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Propagation and scattering of antiplane shear waves within media with two-dimensional cavities are
numerically simulated, and the attenuation and phase velocities are experimentally determined. The
results are compared with the predictions by the Foldy theory and its three corrected versions. If the
cavity concentrations are small such as 0.02, the differences among the theoretical predictions are
insignificant, and every theory is consistent with the experimental results. For higher concentrations
such as 0.1, the differences become significant, but there are no objective grounds to say that any
of the corrected versions of the Foldy theory works better than the original. If the error tolerance is
as high as 10%, the simple Foldy formula may remain useful for concentrations up to about 0.1.
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I. INTRODUCTION

Wave propagation in a medium with distributed scatter-
ers results in the attenuation and dispersion of coherent wave
fields, even if each constituent is lossless. This phenomenon
has been studied in a variety of research areas because of its
wide applications. Examples are acoustic scattering in the
ocean and in biological media,1 ultrasonic nondestructive
evaluation of materials,2 and seismic scattering in the earth’s
lithosphere.3 Many of such researches have been based on
theoretical modeling or laboratory experiments as stated be-
low. In contrast, the purpose of the present article is to ap-
proach the phenomenon by the use of a numerical method of
wave simulations. Because of computational tractability,
only a specific case of antiplane shear �SH� wave scattering
due to two-dimensional �2D� cavities is treated, which en-
ables the authors to achieve simulations with high accuracy
at relatively low computational costs.

A large variety of theories has been proposed for the
problem stated above. Among others, Foldy4 established a
category of theories �multiple scattering theories� about
60 years ago. He considered scalar wave propagation in me-
dia with randomly distributed three-dimensional �3D� isotro-
pic scatterers and derived the following well-known formula:

K2 = k2 + 4�nf , �1�

in which K is the effective wavenumber of mean �ensemble-
averaged� wave fields, k is the wavenumber in the absence of
scatterers, n is the number density of the scatterers, and f is
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the isotropic scattering amplitude of a single scatterer. This
equation gives the solution K as a function of k, whose real
and imaginary parts correspond to the phase velocity and
attenuation, respectively. Foldy’s theory is based on the as-
sumption that the scatterers are distributed very sparsely and
independently so that its validity is limited to sufficiently
small n. Later, Lax5 verified that Eq. �1� remains valid for
anisotropic scatterers if f is replaced with the forward scat-
tering amplitude f�0�:

K2 = k2 + 4�nf�0� . �2�

Many researchers tried to improve the theory in order that it
may be valid for denser scatterer distributions by taking ac-
count of the multiple scattering more appropriately. Lax6

proposed the quasicrystalline approximation, in which statis-
tical information on the relative location of two scatterers is
described by a pair-correlation function. Waterman and
Truell7 derived a formula alternative to Eq. �2� under the
condition of non-overlapping scatterers with infinitesimal
volumes. Despite its lasting popularity, the Waterman–Truell
formula was shown to be incorrect by Lloyd and Berry,8 who
presented an alternative one. Other researchers applied more
appropriate pair-correlation functions for scatterers with fi-
nite sizes.9–12 Still other researchers proposed corrected ver-
sions of Foldy’s theory not based on the quasicrystalline ap-
proximation. Examples are the works based on a diagram
method13,14 and the combinations of the Waterman–Truell
formula and a self-consistent method.15 Concerning other
categories of theories on wave propagation in inhomoge-
neous media �such as self-consistent methods�, see Ref. 16
and the references therein.

The above-mentioned theories, including Foldy’s, have
been exploited in order to describe the results of laboratory

experiments on wave transmission in bubbly liquids, suspen-
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sions, emulsions, particulate composites, and materials with
cavities �see Refs. 11, 12, and 16–23 and the references
therein�. The predictions of all such theories coincide with
each other up to the first order of n, and they are consistent
with the experimental data for small volume concentrations
of scatterers.17,20 The limits of the concentrations below
which the theories remain valid, however, vary among stud-
ies. One possible reason for this may be the factors that are
not considered in the theories but essential in the experi-
ments, such as viscous and thermal dissipation20 and ill-
controlled parameters such as scatterer sizes.22 On one hand,
incorporating such effects appropriately into the theories to
bridge this gap is certainly an important task from the prac-
tical viewpoint.18–20 On the other hand, using computer
simulations of wave scattering free from those effects may
be helpful in examining the validity of the theories more
directly; though less practical than laboratory ones, numeri-
cal experiments could be configured more loyally to the as-
sumptions made in the theories.24–27 Another possible reason
for the discrepancy among the experimental results may be
the variation in the methods to measure the attenuation and
phase velocities of coherent waves. Some researchers mea-
sured the amplitude changes and moving speeds of the peaks
of transmitting pulses,22–24 whereas others calculated their
spectral changes.12,17–21 Although the latter method has the
advantage of high spectral resolution, the estimates thus ob-
tained could be affected by the incoherent waves included
within the pulses. Ensemble averaging of the waveform data
was shown to be effective in reducing the incoherent waves
as well as noises.12,17,19,27

