N, S)\(AY[V™)).
For any E € F(A)1, the ideal x(bE/N*X)(map’(N, SINAVIV*) of
map

SI\(AV|V*) depends only on A and E, and it is independent of the
choice of A.
The ideal {x(bE/N*XﬂE € F(A)1H(map' (N, S)\(AY|V*)) of map’(N, S)

\(AY|V*) depends only on A, and it is independent of the choice of
A.
(9) Consider any simplicial cones A and A" over N* in V* such that A N A’
is a face of A and ANA' is a face of A'. We denote A = ANA'.
(a) (AV|V*)NN = ((AV|[V*)NN)+ (AV|V*)NN).
(b) map/ (N, $)\(AY[V*) 5 (map! (N, S)\(A¥[V"*))U(map/ (N, S)\ (A V7)),
The minimum subring of K containing (map’ (N, S)\(AV|V*)) (map’(N,

SIN(A™Y|V*)) coincides with map’ (N, S)\(AY|V*).
(c) Consider anyp € Spec(map’ (N, S)\(AV|V*)) and any p’ € Spec(map’(

N, S)\(A™[V7)).
There exists q € Spec(map’ (N, S)\(AY|V*)) satisfying p = qN(map’ (N,

SINAYIV*)) and p" = q N (map'(N, S)\(A™|V*)), if and only if,
(map'(N, S)\(AY[V")), = (map' (N, S)\(A™ V7)),
If the equivalent conditions above are satisfied and q € Spec(map’ (N, S)

\(AY|V™)) satisfies p = gN(map’(N, S)\(AY[V")) and p" = g (map'(N,
SINAYVF)), then (map' (N, S)\(AY[V*))q = (map’(N, S)\(AY[V)),
= (map'(N, S)\(A™[V7))y
(d)
{(map’(N, S)\(AY[V"))plp € Spec(map'(N, S)\(AY[V"))}
N {(map’ (N, S)\(A™ V7)) [p" € Spec(map’ (N, S)\(A™[V"))}
= {(map’(N, S)\(AY[V"))qla € Spec(map’(N, S)\(A¥[V™))}.

Below, we consider any integral domain .S, any finite dimensional vector space
V over R, any lattice NV of V and any simplicial cone decomposition D over N* in
V.
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We would like to define a scheme X(.S,V, N, D) associated with the quadruplet
(S,V,N,D) and would like to examine its properties.

Note that map’(NV,S) is an integral domain containing S. Let K be any field
such that there exists an injective ring homomorphism from map’(N, S) to K and
let ¢ : map’(N,S) — K be any injective ring homomorphism. We fix such a pair
(K,t) and using ¢, we regard map’(N, S) as a subring of the field K.

For simplicity we denote

R(A) = map'(N, S)\(AY|V™)

for any convex polyhedral cone A in V*.
We define the set X(S,V, N, D) by putting

2(S,V,N,D) = {R(A)y|A € D,p € Spec(R(A))}.
Consider any A € D. By putting
(S, V,N,D,A)(p) = R(A), € £(S,V, N, D)
for any p € Spec(R(A)), we define a mapping
w(S,V,N,D,A) : Spec(R(A)) = X(S,V,N, D).

We define the topology on 3(S,V, N, D). Let U be any subset of (S, V, N, D).
We define that U is an open subset of (S, V, N, D), if #(S,V,N,D,A)"}(U) is an
open subset of Spec(R(A)) for any A € D.

We define the sheaf O(S,V,N,D) on %(S,V,N,D). Note that any point « €
¥(S,V,N,D) is a local subring of K containing S. When we regard a point «
as a subring of K, we denote the corresponding subring of K by the symbol
O(S,V,N,D),. For any point a € X(S,V,N,D), O(S,V,N,D), is a local sub-
ring of K containing S. Let U be any open subset of (S, V, N, D). We define
O(S,V,N,D)(U) by putting

ﬂaEU O(S5 V) N; D)a C K if U ;ﬁ @,
{0} c K U = 0.

O(S,V,N,D)(U) is a ring contained in K. If U # @, then O(S,V,N,D)(U) is a
subring of K containing S.

Let U and V be any open subsets of X(S,V,N,D) with U Cc V. If U # 0,
then V' # () and O(S,V,N,D)(U) D> O(S,V,N,D)(V) by definition. If U = (),
then O(S,V, N, D)(U) = {0} and there exists uniquely a surjective homomorphism
O(S,V,N,D)(V) = O(S,V,N,D)(U). We define a ring homomorphism

res(S,V, N, D), : O(S,V,N,D)(V) — O(S,V,N,D)(U),

O(S,V,N,D)(U)_{

by putting

res(S, V. N, D)‘[j _ {the inc.lusion h.omc.)morphism . %f U # 1,
the unique surjective homomorphism if U = ().

We denote the pair of sets ({O(S,V, N,D)(U)|U is an open subset of 3(S,V, N,
D)}, {res(S,V,N,D);;|U and V are open subsets of £(S, V, N,D) with U C V'}) by
a single symbol O(S,V, N, D).

Let o € (S, V, N, D) be any point and let U be any open subset of X:(S, V, N, D)
with « € U. O(S,V,N,D)(U) C O(S,V,N,D), by definition. We define the ring
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homomorphism res(S,V, N,D){ : O(S,V,N,D)(U) — O(S,V,N,D),, by putting
res(S,V, N, D)Y = the inclusion homomorphism.
For any A € D, we denote

U(S,V,N,D,A) ==(S,V,N, D, A)(Spec(R(A))) C X(5,V, N, D),

V°(S,V,N,D,A) =U(S,V,N,D,A)— (| J U(SV,N,D,A))
AEF(A),A£A
cU(S,V,N,D,A),
V(S,V,N,D,A) = the closure of V°(S,V,N,D,A) in (S, V, N, D)
C X(S,V,N,D).

When we need not refer to the quadruplet (S, V, N, D), we also write simply 3,
m(A), O, res, U(A), V°(A) and V(A), instead of X(S,V, N, D), n(S,V,N,D,A),
O(S,V, N, D), res(S,V,N, D), U(S,V,N,D,A), V°(S,V,N,D,A) and V (S, V, N,
D, A) respectively.

When we need not refer to the triplet (V, N, D), we also write simply X(S),
w(S,A), O(S), res(S), U(S,A), V°(S,A) and V(S,A), instead of X(S,V, N, D),
(S, V,N,D,A), O(S,V,N,D), res(S,V,N, D), U(S,V, N, D, A), V°(S,V,N,D,A)
and V(S,V, N, D, A) respectively.

When we need not refer to the triplet (S, V,N), we also write simply X(D),
m(D,A), O(D), res(D), U(D,A), V°(D,A) and V (D, A), instead of X(S,V, N, D),
w(S,V,N,D,A), O(S,V,N,D), res(S,V,N,D), U(S,V,N,D,A), V°(S,V,N,D, A)
and V(S,V, N, D, A) respectively.

Lemma 19.5. Let S be any integral domain; let V' be any finite dimensional vector
space over R; let N be any lattice of V' and let D be any simplicial cone decompo-
sition over N* in V*.
(1) Consider any A € D. U(A) is a non-empty open subset of . w(A)(Spec(R(A
))) = U(A). The mapping w(A) : Spec(R(A)) — U(A) induced by w(A) is
a continuous bijective mapping whose inverse mapping s also continuous.
For any open subset U of U(A), O(U) = Ogay(m(A)~1(U)).
oU(A)) = R(A).
The mapping 7(A) induces an isomorphism from the affine scheme
(Spec(R(A)), Or(a)) to the topological space with a sheaf (U(A), O|U(A)).
(2) Consider any A € D. Let A be any simplicial cone over N* in V* satisfying
dimA = dimV and A € F(A).
The set {bg/n+|E € F(A)1} is a basis of the vector space V* over R and
it is a Z-basis of the lattice N*. By {bE/N*vA|E € F(A)1} we denote the

dual basis of {bp/n+|E € F(A),}. The set {bg/n+L|E € F(A)1} is a basis
of the vector space V over R and it is a Z-basis of the lattice N. For any

E e F(A)1 and any D € E € F(A)q,

1 ifE=D,

br /N bp /e L) =
(br/N+bp/N+R) {0 i E 4 D.

(a) R(A) is a subring of map'(N, S) containing S, and it is a polynomial
ring over S with dim'V wvariables. The set {x(bE/N*XME € F(A)1} s
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a variable system of R(A) over S. Spec(R(A)) is smooth, if Spec(S)
is smooth.

(b) R(A) = R(A)[{1/2(bpn-3)|E € F(A)1=F(A)1}] D R(A). Spec(R(A))
is smooth, if Spec(S) is smooth.

(c) {PNR(A)[p € Spec(R(A))} = {p € Spec(R(A))[x(bg/x-3) & b for any E €
F(A) - - F(A)} R

(d) {Pfﬂ R(A)lp € n(A)"H(V°(A)} = {p € Spec(R(A))|z(bp/n- ) ¢
p for any
E € F(A), — F(A)1,z(bg/n-}) € p for any B € F(A)1}.

(e) Consider any A e F(A). {(pnRA)p € 7(A)"HUA)NV(A)} =
{p € Spec(R(A ))|:C(bE/N* )& p for any E € f(A) f(A)l,:v(bE/N*X) €
p for any E € F(A)1}.

V(A)NU(A) = U v

AED,ACACA

= uw=vw®
AeD AeD
(4) Consider any A € D and any A € D.
UANA)=UA)NU(A).
A=A UA)=UA)s V(A =V(A) < V(A)NV(A) # ) <
V(A) =V(A).
ACA&S UL CUA) V(A CUWA) < V(A)NUA) #£0
V(A)NUA) # 0= V(A) D V(A).
(5) Consider any A € D.
(a) V°(A) is a non-empty closed irreducible subset of U(A).
(b) codim(V°(A),U(A)) =dimA.
(c) If we give the reduced scheme structure to V°(A), then V°(A) is a com-
plete intersection subscheme of U(A), and V°(A) is smooth if Spec(S)
is smooth.

()

(3)

(e) V(A)NU(A) = Vo(A).

(f) V(A) is a non-empty closed irreducible subset of .

(g) codim(V(A),X) =dim A.

(h) If we give the reduced scheme structure to V(A), then V(A) is a local
complete intersection subscheme of ¥, and V(A) is smooth if Spec(S)
s smooth.

g
h

(i)
viay= |J ve@).
AeD,ADA
(6) O is a sheaf of rings on X, in other words, the following seven conditions

are satisfied:
(a) For any open subset U of ¥, O(U) is a ring.
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(b) For any open subsets U and V of ¥ with U C V, resy; is a ring
homomorphism.

(c) For any open subset U of X, resY is the identity mapping of O(U).

(d) For any open subsets U, V and W of £ with U C V C W, resly =
resy resy’ .

(e) Consider any non-empty set U whose elements are open subsets of .
We denote U = UpeyU. Consider any ¢ € (’)(U)

If resf (@) =0 for any U € U, then ¢ = 0.

(f) Consider any non-empty set U whose elements are open subsets of X.
We denote U = UyeyU. Consider any ¢(U) € OU) for any U € U.
IfresY v (op(U)) = resiny (¢(V)) for any U € U and any V € U, then
there exists ¢ € O(U) satisfying rest (¢) = ¢(U) for any U € U.

(g) O0) ={0}.

(7) The pair X = (X,0) of the topological space ¥ and the sheaf O on X is
a separated reduced irreducible scheme. dim¥ = dim S + dim V', where
dim S € ZgU{oo} denotes the Krull dimension of the ring S. % is smooth,
if Spec(S) is smooth.

(8) If A is a simplicial cone over N* in V* and D = F(A), then ¥ is isomor-
phic to Spec(map’ (N, S)\(AV|V*)).

(9) For any o € ¥ and any ¢ € O, there exist an open subset U of X with
a € U and an element 1 € O(U) satisfying resY (v) = ¢.

(10) Consider any o € X.

Note that for any open subset U of ¥ with a € U and any open subset V.
of ¥ with o € V', there exists an open subset W of ¥ witha e W CUNV.

The pair (On, {resV|U is an open subset of ¥ with o € U}) is the in-
ductive limit of the inductive system ({O(U)|U is an open subset of ¥ with
a € U}, {res;|U and V are open subsets of ¥ with o € U C V'}), in other
words, res), = res{resy; for any open subsets U and V of ¥ witha € U C 'V
and the following condition is satisfied:

Assume that a ring T is given and a ring homomorphism pw(U) : O(U) —
T is given for any open subset U of ¥ with a € U. If u(V) = u(U)resy; for
any open subsets U and V of ¥ with o € U C V', then there exists uniquely
a ring homomorphism p : On — T satisfying pw(U) = uresY for any open
subset U of ¥ with a € U.

For any a € X, the ring O, is called the local ring of ¥ at o and any element of
O, is called a germ of functions at a.

Consider any A € D.

Consider any open subset U of ¥. By claim 1 of the above lemma, we have
Op(a)(m(A)~HU)) = O(U NU(A)). We define the ring homomorphism

T(A)"(U) : O(U) = Opay(n(A)~H(U))

by putting 7(A)*(U) = resgmU(A).

We denote the set {m(A)*(U)|U is an open subset of ¥} by a single symbol
m(A)*, and we denote the pair (7(A),7(A)*) by a single symbol 7w(A).

Since S is a subring of R(A), we have a morphism of schemes ¢(A)* : Spec(R(A))
— Spec(S) associated with the inclusion ring homomorphism ¢(A) : S — R(A).



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 137

Lemma 19.6. Let S be any integral domain; let V' be any finite dimensional vector
space over R; let N be any lattice of V' and let D be any simplicial cone decompo-
sition over N* in V*.

(1) Consider any A € D.
m(A)* is a morphism of sheaves over w(A), in other words, for any open

subsets U and V of ¥ withU C V, res:Eﬁ;,iEE;w(A)*(V) = 7(A)*(U)res);.
The pair m(A) = (7(A), 7(A)*) is a morphism of schemes Spec(R(A)) —
3, and it is an open embedding.

(2) There exists uniquely a morphism of schemes p : ¥ — Spec(S) satisfying
pm(A) = (A)* for any A € D, where t(A)* : Spec(R(A)) — Spec(S)
denotes the morphism of schemes associated with the inclusion ring homo-
morphism t(A) : S — R(A).

We take the morphism p : ¥ — Spec(S) satisfyng pm(A) = (A)* for any A € D,
where L(A)* : Spec(R(A)) — Spec(S) denotes the same as above.

(3) The morphism p is separated, of finite type, smooth and surjective.

Consider any p € Spec(S). The inverse image of the point p by p is
the fiber product scheme ¥ Xgpec(s) Spec(Sp/pSp). The scheme ¥ Xgpec(s)
Spec(Sp/pSy) is non-empty, irreducible and smooth, and dimY Xgpec(s)
Spec(Sy/pSp) =dim V.

(4) For any a« € &, p(a) = M(O,) N S.
(5) Consider any open subset U of Spec(S). Note that the morphism of schemes
p gives a ring homomorphism p*(U) : Os(U) — O(p~1(U)).

IfU # 0, then p=Y(U) # 0, Os(U) and O(p~*(U)) are subrings of K,
Os(U) € O(p~Y(U)) and p*(U) is equal to the inclusion ring homomor-
phism.

If U =0, then p='(U) = 0, Os(U) = O(p~*(U)) = {0} and p*(U) is
equal to the inclusion ring homomorphism.

(6) Consider any o € 3.

p(a) = M((’)a)ﬂS € Spec(S). Sp(a) C Oq. M(Sp(a)) = M(Oa)ﬂSp(a).

There exists uniquely a ring homomorphism p*(c) : Sya) — Oa satis-
fying resgjl(U)p*(U) = p* (a)resg(a) for any open subset U of Spec(S) with
pla) €U.

If a ring homomorphism p* () : S,y = Oq satisfies resd, 1(U)p*(U) =
p*(a)resg(a) for any open subset U of Spec(S) with p(a) € U, then p*(«
coincides with the inclusion ring homomorphism and p*(a)(M(Syqa))) C
M(O,).

(7) The morphism p is proper, if and only if, |D| = V*.

We denote 7(A)* = (S, V, N, D, A)* for any A € D.

Let p : ¥ — Spec(S) be the morphism in the above lemma. We denote p =
p(S,V,N, D, A), and we call p(S,V, N, D, A) the structure morphism of 3(S,V, N,
D, A).

When we need not refer to the quadruplet (S,V, N, D), we also write simply
m(A)* and p, instead of 7(S,V, N, D, A)* and p(S,V, N, D) respectively.

When we need not refer to the triplet (V, N, D), we also write simply 7 (S, A)*
and p(.9), instead of 7(S,V, N, D, A)* and p(S,V, N, D) respectively.
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When we need not refer to the triplet (S, V, N), we also write simply = (D, A)*
and p(D), instead of (S, V, N, D, A)* and p(S,V, N, D) respectively.

Lemma 19.7. Let S and T be any integral domains such that there exists a ring
homomorphism from S to T'; let X\ : S — T be any ring homomorphism: let V be
any finite dimensional vector space over R; let N be any lattice of V' and let D be
any simplicial cone decomposition over N* in V*.
(1) For any ¢ € map(N,S), A¢ € map(N,T) and supp(A¢p) C supp(¢).
For any ¢ € map’(N, S), A € map’(N,T).
Let A be any convex polyhedral cone in V*. For any ¢ € map’ (N, S)\(AY]

V*), Ap € map’ (N, T)\(AV|V*).

Putting Ae(V,N)(¢) = A\¢ € map'(N,T) for any ¢ € map’(N,S), we define a
mapping Ae(V, N) : map’(N, S) — map’ (N, T).

Let A be any convex polyhedral cone in V*. Putting A\e(V,N,A)(¢p) = A €
map’ (N, T)\(AY|V*) for any ¢ € map’ (N, S)\(AV|V*), we define a mapping Ae(V,
N,A) : map’ (N, S)\(AY|V*) — map’ (N, T)\(AV|V*).

(2) The mapping Ae(V, N) is a ring homomorphism. For any convex polyhedral
cone A in V*, A\e(V, N, A) is a ring homomorphism.
(3) Note that (S, A) : Spec(map’ (N, S)\(AV|V*)) = X(S), n(T, A) : Spec(map’

(N, TO\(AV|V*)) = 3(T), and Ae(V, N, A)* : Spec(map’ (N, T)\(AY|V*)) —

Spec(map’ (N, S)\(AV|V*)) for any A € D. They are morphisms of schemes.
There exists uniquely a morphism \*(V, N, D) : 3(T) — X(S) of schemes

satisfying w(S, A)Xe(V, N,A)* = X*(V, N, D)n(T,A) for any A € D.

