A lower bound of nilpotency class of the group of self-homotopy classes

Hideaki ŌSHIMA*

We work in the category of path-connected topological spaces with nondegenerate base points. If G is a topological group (or a group-like space) whose unit is the base point and X is a space, then the set [X, G] of homotopy classes of based maps from X to G inherits a group structure from G. We have been interested in the group $\mathcal{H}(G) = [G, G]$ [3, 4]. Let nil(Γ) be the nilpotency class of a group Γ and $X^{\times n}$ the product space $X \times \cdots \times X$ (n factors) for an integer $n \geq 1$. The purpose of this note is to prove

Proposition. If G is not homotopy nilpotent, then

$$\operatorname{nil}(\mathcal{H}(G^{\times n})) \ge \max\{n, \operatorname{nil}(\mathcal{H}(G))\}.$$
(1)

It follows from [5, 6, 8] that a connected Lie group is not homotopy nilpotent if and only if it has torsion in homology. Hence, for example, we have $\operatorname{nil}(\mathcal{H}(G_2^{\times n})) \geq n$ from (1), where G_2 is the exceptional Lie group of rank 2. Notice that $G_2^{\times n}$ is simply connected and not simple when $n \geq 2$. On the other hand, the main theorem of [1] says that $\operatorname{nil}(\mathcal{H}(\operatorname{PU}(p))) \geq n$ provided p is a prime number $\geq n + 2$. Here $\operatorname{PU}(p)$ is the projective unitary group of order p and so it is simple and not simply connected.

Let $T^n(X)$ be the subspace of X^n consisting of all points, at least one of whose coordinates is the base point. Let $j_n: T^n(X) \to X^{\times n}$ be the inclusion map, $d_{n,X}: X \to X^{\times n}$ the diagonal map, and $\operatorname{cat}(X)$ the Lusternik-Schnirelmann category of Xdefined by Whitehead [2]. Then $\operatorname{cat}(X) < n$ if and only if there is a map $\varphi: X \to T^n(X)$ such that $j_n \circ \varphi$ is homotopic to $d_{n,X}$. Let $c_n: G^{\times n} \to G$ be the iterated commutator map, that is, $c_1 = \operatorname{id}_G$ (the identity map), $c_2(x, y) = [x, y] = xyx^{-1}y^{-1}$, and $c_n = c_2 \circ (c_{n-1} \times \operatorname{id}_G)$ for $n \geq 3$. We define hpnil(G) to be the least integer n such that c_{n+1} is nullhomotopic. If there is no such integer, we define hpnil(G) = ∞ . Then G is homotopy nilpotent if and only if hpnil(G) is finite.

Given maps $f_1, f_2, \ldots, f_n : X \to G$, we have

$$[[\dots [[f_1, f_2], f_3], \dots], f_n] = c_n \circ (f_1 \times \dots \times f_n) \circ d_{n,X}.$$
(2)

Received 2 June, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55P10; Secondary 55Q05.

Key Words and Phrases. Lie group, homotpy nilpotent, nilpotency class.

^{*} Supported by Grant-in-Aid for Scientific Research (C) 18540064.

^{*}Ibaraki University, Mito, Ibaraki 310-8512, Japan. (ooshima@mx.ibaraki.ac.jp)

H. Ōshima

Hence we readily obtain the following well-known inequality [7].

$$\operatorname{nil}([X,G]) \le \min\left\{\operatorname{cat}(X), \operatorname{hpnil}(G)\right\}.$$
(3)

Since $[X, G^{\times n}] \cong [X, G] \oplus \cdots \oplus [X, G]$ (*n* factors), we have

$$\operatorname{nil}([X, G^{\times n}]) = \operatorname{nil}([X, G]).$$
(4)

Since $\operatorname{cat}(X \times Y) \leq \operatorname{cat}(X) + \operatorname{cat}(Y)$ [2], it follows that $\operatorname{cat}(G^{\times n}) \leq n \cdot \operatorname{cat}(G)$. Let $\operatorname{pr}_i : G^{\times n} \to G$ be the projection to the *i*-th factor $(1 \leq i \leq n)$. Since $\operatorname{pr}_i^* : \mathcal{H}(G) \to [G^{\times n}, G]$ is a monomorphism, we have $\operatorname{nil}(\mathcal{H}(G)) \leq \operatorname{nil}([G^{\times n}, G])$. Hence we have

$$\operatorname{nil}(\mathcal{H}(G)) \le \operatorname{nil}(\mathcal{H}(G^{\times n})) \le \min\{n \cdot \operatorname{cat}(G), \operatorname{hpnil}(G)\}.$$
(5)

Proof of Proposition. Suppose that G is not homotopy nilpotent. It suffices to prove $\operatorname{nil}([G^{\times n},G]) \geq n$ because of (4) and (5). By the assumption, c_n is essential for every $n \geq 1$. When n = 1, it means that $\mathcal{H}(G)$ is not trivial, that is, $\operatorname{nil}(\mathcal{H}(G)) \geq 1$. If $n \geq 2$, then $[[\ldots [[\operatorname{pr}_1,\operatorname{pr}_2],\operatorname{pr}_3],\ldots,\operatorname{pr}_{n-1}],\operatorname{pr}_n] = c_n$ by (2) and so $\operatorname{nil}([G^{\times n},G]) \geq n$. \Box

Remark. Since $\operatorname{cat}(S^{3\times 3}) = \operatorname{hpnil}(S^3) = \operatorname{nil}(\mathcal{H}(S^{3\times n})) = 3$ for all $n \geq 3$ by [4, §4], it follows that the assumption "not homotopy nilpotent" is essential in Proposition and that (3) is best possible.

References

- H. Hamanaka, D. Kishimoto and A. Kono, Self homotopy groups with large nilpotency classes, Topology and its Applications, 153(2006), 2425–2429.
- [2] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17(1978), 331–348.
- [3] A. Kono and H. Ōshima, Commutativity of the group of self-homotopy classes of Lie groups, Bull. London Math. Soc., 36(2004), 37–52.
- [4] H. Ōshima, Self homotopy group of the exceptional Lie group G_2 , J. Math. Kyoto Univ., **40**(2000), 177–184.
- [5] V. K. Rao, Spin(n) is not homotopy nilpotent for $n \ge 7$, Topology, **32**(1993), 239–249.
- [6] V. K. Rao, Homotopy nilpotent Lie groups have no torsion in homology, Manuscripta Math., 92(1997), 455–462.
- [7] G. W. Whitehead, *Elements of homotopy theory*, GTM 61, Springer-Verlag, Berlin, 1978.
- [8] N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull. London Math. Soc., 25(1993), 481–486.