
Math. J. Ibaraki Univ., 42 (2010), 3–16

On polynomial ascent and descent semistar
operations on an integral domain

Akira Okabe∗

INTRODUCTION

In 1994, A. Okabe and R. Matsuda introduced the notion of a semistar operation
in [OM] as a generalization of the notion of a star operation which was introduced
in 1936 by W. Krull and was developed in [G] by R. Gilmer. In 2000, M. Fontana
and J.A. Huckaba investigated the relation between semistar operations and localizing
systems and they associated the semistar operation ∗F for each localizing system F
on D and the localizing system F∗ for each semistar operation ∗ on D. Using these
correspondences, they established a very natural bridge between semistar operations
and localizing systems which has been proven to be a very important and essential
tool in the study of semistar operation theory.

Let D be an integral domain with quotient field K and let D[X] be the ring
of polynomials over D in indeterminate X. We shall denote the set of all semistar
operations on D (resp. D[X]) by SS(D) (resp. SS(D[X])) as in [O5]. We have
much interest in considering the relation between SS(D) and SS(D[X]). First, in
[OM], a correspondence ∗ 7→ ∗′ from SS(D[X]) into SS(D) was given by setting
E∗′

= (ED[X])∗
⋂

K for each nonzero D-submodule E of K. In this paper, this
semistar operation ∗′ is called the polynomial descent semistar operation associated to
∗ and is denoted by ∗δ. Next, in [P3], G. Picozza defined a reverse correspondence
∗ 7→ ∗′ from SS(D) into SS(D[X]) by setting ∗′ = ∗F∗[X] for each ∗ ∈ SS(D). In this
paper, this semistar operation ∗′ is called the polynomial ascent semistar operation
associated to ∗ and is denoted by ∗α. Thus we have two correspondences between
SS(D) and SS(D[X]). The purpose of this paper is to investigate the relation between
SS(D) and SS(D[X]) using these two semistar operations ∗α and ∗δ.

In Section 1, we first recall some well-known results on semistar operations and
localizing systems on an integral domain D which will be used in sequel and we shall
show some new results concerning semistar operations [∗] and ∗a which were introduced
in [FL1].

In Section 2, we shall prove some important properties of semistar operations ∗δ

and ∗α. In Theorem 27, we show that (∗α)δ = ∗̄ for each semistar operation ∗ on D
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and | SS(D) | ≤ | SS(D[X]) | and in Theorem 28, we show that (∗α)δ = ∗̃ for each
semistar operation ∗ of finite type on D and | S̃S(D) | ≤ | S̃S(D[X]) |, where SS(D)
(resp. S̃S(D)) denotes the set of all stable semistar operations (resp. all stable semistar
operations of finite type) on D. Moreover, we shall obtain two necessary and sufficient
conditions for a semistar operation ∗ to be stable in Theorem 27 and Corollary 40.
Lastly, in Corollary 46, we shall give a semistar operation theoretic characterization
of a Prüfer domain.

Throughout this paper, D will denote an integral domain with quotient field K.
An integral domain which lies between D and K is called an overring of D. We denote
the set of prime ideals of D by Spec(D) and denote the cardinality of a set X by | X |.
The integral closure of an integral domain D is denoted by D̄.

1. BACKGROUND ON SEMISTAR OPERATIONS AND LOCALIZ-
ING SYSTEMS

In this paper, we shall denote the set of all nonzero D-submodules of K by K(D)
and we shall call each element of K(D) a K-fractional ideal of D as in [O1]. Let F(D)
be the set of all nonzero fractional ideals of D, that is, all elements E ∈ K(D) such
that there exists a nonzero element d ∈ D with dE ⊆ D. The set of finitely generated
K- fractional ideals of D is denoted by f(D). Evidently f(D) ⊆ F(D) ⊆ K(D). The
set of all nonzero integral ideals of D is denoted by I(D).

A map E 7→ E∗ of K(D) into K(D) is called a semistar operation if the following
conditions hold for all a ∈ K\{0} and E,F ∈ K(D):

(S1) (aE)∗ = aE∗;
(S2) If E ⊆ F , then E∗ ⊆ F ∗; and
(S3) E ⊆ E∗ and (E∗)∗ = E∗.
We shall denote the set of all semistar operations on D by SS(D) as in [O5].