In this article, multiple scattering theories of Foldy,4,5

Waterman and Truell,7 Lloyd and Berry,8 and Ye and Ding13

are compared with numerical-experimentally measured at-
tenuation and phase velocities. To focus on the validity of the
theories, numerical experiments are performed as mentioned
earlier; antiplane shear wave scattering by 2D circular �or
parallel cylindrical� cavities in elastic media are simulated
with high accuracy, closely following Benites et al.24 The
attenuation and phase velocities are measured by applying
the spectral ratio technique to averaged waveform data, as
was successfully done by Suzuki et al.27 Although the model
scattering media in the present experiment are rather ideal-
ized, it would be a good analog of high-contrast particulate
materials and media with small aspect ratio cavities �e.g.,
cracks�.

In Sec. II, the 2D solutions of the above four theories are
summarized. In Sec. III, the configuration of the numerical
experiments and the data acquisition method are described.
The experimentally determined attenuation and dispersion
curves are shown in Sec. IV, in which they are compared
with the theoretical predictions. The validity of the theories
is thereby discussed.

II. MULTIPLE SCATTERING THEORIES

All of the theories considered here share the advantage
of giving explicit solutions of K like Eq. �2�, which in the 2D
case are summarized in this section. It is worth noting that all

of them are based on a point scatterer assumption. Treating
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scatterers with finite sizes will be possible by using a proper
pair-correlation function, but then the solution K would be
obtained only numerically.9–12

The 2D version of Foldy’s formula �with Lax’s correc-
tion� �2� can be found in, e.g., Linton and Martin.28 It is
written in the form

K2 = k2 − 4inf�0� , �3�

in which i is the imaginary unit. Here f��� is the 2D scatter-
ing amplitude for the scattering angle � measured from the
incident direction.

As stated in Sec. I, Waterman and Truell7 took account
of the effect of non-overlapping scatterers under the point
scatterer assumption. This means that only the “perfect over-
lapping” of scatterers with finite sizes �or the overlapping of
the centers of the scatterers� is excluded. The 2D version of
their formula corresponding to Eq. �3� was given by Angel
and Aristégui29 as

K2 = k2 − 4inf�0� −
4n2

k2 �f�0�2 − f���2� . �4�

Although this formula has been widely used,15–17,21 Lloyd
and Berry8 pointed out that it is based on an incorrect pair-
correlation function. According to them, the exclusive vol-
ume of a spherical scatterer �whose radius was finally al-
lowed to become zero� actually imposed in the Waterman–
Truell theory is not spherical but slablike, being
perpendicular to the direction of wave propagation. Applying
a correct pair-correlation function and taking the limit of
point scatterers again, Lloyd and Berry derived an alternative
formula, using a technique called the “resummation method”
coming from nuclear physics. However, the Lloyd–Berry
formula seems less popular than the Waterman–Truell for-
mula. Linton and Martin30 inferred that it is perhaps because
the Lloyd–Berry formula is less simpler and its derivation
seems suspect. Nevertheless, they obtained a new and clearer
derivation of this formula. Linton and Martin28 also devel-
oped its 2D version as

K2 = k2 − 4inf�0� +
8n2

�k2�
0

�

cot��/2�
d

d�
f���2d� . �5�

It has been clarified that Foldy’s approach is equivalent
to taking into account “successive scattering” only, whose
paths do not touch any scatterers more than once.1,13 Using a
diagram method, Ye and Ding13 incorporated into formula
�1� the effect of triple scattering involving two scatterers, as
depicted in Fig. 1. The result is that

K2 = k2 + 4�n�f + �f� , �6�

in which �f is the variation in the scattering amplitude of S1
due to the incidence of waves that are scattered by S1 and
then scattered back by S2. This quantity is given by