We take the unique morphism \*(V,N,D) : S(T) — X(S) of schemes satis-
fying ©(S, A)Ae(V, N, A)* = X(V,N,D)n(T,A) for any A € D. The morphism
A*(V, N, D) is uniquely defined depending on the quadruplet (\,V, N, D).

(4) X*(V,N, D)"Y (U(S,A)) = U(T, A) for any A € D.
(5) p(S)A*(V,N,D) = XNp(T), where p(S) : X(S) — Spec(S) and p(T) :
¥(T) — Spec(T) are structure morphisms and A* : Spec(T') — Spec(S)
is the morphism of schemes induced by the ring homomorphism A : S — T.
(6) The morphism
()‘.(Va Nv D),p(T)) : E(T) - E(S) ><Spec(S) SpeC(T)
induced by A\*(V, N, D) and p(T) is an isomorphism.
(7) idse(V,N) = idmap/(n,s)- 1dse(V, N, A) = idpap (n,5)\(av|v+) for any con-
vex polyhedral cone A in V*. idg(V, N, D) = idss,v,n,p)-
Let U be any integral domain such that there exists a ring homomorphism
from T toU and let p: T — U be any ring homomorphism.
(M)‘)O(Vv N) = Mo(V, N))\.(V, N)
(1A)e (V. N, A) = pa(V, N, A)Ne(V, N, A)
for any convex polyhedral cone A in V*.

(M)‘).(Vv N, D) = )‘.(Vv N, ID):U'.(Va N, D).

Theorem 19.8. Let S be any integral domain; let V' be any finite dimensional
vector space over R; let N be any lattice of V' and let D and D be any simplicial
cone decompositions over N* in V* such that D is a subdivision of D.
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(1) For any A € D and any A € D with A C A, R(A) C R(A).

(2) There exists uniquely a morphism o(S,V, N)g :%(S,V,N,D) — %(S,V,N,D)
of schemes satisfying w(S,V,N,D)i(A,A)* = o(S,V,N)Bx(S,V,N,D) for
any A € D and any A € D with A C A, where 1(A,A) : R(A) — R(A)
denotes the inclusion ring homomorphism and (A, A)* : Spec(R(A)) —
Spec(R(A)) denotes the morphism of schemes induced by L(A A).

We take the unique morphism O'(S,‘/,N)g : %(S,V,N,D) = %(S,V,N,D) of
schemes satisfying ©(S,V, N, D)u(A, A)* = o(S,V,N)Bx(S,V,N,D) for any A € D
and any A € D with A C A, where (A, A)* denotes the same as above.

(3)

a(S,V,N)p = idss,v,n,p)-
Let D be any simplicial cone decomposition over N* in V* such that D
is a subdivision of D.

0 (8. V.N)Bo (S, V.N)B = o (S, V. N)B.

(4) Let T be any integral domain such that there exists a ring homomorphism
from S toT and X\ : S — T be any ring homomorphism.
o(S,V,N)BA*(V, N, D) = X\*(V, N, D)o(T,V,N)p.
Below, we denote
o=0(S,V,N)2:%(S,V,N,D) = (D) — %(S,V,N,D) = (D),
for simplicity.
(5) The morphism o is separated, of finite type, dominating and birational.
p(D)o = p(D).
(6) Consider any a € 3. B
O(D)g() € O(D)a. M(O(D)s(a)) = M(O(D)a) N O(D)o(a)- .
If 6 € (D), O(D)a C O(D)a and M(O(D)s) = M(O(D)s) N O(D)a,
then & = o(a).
(7) Consider any open subset U of X(
o gives a ring homomorphzsm o*(
IfU # 0, then o' (U )75@ o
of K, OD)(U) € OD)(p (U)) a
homomorphism. -
IfU =0, then oY (U) =0, O(D)(U) = O(D)(p~(U)) = {0} and o*(U)
is equal to the inclusion ring homomorphism.
(8) Consider any o € X(D). B
There exists uniquely a ring homomorphism o*(a) : O(D)y(a) — O(D)a

ote that the morphism of schemes

D). N

U) : O(D)(U) = O(D)(p —H(U).

(D)(U) and O(D)(p~1(U)) are subrings
nd o*(U) is equal to the inclusion ring

satisfying resZﬁl(U)o*(U) = o* (a)res ) for any open subset U of (D)
with o(a) € U.
If a ring homomorphism o*(a) : O(D) y(a) = O(D)q satisfies resgil(U)a*(
U)=o" (a)resg(a) for any open subset U of %(D) with o(a) € U, then o*(a)
coincides with the inclusion ring homomorphism and o™ (a)(M(O(D) () C
M(O(D)a).- _
(9) The morphism o is proper, if and only if, |D| = |D|.

(10) For any A € D and any A € D with A C A, o(U(D,A)) C U(D, A).
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(11) Forany A € DND, o(U(D,A)) = U(D, A) and the morphism o : U(D, A) —
U(D,A) induced by o is an isomorphism of schemes.

(12) If A€ D, dimA > 1, D =Dx A and we give the reduced scheme structure
to the closed subset V(D,A) of (D), then the morphism o : X(D) —
(D) coincides with the blowing-up of ¥(D) with center in the subscheme
V(D,A).

(13) Consider any A € D. Let A € D be the unique element with A° C A°.

Then, o(V°(D, A)) = V°(D, A).

(14) For any A € D,

o '(UMD,A)= |J UMDA), and
AED,ACA

o '(Ve(D,A)) = | VD,A).
AED,A°CA°

We call the above morphism o(S,V, N)g : %(S,V,N,D) — X(S,V,N,D) the
subdivision morphism associated with D and a subdivision D of D.

When we need not refer to the quintuplet (S,V, N, D, D), we also write simply
o, instead of (S, V, N)g.

When we need not refer to the triplet (S, V, N), we also write simply og , instead
of o(S,V,N )g,

Lemma 19.9. Let S be any algebraically closed field; let V' be any finite dimensional
vector space over R with dimV > 1; let N be any lattice of V; let D and D be any
simplicial cone decompositions over N* in V* such that D 1is an iterated barycentric
subdivision of D, |D| is a convex polyhedral cone in V* and dim|D| = dimV;
let m € Zo and let F be the center sequence of D of length m such that D =
DxF(1)« F(2)*---x F(m). B B

We denote D = Yrep, V(D,T) € div(¥(D)) and D = > 1.5, V(D,T) €

div(X(D)).

(1) The pair (2(D),D) is a normal crossing scheme over S. comp(D) =
{V(D,1)]

T e Dl} (D)Q = UAGDOVO('D,A). If a € (D)Q, A € D° and {Oé} =
Ve(D,A), thenU(X(D), D, o) = U(D, A) and comp(D)(a) = {V(D,T)|T" €
FAny )

(2) The pair (X(D), D) is a normal crossing scheme over S. comp(D) =
{v(p,n) _ _ _

'€ Di}. (D)o = UpepoVO(D,A). If a € (D)o, A € D° and {a} =
Ve(D,A), thenU(X(D), D, a) = U(D, A) and comp(D)(a) = {V(D,D)|T" €
F(A)} _

(3) The morphism o : %(D) — (D) is an admissible composition of blowing-
ups over D. If dim F (i) = 2 for any i € {1,2,...,m}, then o is an ad-
missible composition of blowing-ups with centers in codimension two over
D.

(4) comp(D) = comp(c*D).

o((D)o) = (D)o- B B B
If o € (D)o, A € D°, {a} = V°(D,A), A € D° and A C A, then
{o()} = V*(D, A).
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Consider any simplicial cone A over N* in V* with dim A = dimV. The set
{br/n-|T" € F(A)1} is an R-basis of V* and it is a Z-basis of N*. We denote the
dual basis of {br/n+|T' € F(A)1} by {bp/N*V T e F(A)1}.

Consider any o € (D)o. We take A € D° with {a} = V°(D,A). dimA =
dim V. We define a mapping &, : comp(D)(a) — O(D)(U(2(D), D, o)) by putting
£(V(D,T)) = 7(D, A)* (U(S(D). D, )~ (a(br/w- 1)) € OD)U(S(D), D, ) for
any ' € F(A);.

We put € = {€alor € (D)o} )

Consider any o € (D)g. We take A € D° with {a} = V°(D, dimA =
dim V. We define a mapping & : comp( )(a) ( YU((D),D,« ) y putting
&a(V(D,T)) = n(D,A)*(U(S(D), D, )~ (a(brn- 1)) € OD)(U(S(D), D, ) for
any T € F(A);.

We put € = {€la € (D)o}

(5) The triplet (3(D),

D,
D

\./\_/

,€) is a coordinated normal crossing scheme over S.

D
(6) The triplet (X(D), D,§) is a coordinated normal crossing scheme over S.
(7) £ =07¢.

20. PROOF OF THE MAIN THEOREM

We give the proof of our main theorem Theorem (4.1

Let k be any algebraically closed field; let A be any complete regular local ring
such that A contains k as a subring, the residue field A/M(A) is isomorphic to k
as k-algebras, and dim A > 2; let P be any parameter system of A, and let z € P
be any element.

Let A’ denote the completion of k[P — {z}] with respect to the maximal ideal
k[P —{z}]NM(A). The ring A’ is a local subring of A and M(A") = M(A)N A" =
(P — {z})A’. The completion of A’[z] with respect to the prime ideal zA’[z] is
isomorphic to A as A’[z]-algebras. The set P — {z} is a parameter system of A’.

Recall the following notations:

W) =foeAlo=u [ G+o 0 [] &
XEX zeP—{z}
for some u € A*, some finite subset X of M(A"),
some mapping a : X — Zy, and some mapping b: P — {2} — Zo}.

For any h € Z, with h > 2,
h—1

W(h)={¢€ Alp==2"+3 ¢'(i)
i=0
for some mapping ¢’ : {0,1,...,h — 1} — M(A’) satisfying

X +Z¢ i)x" # 0 for any xy € M(A").},

PW(h)={¢c Alp= @[Jw for some ¢ € W (h) and some ¢’ € PW(1).},
SW(h) ={¢ € Alp = ¢’ for some p € W (h) and some ¢’ € PW (1),

' (P, ) has no z-removable faces, and 'y (P, ¢) is z-simple.}.
Consider any h € Z with h > 2 and any ¢ € SW(h).
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We take an element ¢ € W (h), an element u € A*, a finite subset X', a mapping
a:X — Z4 and a mapping b: P — {z} — Z satistying

o=vu [+ [ ="@.

XEX reP—{z}

The quintuplet (¢, u, X, a,b) is uniquely determined depending on ¢, since A is a
unique factorization domain.

We take a mapping v’ : {0,1,..., h—1} — M(A’) satisfying ¢ = zh—i-E;:Ol W' (i)2°
and wh + Z?:_()l Y (i)w? # 0 for any w € M(A’). 4 is uniquely determined depend-
ing on 1, since Weierstrass’ preparation theorem holds.

The Newton polyhedron I'y (P, 1) has no z-removable faces and T'y (P, ¢) is z-
simple.

We denote V' = map(P,R), N = map(P,Z), A = map(P,R)V|V and S =
Iy (P,¢). V is a finite dimendional vector space over R, dimV = dim A4, N is
a lattice of V, A is a simplicial cone over N* in V*, AV|V* = map(P, Ro) is a
simplicial cone over N in V, dimA = dim AY|V* = dimV = dim A4 and S is a
Newton polyhedron over N in V. stab(S) = AV|V* S C AV|V*, |D(S|V)| =
A, V(S) C (AV|V*) N N = map(P,Z) and den(S/N) = 1. For any (H,C) €
HC(V, N, S), height(H,C, S) € Zy.

The set {fI'|z € P} isaR-basis of V, it is a Z-basis of N, AV|V* =Y, Rof7,
the dual basis {ffv|x € P} of {fF|z € P} is a R-basis of V*, it is a Z-basis of N*,
and A EmEP Rof

We denote H = Rofpv € F(A)1. Sis H-simple, D(S|V) is H-simple, (H, F(A)
) € HC(V, N, S) # 0 and USD(H, F(A), S) # 0.

For any ¢ € A—{0}, T'{(P,¢) is a Newton polyhedron over N in V, stab(T' (P, ¢
) = AYV¥, T, (P,) € AY|V*, DT (P,Q)[V)] = A, V(T+ (P,0)) C (A V)N
and den(I'y (P, {)/N) = 1. For any ( € A — {0} such that D(T'+(P,()|V) is H-
simple, we denote the H-skeleton of D(I'y (P, ()|V) by D(T'+(P,¢)|V)*.

Note that S = T'} (P, %)+ erx a(X)T(P 2+ X) + 3 epo g2y (@) (P, ) and
D(S|V) = D(I'+(P,¥)|[V)(Nyex— {0y DT (P, 2+ x)|V)). We know that height(H,
I (Py))=h>2 DTL(P,y)|V) is H-simple and ¢(T'(P,v)) > 2, and we know
that height(H, T (P, z+x)) = 1, D(I'+ (P, z+x)|V) is H-simple, and x has normal
crossings over P — {z} and ¢(I'y. (P, z + x)) = 2 for any x € X — {0}.

Take any (M, F) € USD(H, F(A), S). We denote C = F(A)« F(1)* F(2)*- - -
F(M). The set Cisa simplicial cone decomposition over N* in V*, it is an upward
subdivision of (H, F(A), S), it is a subdivision of D(S|V) and |C| = A = = [D(S|V)].

We denote & = X(k, V, N,C), R = map/ (N, k)\(AV[V*), and 5 = a(k: ViN)%a)

S(k,V,N,C) — %(k,V,N,F(A)). The structure sheaf of the scheme ¥ is de-
noted by O(C). We identify X(k,V, N, F(A)) and Spec(R) by the isomorphism
w(k,V,N,F(A),A). 5 : ¥ — Spec(R). R is a polynomial ring over k and the set
{z(f])ly € P} is a variable system of R over k, where z : N — map’(N, k) denotes
the mapping we defined just before Lemma T34l We denote M = {z(fl)|y € P}R
and D = Spec(R/ Hyepx(fp) ). M is a maximal ideal of R and D is a non-
zero effective normal crossing divisor of Spec(R). We define a coordinate sys-
tem &y @ comp(D) — R of the normal crossing scheme (Spec(R), D) at M by
putting §M(Spec(R/:1:(fP) )) = x(f)) for any y € P. Let & = {€;7}. The triplet

(Spec(R), D, €) is a coordinated normal crossing scheme over k. ¥ is a smooth
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scheme over Spec(R), and & is an admissible composition of blowing-ups with cen-
ters of codimension two over D.

Let «+ : R — A denote the injective homomorphism of k-algebras satisfying
L(:v(ff)) =yforanyy € P. Let ¥ =% Xgpec(r) SPec(A) denote the fiber product
scheme; let o : ¥ — Spec(A) denote the projection induced by ¢ and let 7: ¥ — %
denote the projection induced by ¢* : Spec(A) — Spec(R). The structure sheaf
of the scheme ¥ is denoted by Ox. We denote D = Spec(A/[], cpyA). D is a
non-zero effective normal crossing divisor of Spec(A). We define a coordinate Sys-
tem &pr¢ay : comp(A) — A of the normal crossing scheme (Spec(A),A) at M(A)
by putting §nr(a)(Spec(A/yA)) =y for any y € P. Let § = {&ar(a)}. The triplet
(Spec(A), D, €) is a coordinated normal crossing scheme over k. X is a smooth
scheme over Spec(A), and o is an admissible composition of blowing-ups with cen-
ters of codimension two over D.

Note that t*(M(A)) = M, .*"1(M) = {M(A)}, and ¢ induces an isomorphism
R/M — A/M(A) of k- algebras Therefore, we know that 7 induces an isomorphism
T 1 5 Xgpec(a) Spec(A/M(A)) = 5 Xspec(r) SPec(R/M) of schemes.

0~ (M(A)) = X Xgpec(a) Spec(A/M(A)).

Since Spec(R/M) = {M} = V°(F(A),A),

o H(M) = £ Xspee(r) Spec(R/M)
= '(V*(FQA)LA)) = |J V°(Co)
0eC,0°CA
by Theorem [19.814.

Consider any © € C°. dim®© = dim V, the set {br/n+|T" € F(©)1} is a R-basis
of V* and it is a Z-basis of N*. Let {bF/N*(\g|F € F(0)1} denote the dual basis
of {bp/n-|T" € F(©)1}. The set {bF/N*é|F € F(O)1} is a R-basis of V and it is a
Z-basis of N. We denote R(©) = map’ (N, k)\(0V|V*). R(©) is a polynomial ring
over k and the set {x(bp/N*é)H" € F(©)1} is a variable system of R(©) over k.
The morphism 7(C, ©) : Spec(R(0)) — U(C, ©) is an isomorphism of schemes.

We consider the coordinated normal crossing scheme (X,5*D, &*5 ). By Lemma
we know that comp(6*D) = {V(C,T)|l € Ci}, (6*D)y = COVO(@ 0),
and if 3 € (5*D)o, © € C° and {B} = V°(C,0), then U, a* D,ﬁ) = U(C,0)
gomp( *D)(B) = {V(C.T)|T' € F(O)1} and (5°€)5(V(C,T)) = =(C,0)"(U(Z, 57D,
B) Yz (br‘/N*@)) for any I' € F(©);.

We consider the coordinated normal crossing scheme (X,0*D,0%¢). We know
that 7V (C, I‘) isa prlme divisor of X for any I € C;, comp(c* D) = {r*V(C,T)|T" €

G}, (0*D)o “1((6*D)o) = UeecoT_l(VO(C 6)), and 7 induces a bijective
morphism 7 : (a D)O — (6*D)o. We know that 7= 1(U(2,5*D, 7(3)) is an affine
open subset of ¥, U(X,0*D,3) = 7~ Y(U(Z,6*D,7(B))), and comp(c*D)(8) =

{r*E|E € comp(c*D)(7(8))} for any B € (6*D)o.

C_ons1der any f € (0*D)g. (a*g)f : c_omp(_a*D)(ﬂ) — Og_( (= 0" D . B))s
(6*§)T(ﬁ) : comp( *D)( (B)) — O(C)(U(Evﬁ*DvT(B)))v T*(U(E,ﬁ D, (ﬁ))) :
OC)(U(X,5*D,7(8))) — Os(U(Z,0*D,3)), the homomorphism 7* : div(X) —
div(X) induces a mapping 7* : comp(*D)(7(f)) — comp(c*D)(8) and we know
that (0*€)s7" = 7*(U(Z,5* D, 7(8))) (@ &)~ (5)

Consider any closed point a € ¥ with a(a) = M(A).
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7(a) € ¥, 7(a) is a closed point of ¥, 67(a) = M and 7(a) € 67 1(M) =
(_)657@0@&0\/70 (C,0). We take © € C satisfying ©° ¢ A° and 7(a) € V°(C, ).
© ¢ H°P|A. We take the unique element A € D(S|V) with ©° C A° and we
take the unique element A € F(S + (©Y|V)) with A(A, S + (©Y|V)) =0©.
We denote

U

C; ={r e G0 ¢ A*|A},
A= A(V,N,H,F(A),S,M,F):° — 22" | and
A° = A°(V,N, H,F(A), S, M,F):C0 — 22" .