Proposition 1. Let ∗ be a semistar operation on D. Then, for all E,F ∈ K(D)
and for every family {Eα} of elements in K(D), we have:

(1) (EF )∗ = (E∗F )∗ = (EF ∗)∗ = (E∗F ∗)∗;
(2) (E + F )∗ = (E∗ + F )∗ = (E + F ∗)∗ = (E∗ + F ∗)∗;
(3) (E : F )∗ ⊆ E∗ : F ∗ = (E∗ : F ) = (E∗ : F )∗;
(4) (

∑
α Eα)∗ = (

∑
α E∗

α)∗;
(5)

⋂
α E∗

α = (
⋂

α E∗
α)∗, if

⋂
α E∗

α 6= {0}.

Example 2. (1) If we set Ed̄D = E for each E ∈ K(D), then d̄D is a semistar
operation on D and is called the identity semistar operation on D. The semistar
operation d̄D is simply denoted by d̄ and is called the d̄-operation on D.

(2) If we set E ēD = K for all E ∈ K(D), then ēD is a semistar operation on D
and is called the trivial semistar operation on D. The semistar operation ēD is simply
denoted by ē and is called the ē-operation on D.

(3) For every E,F ∈ K(D), the set {x ∈ K | xE ⊆ F} is denoted by F :K E, or
simply by F : E. If F : E 6= {0}, then F : E is also a K-fractional ideal of D. If we
set F :D E = (F :K E) ∩ D, then F :D E is an integral ideal of D.
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For each E ∈ K(D), we set E−1 = D :K E = {x ∈ K | xE ⊆ D} and Ev̄ =
(E−1)−1. Then v̄ is a semistar operation on D and is called the divisorial semistar
operation (or simply the v̄-operation) on D. If E ∈ K(D) \F(D), then E−1 = (0) and
so Ev̄ = K.

(4) Let R be an overring of D. If we set E∗(R) = ER for each E ∈ K(D), then
∗(R) is a semistar operation on D and is called the semistar operation defined by an
overring R. As easily seen, ∗(D) = d̄D.

(5) Let D = {Dα} be a family of overrings of D. If we set E∗D =
⋂
{EDα | Dα ∈

D} for each E ∈ K(D), then ∗D is a semistar operation on D and is called the semistar
operation defined by the family D.

(6) Let V be the set of all valuation overrings of D. If we set E b̄ =
⋂
{EVα |

Vα ∈ V} for each E ∈ K(D), then b̄ is a semistar operation on D and is called the
b̄-operation on D. It follows that Db̄ =

⋂
{Vα | Vα ∈ V} = D̄, the integral closure of

D.
Let W be a set of valuation overrings of D. If we set Ew̄ =

⋂
{EVα | Vα ∈ W} for

each E ∈ K(D), then w̄ is a semistar operation on D and is called the w̄-operation on
D.

A semistar operation ∗ on D is said to be of finite type (or of finite character) if
E∗ =

⋃
{F ∗ | F ⊆ E and F ∈ f(D)} for each E ∈ K(D). For each semistar operation

∗ on D and each E ∈ K(D), we set E∗f =
⋃
{F ∗ | F ⊆ E and F ∈ f(D)}. Then the

map E 7→ E∗f is a semistar operation of finite type on D and is called the semistar
operation of finite type associated to ∗. It is easy to see that ∗ is of finite type if and
only if ∗ = ∗f . In particular, ∗f is of finite type for each semistar operation ∗ on D.
The semistar operation v̄f associated to v̄ is denoted by t̄ and is called the t̄-operation.
It is easily seen that E∗ = E∗f for all E ∈ f(D). Note that ∗(R) is a semistar operation
of finite type for all overrings R of D. We shall denote the set of all semistar operations
of finite type on D by SSf (D).

A map E 7−→ E? of F(D) into F(D) is called a star operation on D, if the following
conditions hold for all a ∈ K − {0} and E,F ∈ F(D):

(S0) (aD)? = aD;
(S1) (aE)? = aE?;
(S2) If E ⊆ F , then E? ⊆ F ?; and
(S3) E ⊆ E? and (E?)? = E?.
If we set Ed = E for all E ∈ F(D) then d is a star operation on D and is called

the identity operation (or simply the d-operation). Next, for each E ∈ F(D), we set
E−1 = D :K E = {x ∈ K | xE ⊆ D} and Ev = (E−1)−1 for each E ∈ F(D), then v is
a star operation on D and is called the v-operation.

We shall denote the set of all star operations on D by S(D). For any overring R
of D, we denote the set {∗ ∈ SS(D) | D∗ = R} by SS(D,R) as in [P2].