�f = nf3� � � � eikr

r
�2

dr =
2�inf3

k
. �7�

The 2D version of these equations may be inferred by replac-
ing the term f exp�ikr� /r, which represents a far-field single-

�1�
scattered wave, by its 2D counterpart fH0 �kr�, in which
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H0
�1�� � is the Hankel function of the first kind. The result in

the 2D case is that

K2 = k2 − 4in�f + �f� , �8�

�f = nf3� � �H0
�1��kr��2dr =

4nf3

�k2 . �9�

The extension of these relations to the case of anisotropic
scattering may be achieved as follows. To be consistent with
formula �3� to which only the forward scattering ��=0� con-
tributes, it may be enough to consider only the contribution
of the triple scattering depicted in Fig. 1 with the directions
P→S1 and S1→R being the same. One can therefore let
�21R=�−�P12. Moreover, the second scattering is always
backward, that is, �121=�. Thus the Ye–Ding formula in the
case of 2D anisotropic scattering may be inferred as

K2 = k2 − 4in� f�0� +
4nf���
�2k2 �

0

�

f���f�� − ��d�� . �10�

Note that Henyey14 pointed out that the Ye–Ding formula
may overestimate the contribution of the triple scattering of
the above type because it neglects the scattering attenuation
during the first and second scattering processes. His cor-
rected formula for 3D isotropic scattering, resulting in a cu-
bic equation with respect to K, would give results falling
between those by the theories of Foldy and Ye–Ding. The
extension of the formula, however, to anisotropic scattering
is not straightforward and hence it is not considered here.

For K=K�k� given by any of the theories, the attenuation
coefficient � and the phase velocity c of the mean �or coher-
ent� waves are evaluated by the relations

� = Im K,
c

c0
=

k

Re K
, �11�

in which “Im” and “Re” denote the imaginary and real parts,
respectively, and c0 is the wave speed of a matrix surround-
ing scatterers. In the case of a cylindrical cavity with the
radius a, f��� is expressed as the sum of an infinite series
with the Bessel and Hankel functions31

f��� = − �
m=0

�
Jm−1�ka� − Jm+1�ka�

Hm−1
�1� �ka� − Hm+1

�1� �ka�
�m cos m� , �12�

P
S1

S2

R

θ121

θ21R

θP12

FIG. 1. Triple scattering involving two scatterers S1 and S2. Here P and R
denote the source and receiver, respectively.
in which �0=1 and �m=2 for m�1.
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III. NUMERICAL EXPERIMENTS

The configurations of the present numerical experiments
follow those of Benites et al.,24 which are explained below.
First, N identical circular cavities are distributed inside a
rectangular area with the horizontal size W and vertical one
L. Here both the cavity diameter d=2a and the wave speed
of the matrix c0 are chosen to be unity. It is also assumed that
the cavities do not overlap, i.e., they are “impenetrable.” Us-
ing a uniform random number series, the cavities are distrib-
uted inside the area randomly, except for the constraint that
the interval between the centers of any pair of cavities must
be greater than 1.1d. Specifically, the cavity centers �xi ,yi�
�i=1, . . . ,N� are randomly generated one by one; if a newly
generated center �xj ,yj� does not satisfy the constraint �i.e., if
the distance between this and any of the preexisting centers
�xi ,yi� �i� j� is smaller than 1.1d�, then it is eliminated and
another one is newly generated. Here it is also imposed that
the distance between any cavity center and the top end of the
area must be greater than d. Hence the vertical size of the
actual distribution area is regarded as L�=L−0.5d, and the
cavity number density may be defined as n=N /WL�.

Second, 101 receivers are evenly arrayed along the top
end of the area. Note that the distance between any receiver
and any cavity boundary is not smaller than 0.5d, according
to the algorithm of distributing the cavities stated above. A
plane Ricker wavelet with the dominant frequency fC is ver-
tically impinged on the bottom end from below, and then
waveforms at the receivers are synthesized using the method
of Benites et al.;24 see their paper as for the source time
function and the spectrum of the Ricker wavelet. Although
time-domain waveforms are synthesized in the end, the basic
calculations are performed in the frequency domain; that is,
the responses at various frequencies are computed first, then
a time-domain waveform is synthesized from their inverse
Fourier transforms with the convolution of a source wavelet
�the Ricker wavelet in this case�. Note that four ends of the
distribution area are transparent with respect to wave trans-
mission. In order to suppress the effect of the scattered
waves leaking through the both side ends, the waveforms at
NR receivers around the middle of the receiver array are used
in the analysis. The value of NR is chosen dependent on the
size of the distribution area and the time interval of synthetic
waveforms.