We take the unique element I' € C§ with © € A°(I). Note that A°(I") ¢ AT) C
C,{©,I'} c A") and © +T' € A(I")/I". We take any element © € A(I")°/T" with
O+ Cc O Wehave © C O+1 C 0,0 € F(O), I' € F(O), and 7(a) €
Ve(C,0) c U(C,0) c U(C,0). We take the unique element A € D(S|V) with
6° c A°. dim® = dim A = dim V. A € D(S|V)°. Since § # ©° ¢ ANA°, we know
that A € F(A). We take the unique element @ € V(S) with A = A({a}, S|V). We
know that S + (OV|V*) = {a} + (©V|V*). Let 3 be the unique point in V°(C, ©).
BeVe(C,0)cU(C,O). Be (D). {r(a),B} CU(C,0)=U(S,5*D,}).

Using the isomorphism 7(C,©) : Spec(R(©)) — U(C,©), we identify schemes
Spec(R(©)) and U(c, é>'~ We know that {z(br/n-§)T € F(O)h} C R(O) =
Ore)(Spec(R(0))) = O(C)(U(C,0)), ;v(bp/N*é)T(a) =0 for any I' € F(O); and
.’L'(bF/N*é)T(Of) # 0 for any T' € F(0); — F(O);. Since 7() is a closed point
of U(C,©) and k is algebraically closed, x(bp/N*é)T(a) € k for any T € F(O);.
x(bF/N*(V;))(B) =0 for any I € F(O);.

Since 7(a) = M, we have a homomorphism of k-algebras 7*(7(«)) : Ry —

0(5)7@ satisfying o*(7(a))(M(Ry7)) € M(O(C);(a)). This homomorphism has

the unique extension ¢*(7(a)) : Rf; — O(C)7,, where the superscript ¢ denotes
the completion of a noetherian local ring. The set {z(f} )|y € P} is a parameter
system of Rf;. Let P = {x(bp/N*é) - x(bF/N*é)r(aﬂF € F(©)1}. This set
P is a parameter system of O(CN)i(Q). P = {(0%€)3(E) — (6% (E)r(a)|E €
comp(*D)(3)}. Recall that V' = map(P,R). Note that there exists uniquely an
isomorphism of vector spaces over R from map(P,R) to V sending

j € map(P,R) to bp/N*é €V forany T’ € F(O);. Using this

F b aee %)= e )7(0)
isomorphism, we identify map(P,R) and V. Pairs map(P,Z) and N, map(P,R)
and ©V|V* are identified.

Since ©° C A°, 5(8) = M, we have a homomorphism of k-algebras *(3) :

Ry — (’)(5)3 satisfying *(8)(M (R;;)) C M((’)(év)g) This homomorphism has
the unique extension *(8) : RS, — (’)(5)% Let PB = {:E(bp/N*(\;g”F € F(O)}.

This set PB is a parameter system of O(CN)% PB ={(67¢)3(E)|E € comp(3*D)(B)}.

Note that there exists uniquely an isomorphism of vector spaces over R from

map(PB,R) to V' sending f: € V for any I €

(\;S) S map(PB,R) to bF/N*é

B
(br/n*
F(©)1. Using this isomorphism, we identify map (P, R) and V.
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Note that the homomorphism of k-algebras ¢ : R — A induces an isomorphism
R$; — A of complete k-algebras. By this isomorphism we identify R{; and A.
pe A=RS,. P={x(f])ly € P}.

Consider any w € O. It is easy to see that

rd(P,w, z(bp/n+§)) = ord(Pg,w, 2(br/n+§)) = 0 for any T € F(0); — F(O)1,
rd( 2 ,w, 2(br/n+ O)) = (PB,oJ x(br N+ O)) for any I' € F(©)1, and

rd(P,w, 0" (r(a))(¢)) = ord(FPz,w,a"(B)(¢)) = ord(P,w,(),

(15 )

in(Pz,w,5"(6)(¢)) = 7" (B)(in(P, w, ),

for any ¢ € R, = A.

By the above ord(P, bo N+, 0" (T())(¢)) = ord(PB,b@/N*,&*(B)(gb)) :Aord(P,
bo/n+8), (P, ben+, 5" (1(@))(9)) = 5" (r(a))(in(P, be/n-, ¢)), and in(Fj, bo -+,
7(8)(¢)) = " (5)(in(P,be/- ). A A A

Since I'y (P3,5%¢) = S+(®V|Y*) {a}+(@v| ), ord(Pé,bF/N*,in(PB,b@/N*,
5*(5_)(05))) = <bl“/N*vd> = Ord(PévbI‘/N 05 (B)(#)) = Ord(vaF/N*aa'*(T(o‘))((b))
for any I' € F(©);. B

Since bg/n+ € ©° C A°, in(P,bg/n+,¢) € R and ¢*(7(a))(in(F, bO/N*,ES)) =
res o 7 (Spec(R))(in(P.bayx+.9) = &* (3)(in(P.boyy-.0)) € OC)(U(C.6)).
We know in(P, bo N+, 0" (T())(9)) = 1n(P,@,bO/N* 5*(8)(¢)). Therefore, ord(P,
br N+ in(P, bo/n+: 0" (T(a))(0))) = Ord(Pﬁa bF/N*aln(Pﬁa be/n-,5"(B)(4))) for any
I'e F(O);.

We conclude that

ord(P, b, 5" (1(a))(¢)) = ord(P, bg /n~, ),
in(P,be/n-, 0" (r(@))(¢)) = 6" (r())(in(P, bon~, ), and
ord(P, b+, in(P,be n+, 5" (1(@))(¢))) = ord(P, brn+, 5" (1() ) (¢))

for any I' € F(O);.

Note that bg/n- € ©° C A° C A°, A € ]—"( ( Vv )) = A(A, S +
(OY[VIIV) e D(S+ (0¥ |[V)[V), S+ (0Y[V*) D =A(ANS, S|V) e D(S|V)
and in(P,bg N+, ¢) = ps(P,AN S, ¢).

Since D(S|V) is H-simple and dim [D(S|V)| = dim A = dim V, dim A = dim V'
or dimA =dimV — 1.

We consider the case dim A = dim V.

Since A € F(A) and dim A = dim V = dim A, we know that A(ANS, S|V) =
A= A({a},8|V), AnS = {a}, and ps(P, AN S, $) = ca(a) for some ¢ € k — {0}
We take ¢ € k — {0} with ps(P,ANS,¢) = cx(a). We know that in(P,bg N+, ¢) =
ps(P,AN S, ¢) = cx(a) and

in(P, be/n+, 5" (T())(9)) = 5" (r(a)) (in(P,ben+, ¢)) = 7" (7(a))(c(@))

= CZC(&) =c H (bF/N )(bF/N* ‘1>
rer(©)

7" (T(@))(()) = 7" (7(e))(in(P,w, (), and
(
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Let b =Y pe 7o), (br/n+, @)brn+ § € (OV[V*) N N. Since P = {a(br/y-§)IT €

F(©)1} U {z(br/n-§) = 2(br/n-§)(7(a)|F € F(O)1 — F(©)1} and z(br/n-§)(7(a
)) # 0 for any I' € F(©)1 —F(0)1, we know that A(bg/n+, L (P,5*((a))(0)|V)+
(6Y|V*) = (P, in(P, be,n+, 7" (m())(¢))) = supp(in(P, be/n-, 5" (7())(9))) +
(0Y|V*) = {b} +(©Y|V*) and b € V(I (P, in(P, bo/n-, 5" (m(c))(9)))) € V(T'+(P,
7" (m())(9)))- ) )

For any I’ € F(0);, we have ord(P, br N+, 0 (T(Oé))A((b)) = ord(P, bp/n~,in(P,
b 7" (7(0))(@))) = ord(P, b+, cal@) = (br-+b).

For any I' € F(©); — ( )1, we have 0 < ord(P,br/n+, 0" (1())(¢ )) < ord(P,
bp/N*,ln(P bo/n+, 5" (T())(¢))) —ord(P br/n+,cx(a)) = 0 and ord(P, bp/y+,
7*(r(0))(6) = 0 = (bryv-. ). o

We know that T'y (P, 5*(7(a))(¢)) = {b} +(©V|V*) and *(7(a))(¢) has normal
crossings over P.

We know that there exists uniquely an element 3 € (¢ D)o with 7(3) = 3. We
take the unique element 8 € (0*D)o with 7(8) = . Since 7(a) € U(X,5*D, B),
a €t Y U(E,6*D,B)) = U(S,0"D, B). It is easy to see that the homomorphism
™(a) : O(CN)T(Q) — Oyx o induces an isomorphism 7*(a) : O(CN)i(a) - 0%, , of
complete k-algebras. Since o(a) = M (A), we have a homomorphism of k-algebras
o*(a) : A = Ogx 4 satistying 0*(a)(M(A)) € M(Osx ). This homomorphism has
the unique extension o*(a) : A — O%, ,. Since t*¢ = 7, we have o*(a)(¢) =
(@) (r(@))(0). )

Let P = {( &s(E) —( &B(E)(a)|E € comp(c*D)(B)}. P is a parameter

)
system of 0% ,. Since P = {(5%€)5(E) — (77€)5(E)(r(a))|E € comp(a*D)(5)},

P =7*(a)(P ) We know that o*(a)(¢) has normal crossings over P. B

We take any isomorphism p : 0%, , — A of complete k-algebras satisfying p(P) =
P and we put g =1 € Z,. Since h > 2, g < h. po*(a)(¢) € A and po*(a)(¢$) has
normal crossings over P. Therefore, po*(a)(¢) € PW (1) = PW(g).

We conclude that Theorem [Tl holds, if dim A = dim V.

We consider the case dim A = dim V' — 1. A

We take any isomorphism p : O(C)i(a) — A of k-algebras satisfying p(P) = P
and ﬁ(x(bf/N*é) - x(bf/N*é)(T(a))) =z

Recall that ¢ = Yu[] (2 + x)*X) [icr—(5 (@),

We consider the element u][,cp_;.4 zb(®) € A.

u € A = (Ry)™ and 6*(7(a))(u) € OC)E, ). y= z(f)) for any y € P.

7(a)

M 0= T1 #¥= I o =o ¥ s

zeP—{z} yeP—{z} yeP—{z} yeP—{z}

We denote oo = >-,cp_1.) by)fE e (AV[V)NN C (6V|V*) N N. We have
Hmepf{z} xb(w) = ‘T(doo)'
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s (renw ] @) =" (@)@ (re)( I] ")

zeP—{z} zeP—{z}
7" (r(a))(u)a” (T(e))(z(d0o)) = 6" (7(a))(u)z(doo)

5'*(7'(04))('“) H I(bF/N*é)<bF/N*)&UU>'
FeF(O)

We know that ¢*(7(a))(w) [Irc 7 @), - (o), (b &) or/ae-do) e (O(g)i(a))x

and " (7(a))(u] e p— 2y 2%(®)) has normal crossings over P.

— %

We conclude that po*(7(a))(u][],ep_.y 2°(®)) has normal crossings over P and
§o (r(@) (W Lep_ () 2°®) € PW(1).

We consider any x € X and the element z + y € A.

We consider the case x = 0. R

z+x=z=a(fF). fFe(AV|V*)NN C (©Y|V*)N N.

o (r(a)(z +X) = (1) @(fF) =a(fF) = [ wlbryw-5) o0
reF(O),

We know that [[1c &), - 7o), x(bF/N*é)<bF/N*7sz> € ((9(5)0( )* and

()
a*(7())(z + x) has normal crossings over P.

We conclude that pg*(7(a))(z 4+ x) has normal crossings over P and pg* (7(«))
(z+x) € PW(1).

We consider the case xy # 0

[y (P, z+x) is H-simple and ¢(T'; (P, z + x)) = 2. height(H, (P, z+x)) = 1.
X € M(A") — {0} and x has normal crossings over P — {z}. We take an element
u(x) € A™ and a mapping e(x) : P—{z} — Zo satisfying x = u(x) [[,ep_( ze0d@),

Let 6(x) = Xepoy €0 @) 7 € (AY[V*) AN.

[ =@ = [ y®@= [ =D =z 3 e
}

zeP—{z} yeP—{z yeP—{z} yeP—{z}

= z(é(x))-
x =u(x)z(e(x)- VICH(P 2 +x)) = {f,e00}-

Note that C is a subdivision of D(S|V), D(S|V) is a subdivision of D(I'; (P, z +
X)|V) and thus C is a subdivision of D(I'y (P,z 4+ x)|[V). We take the unique
element A(x) € DI'L(P,z + x)|V) with ©° C A(x)° and we take the unique
element A(x) € D(I4(P,z 4 x)|V) with ©° < A(x)°. ©° c A° C A(x)° c A°.
©° c A°. Since © € F(0), A(x) € F(A(x)). We take the unique element A(y) €

FT4(Pz+x)+ (©V]V*)) satisfying © = A(A(x), [+ (P, 2z + x(x)) + (6V|V*)|V).
Ax) = AAKX) NT4(Pz + X), T4 (P,z + X)|V). dim® = dimA(x) = dimV.
A(x) € DT (P, z + x)|V)°. We take the unique element a(x) € V(L' (P, z + x))
with A(x) = A{a()}, T+ (P z + x(x)|V). alx) = fI" or a(x) = é(x). T+(P,z +
X) +(©Y[V") ={a(x)} + (0¥|V7).

Since D(I'1(P,z + x(2))|V) is H-simple, dimA(x) = dimV or dimA(x) =
dimV —1

We consider the case dim A(x) = dim V.
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By the same argument as in the case dimA = dimV above, we know that
5*(1(a))(z+x) has normal crossings over P, 5a*(7(a))(z+ x) has normal crossings
over P and po*(7(a))(z + x) € PW(1).

We consider the case dim A(x) = dimV — 1.

dim A = dim A(x) = dimV — 1. Since A C A(x), we have vect(A) = .
Since D(S|V) is H-simple, we have A = vect(A) N A = vect(A(x)) N A D A(y).
Therefore, we know A = A(x).

Now, by Theorem [I8318.(a) and Theorem I83.8.(b), we know that I' ¢ vect(A)
and vect(A) + T = vect(A) + H.

Since vect(A) + ' = vect(A) + H and I' € © C A, we know that A(y) =

+
);

A{e0) TPz +x)V). AAN) NT(Pz + x), I+ (P2 + X)[V) = Alx)
A0 T+ (P 2+ x0))IV)NA{FL} T4 (P2 +X)|V), Alstab(A() NI+ (P, 2+
X)), stab(T4 (P, z + x))|V) = A, stab(A(x) NT(P,z + x)) = {0}, and A(x) N
L (P24 x) = conv({£], é(x)}). .

Since I' ¢ vect(A) D A D O, we know that I' € F(0); — F(O); and $(bf/N*é)T
(@) #0.

Since 1 = <bH/N*,fZP> > (bg/n+»€(x)) = 0 and vect(A) + I = vect(A) + H,
we know (b s £} > {beaver 6000, {{beara)la € AG) AT (P + )} = {t €
R (bgn-r /1) =2 t = (bp - €(X))} and Z 5 max{(bp ., a)la € AQx) DT (P, 2 +
X)} = min{(bg ., a)la € A(X) NT4(P,z +X)} = (bp - /7 — (X)) > 0.

By Theorem[I8.3]8.(d) we know (bF/N*,fZ —é(x)) < height(H, T4 (P, z4+x)) = 1.
We conclude that <bf‘/N*vsz —é(x)) =1

We denote m = <bf‘/N*aé(X)> € Zo.

For any I' € F(0©);, we have bp/n- € T' C © C A(x) = A({e(x)}, T+ (P, 2z +
DIV)NA{F T (P2 +X)|V) and (bryn+, f) = (br/n+,€(x)). We denote

b= > (brn+, FD)br/n-§ € A(OP]6,0[V*) N

TeF(0);

¢ = > (brn F2)br v+ € A(©+T,0|V*)N N, and
FeF((0+1)°r|6),

¢= > (br = €00))br/n+§ € AO +T,0[V*) N

LeF((0+1)°r|0),

We have fF=b+ (1+ m)bf/N*é + ¢ and é(y) = b+ mbf/N*é +é.
Let u(x)(0) € k — {0} denote the unique element satisfying u(y) — u(x)(0) €
M(A"). We have

ps(P,A(x) NT (P, z +x), 2+ X)
Jolbg, - )10 (E0) + u() O (B)a(by - &)™ (0)
)2 (g e §)" (@ (b e )2 (0) + (), and
sbe/n=, 0" (T()) (2 + X))
=" (r(e)(ps(P, A(x) NT4 (P, z + x), 2 + X))
— a(B)albg - )" (@b - (o) + 2(0).
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Recall that x(bF/N*(V;))(T(a)) = 0 for any I' € F(O), x(bf/N*é)(T(a)) # 0,
2(br/n-g)(T(@)) # 0 for any T' € F((© + 1)?|0); and P = {x(br/n- )T €
f(@)l}U{:zr(bf/N*é) —x(bf/N*é)T(a)}U{x(bF/N*é) —I(bF/N*(\;g)T(Oé”F e F((0+
RN i

Note that k[P — {z(b F/N*v) - (bF/N*V)T(Oz)}] C O(C)} (- By O(C)T(a we

denote the completion of k[P — {z(b /N Yy — (b /NG Y)7(c)}] with respect to the

r
maximal ideal k[P — {z(b e VY —a(b /N6 Y1)} N M(O(C)F(4))- OC)3(,) is a
complete local subring of O(C)¢© (o) O(C)iga) is a k-subalgebra of O(C)i(a).
2o -4 € (OE)(0)*, 2lé0) € (OC)sf,))* and 2(6) € (OE)f,))*. We

know that there exist v/ € (O(C)¢,,)* and w’ € (O(C)/.,)* satisfying in(P, be N+

T(a) 7(a)
5 (1())(z + x)) = z(b)' (« w(bp/n-g ;) ). )

Note that Ty (P, z + x) + (®v|V*) = {a(x)} + (©Y|V*) and bg,n- € ©° C
©. We know that there exist v € (O(C)5(,))* and w € (O(C)7(,))* satisfying
7 (1(a))(z + x) = z(b)v(z (bF/N V) +w). We take elements v € (O(C)5 (o))" and
w € (0(C)(,))* satisfying 6*(7(a))(z + x) = z(b)v(x(bs /N*Y) w). We take the
unique element w(0) € k — {0} satisfying w — w(0) € M(O(C)T(a))

We consider the case (b /- v)( (a))4+w(0) # 0. We know that x(bF/N tw e
(OC)e()) s (b L) + w) € (O(C)e,))* and 6*(7(a))(> + x) has normal

(e
crossings over P. We know that p&* (7(c))(z + x) has normal crossings over P and
pa*(t(a))(z + x) € PW(1). A

We consider the case x(bf/N*é)(T(oz)) + w(0) = 0. x(b) has normal cross-
ings over P and p(z(b)) has normal crossings over P. p(v) € A*. We know
that (b, - 2)(r()) + w € M(OEC)/,,). plalb . )(r(@)) +w) € M(A') and
po*(1(e))(z + x) = p(x(5))p(v) (2 + pla(bs - §)(7(@)) +w)) € PW ().