We recall that there exists a canonical method which corresponds each star oper-
ation ? on D to a semistar operation ?e on D:

Proposition 3 ([OM, Proposition 17]). Let ? be a star operation on D. For each
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E ∈ K(D), we set:

E?e

=
{

E?, for E ∈ F(D)
K, for E ∈ K(D)\F(D)

Then the map E 7−→ E?e

is a semistar operation on D.

This semistar operation ?e is called the trivial semistar extension of a star oper-
ation ?. It is easily seen that the v̄-operation is the trivial semistar extension of the
v-operation.

In [O1], a semistar operation ∗ is said to be weak if D∗ = D and is said to be
strong if D∗ 6= D. We denote the set of all weak semistar operations on D by SSw (D)
or (S)S(D). Evidently ?e is a weak semistar operation for all star operations ?.

We denote the trivial semistar extension de of the d-operation on D by f̄ . For
each overring R of D, we denote the d-operation on R by dR and denote the trivial
semistar extension (dR)e of dR by f̄R.

Remark 4. The map ? 7→ ?e is evidently an injective map of S(D) into SS(D)
and hence | S(D) |≤| SS(D) |.

Remark 5. An integral domain D is called a conducive domain if D : R = {x ∈
K | xR ⊆ D} 6= (0) for each overring R of D other than K. It is easy to see that D is
a conducive domain if and only if d̄ = f̄ holds. (see [O5, Proposition 5]).

In [OM] we defined a partial order ≤ on SS(D) by ∗1 ≤ ∗2 if and only if E∗1 ⊆ E∗2

for each E ∈ K(D). It is evident that d̄ ≤ ∗ ≤ ē holds for each semistar operation ∗
on D.

Proposition 6 (cf.[OM, Lemma 16]). For ∗1, ∗2 ∈ SS(D), the following condi-
tions sre equivalent:

(1) ∗1 ≤ ∗2;
(2) (E∗2)∗1 = E∗2 for all E ∈ K(D);
(3) (E∗1)∗2 = E∗2 for all E ∈ K(D).

Definition 7 ([FL1, Definition 4.2]). For each semistar operation ∗ on D, we set:

F [∗] =
⋃
{((H∗ : H∗)F )∗f | H ∈ f(D)} for each F ∈ f(D),

and

E[∗] =
⋃
{F [∗] | F ∈ f(D) and F ⊆ E} for each E ∈ K(D).

Definition 8 ([FL1, Definition 4.4]). For each semistar operation ∗ on D, we set:

F ∗a =
⋃
{((FH)∗ : H∗) | H ∈ f(D)} for each F ∈ f(D),

and
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E∗a =
⋃
{F ∗a | F ∈ f(D) and F ⊆ E} for each E ∈ K(D).

Now we must recall the definitons of an e.a.b. semistar operation and an a.b. semistar
operation in order to state some of the fundamental properties of [∗] and ∗a. A semistar
operation ∗ on D is said to be endlich arithmetisch brauchbar (for short, e.a.b.) if for
all E,F,G ∈ f(D), (EF )∗ ⊆ (EG)∗ implies F ∗ ⊆ G∗ and is said to be arithmetisch
brauchbar (for short, a.b.) if for all F,G ∈ K(D) and for all E ∈ f(D), (EF )∗ ⊆ (EG)∗

implies F ∗ ⊆ G∗.

Proposition 9. Let ∗ be a semistar operation on D. Then
(1) [∗] is a semistar operation of finite type;
(2) D[∗] is an integrally closed overring of D;
(3) ∗a is an e.a.b. semistar operation of finite type;
(4) ∗a = ∗f ⇐⇒ ∗f is an e.a.b. semistar operation;
(5) [∗] is e.a.b. if and only if [∗] = ∗a.

Proof. The proof of (1) is straightforward. (2) is in [FL1, Propositions 4.3]. (3)
and (4) are in [FL1, Proposition 4.5]. (5) Since [∗] is of finite type, by (4) of Proposition
9, [∗] = [∗]f is e.a.b. if and only if [∗]a = [∗]f = [∗]. But, by [FL1, Proposition 4.5 (9)],
[∗]a = ∗a and hence our assertion follows. ¤

Note. In general, for each semistar operation ∗ on D, we have [∗] ≤ ∗a as shown
in [FL1, Proposition 4.5 (3)].