Third, the above-mentioned process is repeated for ND

different realizations of cavity distributions that are stochas-
tically identical but are generated using different random
number series. Then the NR	ND waveforms obtained are
averaged to yield a “synthetic mean wave.” This implies the
assumption of ergodicity, that is, the equivalence of spatial
and ensemble averaging. For sufficiently large NR	ND, in-
coherent waves would be effectively removed.

Finally, � and c are evaluated from the spectral ratio of
the primary parts of the mean wave to the initial wavelet.
The time window for the analysis is centered on the arrival
time of the central peak of the initial wavelet, with the inter-
val of 4 / fC; the choice of the interval would not significantly
affect the results if the incoherent waves had been suffi-

ciently removed. The evaluation of � and c is conducted for
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the frequency band 0.75fC–1.5fC and is repeated for differ-
ent initial wavelets with fC=0.15, 0.3, 0.6, and 1.2 �	c0 /d�.

The success of the numerical experiments described
above depends on the accuracy of the wave simulation
method. The method of Benites et al.24 adopted here can be
categorized into boundary integral methods �or indirect
boundary element methods�, which probably dates back to
Copley32 and have been successfully applied to solve various
types of elastodynamic problems in engineering and
seismology.33–38 The method of Benites et al. can accurately
simulate wave fields in media with arbitrarily distributed
cavities, including anisotropic scattering and every degree of
multiple scattering; this is in contrast to the other methods
based on the Born approximation or the parabolic one.3,39

Note that similar methods were previously applied by
Dravinski34 and Benites and Aki36 to one or two inclusions.
Although the details of the method can be seen in the paper
of Benites et al.,24 the essence is that a scattered wave due to
each cavity is expressed as the sum of waves radiated from
fictitious line sources distributed behind �but close to� the
cavity boundary. More specifically, the sources are evenly
spaced along a circle with the radius 0.8a, which is concen-
tric with the circular boundary. The source strengths are de-
termined in the least-square sense so as to satisfy the
traction-free boundary condition, and thus the wave fields
outside the cavities are synthesized. Here the number of the
sources per cavity �or the interval between the sources� con-
trols the accuracy of wave simulations. Benites et al.24

checked the validity of their method on the basis of three
different tests and demonstrated that it really produces suffi-
ciently accurate wave fields if there exist at least four sources
per wavelength measured along the cavity boundary �i.e., the
number of the sources per cavity is not less than 4�d /
, in
which 
 is the minimum wavelength considered�. Note that
this criterion is consistent with the results of other researches
on boundary integral methods.33,35,36 In the present wave
simulations, the number of the sources per cavity is chosen
so as to satisfy the criterion. The authors also checked the
stability of simulations by temporally increasing the number
to large extent in some cases. This turned out not to change
the results significantly �within a few percent at most�, im-
plying that the original number would be enough.

In Sec. IV, the results for three models of cavity distri-
butions are shown. Table I summarizes the parameters of the
models, in which the area concentrations C=�na2 are shown
instead of n. An example of the realizations for each model is
depicted in Fig. 2. Model 1, representing the case of sparse
distributions, is stochastically identical to the model exam-
ined by Benites et al.24 In contrast, models 2 and 3 represent
the cases of rather dense distributions. Here the denser dis-

TABLE I. Parameters of the cavity distribution models.

N W /d L /d C NR ND max	nf /k2	

Model 1 50 80 30 0.017 61 5 0.013
Model 2 100 80 10 0.10 61 10 0.078
Model 3 100 40 10 0.21 41 15 0.16
tributions are realized partly by making the model areas
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smaller in order to save the computational costs because the
costs strongly depend on the numbers of cavities �more ex-
actly, the numbers of fictitious sources�. Note that the ND

values listed in Table I were actually determined as a result
of repeated evaluation of � and c with the increasing number
of the realizations for each model. The repetition was termi-
nated when the addition of a new realization did not signifi-
cantly change the results anymore, and then the final number
of the realizations was defined as ND. Consequently, ND is
not the same among the models; a smaller model area seems
to need more representations for stable ensemble average.
Note also that Table I includes the maximum value of
	nf��� /k2	 for each model just for reference, which will be
discussed later.