We conclude that pa*(7(a))(z + x) € PW (1) in all cases.

Note that {n € PW(1) for any ¢ € PW(1) and any n € PW(1). Therefore, we
conclude that po*(m(@))(uTyer (z + X)X [Lep_ oy 2)) =
po (@)@ aep_ oy 2) [yer 70 (7(@)(z + )70 € PW (L),

We consider the element ¢ € W (h).

Recall that D(I'y (P,9)|V) is H—snnple © el r(a ) € ve(,e)c s, I ed,
I ¢ H?|A, © € A°(I), ©eC’ ecF@®O)andT e F(O),.

Note that C is a subdivision of D(S|V), D(S|V') is a subdivision of D(I'4 (P, %)|V)
and thus C is a subdivision of D(I'y (P,¢)|V). We take the unique element A(1)) €
DT+ (P,v)|V) with ©° C A(¢)°. We take the unique element A(y)) € F(I'1 (P, )+
(©VIV*)) with © = A(A(Y),T1(P,¢) + (6Y|[V*)|V). We take the unique ele-
ment A(y) € D4 (P,4)|V) with 6° ¢ A(®)°. dim© = dimA(y) = dim V.
A() € DT (P,y)|V)°. We take the unique element a(y)) € V(I'y (P, ¢)) with
A() = A{a(¥)}, T+ (P, 9)[V). .

©° C A° C A(¥)® C A% A(Y) = A(A Ay )N T (P), T (P)[V). ©° C A°.
A() € FIAW)). T4 (P9) + (8Y|V7) = {a(y)} + (8Y|V7).
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Since T'y (P,%) is H-simple, we know that dimA(v)) = dimV or dim A(y) =
dimV —1.

We consider case dim A(y)) = dim V.

By the same argument as in the case dimA = dimV above, we know that
a*(7()) (1) has normal crossings over P, po*(7(a))(¢) has normal crossings over
Pand pa*(r(a))(y) € PW(1). Therefore, pg*((a))(¢) = po~ (7(a))(4)pa™(r(a))
(’LL HXeX(Z + X)a(X) HmEP—{z} xb(m)) € PW(l)

We know that there exists uniquely an element 3 € (¢ D)o with 7(3) = 3. We
take the unique element 8 € (0*D)o with 7(8) = . Since 7(a) € U(X,5*D, B),
a €T Y U,6*D,B)) = U(S,0*D,3). It is easy to see that the homomorphism
() : O(g)T(a) — Oy, induces an isomorphism 7*(a) : O(g)i(a) — 0%, of
complete k-algebras. Since o(a) = M (A), we have a homomorphism of k-algebras
o*(a) : A = Ox 4 satisfying o*(a)(M(A)) C M(Os ). This homomorphism has
the unique extension o*(a) : A — 0%, ,. Since "0 = &7, we have 0" (a)(¢) =
(@) (r(@))(0). )

Let P = {(6%¢)g(E) — (6*§)s(E)(c)|E € comp(c*D)(B)}. P is a parameter
system of Og, ,. Since P = {(a*¢ )B(E) — (6*5)5( )(7(a))|E € comp(a*D)(B)},

P =1*(a)(P).
Let p = pr*(a)~ ! : o — A. pis an isomorphism of k-algebras. We put
g=1¢z,. p<>= (@) 1 (@)(P) = A(P) = P. We know p(P) = P.

0" (@)(8) = pr+(a) L+ (@)5" (r(@))(0) = po" (r(e))(6) € PW(1) = PW(g). We
know po*(a)(¢) € PW( ). Since h > 2, g < h.

We conclude that Theorem AT holds7 if dimA = dimV — 1 and dimA(¢) =
dim V.

We consider the case dim A(¢)) = dimV — 1.

We know that A(v)) € DTy (P,)|V). A(y) # H°P|A and height(H,T 4 (P,
)) > 0.

Since A C A(y)) C A and dimA = dimV — 1 = dim A(¢)), we have vect(A)
vect(A(v)). Since D(S|V) is H-simple, we have A = vect(A)NA = vect(A(y))NA
A(1). Therefore, we know A = A(%).

We know that there exists uniquely an element Ag(v) € D(I'y(P,)|V)° satis-
fying A(¢) = A() N Ag(1)). We take the unique element Ag(p) € D(Ty (P, 1)|V)°
satisfying A(W) = A@W) N Ag(¥). A() # Ao(1). We take the unique element

<

U

ao(¥) € V(4 (P.9)) with Ao(3) = A({ao(¥)}, T+ (P, 9)[V). )
ao(y) # ay ) A(A®W) NTL(P ), To(P)[V) = Ay) = Aw) N Ao(y) =
({a( )} Ty (P, ¢)|V)0A({ao( )3T (Ph)|V), Alstab(A ( ) NI (P, 4))), stab(
FJF((I; @bg)l)‘g A, stab(A(¢) NT(P,)) = {0} and A()) N T (P, ) = conv({

Now, by Theorem I8318.(a) and Theorem I838.(b), we know that T' ¢ vect(A)
and vect(A) + ' = vect(A) + H.

Since I' ¢ vect(A) D A D O, we know that I' € F(0); — F(©); and ZC(bf/N*é)T
(a) #0. ) S )

Since I' € F(0)1, we know that I' € © ¢ A, A C vect(A) +T' = vect(A) + H,
A H=A+H A+HcC A+H, (b nes ao(1)) > (bg = a(¥)), (b ns Go(¥)) >
(b s 8(0)), Llbrer @l € A) AT (P6)} = {t € Rl(bgy.r o)) > ¢ >
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(bp/n+>a(¥))} and max{(bq y..a)la € A(P) NI (P,¢)} — min{(bp ., a)la €
AW) NT4(P)} = (bp e do(¥) = a(y)) > 0.

We denote £ = (b /n.,a0(¥) — a(¥)) € Zy and m = (b
simplicity. By Theorem [[8318.(d) we know ¢ < height(H, T, (P P)) = h.

For any ' € F(©);, we have br/n- € I' € © C A(y) = A(¥)) N Ag(¥) and
(br/n=,a0(1)) = (br/n=,a(v)). We denote

. a()) € Zg for

Z (br/n- G0 (¥))br/n- & € A(O°P]6,0]VF) N N,

eF(On

¢ = Z (br/n+ G0(1))br/n- 4 € A(O+T,0[V*) NN, and
reF((©+0)or|6),

é > (br/n+ a(¥))br /- & € AO +T,0|V*) N N.
TeF((©+1)°r|6),

We have ao() = b+ (€ + m)bp . £ + o and a(y) = b+ mbg, . L + .

Let L ={i€{0,1,...,}[((¢ —i)/)éo + (i/€)¢ € N}. {0,£} C L c{0,1,...,¢}
and conv({ao (1), a()}) NN = {b+ (¢ —itm)by . &+ ((0=4)/0)é+(i/0)éli € L}.
(€ —1i)/0)éo + (i/0)é € A(O© +T,0|V*)N N for any i € L.

We know that there exists uniquely a mapping e : L — k satisfying

ps(P, AW) T4 (P, ) = 3 eaB)abe )l e + (5)0)

icL

e(0) # 0 and e(£) # 0. We take the unique mapping e : L — k satisfying the above
three conditions. We have

in(P, be/n+, 5" (T()(¥) = 67 (7()) (ps(P, A(¥) NT+(P,), 4))

Recall that z(br/y-&)T(a) = 0 for any T' € F(O), x(bf/N*é)T(a) # 0,
x(bF/N*é)T(a) # 0 for any I € F((© 4+ I)°P|©); and P = {x(bp/N*é)H‘ €
F(O)i} U {a(bpn-g) — 2bpn-5)m(@)} U {a(br/n-§) — 2(bryn-gT(@)T €
F((©+T)?10)1}.

We know that z(é)m(e) # 0, deg(P, bf /> in n(P, bo N+, 0" (T(a)) (1)) = £+
m, the sum of terms T in 1n(P,b@/N L0 (1(a))(¥)) with deg(P,bf/N*,T) = {+
m is equal to e(0)xz(éo)T(a)z(b + (£ + m)bf/N*é) and b+ (¢ + m)bf/N*é €
supp(P, n(P, be, v+, 7" (7(a)) (1)) C supp(P, 57 (7(a))(¥)) C T+ (P, 7" (r(a))(¥)).

Consider any I' € F(0);. orc}(P, bF/N*,ﬁi‘ (7(a))(¥)) = ord(P, br/n~,in(P,
bo/n+, & (T())(¥))) = (br/n+,b) = (br/n+, b+ (£ +m)bp . L)

Consider any I' € F((© +I)°P[0);. 0 < ord(P, br/n-,5*(7(a))(¢)) < ord(P,
br/n-,in(P, be/n+,0" (1(a))(®))) = 0. We know that ord(P, brn+,5*(7(a))(¢)) =
0= (bp/n+ b+ (L4 m)b £ /N >
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We know that b+ (£+m)by, /N*Y € Iy (P,5*(m(a))(¥)) and ord(P, br /-, 5" (1(a)
)W) = (br/n-, b+ (L +m)b /N V) for any T' € F(©); — {I'} and we conclude that
I, (P,5*(r(a)) (1)) is of P-Weierstrass type.

We denote © = I'°?|@ € F(O)'. Since I'y (P,5*(r())(v)) is of I-Weierstrass
type, we have ord(P, bo/n+0"(1(a)(¥)) = <b@/N*,l;+ 0+ m)bf/N*é> = ord(P,
bo/+» (P, ben+, 5" (1(@)) (1)) and

in(pvb@/N*va*(T(O‘))(w)) = in(pvb@/N*vin(pub(—)/N*uﬁ*(T(O‘))(w)))
= ;v(l;)x(bf/N*é)m Z é(i)x(bf‘/N*é)g_ia

icL

where € : L — k is the mapping satisfying é(i) = e(4)x(((¢ —1)/€)éo + (i/£)¢)T ()
for any i € L. €(0) = e(0)z(éo)(7(r)) # 0. There exists uniquely a mapping
e:{0,1,...,0} — k satisfying >, e(i)x (bF/N* Vet = Zl o €(@)(x(b F/N*V)
x(bf/N*é)T(a))l’i. We take the unique mapping € : {0,1,...,£} — k satisfy-
ingA the above equality. €(0) = &(0) # 0. ,T(bf/N*é)(T(a)) # 0. ord(P, bf /e
2(b)x (b /N*g?m) =0. A

Since I' (P, d*(7(a))(¢)) is of I'-Weierstrass type, we have

height(I', T4 (P, ‘*( (@) (¥)))
= ord(P, by -, (P, bg -, 67 (7(a)
< ord(P, by ., (P, bg -, 5" (T(a)

ord(P, by v, () (g )™

4

= Ofd(P bF/N* ; Z E(i)(ﬂﬁ(bf/zv*(v;)) - w(bf/N*é)T(a))g_i)
=0
=/{—max{i € {0,1,...,0}e(@) #0} <.

We know that height(I', T' (P, 5" (7(a))(¢))) = £, if and only if, ord(P, by ..,
a*(1()) (1)) = 0 and &(i) = 0 for any i € {1,2,..., £}, if and only if, ord(P, NS
5 (r(0)) () = 0 and Y, (b - 20 = e(0) (g L) —alby - L)7(@))-

We know that height(I', Ty (P, 5*(7())(1))) < € < h.

Assume height(I', T (P, 5* (7()) (1)) = h. We will deduce a contradiction from
this assumption.

We have £ = h. By Theorem [I838.(e) and Theorem [I83l9, we know that

¢(T+(P,v)) = 2, the structure constant of D(I'y (P, ¢)|V) correspondlng to the
pair (2, E) is an integer for any £ € F(A) — {H} O©=Aandl'=H.

We have dim © = dim A = dim V-1 = dim©—1, © = T°?|0, (641)°P|6 = {0},
éo=0,¢6=0,L={0,1,...,¢} and €(i) = e(i) for any 7 € {0,1,...,¢}.
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We have height(I', Ty (P, 5* (7())(¥))) = £ and

We know

for any ¢ € {0,1,...,¢}.
We have
pS(P, A(’lﬁ) N F+(P7 dj)v dj) =0" (T(a))(pS(P, A(dj) N 1—‘+(P7¢)7¢))

—1

e(a(B)a(br - 3) " e((—)éo + (5)0)

~

Il
]
~
S—
=
(=
S~—
8
—
S
—
~
=
*
™ <
S~—
T
T
3

©) (=l (@)l )

=e(0)2(b+mbgn-§)(@(ban-§) — e(bp - §)(7())).

Recall that {bg, -1 |E € F(A)} = {fly € P}, bgn-x = [F and a(f)) =

for any y € P. It is easy to see that there exists uniquely a mappmg 7 F (A)
{H} — Z satisfying bF/N* = bH/N* = Y Bera)y—{mT(E )bE/N* Y since I =
H c 6 c A. We know that there exists uniquely a mapping r : P—{z} — Z satisfy-
ing bf/N*v = fP- Zyep_{z} r(y)f} . We take the unique mapping r : P—{z} = Z
satisfying bF/N* =P > yep—{z} r(y)fr. :C(bf/N*é) =z/[lyep—(5 y" ). We
denote by = b+ mbH/N* = D yep—{=} tr(y)ff € N and v = x(bﬁ/N*é)T(a) €
k — {0} for simplicity. We have

ps(P, A() Ty (P), ) = e(0)z(bo)(z —v [ v @)"

yeP—{z}
0 T[o - ] v®)
yeP yeP—{z}
Since ps(P, A(y) N Ty (P,%),) € A and A is a unique factorization domain,
we know that r(y) € Z¢ for any y € P — {z} and <ffv,130> € Zy for any y € P.
by = Eyep<fypv,l;0>fyp € (AV|V*)N N. Since ¢(T'(P,1)) = 2, we know that the
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z-top vertex of T (P, %) is equal to by + £fF, by + £f € A(sp) NT4(P,%)) and
A(p) NT4(P,4) is a z-removable face of T'y (P, ).

Since 'y (P, %) has no z-removable faces, we obtain a contradiction. We know
that height(I', T+ (P,5*(7())(¢)))) < h. We denote g = height(I', T'+ (P, 5*(7(a))(¥))) €
Zy. g < h. .

We denote 2z = I(bf‘/N*(\;;) - ai(bf/N*é)T(oz) ~€ P for simplicity.

Note that k[P — {z}] C O(C)7,,- By O(C)5,
k[P — {Zz}] with respect to the maximal ideal k[P — {Z}] N M((’)(év)i(a)). O(g)iéa)

is a complete local subring of O(C)ff_( O(C)C'a) is a k-subalgebra of (’)(C)f_(a).

a)’ 7(
Since I'y (P, 5*(7())(®)) is of I'-Weierstrass type, § = height(I', ' (P, &* (t(«
))(1))) and Weierstrass’ preparation theorem holds, there exist uniquely an element

v € (0(C)$(,))" and a mapping Y :{0,1,...,g -1} — M(O(C)g{,,) satisfying
7*(1()) (1) = va(b) (29 + thol ¥(i)z"). We take the unique pair v € ((9((?);{(0[))X
and a mapping ' : {0,1,...,5— 1} — M(O(CN)i(’a)) satisfying this equality.

Let R = {x € M((’)(év)i(/a)ﬂxg + 970 (i)x' = 0}, R is a finite set and

fR < g. Consider any x € R. Since O(g)i(a) is a unique factorization domain,

) we denote the completion of

there exists uniquely a positive integer u(x) € Z4 satisfying 257—0—2?;01 P(i)z € (2—
XHOO(C)e ) and 29+ 3970 9(i)7 ¢ (2 — )T O(C)e, ). We take the unique
1(x) € Z4 satisfying these conditions. »° . p(x) < g. Let =9 — > cppu(x) €
Zo. §#1. g <g<h. Let g=max{g,1} € Z,. Since h > 2, g < h.

There exists uniquely a mapping ¢ : {0,1,...,§ — 1} — M(O(g)c’a)) sat-

isfying o (7(a))(¢) = va(b) [T er (2 — )00 (29 + Y97 d(i)z"). We take the
unique mapping Vo {0,1,..., — 1} — M(O(CN)jéa)) satisfying this equality.
X9+ 97 (i)' # 0 for any x € M((’)(év)f_éa))

p(vx(b) erR(g —)H)) e PW(1). )

If § > 2, then § = g and p(z9 + 9 4(i)z)) € W(g§) = W(g). Therefore,
o (r(@))(¢) = po*(1(a) (Wllyer(z + )" [Lep oy 2" )p(02(b) [Tyer (2 —
XHO)(2 + 05 d(i)2) € PW(g). o

If § <1, then § =0, g =1 and p(z% + 329" 0(i)z') = 1 € PW(1). Therefore,
o (r(@))(¢) = po*(1(a) (llyer(z + )" TLep oy 2")p(02(b) [Tyer (2 —
X 0Np(E + S h(i)2Y) € PW(1) = PV (g).

We conclude that po*(7(«))(¢) € PW (g) in all cases. B

We know that there exists uniquely an element 3 € (D)o with 7(3) = 5. We
take the unique element § € (0*D)o with 7(8) = . Since 7(a) € U(X,5*D, ),
a7t HU,6*D,B)) = U(B,0*D, 3). Tt is easy to see that the homomorphism
7 (@) : O(C)r(a) — Os,o induces an isomorphism 7*(a) : O(C)i(a) — 0%, of
complete k-algebras. Since o(a) = M (A), we have a homomorphism of k-algebras
o*(a) : A = Ogx 4 satistying o*(a)(M(A)) C M(Osx ). This homomorphism has
the unique extension o*(a) : A — O%, ,. Since t*¢ = 7, we have o*(a)(¢) =

T (a)a” (1())(¢)-
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Let P = {(6%¢)3(E) — (6*¢)s(E)(a)|E € comp(c*D)(8)}. P is a parameter
system of OA%*O" Since P = {(g* §)3(E) — (678 5(E)(r(a))|E € comp(5*D)(B)},
P =7*(a)(P).

Let p = pr¥(« )_1 0 0%, — A. pis an isomorphism of k-algebras. p(P)
pr(a)~! (r*(a)(P)) = p(P) = P. Weknow p(P) = P. po*(a)(¢) = pr*(a) "' 7" ()
7" (1(a))(¢) = po(7(a ))( ) € PW(g). We know po*(a)(¢) € PW(g).