Proposition 10 ([OM, Lemma 45]). Let R be an overring of D. Then
(1) For each ∗ ∈ SS(R), if we define EδD(∗) = (ER)∗ for all E ∈ K(D), then

δD(∗) ∈ SS(D).
(2) If we define δR/D : SS(R) → SS(D) by δR/D(∗) = δD(∗), then δR/D is an

injective map and therefore | SS(R) |≤| SS(D) |.
(3) For each ∗ ∈ SS(D), if we define EαR(∗) = E∗ for all E ∈ K(R)(⊆ K(D)),

then αR(∗) ∈ SS(R).
(4) If we define αR/D : SS(D) → SS(R) by αR/D(∗) = αR(∗), then αR/D ◦ δR/D

is the identity map of SS(R).

The map δR/D (resp. αR/D ) is called the descent map (resp. the ascent map ).
Here we collect fundamental properties of αR/D and δR/D concerning e.a.b. property
and a.b. property.

Proposition 11. (1) If ∗ is an e.a.b. (resp. a.b.) semistar operation on D, then
αD∗/D(∗) is an e.a.b. (resp. a.b.) semistar operation on D∗.

(2) If ∗ is an e.a.b. (resp. a.b.) semistar operation on an overring R of D, then
δR/D(∗) is an e.a.b. (resp. a.b.) semistar operation on D.

Proof. (1) is in [FL1, Proposition 2.8] and (2) is in [FL1, Proposition 2.9]. ¤

We shall show two fundamental properties of δR/D concerning [∗] and ∗a in the
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following two lemmas:

Lemma 12. Let R be an overring of D and let ∗ be a semistar operation on R.
If we set δ = δR/D, then (δ(∗))a = δ(∗a).

Proof. First, for each F ∈ f(D), F (δ(∗))a =
⋃
{(FH)δ(∗) : Hδ(∗) | H ∈ f(D)} =⋃

{(FRHR)∗ : (HR)∗ | H ∈ f(D)} =
⋃
{(FRG)∗ : G∗ | G ∈ f(R)} = (FR)∗a =

F δ(∗a).
Next, for each E ∈ K(D), E(δ(∗))a =

⋃
{F (δ(∗))a | F ∈ f(D) and F ⊆ E} =⋃

{F δ(∗a) | F ∈ f(D) and F ⊆ E} = Eδ(∗a) and therefore (δ(∗))a = δ(∗a). ¤

Lemma 13. Let R be an overring of D and let ∗ be a semistar operation on R.
If we set δ = δR/D, then [δ(∗)] = δ([∗]).

Proof. For each F ∈ f(D), F δ([∗]) = (FR)[∗] =
⋃
{(H∗ : H∗)FR)∗f | H ∈ f(R)} =⋃

{(((GR)∗ : (GR)∗)FR)∗f | G ∈ f(D)} =
⋃
{(Gδ(∗) : Gδ(∗))FR)∗f | G ∈ f(D)} =⋃

{(((Gδ(∗) : Gδ(∗))F )R)∗f | G ∈ f(D)} =
⋃
{((Gδ(∗) : Gδ(∗))F )δ(∗f ) | G ∈ f(D)}.

Then, since δ(∗f ) = (δ(∗))f by [P2, Proposition 3.2 (1)], we have F δ([∗]) =
⋃
{((Gδ(∗) :

Gδ(∗))F )(δ(∗))f | G ∈ f(D)} = F [δ(∗)]. Hence, for each E ∈ K(D), Eδ([∗]) =
⋃
{F δ([∗]) |

F ∈ f(D) and F ⊆ E} =
⋃
{F [δ(∗)] | F ∈ f(D) and F ⊆ E} = E[δ(∗)] which implies

that [δ(∗)] = δ([∗]). ¤

Remark 14. (1) [ē] = (ē)a = ē. In fact, since ē is of finite type, ē = (ē)f ≤ [ē] ≤
(ē)a by [FL1, Proposition 4.5 (3)]. Hence [ē] = (ē)a = ē.

(2) [d̄] = ∗(D̄). If F ∈ f(D), then F [d̄] =
⋃
{((H d̄ : H d̄)F )d̄ | H ∈ f(D)} =⋃

{(H : H)F | H ∈ f(D)} = D̄F . Hence F [d̄] = F ∗(D̄) for all F ∈ f(D). Then for
each E ∈ K(D), E[d̄] =

⋃
{F [d̄] | F ∈ f(D) and F ⊆ E} =

⋃
{D̄F | F ∈ f(D) and

F ⊆ E} = D̄E = E∗(D̄) . Hence we get [d̄] = ∗(D̄).