The results are to be compared in Sec. IV with the pre-
dictions of the theories stated in Sec. II, thus discussing their
validity, mainly in terms of the distribution density of cavi-
ties. Other parameters that might also limit the validity of the
theories will be also discussed there. Here C is employed
instead of n as a measure of the distribution density, follow-
ing the convention in laboratory experiments.11,12,16–23 It may
be worth mentioning, however, that the use of C may not be
effective if the aspect ratios of scatterers are much deviated
from unity. An example is distribution of highly oblate cavi-
ties �or cracks�, for which C would remain negligibly small
even for considerably large n; there “crack density” nr3 �r is
the major axis� is conventionally used instead.

IV. RESULTS AND DISCUSSION

The synthetic waveforms are exemplified in Fig. 3 in the
case of model 1 �C=0.017� and fC=0.3. In Fig. 3�a�, the
cloud of lines denotes the waveforms at the NR receivers for
a model realization. It is clearly illustrated that the waves
keep their coherency around the first motion but lose them
rapidly, resulting in the incoherent long wave trains com-
posed of the scattered waves. The synthetic mean wave ob-
tained from all of the waveforms is plotted in Fig. 3�b�, in
which the waveform in the absence of cavities �initial wave-
let� is superimposed for comparison. Here the attenuation
and delay of the mean wave are clearly recognized. In addi-
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FIG. 2. Examples of the realizations for �a� model 1, �b� model 2, and �c�
model 3. The thick bars along the top ends of the model areas designate the
receiver arrays.
tion, it is a compact wavelet like the initial one and has no
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long tail. This implies that the present averaging process is
successful in removing the incoherent waves, validating the
present experimental procedures. In Fig. 3�c�, the mean wave
predicted by Foldy formula �3� is also plotted; it is com-
pletely consistent with the synthetic mean wave. Similar con-
sistency between the synthetic and predicted mean waves is
observed also in the other dominant frequencies, suggesting
high validity of formula �3� for such sparse scatterer distri-
butions, as expected.

Figure 4 depicts the attenuation and dispersion of the
synthetic mean waves for model 1 as functions of the nor-
malized wavenumber ka. Here

Q−1 =
c

c0

2�

k
=

2 Im K

Re K
�13�

is plotted instead of � in Eq. �11�. Note that the inverse of
quality factor Q−1, preferably used in seismology, material
mechanics, and electric circuits, represents attenuation per
wavelength; a small difference in � leads to large one in Q−1

at ka
1, at which Q−1 reaches a peak. Here are plotted the
values of Q−1 and c determined for fC=0.15, 0.3, 0.6, and 1.2
�corresponding to ka=0.47, 0.94, 1.88, and 3.77, respec-
tively�, together with the values predicted by the Foldy for-
mula. Note that the predictions by the other formulas are not
shown because the deviations from those by the Foldy for-
mula are insignificant in the present case. The experimental
values are closely followed by the predicted ones on the
whole, as expected again. There exist, however, minor sys-
tematic discrepancies on Q−1 in the range 2�ka�3. As will
be discussed later, these discrepancies might be due to the
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FIG. 3. �a� Synthetic waveforms for model 1 with fC=0.3. �b� Synthetic
mean wave �solid line� and the initial wavelet �dotted line�. �c� Close-up of
the primary part. The solid line and the two dotted ones denote the average
and the standard deviation of the waveforms. The crosses indicate the mean
wave predicted by Foldy formula �3�.
effect of finite scatterer sizes.

J. Acoust. Soc. Am., Vol. 125, No. 6, June 2009
Figure 5 shows Q−1 and c obtained for model 2 �C
=0.10� and for fC=0.15, 0.3, and 0.6; the case of fC=1.2 is
omitted because of high computational costs. Now the pre-
dictions by all of the four theories are depicted. The differ-
ences among the theoretical values are remarkable in the
present case, especially on Q−1 for ka
1 and c for ka�1. In
the latter wavenumber range, the formulas of Lloyd–Berry
�5� and Ye–Ding �10� give very close c values, between
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Q
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0 1 2 3 4 5 6

Model 1
C=0.017

0.990

0.995

1.000
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c 0

0 1 2 3 4 5 6

ka
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FIG. 4. Attenuation and dispersion curves for model 1. The open symbols
with different shapes denote the experimental values for different fC. The
solid lines denote the values predicted by Foldy formula �3�.
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FIG. 5. Attenuation and dispersion curves for model 2. The open symbols
denote the experimental values. The solid, dashed, dotted, and dash-dotted
lines denote the predictions by the theories of Foldy, Waterman–Truell,