We conclude that Theorem [41] holds, if dimA = dimV — 1 and dim A(¢)) =
dimV —1.

We conclude that Theorem T holds in all cases.

21. PROOF OF THE SUBMAIN THEOREMS

We give the proof of our submain theorems Theorem [£.2] Theorem [4.4] Theo-
rem [£5] and Theorem

Let k be any algebraically closed field; let A be any complete regular local ring
such that A contains k as a subring, the residue field A/M(A) is isomorphic to k
as k-algebras, and dim A > 2; let P be any parameter system of A, and let z € P
be any element.

Let A’ denote the completion of k[P — {z}] with respect to the maximal ideal
k[P —{z}]NM(A). The ring A’ is a local subring of A and M(A") = M(A)N A" =
(P —{z})A’. The set P — {z} is a parameter system of A’.

Let A = Spec(A/[[,ep#A), and A" = Spec(A’/ [ e p_y.y vA). We define a co-
ordinate system &£y7(4) : comp(A) — A of the normal crossing scheme (Spec(A), A)
at M(A) by putting &nra)(Spec(A/zA)) = x for any x € P. Let £ = {{p704) ) We
define a coordinate system §§VI(A,) : comp(A’) — A’ of the normal crossing scheme
(Spec(A”), A) at M(A") by putting §M(A,)(Spec(A’/xA’)) =g for any x € P—{z}.
Let ¢ = {g;w(A,)}. The triplets (Spec(A), A, ) and (Spec(A’), A’,¢’) are coordi-
nated normal crossing schemes over k.

Recall the following notations:

W) ={pcdlp=u][] =+ [ 2@

XEX zeP—{z}
for some u € A*, some finite subset X of M (A’),
some mapping a : X — Z,, and some mapping b: P — {z} = Zo}.
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For any h € Z; with h > 2 we denote

h—1
Wh)={seAlp=2"+% &)
i=0
for some mapping ¢’ : {0,1,...,h — 1} — M(A’) satisfying

h—1
X"+ ¢ (i)x" # 0 for any x € M(A').},
1=0

PW(h) ={¢ € A|¢p =)’ for some 1) € W (h) and some ¢’ € PW(1).},

EW (h) = {¢ € A| with ¢ = ¢}’ for some ¢ € W(h) and some )’ € PW(1),
T4 (P,v) has no z-removable faces.},

SW(h) = {¢ € Alp = 1)’ for some 1p € W (h) and some ' € PW (1),
I, (P,v) has no z-removable faces, and T'y (P, ¢) is z-simple.}.

We give the proof of Theorem

Consider any h € Z with h > 2 and any ¢ € PW(h).

We take an element v € A%, a finite subset X’ of M (A’), a mapping a : X — Z,
a mapping b: P — {z} — Zo and an element ¢ € W(h) satisfying

o=du [+ ] 2"

XEX zeP—{z}

We take a mapping ¢’ : {0,1,..., h—1} — M(A’) satisfying ¢ = 2"+ 3" "1 o/ (i)
and Y + Z?:_()l Y (i)x* # 0 for any y € M(A").

The quintuplet (u, X, a,b,v’) is uniquely determined depending on ¢, since A is
a unique factorization domain and Weierstrass’ preparation theorem holds.

In particular, '(0) = (—0)" + Z?:_()l Y/ (i)(=0)% # 0 and ord(P, fFV, ) =0

We denote V. = map(P,R), N = map(P,Z), A = map(P,Ry), W = {a €
Vl0a(z) =0} and U_ = {a € V]a(z) < h}.

V is a finite dimensional vector space over R. dimV = fP = dimA. N is a
lattice of V. The set {fF|z € P} is an R-basis of V, and it is a Z-basis of N. A is
a simplicial cone over N in V. dim A = dim V. W is a vector subspace of V' over
R. dimW =dimV — 1. NNW is a lattice of W. AN W is a simplicial cone oner
NOAW in W. dimANW = dim W. The set {fF|z € P —{z}} is an R-basis of W,
and it is a Z-basis of NN W. U_ is a non-empty open subset of V.

The dual vector space V* of V is a vector space over R and the dual basis
{fPV]|z € P} of {fF|x € P} is an R-basis of V*. The dual lattice N* of N is a
lattice of V*. The set {fI'V|x € P} is a Z-basis of N*. (fFV, a) = a(z) for any
x € P and any a € map(P,R). The dual cone AY|V of A is a simplicial cone over
N*in V*. dim AV|V = dim V.

We identify the dual vector space W* of W and the vector subspace vect({ fIV |z €
P —{z}}) of V*. N* N W* is a lattice of W*. The intersection (AV|V)NW* is a
simplicial cone over N* N W* in W*. dim(AV|[V)NW* =dim W. (AV|[V)NW* =
(ANW)V|W.

We put o(a) = (a — a(2)fF)/(h — a(z)) € W for any a € U_, and we define a
mapping o : U_ — W.

We consider any x € M(A").
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We denote P(x) = (P — {z}) U{z+ x} € M(A). The set P(x) is a parameter
system of A.
Let ¢ : P(x) — P denote the bijective mapping satisfying ¢(x) = z for any
x € P—{z} and t(z + x) = z. The mapping ¢ induces an isomorphism * : V =
map(P,R) — map(P(x),R) of vector spaces over R. Using .*, we identify V' and
map(P(x),R). We have f;:fi) = fP and £ = #P for any z € P — {2}.
0 #TL(P(x),¥) CAcCV.TL(P(x),v) is a Newton polyhedron over N in V.
The following claims hold. See Lemma[I0.4] Proposition[I0.6land Lemma[5.1116:
(1) There exists uniquely a mapping ¢’ : {0,1,...,h — 1} — M(A’) satisfying
v = (20" + X050 @)z + X" and X + 15 (@)X # 0 for any
X € M(A).
(2) stab(I'y (P(x),¢)) = A.
(3) T+ (P(x),v) is of z-Weierstrass type. The unique z-top vertex of I'y (P(x), ¥)
is equal to {hfF}.
(4) ord(P(x), f£'V,4) = 0. height(z, T(P(x), %)) = h.
(5) T+ (P(x), ) NU- #0. oI+ (P(x),¥) NU-) # 0.

Below, we denote
T4 (P(x),¥) = o(T+(P(x),¥) NU-).

(6) T (P(x), ) = o((conveone(T's (P(x), ¥) + {~fP}) + {hfF}) N U_) and
T (P(x),%) is a rational convex pseudo polyhedron over N N W in W.

0T (P(x),v) CANW. stab(T+(P(x),¥)) = ANW.

(7) Consider any face F of ' (P(x),) satisfying hf € F and FNU- # 0.

o(FNU_)is a face of Ty (P(x), ).

Below, we denote F' = o(F N U_).

dim F > 1 and dim F = dim F — 1.

If dim F' = 1, then stab(F) = {0}.

Consider any w € A°(F,T'1(P(x),¥)|V). If we take unique pair of el-
ements @ € (AY|[V) N W* and t € Ry satisfying w = @ + tfFV, then
& € A°(F, T4 (P(x), )W) and t = ord(@, T (P(x), )| W).

Consider any @ € A°(F, T4 (P(x),¢)|W). If t = ord(&, I'+ (P(x), ¥)|W),
then t € Ry and @ + tfIV € A°(F,T+(P(x),¥)|V).

(8) The mapping from the set of faces of I'y (P(x),v) satisfying hfl’ € F and
FNU_ # () to the set of faces of I\ (P(x),v) sending F to o(FNU_) is
bijective and it preserves the inclusion relation.

(9) Consider any face F of I'y (P(x), ).

F is a z-removable face, if and only if, hf € F and there exists y €
M (A") satisfying ps(P(x), F,v) = (z +x + x)"* and Y # 0.

(10) Any z-removable face F of I (P(x),) satisfies hf € F, and FNU_ D
FNW #0.

(11) ¥ T'+(P(x),%) has a z-removable face, then it has a z-removable face of
dimension one.

(12) Assume that T';(P(x),?) has a z-removable face. We consider any z-
removable face F' of dimension one of T'y (P(x), ¥).
(a) o(FNU_) is a vertex of T'y (P(x), ).

We take the unique point ¢(F) € 'y (P(x),v) with {c¢(F)} = o(FNU_).
(b) The set {c(F)} is a vertex of Ty (P(x),%). ¢(F) € T4 (P(x),%) N N.
c(F)#0. ¢(F) e ANWNN —{0}.
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(¢) There exists uniquely an element v(F') € k— {0} satisfying ps(P(x), F,
) = (z+x+7v(F) Hmepi{z} x(ffvp(F)))h'
We take the unique element v(F) € k — {0} satisfying ps(P(x), F,¢) =
(z+x+v7F) [Lep—i x<fzpv’c(F)>)h and we denote

X(F)=~@F) [[ «¥ "< e M(A’) - {0}, and
zeP—{z}

= 3 Y = bavyyewe e € (AY]V) W NN
zeP—{z}

(d) ps(P(x), F.¥) = (2 + x + x(F)". o

() ( ) ¢ T (P (X+x(F)),¥) € T1(P(x), ). Any face G of I'y (P(x), ¥)
satisfying ¢(F) ¢ G is a face of I'y (P (X +x(F)),9).
ord(P — {z},00, x(F)) = (do,c(F)). in(P — {z},00, x(F)) = x(F).
supp(P — {z}, x(F)) = {c(F)}.

Below, we use the above notations T'y (P(x),v) = o(T+(P(x),¥) NU-), ¢(F) €
(ANWNN) = {0}, 7(F) € k= {0}, x(F) € M(4') — {0} and & € ((AY|V) N
W*)° N N*.

We consider the following algorithm starting from Step O.

In Step 0 we put ¥(0) =0 € M(A’) and proceed to Step 1.

Consider any positive integer i. In Step 7, if T'y(P(x(¢ — 1)),%) has no z-
removable faces, then we finish the algorithm. In Step ¢, if I'y (P(x(i — 1)), %) has
z-removable faces, then we choose any z-removable face F(i) of dimension one of
Iy (P(x(i—1)),%) satisfying (8o, c(F(i))) = min{(d, c(F))|F is a z-removable face
of dimension one of T'y (P(x(i — 1)), %)}, we put x(i) = x(: — 1)+ x(F (1)) € M(A")
and we proceed to Step ¢ + 1.

Consider the case where we finish this algorithm in finite steps. Assume that
the algorithm has finished in Step 4 for some positive integer i. x(: — 1) € M(A4")
and 'y (P(x(¢ — 1)),%) has no z-removable faces. We conclude that there exists
X € M(A’) such that I'y (P(), %) has no z-removable faces.

Consider the case where this algorithm has infinite steps. By 12.(e) and 12.(b)
we know that x(F(i)) € M(A'), ord(P— {2}, 30, x(F(0))) = (3o, c(F(i))}, e(F(i)) €
ANWNN, and x(i) = X%, x(F(j)) € M(A) for any i € Zy. By 12.(e) we know
that ¢(F (7)) # ¢(F(j)) for any i € Z4 and any j € Z, with i # j.

Since {e € ANW N N|{dy,e) < m} is a finite set for any m € Zg, we know
that lim; o (dp, c(F(7))) = co and the sequence Y(i), i € Z, converges. We put
% = limi oo () = 00, X(F(0)) € M(A).

Assume that T'y (P(X), ¥) has z-removable faces. We will deduce a contradiction.
Take any z-removable face F' of dimension one of I'y (P(¥),%). Take any & €
A ({e(F)}, T4 (P(X), )W) © ((AY[V)ATV#)°. Put £ = ord(@, T (P(x), 9)|W) €
Ry and w = @ + tfFY € A°(F, T4 (P(x),%)|V). We know that t = (@, c(F)) and
in(P(x), w0, ¥) = ps(P(R), F, ) = (> + X + x(F)".

Since @ € ((AV|V)NW*)°, {e e ANW N N|(w,e) <
any i € Zy such that (5o, c(F(4))) > (do, c(F)) and (@, c(F(j
with j > 4.

ord(P(X),w, 2+ %) = (w0, ) = t. (24 %) — (5 + %(0)) = X241 X(F()). For
any j € Zy with j > i + L, ord(P(),w, X(F(7))) = ord(P — {=},&, \(F(j))) =
(0,c(F(j))) > t. Therefore, ord(P(X),w, (z+X)—(2+x(¢))) = ord(P(¥),w Z]:H_l

t} is a finite set. Take
j))) >t for any j € Z4

TG
+
=
<
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x(F(j))) > t and ord(P(Y),w, z+X) = or X),w, z+x(7)). By Lemma[E1116, we

d(P(
w, () for any ¢ € A, in(P(x(i)),w,¥) =

know that ord(P ( ),w, () = ord(P(x(4)),

(= + () + x(E). P = heonv({7e(F)}) = conv(supp(P(x(1). in(P(x(0)).. v
) = A(w, T4 (P(x ( ), V)IV) € F(T+(P(x(i)),%)) and F is a z-removable face of
dimension one of T' (P(x(7)),®). By how to choose F (i) we have (do,c(F(7))) <

(b0, c(F)).-

Since (b, c(F(7))) > (3o, c(F)), we obtain a contradiction.

We conclude that 'y (P(Y), %) has no z-removable faces.

We know that there exists ¥ € M (A’) such that I't (P(x), ¢) has no z-removable
faces in all cases.

We take any ¥ € M(A’) such that I'y (P(X),%) has no z-removable faces. Let
p: A — A denote the unique isomorphism of k-algebras satisfying p(z + x) =
and p(z) = z for any & € P — {z}. We know that p(1p) € W(h), T'+(P, p(¥)) has
no z-removable faces and p(u) € A*. For any x € X, p(z + x(i)) = z + x(i) — X
and x(i) — x € M(A).

Since

p(0) = pW)pw) [T +x -0 [ =",

XEX zeP—{z}

We know p(¢) € EW (h).

We know that Theorem holds.

Note here that dim A’ = dim A — 1 < dim A, and any ¢’ € A’ with ¢’ # 0 has
normal crossings over P’ if dim A = 2. Therefore, we decide that we use induction
on dim A, and we can assume the following claim (x):

() For any ¢/ € A’ with ¢’ # 0, there exists a weakly admissible composition
of blowing-ups ¢’ : ¥’ — Spec(A’) over (A’,¢’) and an extended pull-back
(%', A, €") of the coordinated normal crossing scheme (Spec(A’), A’,¢') b
o’ satisfying supp(c’*(Spec(A’/¢' A’) + A’)) C supp(A).

In the case of dim A = 2, putting (X', A’, ') = (Spec(A’), A’, ¢') and considering
the identity morphism ¢’ : ¥’ — Spec(A4’) = ¥, we know that o’ is a weakly
admissible composition of blowing-ups over (A’,¢’) and supp(c’* (Spec(A4’/¢'A") +
A")) C supp(A’) for any ¢’ € A’ with ¢/ # 0.

Let ¢’ : ¥ — Spec(A’) be any weakly admissible composition of blowing-ups
o' : ¥ — Spec(A’) over (A’,¢'), and let (X', A’,€") be an extended pull-back of
the coordinated normal crossing scheme (Spec(A’), A’,¢&’) by ¢’. We consider a
morphism Spec(A) — Spec(A’) induced by the inclusion ring homomorphism A’ —
A, the product scheme ¥ = ¥’ Xgpec(ar) Spec(A), the projection o : ¥ — Spec(A),
and the projection 7 : ¥ — ¥/, We know the following (See Lemma [35]):

(1) The morphism o is a weakly admissible composition of blowing-ups over
(A,9).

(2) The pull-back o*Spec(A/zA) of the prime divisor Spec(A/zA) of Spec(A)
by o is a smooth prime divisor of ¥, and o*Spec(A/zA) D o~ (M(A)).

(3) The projection 7 : ¥ — ¥’ induces an isomorphism o*Spec(A4/zA) — X'.

Let A = m*A’ 4+ 0*Spec(A/zA).
(4) The pair (X, A) is a normal crossing scheme over k. (A)g = 7= ((A")g) N
0*Spec(A/zA). For any a € (A)y we have 7(a) € (A')o. The mapping

71 (A)g — (A')g induced by 7 is bijective.
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(5) For any a € (A)g, we have comp(A)(a) = {7*A|A € comp(A)(7(a))} U
{o*Spec(A/zA)}, and U(Z, A, o) = 7~ YU (X', A, n(a))).

Consider any a € (A)g. We put & (7*A) = 7*(U (Y, A, n(a )))(7;((1)(/&)) for
any A € comp(A’)(m(a)), and we put &, (c*Spec(A/zA)) = g ».4,0)7 o*(Spec(A4))
(z_). We have a mapping &, : comp(A)(a) — Os(U(3,A,a)). Let &€ = {{,|a €
(Ao} o ) )

(6) For any o € (A)o, &u is a coordinate system of (X,A) at «, and § is a
coordinate system of (¥, A).
(7) The triplet (X, A, €) is an extended pull-back of (Spec(A4), A, &) by o.

The lemma below plays the role of a key in our proofs below.

Let X be any finite set. We define a partial order on map(X,R). Let e €
map(X,R) and f € map(X,R) be any elements. We denote e < f or f > e,
if e(z) < f(x) for any x € X. Obviously the relation < is a partial order on
map(X,R). We denote e < for f>e,if e < f and e # f.

Lemma 21.1. (Bierstone and Milman [3], p. 25, Lemma 4.7)

Let o € map(P,Zy), 5 € map(P,Zy) and v € map(P,Zy) be any mappings from
P toZo any let u e A*, v € AX and w € A* be any elements.

If
u H xa(m) — H Iﬁ(z) = w H :E'y(ac)7

zEP zcP rcP
then, either a < B, or, 8 < « with respect to the partial order < on map(P,R).
We give the proof of Theorem [£.4]
Assume the above (*) and consider any h € Z4 with h > 2 and any ¢ € EW (h).

We take an element ¢ € W (h), an element u € A*, a finite subset X of M (A4’),
a mapping a : X — Z4 and a mapping b: P — {2} — Z satisfying

=Ju H (z + x)*™) H 2@,
XEX zeP—{z}
The quintuplet (¢, u, X, a,b) is uniquely determined depending on ¢, since A is a
unique factorization domain.

We take a mapping ¢’ : {0,1,...,h—1} — M (A’) satisfying ¢ = zh—i-Z?:_Ol (i) 2
and x —|—Ef 01 W' (i)x* # 0 for any x € M(A’). ¢/ is uniquely determined depending
on 1, since Weierstrass’ preparation theorem holds.

In particular ¢/(0) = 0" + E?:_ol Y (1)0% # 0.

The Newton polyhedron I'; (P, %) has no z-removable faces.