In [GA], the notion of a localizing (or topologizing) system of ideals was introduced
by Gabriel. A set F of ideals of D is called a localizing system of ideals (for short,
localizing system) on D if the following conditions are satisfied:

(LS1) If I ∈ F and J is an ideal of D such that I ⊆ J , then J ∈ F ;
(LS2) If I ∈ F and J is an ideal of D such that J :D iD ∈ F for all i ∈ I, then

J ∈ F .
To avoid uninteresting cases, we assume that every localizing system F is non-

trivial, i.e., (0) /∈ F and F is not empty.
A localizing system F of D is said to be of finite type if for each I ∈ F , there

exists a finitely generated ideal J ∈ F such that J ⊆ I. If I, J ∈ F , then IJ ∈ F
and hence I

⋂
J ∈ F by (LS1) (see [FHP, Proposition 5.1.1]). Thus every localizing

system becomes a generalized multiplicative system.
We shall denote the set of localizing systems on D by LS(D) and the set of

localizing systems of finite type on D by LSf (D).
Let F be a localizing system on D. If we set DF = {x ∈ K | D :D x ∈ F},

then DF is a subring of K and is called the quotient ring of D relative to F (see [PO,
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p.778]). It is easy to see that DF =
⋃
{D : I | I ∈ F}.

Let T be a flat overring of D. If we set F(T ) = {I ∈ I(D) | IT = T}, then F(T )
is a localizing system on D and DF(T ) = T [PO, Proposition 1.2 (i)]. It is easily seen
that F(T ) is a localizing system of finite type. Here we note that F(T ) is denoted by
F1(T ) in [FP] and F0(T ) in [FHP].

It is easily seen that if F1 ⊆ F2 are localizing systems of D, then DF1 ⊆ DF2 and
if T1 ⊆ T2 are overrings of D, then F(T1) ⊆ F(T2).

Proposition 15 ([FH, Proposition 2.8]). Let ∗ be a semistar operation on D.
Then F∗ = {I | I ∈ I(D) and I∗ = D∗} is a localizing system on D.

F∗ is called the localizing system associated to ∗ for each ∗ ∈ SS(D). Let ∗ be a
semistar operation on D. Then ∗ is said to be stable if (E ∩ F )∗ = E∗ ∩ F ∗ for all
E,F ∈ K(D).

Proposition 16 ([FH, Proposition 2.4]). Let F be a localizing system on D. For
each E ∈ K(D), we set EF =

⋃
{E : J | J ∈ F}. Then the map E 7→ EF of K(D)

into K(D) is a stable semistar operation on D.

The semistar operation defined in Proposition 16 is denoted by ∗F and is called
the semistar operation associated to F .

In general, ∗(DF ) ≤ ∗F and the equality holds if and only if DF is flat over D and
F = {I ∈ I(D) | IDF = DF} (see [FH, Proposition 2.6]).

Proposition 17 ([FH, Proposition 3.2]). Let F be a localizing system on D and
let ∗ be a semistar operation on D. Then

(1) If F is of finite type, then ∗F is of finite type.
(2) If ∗ is of finite type, then F∗ is of finite type.

2. POLYNOMIAL ASCENT AND DESCENT SEMISTAR OPERA-
TIONS

In [P3], Picozza has proved that each localizing system F on D induces in a
canonical way the localizing system F [X] on the polynomial ring D[X].

Lemma 18 ([P3, Proposition 3.1]). Let F be a localizing system on D. If we set

F [X] = {I is an ideal of D[X] | I ⊇ JD[X] for some J ∈ F}

then F [X] is a localizing system on D[X].

Note that it is shown in the proof of [P3, Proposition 3.1] that for an ideal I of
D[X], I ∈ F [X] if and only if I

⋂
D ∈ F .

Proposition 19 ([P3, Proposition 3.2]). If F is a localizing system of finite type
on D, then F [X] is a localizing system of finite type on D[X].
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Proposition 20 (cf. [P3, Theorem 3.3]). Let ∗ be a semistar operation on D. If
we set ∗α = ∗F∗[X] then ∗α is a semistar operation on D[X].

Proof. If ∗ is a semistar operation on D, then F∗ is a localizing system on D and
then F∗[X] is a localizing system on D[X]. Hence ∗α is a semistar operation on D[X]
by Proposition 16.