Lloyd–Berry, and Ye–Ding, respectively.
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which lie those of Foldy formula; any of these values are
consistent with the experimental ones. In contrast, the
Waterman–Truell formula �4� obviously disagrees with the
other three as well as the experimental results. As ka in-
creases, however, the four theoretical values converge and
equally follow the experimental ones. Concerning Q−1, the
formulas of Foldy, Waterman–Truell, and Ye–Ding give rela-
tively similar values, whereas those by the Lloyd–Berry for-
mula are somewhat larger. The experimental curve is located
between the Waterman–Truell and Ye–Ding curves in the
range ka�1. As ka increases, it begins to corrugate, and
approaches and slightly exceeds the Lloyd–Berry curve.

The oscillating behavior of the experimental Q−1 curve
is magnified in the case of a denser cavity distribution of
model 3 �C=0.21; Fig. 6�. In this case, the experimental Q−1

values considerably exceed all of the theoretical ones beyond
ka
2. Oscillating behavior is clearly observed also on the
experimental dispersion curve. Here the experimental c val-
ues are systematically smaller than any theoretical ones for
any wavenumber considered.

Another noticeable feature of Figs. 5 and 6 is that the
dispersion curves of the Foldy, Lloyd–Berry, and Ye–Ding
formulas are nearly identical even in such cases of rather
high concentrations, from which that of the Waterman–Truell
is considerably deviated. The exceptional behavior of the
latter might be due to the error in the Waterman–Truell
theory claimed by Lloyd and Berry8 and also Linton and
Martin.28,30 It would be worth mentioning that Ye40 demon-
strated that the Waterman–Truell formula does not satisfy the
Kramers–Kronig relation. This might be also attributed to the
incorrectness of the formula.

In summary, it is reconfirmed that the Foldy theory pre-
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FIG. 6. Attenuation and dispersion curves for model 3. The open symbols
denote the experimental values. The solid, dashed, dotted, and dash-dotted
lines denote the predictions by the theories of Foldy, Waterman–Truell,
Lloyd–Berry, and Ye–Ding, respectively.
dicts the attenuation and dispersion very accurately for suf-

3594 J. Acoust. Soc. Am., Vol. 125, No. 6, June 2009
ficiently low cavity concentrations �say, C
0.02�. For C

0.1 and higher, the discrepancies between the Foldy pre-
dictions and experimental results are no more insignificant
and are larger for the larger C, as may also be expected. In
such situations, however, the other three theories also appear
to be equally unsuccessful in describing the experimental
results, despite the claim that they are corrected versions of
the classical Foldy theory. None of the theories closely fol-
lows the experimental results on attenuation throughout the
wavenumber range considered �0.5�ka�3�. Concerning
dispersion, the Waterman–Truell theory obviously disagrees
with the experiments even for C
0.1; the other theories are
consistent with the experiments for this concentration, but
beyond it all of them systematically underestimate the mag-
nitude of dispersion. Therefore it is hard to place one over
the other, except for that the Foldy formula has the advantage
of its high simplicity. Roughly speaking, the formula may be
useful even for C
0.1 if the relative error tolerance is as
high as, say, 10%. Indeed, the discrepancies between the syn-
thetic mean waveforms and those predicted by the Foldy
formula remain relatively small even for such a case, as dem-
onstrated in Fig. 7�a�. Figure 7�b� denotes, however, that it is
not the case for C
0.2 �model 3�.