We denote
w=1 H (z 4 x)*™ € A, and
xeXx—{0}
h=h+ > alx)€Zy
x€X —{0}

2 < h<h Itis easy to see that there exists uniquely a mapping w’ : {0,1, ..., h—
1} — M(A’) satisfying w = 2" + Zl o w'(i)z" and w'(0) # 0. We take the unique
mapping w’ : {0,1,..., h— 1} — M (A') satistying the above equality and w’(0) # 0.

We denote I = {i € {0,1,...,h —1}w'(i) #0}. 0 € I c {0,1,...,h —1}. We
put ' (h) =1€ A’
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Note that for any integers j, k, ¢ with 0 < k < ¢ < j, j!/(j — k) € Z4,
3G —10) € Zy and j1/(j — k) <3/ (G —0).
For any j € I U {h} we denote

K@G)={(k,Olkel,telk<l<yj,
W' (k)M TR G ()G GOV =G G=R)) £ ()Y G=O) < T x I

We denote J = {j € TU{h} K (j) #0}. J c (I —{0,1})U{h}. We put
o =T[wOD] I @ EPGPu (G GDGIGHD (g G=0)

il je€J (k,0)EK(H)

¢ e M(A"). ¢ #0.

By (*) we know that there exists a weakly admissible composition of blowing-ups
o' : %' — Spec(A")@Qover (A’,¢") and an extended pull-back (X', A’, £') of the coor-
dinated normal crossing scheme (Spec(A’), A’, &) by o’ satisfying supp(c’* (Spec(A’/
¢’ A') 4+ A")) C supp(A’). We take a weakly admissible composition of blowing-ups
o’ : ¥ — Spec(A’) over (A’,¢') and an extended pull-back (X', A’, £’) of the coordi-
nated normal crossing scheme (Spec(A’), A’, &) by o’ satisfying supp(o’* (Spec(A’/
§A) + A)) C supp(A).

We consider a morphism Spec(4) — Spec(A’) induced by the inclusion ring
homomorphism A" — A, the product scheme ¥ = ¥’ xgpcc(ary Spec(A), the projec-
tion o : ¥ — Spec(A), and the projection 7 : ¥ — X/, The structure sheaf of the
scheme ¥ is denoted by Os. Let A = 7*A’ + 0*Spec(A/zA). We have a normal
crossing scheme (¥, A) with (A)g C 0*Spec(A/zA). Consider any a € (A)y. We
put o (¥ A) = (U (Y, A, 7 )))(ﬁ;(a) (A)) for any A € comp(A’)(7(c)), and we
put & (0*Spec(A/zA)) = resg(zyka)a* (Spec(A))(z). We have a coordinate sys-
tem &, : comp(A)(a) = Os(U(X, A, a)) of (X,A) at a, and a coordinate system
£= {€la € (Ao} of (%, A).

Consider any closed point o € ¥ with o(a) = M (A).

We take any 3 € (A) satisfying o € U(Z, A, B).

We consider the homomorphism o*(a) : A — Oy , of k-algebras induced by o. It
satisfies 0™ (o) (M (A)) C M(Os, o) and it has a unique extension o*(a) : A — O%, ,.
Since the morphism o is a weakly admissible composition of blowing-ups over (A, §),
o*(«) is injective.

Note that o € o~ *(M(A)) C o*Spec(4/zA), B € (A)o C o*Spec(A4/zA),
o*Spec(A/24) € comp(A)(5) and Es(o"Spec(4/zA))(a) = (o*(@)(=))(a) =
z(M(A)) = 0. Note that £5(A)(a) € k for any A € comp(A)(B), since k is al-
gebraically closed.

We denote P = {€5(A) — €5(A)(a)|A € comp(A)(B)}. P is a parameter system
of 05, ,. We denote z = o*(a)(z). z € P.

We take any isomorphism p : OF , — A of k-algebras satisfying p(P) = P and
p(z) = 2. po*(a)(z) = 2. p(P— {}) = P — {2}, ]

Note that k[P — {z}] C O% . By 0%/, we denote the completion of k[P — {z}]
with respect to the maximal ideal k[P — {z}] N M(0Og ). Of, is a complete local
subring of O, ,.0¢/, is a k-subalgebra of O%, ,.P — {z} is a parameter system of
0y, a*(a)(A') C 0. o*(a)(M(A) C M(0F,). plO%,) = A"

We consider the element o™ (a)(w) € Of ,
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=zh —|—ZO'*(04)(CU/ 1))z

el

and o*(a)(w’(0)) # 0. We know that the Newton polyhedron 'y (P, o*(a)(w)) is of
z-Weierstrass type, the unique z-vertex of I'y (P, o™ (@)(w)) is equal to {hfF} and
ord(P, fFV, 0% (a)(w)) = 0.

Consider any i € I.

0 # o*(a)(w'(i)) € M(O%/,). Since ¢' € w'(i)A” and supp(c”*Spec(A’/¢'A")) C
supp(o’* (Spec(A’ /¢’ A’) + A')) C supp(A’), o* (@) (w' (i) has normal crossings over
P —{z}. We take the unique pair of an element v(i) € (O%/,)* and a mapping

(i) : P —{z} — Zg satisfying o*(a)(w'(i)) = 0(i) [Tzep_ = }xc(l)(z). We know
¢(i) # 0, since o™ (a)(w'(7)) € M(O%/,,).

We put &(h) = 0 € map(P — {z},Zo). 0*(a)(w'(h) =1=[l,cp_(: }xc(h)( 7).

Assume that a non-negative integer m with m < #I and a mapping v : {0,1, ...,
m} — I U{h} satisfying the following five conditions are given:

(1) v is injective and it reverses the order.

(2) v(0) = h.

(3) If m > 0, then for any ¢ € {1,2,...,m} and for any j € I with v(i) < j <
v(i — 1), (v(i — 1) — )/ (vl — 1) = v(@)av(i) + (( — v(i)/ (i — 1) -
v(i))ev(i — 1) < &(j).

(4) If m > 0, then for any ¢ € {1,2,...,m} and for any j € I with j < v(i),
(=) =D/ ti=) =)ot D)4 (G —v(0)/ W(i-1) = v(i))erli=1) <
é(4).

(5) v(m) # 0.

Note that if m = 0, then there exists uniquely a mapping v : {0,1,...,m} — I'U
{h} satisfying the above conditions. If m = 0, a mapping v : {0} = {0,1,...,m} —
TU {h} satisfying v(0) = h satisfies the conditions.

supp(o”*Spec(A'/¢'A")) C supp(o™ (Spec(A'/¢'A”) + A”)) C supp(A”).

If Kv(m) # 0, then for any (k,¢) € Kv(m), 0 < k < £ < v(m), gb’
(! () () =)y ) () )= ) = )1 ()= ) m)! )= ) g7
and the element o (a) (e’ ()7 (™Y (M) =) 1y (1) ()1 )= £0) = (m)1 () ) _
W' (0P (v(m)=0)) ¢ Og/, has normal crossings over P —{z}. By Lemma IZD'_L
we know that either (¢(k ) —av(m))/(v(m) — k) < (€(¢) — ev(m))/(v(m) — £) o
(€(0) — ev(m))/(v(m) — £) < (é(k) — ev(m))/(v(m) — k) holds for any k € I and
any ¢ € I with k& < v(m) and ¢ < v(m). Note that (¢(0) — cv(m))/v(m) €
{(e(k) —cv(m))/(v(m) — k)|k € I,k <v(m)} # 0. We know that the set {(c(k) —
cv(m))/(v(m) — k)|k € I,k < v(m)} has the minimum element min{(¢(k) —
cv(m))/(v(m) — k)|k € I,k < v(m)} with respect to the partial order <.

Putting v(m+1) = min{j € I|j < v(m), (€(j)—cv(m))/(v(m)—j) = min{(¢(k)—
cv(m))/(v(m)—k)|k € I,k < v(m)}}, we define an extension v : {0,1,...,m+1} —
TU{h} of v:{0,1,...,m} = TU{h}. v(m +1) < v(m).

Consider any j € I with v(m + 1) < j < v(m). By how to choose v(m + 1) we
know (cv(m+1)—cv(m))/(v(m)—v(m+1)) < (¢(j)—cv(m))/(v(m)—j). It follows
()=l D)) (G =+ D )= D) <
é(4).
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Consider any j € I with j < v(m +1). By how to choose v(m + 1) we know
(ecv(m+ 1) —ev(m))/(v(m) — v(m + 1)) < (é(4) — ev(m))/(v(m) — j). It follows
() =3) () =+ D)1+ (G =+ D) () =) <
¢

We know that if v(m+1) # 0, then the extension v : {0,1,...,m+1} — TU{h}
satisfies the above five conditions. If v(m + 1) = 0, then the extension satisfies the
four conditions except the last one of the above five.

By induction we know that there exists uniquely a pair of a positive integer m
and a mapping v : {0,1,...,m} - TU {fz} satisfying the following five conditions:

(1) v is injective and it reverses the order.
(2) v(0) = h.

(3) For any i € {1,2,...,m} and for anyj € I with v(i) < j < v(i — 1),
i

c(5)-
(4) For any i € {1,2,...,m} and for any j € I with j < v(i), (v(i —1) —
DI —1) = v(@)av() + (G - v(@)/(vli - 1) - ()i - 1) < &)

(5) v(m) = 0.

We take the unique pair of a positive integer m and a mapping v : {0,1,...,m} —
TU {h} satisfying the above five conditions.

We know that (ev(i) —ev(i —1))/(v(i — 1) —v(i)) < (ev(i+ 1) —av(i))/(v(i) —
v(i+1)) forany i € {1,2,...,m — 1}, if m > 2.

By Lemma [[0.13113 we know that the Newton polyhedron 'y (P, o*(a)(w)) is
Z-simple.

We consider the element o™ (o) (u]],cp_ {z} @) € 0 S a

o*(@)(u) € (0% )% 0" (@)([Toep-(zy ")) € OF,.

Since supp(c’*A’) C supp(c”*(Spec(4’ /¢’ A") + A’ )) C supp(A’), we know that
o () oep_iy 2 b(=)) has normal crossings over P — {z}. We take the unique
pair of an element u' € (O%,)* and a mapping b: P—{z} = Zy satisfy-

ing o () ep—23 2" = @ Tlacpqz 2@, Let 1 = o*(a) (W)@’ € (0%,)".
p(u) € A*. We have

zeP—{z} zeP—{z}
por(@)u [ ") =p@ [ o .
zeP—{z} zeP—{z}

Consider the case where y # 0 for any y € X. )

o*()(@) = 0 (@) @) (@) (u [Loep_ gy ) = 0" (@) (@) [Taep_ () 2. We
know that T (P,0*(a)(¢)) = T+ (P,0*(a)(w)) + {b} and T (P,0*(a)(¢)) is -
simple.

Consider the case where xy = 0 for some x € X.

We take the unique xo € X with xo = 0. o*()(¢) = o"(a)(w)o*(a)
(u]liep—i2y 2b@)zax0) = o* () (w)uz? ™) [T, p_ ) z°®) . We know that T'y (P,
o*(a)(¢)) =T4(P,0"(a)(w)) + {a(x0) f{ + b} and T+ (P,0%(a)(¢)) is Z-simple.

We conclude that the Newton polyhedron I'y (P, 0*(a)(¢)) is Z-simple in all cases
and the Newton polyhedron I'y (P, po*(«)(¢)) is z-simple.

We consider any x € & and the element o*(a)(2 + x) € 0%, ,

Q
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po*(a)(z 4+ x) =z + po*(a)(x). po*(a)(x) € M(A').
Since po*(«) is injective, po™(a)(x) # po*(a)(x) for any x € X and any xy € X

with x # X.
po (@) (T (2 +)"0) = [T (z + po* (@) (x))*™.

xeX xXeX

Therefore, we know

@) [[E+x I ")

XEX zeP—{z}
=p(@) [[ z+po* (@00 [ =" @ eprw().
XEX zeP—{z}

We consider the element o™ (a)(¢) € O%, ,

h—1
=+ 3 (@)W (i)
=0

o (a)(W' (1)) € M(O% ) for any i € {0,1,...,h — 1}. Since o*(a) is injective,

7*(@)((0)) # 0. ord(P 1P, 0*(@)()) = 0. Since L' (P, (a)(¢) is 2-simple
and o*(a)(¢) € o* () (1/))(927a, we know that 'y (P, o* () (%)) is also Z-simple. The
unique z-top vertex of I'y (P, 0*(a)()) is equal to {hfL}.

We would like to show that I'y (P,o*(a)(?)) has no z-removable faces.

Assume that I'y (P, 0*(a)(1)) has zZ-removable faces. We will deduce a contra-
diction.

Take any z-removable face F of dimension one of I'y (P, c*(a)(v))). stab(F) =
{0}. A°(F,T4.(P,0*(a)(¥))|map(P,R)) C (map(P,Ro)"|map(P, R))°. Take any
A € (map(P,Ro)"[map(P,R)NY ;e p_(z) RFFY such that A+ fFV € A°(F, T (P,
o*()(¥))[map(P,R)). hfF € Fand ord(P,A+fFY, 0% (a) () = A+ Y nfl) =
h. Takey € k—{0} and & € map(P —{z}, Zo) satlsfylng in(P, )\—i—fPV o*(a)(¥)) =
ps(P, F,o*(a)(¥)) = (47 [Loep_12) FE@)h = zhp 3 (7 Msep (2} i@ gh—,

We define an element A € map(P,Ro)" [map(P,R)NY. cp_(, RfFY by putting
A fPY = ord(P, A\, 0*(a) () € Rg forany z € P. A\fFV € map(P,Ry)" |map(P, R).
We denote F = A(A+ fFV, T4 (P, )|map(P,R)) € F(I'y+(P,1)). We can show that
ord(P, A+ IV, ) = ord(P, A+ f£V, 0™ (a)(¥))) = h and o* (@) (in(P, A+ £V, 4)) =
in(P X+ fIY, 0" (@)() = 2" + iy (D7 Tacp g5 272"

We know that hff € F and ord(P — {z},\,¢/(h —i)) > i(\,€) for any i €
{1,2,...,h}. We put

Dlh— i) = {in(P — {2\ (h—1)) iford(P — {2}, \,¢'(h — 1)) = i(\, &),

0 if ord(P — {z}, \,¢'(h — 7)) > i(\, &).
We have in(P, A+fpv,¢) =z —I—ZZ Lh(h—i)z"" and o* (a)(in(P, A+ fFY,4)) =
4 Y 0 () (@b (h— 1))z We conclude (§)7 [[pep_ 2y 760 = 0™ () (th (h —
i)) for any i € {1,2,...,h}.
By 1 € k we denote the identity element of the field k.
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We consider the case where the characteristic number of the field k is equal to

e

(1)1A:
o (@) (X)-

We consider the case where the characteristic number of the field k is positive.
By p we denote the characteristic number of the field k. The integer p is a prime
number. We take the unique pair of § € Zo and h € Z, such that h = p°h
and h if, not a mu_lt_iple of p. (p’f;)i = _B_i # 0. We have (7[L;cp_(5 Ze@) =
a*(a)(y(h —p°)/(h1)) and ¢(h —p°)/(h1) € M(A').

For any complete regular local ring R such that R contains k and the residue
field R/M(R) is isomorphic to k as k-algebras, we denote RP’ = {s?’|s € R}. RP’
is a local subring of R.

= ~&(z)\p° ep® 7 77 *(\—1(neCDP° :

(I TLser iz 3@ € O, B(h—p?)/(1) € 0*(a)"H(O)). Now, since o

is a weakly admissible composition of blowing-ups over (A, ¢), we can show that

0
h1 #0. Weput x = ¢)(h—1)/(h1) € M(A’). We have 3 [[;ep_(zy 257 =

o* (oz)’l(ng);) = AP’. We know that there exists uniquely an element ¥ € A
with ¢?* = OU(h — p®)/(h1). We take the unique element ¥ € A with =
Y(h — p%)/(h1). Since 9(h — p°)/(h1) € M(A’), we know ¥ € M(A’). We know
= ~e(z)\p° * op° = ~e(z * o

(*y erﬁ—{z} ¥ )P = o*(a)(x*") and 'YHieP—{Z} 70 = o* () (V).

We conclude that there exists ¥ € M (A’) satisfying 7 H:EeP—{z} #°®) = o*(a)(¥)
in all cases. We take any x € M(A') satisfying ¥[[;cp_( %@ = o*(a)(R).

We have o (a) (in(P, )\_’_sz\/, V) = in(pv j\_i_f;V’ o () (¥)) = (E—"ﬁ/l—[ieﬁ*{i}
N = (Z + o () (X)) = o*(a)((z + X)"). Since o*(a) is injective we have
ps(P, F,¢) = in(P, A+ fFV, ) = (2 +X)" and we know that the face F of T'; (P, )
is z-removable.

Since the Newton polyhedron I'; (P, 1) has no z-removable faces, we obtain a
contradiction. -

We conclude that the Newton polyhedron I'y (P, o*(a)(%)) has no z-removable
faces and the Newton polyhedron F+(P pa *(a)(#)) has no z-removable faces.

We consider the case where Y —i—ZZ 0 0 (@) (¥ (i))x" # 0 for any x € M(O¢/,).

We have po*(a)($) € W(h). Since po*(a)(9) = po*(@)(W)po*(@)(u ], cx
40" e 2. p0* (@) [ calc+ 00 Ty #) € PWQ)
T4 (P, po*(a)(4)) is z-simple and T'y (P, po*(a)(¢))) has no z-removable faces, we
conclude thatpo™*(a)(¢) € SW(h).

We consider the case where y —I—Zf_ol o* () (' (i ))x = 0 for some Y € M(O¢/,,).

Let R = {x € M(Og/,)Ix" + Zl o ¥ (a)(¥'(i))x" = 0}. R is a non-empty
finite set. 1 < R < h. Consider any ¥ € R. Since Of, , is a unique factorization
domain, there exists uniquely a posmve 1nteger w(X) € Z satistying o*(a)(v) €
(z — )X (9% , and o*(a)(¥) & (2 — P10 . We take the unique pu(y) € Z4
satlsfymg these conditions. 1 < > oxer H(X) < h Let g = h — 3 ccr i(X) € Zo.

g#£1. g<h. Letg—max{g,1}€Z+ Since h > 2, g < h.

There exists uniquely a mapping ¢’ : {0,1,...,9 — 1} — M(Og/,) satisfying
o (@)(¥) = [ljer(z — )P (29 + Zf;ol "(i)z%). We take the unique mapping
¢ :{0,1,...,4— 1} = M(0%/,) satisfying this equality. ¥9 + 37" ¢'(i)x’ # 0 for
any x € M(O%’a)
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p(ITger(z = X)*N) € PW(1).