Note. Let ∗ be a semistar operation on D. Then it follows from the definition that
E∗α

=
⋃
{E : J | J ∈ F∗[X]} =

⋃
{E : J | J ∈ I(D[X]) and J ⊇ I[X] for some I ∈

F∗} =
⋃
{E : J | J ⊇ I[X] and I∗ = D∗} =

⋃
{E : I[X] | I ∈ I(D) and I∗ = D∗} for

each E ∈ K(D[X]).

Proposition 21. Let ∗ be a semistar operation on D. Then
(1) ∗α is a stable semistar operation on D[X].
(2) If ∗ is of finite type, then ∗α is also of finite type.
(3) If ∗1 ≤ ∗2 in SS(D), then (∗1)α ≤ (∗2)α in SS(D[X]).

Proof. (1) follows from Proposition 16 and (2) follows from Propositions 17 and
19.

(3) As easily seen, ∗1 ≤ ∗2 implies F∗1 ⊆ F∗2 and then F∗1 [X] ⊆ F∗2 [X]. Hence
(∗1)α = ∗F∗1 [X] ≤ ∗F∗2 [X] = (∗2)α. ¤

The semistar operation ∗α is called the polynomial ascent semistar operation as-
sociated to a semistar operation ∗.

Example 22 (cf.[P3, Remark (1)]). If d̄ is the identity semistar operation on D,
then (d̄)α = d̄D[X], i.e., the identity semistar operation on D[X]. By definition, F d̄ =
{I is an ideal of D | I d̄ = Dd̄} = {D}. Then it is easily seen that F d̄[X] = {D[X]} and
then E(d̄)α

= E
∗Fd̄[X] = {E : J | J ∈ F d̄[X]} = E : D[X] = E for all E ∈ K(D[X]).

Therefore we have (d̄)α = d̄D[X].

Proposition 23. Let ∗ be a semistar operation on D[X]. We set E∗δ

=
(ED[X])∗

⋂
K for all E ∈ K(D). Then

(1) ∗δ is a semistar operation on D.
(2) (ED[X])∗ = (E∗δ

D[X])∗ for all E ∈ K(D).
(3) If ∗ is a stable semistar operation on D[X], then ∗δ is a stable semistar oper-

ation on D.
(4) If ∗ is of finite type, then ∗δ is of finite type.
(5) If ∗1 ≤ ∗2 in SS(D[X]), then (∗1)δ ≤ (∗2)δ in SS(D).

Proof. (1) and (2) are consequences of [OM, Proposition 35].
(3) If ∗ is stable, then (E

⋂
F )∗

δ

= ((E
⋂

F )D[X])∗
⋂

K = (ED[X]
⋂

FD[X])∗
⋂

K =
((ED[X])∗

⋂
(FD[X])∗)

⋂
K = ((ED[X])∗

⋂
K)

⋂
((FD[X])∗

⋂
K) = E∗δ ⋂

F ∗δ

for
all E,F ∈ K(D) and therefore ∗δ is also stable.

(4) Choose an element E ∈ K(D). Then E∗δ

= (ED[X])∗
⋂

K = (
⋃
{(FD[X])∗ |
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F ⊆ E and F ∈ f(D)})
⋂

K =
⋃
{(FD[X])∗

⋂
K | F ⊆ E and F ∈ f(D)} =

⋃
{F ∗δ |

F ⊆ E and F ∈ f(D)} which implies that ∗δ is of finite type.
(5) This is straightforward from the definition.¤

The semistar operation ∗δ defined in Proposition 23 is called the polynomial de-
scent semistar operation associated to a semistar operation ∗.

As in [FH], we set ∗̄ = ∗F∗ and ∗̃ = (∗)(F∗)f
= ∗F∗f for each ∗ ∈ SS(D). Here we

collect some fundamental properties of these semistar operations which were proved in
[FH].

Proposition 24. Let ∗ be a semistar operation on D. Then
(1) (∗̄)f ≤ ∗f ≤ ∗ and (∗̄)f ≤ ∗̄ ≤ ∗;
(2) (̃∗f ) = (∗f ) = ∗̃;
(3) ∗ is a stable semistar operation if and only if ∗ = ∗̄;
(4) ∗̄ = ∗̃ ⇐⇒ ∗̄ is of finite type;
(5) ∗ = ∗̃ ⇐⇒ ∗ is stable and of finite type;
(6) ¯̃∗ = ˜̄∗ = ∗̃.
(7) ¯̄∗ = ∗̄, ˜̃∗ = ∗̃ and ∗̃ ≤ ∗̄.