As the distributions become denser, the experimental at-
tenuation and dispersion curves show the oscillating �or reso-
nant� behavior more clearly. None of the present theories
explains this behavior. This does not indicate the resonance
of one cavity which could occur even without the others;
otherwise, similar oscillation would be always observed on
the theoretical curves, which are obtained from the scattering
amplitude of an isolated scatterer. It is unlikely to be due to
the computational errors because of the care taken to assure
the accuracy of the simulations, as mentioned in Sec. III. It
may not be also related to the finiteness of the scatterer dis-
tribution areas that is not assumed in the theories because the
“resonant wavelengths” are apparently not correlated to the
area size. For example, the first and second peaks above ka
=1 of the Q−1 curve in Fig. 6 occur at around ka=1.4 and
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FIG. 7. The primary parts of the synthetic mean waves for models 2 and 3.
The solid line and the two dotted ones denote the average and the standard
deviation of the waveforms. The crosses indicate the mean waves predicted
by the Foldy formula. Here fC=0.6, for which the discrepancies between the
synthetic and predicted mean waves are most remarkable in these models.
2.5, which correspond to the wavelengths 4.5a and 2.5a,
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respectively, much smaller than L�=9.5d=19a. Since all of
the theories are based on the point scatterer assumption as
stated in Sec. II, the behavior might be attributed to the effect
of finite scatterer sizes �more accurately, finite exclusive ar-
eas of scatterers�, which would be stronger for denser scat-
terer distributions. Adopting a pair-correlation function prop-
erly describing the cavity distributions would be necessary to
recover the agreement with the experiments. This inference
may be supported by a theoretical result of Varadan et al.11 In
order to make comparison with a laboratory-experimental
result, they derived dispersion curves for lead spheres of a
finite size embedded in an epoxy matrix, using the quasi-
crystalline approximation and a realistic pair-correlation
function. Their results were given for two cases with C
=0.05 and 0.15, and the dispersion curve for the latter case
shows oscillation much more noticeably than the former.
Nevertheless, the oscillating behavior is observed even in
Fig. 4 �2�ka�3�, though slightly. This implies that the ef-
fect of finite scatterer sizes may not necessarily be negligible
even for such a small C.

The validity of the theories has been discussed in terms
of C=�na2 for a specific type of scatterers �cavities� so far.
From a general viewpoint, however, it would be also impor-
tant to consider the effect of the scattering strength, which
would depend on not only n but also the scattering amplitude
of each scatterer f���. A possible measure of the strength
might be 	nf��� /k2	,7 which seems to be assumed to be small,
either explicitly or implicitly, in the present theories. As
mentioned in Sec. III, the maximum value of 	nf��� /k2	 for
each model is given in Table I. It turns out that this value is
fairly close to C��0.75C� in the present cases. For model 3
for which any theory does not work, it is 0.16 and actually
not so small compared with unity. In addition, if one assumes
weak scattering

	nf���/k2	 � 1, �14�

then Foldy formula �3� yields

	K2/k2 − 1	 � 1, �15�

that is, K is very close to k. Under this condition, both Q−1

and 	c /c0−1	, defined by Eqs. �11� and �13�, respectively, are
equally of the order of 	nf��� /k2	. Hence these two quantities
may also work as approximate measures of the scattering
strength; if the actual values of Q−1 and 	c /c0−1	 were not so
small as compared with unity, the theories would not repro-
duce their accurate values. This inference seems to be con-
sistent with the present results; the maximum value of either
Q−1 or 	c /c0−1	 exceeds 0.1 for model 3 �Fig. 6�, like
max	nf��� /k2	 in this case. More convincing discussions
would require further similar experiments on different types
of scatterers. Another possible factor limiting the validity of
the theories might be the propagation distance L�, which was
chosen not in a systematic manner in the present study.
Loosely speaking, only cases of relatively short distance
were treated here. It would be of interest to confirm whether
the present theories remain valid for much more larger dis-
tance, though it would require the significant increase in

computational costs.
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V. CONCLUSION

In this article, the attenuation and phase velocities of
antiplane shear waves due to scattering by 2D cavities were
experimentally measured, using computer simulations based
on the boundary integral method of Benites et al.24 The re-
sults are then compared with the predictions by the classical
Foldy theory and its three corrected versions: the theories of
Waterman–Truell, Lloyd–Berry, and Ye–Ding. As long as the
cavity concentrations remain small, the differences among
the theoretical predictions are insignificant and any one is
consistent with the experimental results. For higher concen-
trations �say, over 0.1�, those differences become not negli-
gible. In such situations, however, the experimental results
show complicated dependence on wavenumbers, and none of
the theoretical predictions matches the experimental results
consistently. For example, all of the theories systematically
underestimate Q−1 for 2�ka�3 and �c /c0 for any ka, re-
spectively. Nevertheless, even the simple Foldy formula
seems to be useful for concentrations up to about 0.1 if the
error tolerance is relatively high.

Future work should deal with other types of scatterers
from the practical viewpoint, such as inclusions either harder
or softer than the matrix. This would be also helpful to
clarify the validity of multiple scattering theories in terms of
scattering strength. Researches focusing on the dependence
of the attenuation and dispersion on the wave propagation
distance would be also valuable.
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