If g > 2, then § = g and p(zq + Z '(i)z") € W(9) = W(g). There-
fore, po(a)(¢) = 0(5 Yo ¢z )(ern( = p(0))* X)) po*(a) (uTT e (= +
X)a(X) HmEP {z} ) € PW( )

If g <1,then g =0, g=1and p(z% + E?;Olc (i)z%) PW(1). There-
fore, po*(a)(@) = p(z7 + 32020 ¢ (D7) ([Izer (= — p())"™ ) ( Jullien(z +
VO Tep ) %)) € PI(1) = PW(g).

We conclude that there exists g € Z, satisfying g < h and po*(«)(¢) € PW(g),
if Y" + Zl 0 0¥ (a )@ (i))x* = 0 for some Y € M(O%’Q)

We know that Theorem [£4] holds.

We give the proof of Theorem

Assume the above (%) and consider any ¢ € A with ¢ # 0.

We take the unique mapping ¢’ : Zo — A’ satisfying ¢ = >, ¢'(i)z*. Since
@ #0, ¢'(i) # 0 for some i € Zg.

Since A’ is noetherian, there exists m € Zg satisfying {¢'(7)|i € {0,1,...,m}} A’ =
{¢'()|i € Zo}A'. We take m € Zgy satisfying {¢'(i)]i € {0,1,...,m}}A" =
{' ()i € Zo}A'. {0} # {#' ()i € {0,1,...,m}}A" C A" and ¢'(j) € {¢'(V)]i €
{0,1,...,m}}A’ for any j € Zy.

We denote I = {i € {0,1,...,m}|¢'(i) #0}. 0 A1 C{0,1,...,m}.

We denote

K={(kOkel,tel k<t,¢k)#¢O)}cIxI.

We put

PRSI IO | RCAOEAG)!

icl (k) eK

e Ay #£0.

By (%) we know that there exists a weakly admissible composition of blowing-ups
o' : %' — Spec(A’) over (A, ¢") and an extended pull-back (X', A’, ") of the coordi-
nated normal crossing scheme (Spec(A’), A’, &) by o' satisfying supp(o’* (Spec(A4’/
P A"+ A")) C supp(A’). We take a weakly admissible composition of blowing-ups
o’ : 3 — Spec(A’) over (A/,¢') and an extended pull-back (%', A’, £’) of the coordi-
nated normal crossing scheme (Spec(A’), A’, &) by o’ satisfying supp(o’* (Spec(A’/
W AY) + AY)) C supp(A).

We consider a morphism Spec(4) — Spec(A’) induced by the inclusion ring
homomorphism A" — A, the product scheme ¥ = ¥’ xgpeq(ary Spec(A), the projec-
tion o : 3 — Spec(A), and the projection 7 : ¥ — X’. The structure sheaf of the
scheme ¥ is denoted by Os. Let A = 7*A’ + 0*Spec(A/zA). We have a normal
crossing scheme (3, A) with (A)y C 0*Spec(A4/zA). Consider any o € (A)g. We
put &u (¥ A) = (U (Y, A, 7 (a )))({;(a) (A)) for any A € comp(A’)(7(c)), and we
put &, (0*Spec(A/zA)) = resg(zyka)a* (Spec(A))(z). We have a coordinate sys-
tem &, : comp(A)(a) = Ox(U(E, A, a)) of (£,A) at a, and a coordinate system
£={€ula e (A} of (%,A). ) )

Note that if dim A = 2, then ¥ = Spec(A), 0 = idgpec(a), A = A and § = ¢.

Consider any closed point a € ¥ with o(a) = M (A).

We take any 3 € (A) satisfying o € U(Z, A, B).
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We consider the homomorphism o*(«) : A — Oy 4 of k-algebras induced by o. It
satisfies 0™ (a)(M(A)) C M(Os, o) and it has a unique extension o*(a) : A — 0%, ,.
Since the morphism o is a weakly admissible composition of blowing-ups over (A, §),
o*(«) is injective.

Note that o € o~ *(M(A)) C o*Spec(4/zA), B € (A)y C o*Spec(A4/zA),
o*Spec(A/zA) € comp(A)(f) and &s(o*Spec(A/zA))(a) = (o%(a)(2))(@) =
2(M(A)) = 0. Note that £5(A)(a) € k for any A € comp(A)(3), since k is al-
gebraically closed.

We denote P = {£5(A) — &5(A)(a)|A € comp(A)(B)}. P is a parameter system
of 0%, ,. We denote z = 0*(a)(z). z € P.

We take any isomorphism p : 0%, , — A of k-algebras satisfying p(P) = P and
o) = 2. po*(@)(2) = 2. p(P—{z}) = P — {z}. ]

Note that k[P — {z}] C O%, . By 0%/, we denote the completion of k[P — {Z}]
with respect to the maximal ideal k[P — {z}] N M (0%, ). OF/, is a complete local
subring of 0%, ,.0%/, is a k-subalgebra of Ogﬂf’ — {z} is a parameter system of
0y, a*(a)(A') € O, o* (@) (M(A) © M(DF,). plOg,) = A

We consider the element o*(a)(¢) € O, ,

ot (@) (@) = Yo" (a) (@ (i))z".
1€Zo
For any i € Zo, 0*(a)(¢' (7)) € OF/

supp(o’*Spec(A’ /1)’ A")) C supp(c’*(Spec(A’ /¢’ A’) + A")) C supp(A’).

Consider any i € I.

0 # o*(a)(¢'(i)) € OF,. Since ¢ € ¢'(i)A" and supp(c'*Spec(A’/y'A")) C
supp(A’), o*(a)(¢' (7)) has normal crossings over P — {Z}. We take the unique pair
of elements 9(i) € (0F/,)* and &(i) € map(P — {2}, Zo) satisfying o* () (¢/ (i) =

(i) [Lzep- {z 7@,

If K # 0, then for any (k,¢) € K, 0 < k < ¢, ¢ € (¢'(k) — ¢'(¢£))A" and
the element U*(a) (¢/(k) — ¢/ (£)) € OF/, has normal crossings over P — {z}. By
Lemma T.1] we know that either ¢(k) < &(¢) or &(¢) < &(k) holds for any k € I and
any ¢ € I with k # (. Since {¢(k)|k € I} # 0, we know that the set {¢(k)|k € I}
has the minimum element min{e(k)|k € I} with respect to the partial order <.

We put @ = min{j € I|_( i) = min{c(k)|k € I'}} and b =minI. a € Zy. b € Zy.
b<a {[liep 5 TPV € I,b <i < a}Og , = {5(;’) [icp_(z WPz €
10, = {o*(@)(6()))2li € N0, = {o"(a)(@(i))7']i € {0,1,...,m}}O%,
Consider any j € Zo with j > m. Since ¢(j) € {¢(0)'|i € {0,1,...,m}}A4,
o"(@)(0(4)) € {o*(a)(e(@))i € {0,1,...,m}}OF,, and o*(a)(¢(j)')z" €
{o*(@)(¢(1))z']i € {0,1,...,m}}O% ,. We know that {J].cp_y eO@ z; ¢
Lb < i < a}Og, = {0*(a)(¢(i))Z']i € Z}Os,,. We know that there exists

uniquely a pair of an element w € (O, ,)* and a mapping ¢" : {0,1,...,a—b—1} —
M(0¥/,,) satistying 0*(a)(¢) = w];cp_(z ze(a)(@) gb(za=b 4 S0 b1 (Z)Ei) and
¢'(0) # 0 if b < a. We take w € (Og, ,)* and a mapping ¢' : {0,1,...,a—b—1} —

M(Og/,) satisfying these conditions.

Let R = {x € M(0%/)IX"+ > 2, b= ¢(i)x' = 0}. R is a finite set. R < a—b.
Consider any y € R. Since 0%, , is a unique factorization domain, there ex-

ists uniquely a positive integer u(y) € Zj satisfying z¢7° + > 0] b=t @)z e
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(z — )H00g , and 2970 + SN ()F ¢ (2 - x)POTI0g . We take the
unique p(x) € Z4 satisfying these conditions. Z;zeR wx) < a—>b. Let g =
a—b=>3 criX) € Zo. §# 1. §g<a-b Letyg = max{gl} € Zy.
There exists uniquely a mapping ¢ : {0,1,...,§ — 1} — M(A’) satisfying z¢7° +
Sy (0)F = Tlier (2 — )P (29 + 32071 ¢'(1)F%). We take the unique map-
ping ¢’ : {0,1,...,§ — 1} — M(A’) satisfying this equality. y7 + Ef:_ol C'(i)X* # 0
for any x € M(Og/,,).

plw) € AX. p(x) € M(A') for any Y € R. p({'(i)) € M(A’) for any i €
{0,4,...,0-1} p(w]lzep_i5 D@ 2b) = p(w) | | P 2€@r (@) b ¢ P (1).
p(erR( X)H()Z)) = ngR( - p(f())u(i) € PW(l)

If g > 2, then ¢ = ¢ and p(i‘il—i— Z?;()l i)z € W(g) = W(g). The_refore‘
po*(@)() = p(w) [Tpepzy @7 D2 Tler (= = p(0) O (7 + 5 p(¢'(1))"
) € PW(g).

If g <1,then §=0,¢9=1and zq—i-zl Op( (i)' =1¢€ PW(1). Therefore
po(@)($) = p(w) [Lepzy 2797 D2 [T (2 = ()X (27 + 3025 (' ()2
) € PW(1) = PW(g).

We conclude that there exists g € Zy satisfying po*(a)(¢) € PW(g) and
po*(a)(¢) € Upez, PW(h).

We conclude that Theorem holds.

We give the proof of Theorem See Section [3] for notations and concepts
related to normal crossing schemes.

Assume the above (%) and consider any ¢ € PW (1).

We take an element u € A*| a finite subset X’ of M(A’), a mapping a : X — Z
and a mapping b: P — {2z} — Zg satisfying

¢:UH(Z+X)a(X) H 20(®)

XEX zeP—{z}

The quadruplet (u,X,a,b) is uniquely determined depending on ¢, since A is a
unique factorization domain.

We consider the case X C {0}.

X =0 or X ={0}. We know that ¢ has normal crossings over P.

Let o : Spec(A) — Spec(A) be the identity morphism idgpec(a) of Spec(A). The
scheme Spec(A) is a smooth scheme over Spec(A). The morphism o : Spec(A) —
Spec(A) is a weakly admissible composition of blowing-ups over (A,¢{) and the
triplet (Spec(A), A, ) is an extended pull-back of the coordinated normal crossing
scheme (Spec(A), A, €) by o.

supp(Spec(A4/¢A)) C supp(A). supp(o™ (Spec(A/pA) + A)) = supp(A).

We know that Theorem [4.6] holds, if X C {0}.

We consider the case X ¢ {0}. X — {0} # 0.

By (X — {0})2 we denote the set of all subsets ) of X — {0} with §)) = 2.

Consider the case (X —{0}) > 2. (¥ —{0})2 # 0. Consider any Y € (X —{0})2.
We choose any element xo()) € V. The unique element in Y different from xo())
is denoted by x1(Y). x0(V) # x1(Y). {xo(V), x2x(V)} =Y

In case (X — {0}) = 1, we denote the unique element in X — {0} by xo.
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We put

¢ = erx_{o} Xnye(x_{o})z(XO(y) -xa(d)) ifg(x —{0}) > 2,
Xo if (& —{0}) = L.

¢’ € M(A') and ¢’ # 0.

By (*) we know that there exists a weakly admissible composition of blowing-ups
&' : 3 — Spec(A’) over (A’,€') and an extended pull-back (3, A’, €) of the coordi-
nated normal crossing scheme (Spec(A’), A’, &) by &' satisfying supp(6'* (Spec(A4’/
¢ A+ A)) C supp(A’). We take a weakly admissible composition of blowing-ups
&' : 3 — Spec(A’) over (A, €') and an extended pull-back (3, A’, €) of the coordi-
nated normal crossing scheme (Spec(A’), A’, &) by &' satisfying supp(6'*(Spec(A4’/
@' A’) + A')) C supp(A’). The structure sheaf of the scheme 3’ is denoted by Og,.

We consider a morphism Spec(4) — Spec(A’) induced by the inclusion ring
homomorphism A’ — A, the product scheme =3 X Spec(A’) Spec(A), the projec-
tion 6 : & — Spec(A), and the projection 7 : 3 — 3. The structure sheaf of the
scheme 3 is denoted by Os. Let A = A’ + 6*Spec(A/zA). We have a normal
crossing scheme (3, A) with (A)y C 6*Spec(A4/zA). Consider any a € (A)y. We
put &o (14 A) = 7 (U(E', A, () (€ p(a) (A)) for any A € comp(A’)(m(ax)), and we
put £, (6*Spec(4/zA)) = resg(iAﬂ)&* (Spec(A))(z). We have a coordinate sys-
tem &, : comp(A)(a) — Oi(U(i,A,a)) of (3,A) at , and a coordinate system
§ ={Sala € (A)o} of (X,A).

We develop some general theory of schemes. Let 2 be any separated irreducible
noetherian smooth scheme.

For any closed subset E of 2, we denote the set of irreducible components of
E by comp(FE). The set comp(FE) is a finite set whose elements are non-empty
irreducible closed subsets of 2. E' = Upccomp(r) F-

Let U be any non-empty open subset of 2 and let D be any divisor of €. Let
1y : U — € denote the inclusion morphism. We denote the pull-back ¢j;D of D by
ty by the symbol D|U and we call it the restriction of D to U.

Let r € Z4 be any positive integer; let £ be any subset with £ = r of the set
prm(Q2) of all prime divisors of © and let G be any irreducible component of Ngcg E
with r = codim(G, ).

Let [G] € G denote the generic point of G and let ¢ : Spec(Oq g)) —
denote the canonical morphism. We take any ep € M(Oq q)) satisfying (*E =
Spec(Oq a1/ €e0q, ) for any E € €. The residue ring Oq, j¢1/{€e|E € £}0q (¢ is
alocal noetherian ring with dimension zero. We denote (£; G) = length(Oq, j1/{€E|
E € £}0qq)) € Zy and we call (£;G) the intersection number of the set £ of
prime divisors at G. The intersection number (£;G) of £ at G depends only on
the pair (£, ), and it does not depend on the choice of elements e € M(Oq, (),
E € & we used for the definition. We also write (E(1), E(2), ..., E(r); G) instead of
(& G),itE={FEQ1),E(2),...,E(r)}. For any bijective mapping 7: {1,2,...,r} —
{1,2,...,7}, (E(1),E(2),...,E(r);G) = (E(r(1)), E(T(2)), .. .A,E(T(’I’)); Q).

We return to our situation under consideration. We denote D = 6*Spec(A/zA)+

2 xex—{0} 97Spec(A4/(z + x)A) € div(X). The following claims holds:
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(1) The morphism & : 3 — Spec(A4) is a weakly admissible composition of
blowing-ups over (A, ¢) and the triplet (3, A, €) is an extended pull-back
of (Spec(4), A,¢).

(2) The morphism 7 : ¥ — ¥/ is surjective. For any o/ € 3/, dim3 X gy
Spec(oﬁ)/,a//M(Oﬁ)/,a/)) =1.

(3) 6*Spec(A/zA) is a smooth prime divisor of ¥. For any y € X — {0},
6*Spec(A/(z 4 x)A) is a smooth prime divisor of . comp(D) = {6*Spec(
A/zA)}y U{6"Spec(A/(z + x)A)Ix € & —{0}}.

(4) Consider any A € comp(D).

The component A is smooth, the induced morphism 7 : A — 3L by 7
is an isomorphism and the pair (f], A+ A ) is a normal crossing scheme
over k.

(5) For any A € comp(D) and any T' € comp(D) with A # T, § # ANT C
supp(r*A’).

(6) comp(D) N comp(A) = {6*Spec(A/zA)}.

(7) supp(6*(Spec(A/pA) + A)) C supp(A + D).

We consider any pair (7, (2, A, €)) of a weakly admissible composition of blowing-
ups 7 : ¥ — 3 over (f], A) and an extended pull-back (X, A, €) of (f], A, é) by T sat-
isfying the following four conditions (Z). Let D denote the sum of strict transforms
of e(ler)nents in comp(D) by 7. D € div(X). Let Ay = > Tecomp(A)—comp(D) L €
div(X):

(1) Consider any A € comp(D).

The component A is smooth.

Let Un = X — (Upccomp(ag),rna=pl’) C . Note that the subset Uy is
open in . and it contains A.

The pair (Ua, (A + Ag)|Ua) is a normal crossing scheme over k.

We take the unique element x € X U {0} such that A is the strict trans-
form of 6*Spec(A/(z+x)A) by 7. supp(A+Ao)NUx = 7! (supp(6*Spec(A/(z+
Y)A) + AN N Uy.

(2) For any A € comp(D) and any I' € comp(D) with A # ', AN C supp(Ay).

(3) For any A € comp(A) Ncomp(D) and any I' € comp(A) N comp(D) with
A#T,ANT =0. B B
(4) For any A € comp(D), there exists an element I' € comp(A) N comp(D)
with ANT # (.
supp((67)* (Spec(4/¢A) + A)) C supp(7* (A + D)) € supp(A + D).

fcomp(D) = ficomp(D) > 2. 1 < #(comp(A) N comp(D)) < fcomp(D).

If #(comp(A) N comp(D)) = comp(D), then supp(A + D) = suppA and supp(
(67)*(Spec(A/pA) + A)) C suppA. Since ¥ is a separated irreducible noether-
ian smooth scheme over Spec(A), the morphism 67 : ¥ — Spec(A) is a weakly
admissible composition of blowing-ups over (A, ¢) and the triplet (X, A, €) is an
extended pull-back of (Spec(4), A, &) by 67, we know that Theorem holds, if
#(comp(A) N comp(D)) = fcomp(D).

We would like to show that there exists a pair (7, (X, A, €)) satisfying the above

four conditions (Z) and f(comp(A) N comp(D)) = fcomp(D).
Note that the pair (ids, (3, A, €)) satisfies the above four conditions (Z) and

#(comp(A) N comp(D)) = 1.
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We use induction on fcomp(D) — #(comp(A) Ncomp(D)). Assume that the pair
(7, (%, A, €)) satisfies the above four conditions (Z) and f(comp(A) N comp(D)) <
fcomp(D).

We consider any admissible composition of blowing-ups v : Y — % over A
such that the pair (7, (X,v*A,v*€)) satisfies three conditions in the above four
conditions (Z) except the last one.

Let D denote the sum of strict transforms of elements in comp(D) by v. D €
div(¥). The divisor D is equal to the sum of strict transforms of elements in
comp(D) by 7v. Since comp(D) —comp(A) # 0, we know comp(D) —comp(v*A) #

Let Ao = > recomp(vsA)—comp(p) L € div(E). supp(Ag) C supp(v*A).