In [FL2], an ideal I ∈ I(D) is called a quasi-∗-ideal of D if I∗
⋂

D = I. A maximal
element in the set of all proper quasi-∗-ideals of D is called a quasi-∗-maximal ideal of
D and the set of all quasi-∗-maximal ideals of D is denoted by QMax∗(D). For the
sake of simplicity, when ∗ is of finite type, QMax∗(D) is simply denoted by M(∗) (see
[FL2, p.4782]).

If ∗ is a semistar operation of finite type on D, then QMax∗(D) is not an empty set
and each element P of QMax∗(D) is a prime ideal of D [FL2, Lemma 2.3]. Furthermore,
it was proved in [FL2, Corollary 2.7 (1)] that ∗̃ = ∗M(∗f ) for each semistar operation
∗ on D.

Proposition 25. Let ∗ be a semistar operation of finite type on D. Then ∗α =
(∗̃)α.

Proof. Let E be an element of K(D[X]). Then E(∗̃)α

=
⋃
{E : I[X] | I ∗̃ =

D∗̃} =
⋃
{E : I[X] | I 6⊆ M for all M ∈ QMax∗̃(D)} =

⋃
{E : I[X] | I 6⊆ M for all

M ∈ M(∗̃)}.
But, by [FL2, Corollary 3.5 (2)], M(∗̃) = M(∗f ) = M(∗). Hence E(∗̃)α

=
⋃
{E :

I[X] | I 6⊆ M for all M ∈ M(∗)} =
⋃
{E : I[X] | I∗ = D∗} = E∗α

which implies that
∗α = (∗̃)α. ¤

Remark 26. Let F be a localizing system on D. Then F = F∗F by [FH, Theorem
2.10 (A)]. Using this result, we can give another proof of Proposition 25. First, by
definition ∗̄ = ∗F∗ for each semistar operation ∗ on D and so F ∗̄ = F∗F∗ = F∗ by
[FH, Theorem 2.10 (A)]. Hence (∗̄)α = ∗F ∗̄[X] = ∗F∗[X] = ∗α. In particular, if ∗ is of
finite type, then ∗̄ = ∗̃ and so ∗α = (∗̃)α.
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We shall denote the set of all stable semistar operations on D (resp. all stable
semistar operations of finite type on D) by SS(D) (resp. S̃S(D)). It easily follows
from Proposition 24 that SS(D) = {∗̄ | ∗ ∈ SS(D)} and S̃S(D) = {∗̃ | ∗ ∈ SSf (D)}.

Theorem 27. Let ∗ be a semistar operation on D. Then
(1) (∗α)δ = ∗̄.
(2) ∗ is stable if and only if (∗α)δ = ∗.
(3) | SS(D) |≤| SS(D[X]) |.

Proof. (1) For each E ∈ K(D), E(∗α)δ

= (ED[X])∗
α ⋂

K = (ED[X])∗F∗[X]
⋂

K =⋃
{ED[X] : JD[X] | J ∈ F∗}

⋂
K =

⋃
{(ED[X] : JD[X])

⋂
K | J ∈ F∗} =

⋃
{E : J |

J ∈ F∗} = E∗F∗ = E∗̄ which implies (∗α)δ = ∗̄.
(2) This follows from Theorem 27 (1) and [FH, Proposition 3.7 (1)].
(3) First, for each ∗ ∈ SS(D), we have ∗α ∈ SS(D[X]) by Proposition 21 (1).

Next, if ∗ is stable, then (∗α)δ = ∗̄ = ∗ by Proposition 24 (3) and Theorem 27 (1).
Hence the map ∗ 7→ ∗α of SS(D) into SS(D[X]) is injective and therefore | SS(D) |≤|
SS(D[X]) |. ¤

Theorem 28. Let ∗ be a semistar operation on D. Then
(1) (∗α)δ = ∗̃ for each ∗ ∈ SSf (D).
(2) | S̃S(D) |≤| S̃S(D[X]) |.