We consider the case where the pair (7v, (X, v*A,v*€)) satisfies also the last
condition in (Z). For any A € comp(D) — comp(v*A), there exists an element
I € comp(D) N comp(r*A) satisfying ANT # 0.

We take any Ay € comp(D) — comp(v *A).

There exists an element T' € comp(D) N comp(r*A) satisfying Ag N T # 0.

We denote

Z ={L£ C comp(D) — {A¢}LNcomp(v*A) £ 0, Ao N ([ T) # 0}.

el

Z #£0.

Let £ be any maximal element in Z with respect to the inclusion relation. £ C
comp(D). Ag & L. LNcomp(v*A) # 0. AgN(NpepT) # 0. For any © € comp(D)
satisfying © # Ag and © € L, Ag N (e, I) NO = 0.

Consider any I' € L. Ay # I and every irreducible component of Ag N T has
codimension two in 3.

Consider any irreducible component ® of Ag NT'. Since Ag NI" C supp(Ao)
know that there exists © € comp(Ag) with ® € ©. We take © € comp(Ao) Wlth
dCO. &CANT CAgand ® C ONAg. Since Ag € comp(D) and © ¢ comp(D)
© # Ay. Any irreducible component of © N Ag has codimension two in X. We
know dim ® = dim © N Ag. Since there exists an open subset Uy, of ¥ satisfying
Ao C Up, and (Un,, (Ao + Ap)|Un,) is a normal crossing scheme over k, we know
that © N Ay is irreducible, ® = © N Ay and if ©' € comp(Ag) and ® = @’ N Ay,
then © = ©. Similarly we know ® = ©NT, since there exists an open subset Ur of
% satisfying I' € Ur and (Ur, (T + Ao)|Ur) is a normal crossing scheme over k. If
I' € comp(v*A), then it follows that ® is a stratum of the normal crossing divisor
v*A of codimension two contained in Ao NT.

For any I' € £ and any irreducible component ®p of Ag N T, we take the unique
element Og,. € comp(Ao) with &r = O3, N Ag. Oz, N Ay = Og. NT. We take
any element 'y € comp(v*A) N L. For any irreducible component ®r, of Ag N T,
@¢F0 NAy = @@FO N Ty.
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We denote N' = {® € map(L,Urcccomp(Ag NT))|For any ' € £, &) €
comp(Ag NT)}.

D£AN (D= NRonD) = U o) = | J () e@)

rel rel el ®pecomp(AoNI) deN TeLl
= (N Osmnro)=J W [] ©am)N(Osw, NAo)
PeN T'el deN TelL—{To}
= U (( ﬂ Oar)) N (Oa(r,) NTo)) = U (( ﬂ Oa(r)) N To).
PeN TelL—{To} PeN TeL

We know that any irreducible component W of AgN (., T') is a stratum of the
normal crossing divisor v*A with codim (¥, i) > 2 and it is a stratum of ' + Ag
contained in I" for any I' € LU {Ao}.

Consider any irreducible component ¥ of AgN (e, T). ¥ is a stratum of v*A.
codim(¥, %) > 2. Forany I' € LU{A¢}, ¥ C T. For any I' € comp(D) — (LU{Ao}),
vNr=40.

Let vy : X1 — ¥ denote the blowing-up with center in ¥. The morphism v is an
admissible blowing-up over v*A. The composition vv; : £1 — ¥ is an admissible
composition of blowing-ups over A.

The exceptional divisor of v; is denoted by ¥y. ¥; = v;'(¥) € div(¥;). For
any closed irreducible subset ® of Y with ® ¢ W, by ®; we denote the closure
of 1/1_1(<I> — ¥) in ¥;. ®; is a closed irreducible subset ® of 31, v1(®1) = D, the
induced morphism vq : &1 — ® by 1, is birational and v : Oi,[é] — Ox, [#,] Is an
isomorphism. For any prime divisor I" of ¥, the strict transform of T by v1 is equal
to Fl.

For any T' € LU {Ao}, viT' = Ty + ¥;. For any I' € comp(D) — (£ U {Ao}),
UNT =0 and v;T =T';. We know that for any I € comp(D), I'; is smooth.

Let

Dy = Z I'i e le(Zl) and Al() = Z I'e le(Zl)

I'eécomp(D) T'ecomp((vv1)*A)—comp(D1)

The divisor D; is equal to the sum of strict transforms of elements in comp(D)
by Tvvy. comp((vvy)*A) = {T4]T" € comp(V*A)}p {¥1}. comp(Ajg) = {T1|T €
comp(Ag)} U {1} Wy C supp(Ag) = 17 (supp(Ao)). )

We would like to show that the pair (tvvy, (X1, (vi1)* A, (viq)*€)) satisfies three
conditions in the above four conditions (Z) except the last one. Recall that pair
(v, (Z,v* A, v*€)) satisfies the four conditions in (Z).

By the just above we know that any component of D; is smooth.

Consider any A € comp(D). Ay € comp(D;). We denote
Un =% — (Upea, rra—pl) and Uiy = T1 — (Urea,o,rna, —oT)-

The pair (Ua, (A4 Ag)|Ux) is a normal crossing scheme over k. We take the unique
element x € X U {0} such that A is the strict transform of 6*Spec(A/(z + x)A) by
Tv. Ay is the strict transform of 6*Spec(A/(z+x)A) by Tvvy. supp(A+Ag)NTU, =
(r)~(supp(6*Spec(A/(z + X)A) + 7 A) N T

For any T' € comp(Ao) with TNA =0, 1 € comp(Ayg), T'1NA; = 0 and
Iy = 1/1_1(1"). We know Ay C Uiy C I/l_l(UA) and Uy # l/l_l(UA), if and only if,
there exists I' € Ag with TN A # 0 and Ty N Ay = 0.
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AUW = v (AU SUPP(A1+A10) = A1Usupp(Aig) = AUTUsupp(Aqp) =
v H(A) Uy U supp(Ayg) = v H(A) Usupp(A1g) = vyt (A) U vy t(supp(Ay)) =
vy H(A Usupp(Ag)) = Vfl(supp(/\ + Ao)) 3
_supp(A1 + Ag) N V1 H(Ux) = vy (supp(A + Ag)) N oy H(Un) = vy (supp(A +
Ao)NUp) = vy H((Tv)~ (supp( *Spec(A/(z—l—x)A)—l—ﬂ'*A’))ﬁUA) = (tvry) "t (supp(
6*Spec(A/(z +x)A) + 7 A")) N vy H(Up). We know that supp(Ay + Aqg) N Uy =
(tvv1) "t (supp(6 *Spec(A/(z +)A) + A N Uy,y.

We know that (v; 1 (Ua), (A1 4+ A1o)|vy H(Ua)) is a normal crossing scheme over
k. We know that if there does not exist T' € Ay with TN A # @ and Ty N Ay =0,
then (U1, (A1 + A19)|U1y) is a normal crossing scheme over k.

We consider the case where there exists I' € Ay with T'N A #Pand 1 NA; =
0. Take any I' € Ag with TNA # 0 and Ty NAy = 0. T NA ¢ U, then
'y NA; # (0. Therefore, TNA C V. Since P ZT'NAC¥NA AeLU{A}.
Since codim(¥, %) > 2, we know TN A = ¥ and codim(¥, %) = 2. We know that if
I" € Ag, I'NA # 0 and Ty NA; = 0, then T" =T, since the pair (UA, (A+Ao)|Uy)
is a normal crossing scheme over k. We know that Uiy = vy (UA) I' and we
conclude (Uyy, (A1 + A19)|Ury) is a normal crossing scheme over k, if there exists
FeAgwithTNA#£0and Ty NA, = 0.

We know that the pair (U, (A1 + A10)|U1x) is a normal crossing scheme over
k.

We know that the pair (tvwvy, (31, (vv1)*A, (vv1)*€)) satisfies the first condition
in the above four conditions (Z).

Consider any A € comp(D) and any I' € comp(D D) with A # T. ANT C
supp(Ay), since the pair (1v, (X, *A, v*€)) satisfies the second condition of (Z).
ANTy CoyH(ANT) C vy (supp(Ag)) = supp(Aiog).

We know that the pair (v, (31, (vv1)*A, (vv1)*€)) satisfies the second condi-
tion in the above four conditions (Z).

Consider any A e comp((v1)* A)N comp(D1) and any ' € comp((vin)*A) N
comp(D1) with A #T. Since A € comp(Dy), A # Uy and there exists unlquely
A € comp(D) with A = A;. We take the unique A € comp(D) with A=A
Since A € comp((vv1)*A), A € comp(v*A). A € comp(v *A)Ncomp(D). Similarly,
we know there exists uniquely T' € comp(D) with I' = I';. We take the unique
I € comp(D) with T' =T;. T € comp(v*A) N comp(D D). Since Ay = A #T =Ty,
A #T. We know ANT = 0, since the pair (tv, (X, *A, V*f)) satisfies the third
condition of (Z). ANT = A, NIy C vy (Aﬂl") = (. We know ANT = 0.

We know that the pair (Tvvy, (31, (vv1)*A, (vvy)*€)) satisfies the third condition
in the above four conditions (Z).

We conclude that the pair (rvvy, (X1, (vv1)*A, (vy)*€)) satisfies three condi-
tions in the above four conditions (Z) except the last one.

Recall that 2 < codim(¥,%) € Zg. We know that there exists a subset M of
L such that M = codim(¥,%) — 1 and ¥ is an irreducible component of Ag N
(NremT’). We take any subset M of L satisfying these conditions.

Let 6 : Spec(0%, 0] ) — ¥ denote the canonical morphism, where 05 $ 1) denotes

the completion of the local ring of ¥ at the generic point [¥] of ¥. For simplicity

we denote R = O o There exists an element 2 € M(R) — M(R)? with §*Ag =

Spec(R/ZR). We take an element Z € M (R)—M (R)? with §*Ag = Spec(R/ZR). We
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know that there exist a parameter system P of R with Z € P, a bijective mapping
§: M — P—{z}, amapping é : M — Z, and a mapping @ : M — R* satisfying
§*T = Spec(R/(Z + §(T)*Ma(T))R) for any T' € M. We take a parameter system
P of R with Z € P, a bijective mapping § : M — P — {Z}, a mapping é : M — Z,
and a mapping @ : M — R* satisfying *T' = Spec(R/ (2 4+ §(I')*Na(T))R) for any
I' € M. By calculation we know the following:
(1) The following three conditions are equivalent:
(a) There exists an irreducible component W) of Ag; N (NreamI'1) with
V1 (\If(l)) =V,
(b) There exists uniquely an irreducible component ¥y of Ag1N(NremI'1)
with 114 (‘I’(l)) =V,
(c) &) > 2 for some I' € M.
Below, we assume that é(I') > 2 for some I' € M and V(4 is the unique irre-
ducible component of Agy N (NremI'1) with vy (¥(qy) = .
(2) dim V(3 =dim ¥ + #{T' € M|e(T) > 2} — 1 > dim V.
(3) Assume that f{I" € M|é(T") > 2} = 1. We take the unique element I'y € M
with &(Tg) > 2.
The intersection number of divisors Ag and I', I' € M at ¥ is equal to

é(To).
The intersection number of divisors Ag; and I'y, I' € M at ¥y is equal
to &(Tg) — 1.
We denote
21 = {L  comp(D1) — {Aq1}|£ N comp((vw1)*A) # 0, Aor N ( ﬂ ) # 0}

rel

We denote the set of maximal elements of Z by Z™# and the set of maximal
elements of Z; by Z{"**.
We know the following:

(1) Z.=0< Aoy NT' =0 for any I' € comp((vv1)*A) Ncomp(Dy) & Zmax =
{L}, comp(Ag N (Nreel)) ={¥} and Agy NTy =0 for any T € L.

(2) If £ € 2 and Ty ¢ L for any I' € £, then there exists uniquely an
element £ € Z™ with £ # £ and £ = {T',|T" € L}.

(3) If £L € 2 and 'y € £ for some I' € £, then £ C {T,|T" € £}.

(4) Assume that there exists ® € comp(Ag N (Nreel’)) with & # W,

(T[T € £} € Zmax,

For any ® € comp(Ag N (Npesl)) with @ # ¥, & ¢ ¥ and @4 is the
unique irreducible component © of Ag; N (Npesl) with 11(0) = @, @ ¢
U,

For any © € comp(Ag1 N (Nrezly)) with © ¢ Uy, 141(0©) € comp(Ap N
(ﬂregl—‘)), V1 (A@) # VU and 1q (@)1 = 0.

(5) If there exist L € Z{naannd an irreducible component W1y of Ag1 N (N 1)
with \I/(l) C WUy, then £ C {Th|T" € L}.
(6) Consider any £ € Z™** with £ # L.

{T|T € L} € Zmax,

For any ® € comp(AgN(NpezT)), @ ¢ ¥ and @4 is the unique irreducible
component © of A()l n (ﬂreﬂrl) with 141 (@) = o. (1)1 ¢ \111.
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For any © € comp(Ao1 N (Npezl'1)), vi(©) € comp(Ag N (Npe 1)),
© ¢ \Ifl u1(®) ¢ ¥ and u1(®)1 =0

We denote
r = max{codim(®, ¥)|£ € Z™** & € comp(Ag N (Npezl))} € Zy, and

- ¥ )3

L Zmax @Ecomp(Agﬂ(ﬁFeEF)),codim(@,i):r

Z {A} UM; ®) € Zy.

MCL gM=r—1,2€comp(AoN(Npe 1))
Consider the case Z1 # (). We denote
r1 = max{codim(®, %)L € ZI"** & € comp(Agy N (Npezl))} € Zy, and

we % >

éeziﬂ‘dx <I>€comp(A01ﬁ(ﬂFEEF)),codim(Cb,El):m

> {Ao1} UM; @) € Zy.

MCL gM=r1—1,&Ecomp(Ao1 (N 7 I))

We know that if codim (¥, i) =rand Z; #0, thenr; <r,and sy <sifr; =r.

By induction we conclude that there exists an admissible composition of blowing-
ups vy : ¥y — X such that Agy N T = ) for any T' € comp((vr2)*A) N comp(Dy),
where A2 denotes the strict transform of Ag by v5 and Dy denotes the sum of strict
transforms of elements in comp(D) by vs. Note that Agy € comp(Ds).

We conclude that there exists an admissible composition of blowing-ups v : -
¥ over A such that the pair (7v, (X, v*A, v*€)) satisfies three conditions in the above
four conditions (Z) except the last one and it does not satisfy the last condition in
(2).

We consider the case where the pair (7v, (i, v*A,v*€)) does not satisfy the last
condition in (Z). There exists A € comp(D) — comp(r*A) such that ANT = @ for
any I' € comp(v*A) N comp(D).

We take a non-empty maximal subset K of comp(f)) — comp(v*A) satisfying
two conditions ANT = () for any A € K and any I’ € comp(v*A) N comp(D), and
ANT =0 for any A € K and any I € K with A # I'. By maximality of K, for any
A € comp(D), there exists an element T' € (comp(v*A) N comp(D)) U K satisfying
ANT #0.

We put A = v*A + Y onex A A is an effective divisor of ¥. supp(v*A) C
supp(A).  comp(A) N comp(D) = (comp(r*A) N comp(D)) UK. #(comp(A) N
comp(D)) = t(comp(v*A) N comp(D)) < #(comp(A) N comp(D)). For any A €
comp(A) Ncomp(D) and any T’ € comp(A) Ncomp(D) satisfying A # T, ANT = (.
For any A € comp(D), there exists an element T' € (comp(A) Ncomp(D)) satisfying
ANT # 0.

Consider any A € K. By the first condition in (Z) we know the following,.

(1) The component A is smooth.

Let Uy =% — (Urecomp(ao),rra=el’) C 3. Note that the subset Uy is open in ¥
and it contains A.

(2) The pair (Ua, (A + Ag)|Ua) is a normal crossing scheme over k.
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We take the unique element y € X U {0} such that A is the strict transform of
*Spec(A/(z + x)A) by Tv.
(3) supp(A + Ag) NUp = (7v)~ Y (supp(6*Spec(A/(z + x)A) + m*A")) N Uy.
We know that A has normal crossings and the pair (3, A) is a normal crossing
scheme over k. supp(v*A) C supp(A). (v*A)o C (A)o.
Consider any 8 € (v*A)jo.
comp(A)(ﬁ) = comp(v*A)(B), UX, A, B) € U, v*A,B). We put £5(A) =

res E? 2?6)( v*€)s(A) for any A € comp(A)(8) and we define a mapping &5 :
comp(A)(B) — Og(U(X, A, B)). Obviously &5 is a coordinate system of (X, A) at
B.

Consider any 3 € (A)g — (v*A)o. )
We take any o € (v*A)o with B € U(z, VA, ). §(comp(A A)(B) N comp(v*A)(
a))+1iﬁ(comp( )(B)) = §(comp(v*A)(a)). comp(A)(B) — comp(v*A)(a) € K.
comp(v*A)(ar) —comp( )(ﬂ) € comp(v*A)Ncomp(D). U(Z, A, ) c U(Z, v*A, a).
We put £5(A) = res g Ag (1*€)a(A) for any A € comp(A)(B) N comp(v*A)(a).
Consider the unique element A € comp(A)(B) — comp(v*A)(a). A € K C
comp(D) — comp(v*A). B € ANU(X,v*A,a) # 0. We take the unique element
X € X U{0} such that A is the strict transform of 6*Spec(A/(z + x)A) by 7v. We
know that there exists uniquely a pair of an element A € Og(U(Z,v*A, ) and a

mapping ¢ : comp(v*A)(a) — Zg satisfying

25 m GG 40 =4 [ WD,
T'ecomp(v*A)(a)

We take the unique pair of an element A € OE(U(i,I/*A,a)) and a mapping
c: comp(v*A)(a) — Zg satisfying this equality. We know that ANU(X,v*A, o) =

Spec(O5(U(Z, v*A, ) /A0 (U(X,v*A, a))). We put E5(A) = resgg:gé)’a)()\).

We have a mapping &5 : comp(A)(8) — O (U(X, A, B)). We know that s is a
coordinate system of (3, A) at 8.

Let € = {€3]8 € (A)o}. The set € is a coordinate system of (3, A) and it is an
extension of v*€.

The morphism 7v : ¥ — Yis a weakly admissible composition of blowing-ups
over (A, €). The coordinated normal crossing scheme (3, A, €) is an extended pull-
back of (2,A,€) by Tv. The triplet (7v, (2,A,€), D) satisfies the five conditions
(2). #(comp(A) 1 comp(D)) > t(comp(A) N comp(D)).

By induction on fcomp(D) — #(comp(A) N comp(D)) we know that there exists
a triplet (7, (3, A, €), D) satisfying the above five conditions (Z) and #(comp(A) N
comp(D)) = ticomp(D).

We conclude that Theorem [4.6] holds, if X ¢ {0}.

We know that Theorem holds in all cases.
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