Proof. (1) This follows from Proposition 24 (2) and Theorem 27 (1).
(2) Let ∗ ∈ S̃S(D). Then, by Proposition 21 (1) and (2), ∗α ∈ S̃S(D[X]). More-

over, (∗α)δ = ∗̃ by Theorem 28 (1). Therefore the map ∗ 7→ ∗α of S̃S(D) into S̃S(D[X])
is injective and so | S̃S(D) |≤| S̃S(D[X]) |. ¤

Let ∆ be a subset of Spec(D). Then F(∆) =
⋂
{F(P ) | P ∈ ∆}, where F(P ) =

{I ∈ I(D) | I 6⊆ P} is a localizing system on D. A localizing system F on D is called
spectral if there exists a subset ∆ of Spec(D) such that F = F(∆). For each subset ∆
of Spec(D), if we set E∗∆ =

⋂
{EDP | P ∈ ∆} for each E ∈ K(D), then ∗∆ is a stable

semistar operation on D by [OM, Theorem 20 (1)]. A semistar operation ∗ on D is
called spectral if ∗ = ∗∆ for some subset ∆ of Spec(D).

In this paper, we denote the set {P [X] | P ∈ ∆} by ∆[X] for each subset ∆ of
Spec(D).

Lemma 29. If ∆ is a subset of Spec(D), then F(∆)[X] ⊆ F(∆[X]).

Proof. Let J ∈ F(∆)[X]. Then J ⊇ I[X] for some I ∈ F(∆). Since I 6⊆ P for
all P ∈ ∆, I[X] 6⊆ P [X] for all P [X] ∈ ∆[X] which implies that I[X] ∈ F(∆[X]) and
therefore J ∈ F(∆[X]). ¤

Proposition 30. If ∆ = {Pα} is a subset of Spec(D), then (∗∆[X])δ = ∗∆.

Proof. For each E ∈ K(D), we have E(∗∆[X])
δ

= (ED[X])∗∆[X]
⋂

K = (
⋂
{E[X]Pα[X] |
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Pα ∈ ∆})
⋂

K =
⋂
{E[X]Pα[X]

⋂
K | Pα ∈ ∆} =

⋂
{EPα | Pα ∈ ∆} = E∗∆ and hence

(∗∆[X])δ = ∗∆. ¤

Proposition 31 ([FH, Lemma 4.2]). Let ∆ be a subset of Spec(D). Then ∗∆ =
∗F(∆) and F∗∆ = F(∆).

Note. It follows from Proposition 16 that ∗∆ is stable for each subset ∆ of Spec(D),
because, by Proposition 31, ∗∆ = ∗F(∆) and F(∆) is a localizing system on D. Thus
every spectral semistar operation is a stable semistar operation.

Lemma 32. Let F be a localizing system on D[X]. If we set FD = {I ∈ I(D) |
I[X] ∈ F} = {J

⋂
D | J ∈ I(D[X]) such that J

⋂
D 6= (0) and (J

⋂
D)[X] ∈ F}, then

FD is a localizing system on D.

Proof. We need only to show that FD satisfies (LS1) and (LS2).
(LS1) Let I ∈ FD and let J be an ideal of D containing I. Then I[X] ∈ F and

I[X] ⊆ J [X] and hence J [X] ∈ F which implies J ∈ FD.
(LS2) Suppose that I ∈ FD and J is an ideal of D such that J :D iD ∈ FD for all

i ∈ I. Then (J :D iD)[X] ∈ F and (J :D iD)[X]iD[X] ⊆ J [X]. Hence (J :D iD)[X] ⊆
J [X] :D[X] iD[X] and so J [X] :D[X] iD[X] ∈ F , because (J :D iD)[X] ∈ F . Thus
J [X] :D[X] iD[X] ∈ F for all i ∈ I. Choose f ∈ I[X] and set f = a0+a1X+· · ·+anXn.
Then J [X] :D[X] aiD[X] ∈ F for all i = 0, 1, · · · , n and so

⋂n
i=0(J [X] :D[X] aiD[X]) ∈

F . If we choose g(X) ∈
⋂n

i=0(J [X] :D[X] aiD[X]), then f(X)g(X) = (a0 + a1X +
· · · + anXn)g(X) = a0g(X) + a1g(X)X + · · · + ang(X)Xn ∈ J [X] and so g(X) ∈
J [X] :D[X] f(X)D[X]. Thus

⋂n
i=0(J [X] :D[X] aiD[X]) ⊆ J [X] :D[X] f(X)D[X] and

then J [X] :D[X] f(X)D[X] ∈ F . Hence J [X] :D[X] f(X)D[X] ∈ F for all f ∈ I[X]
which implies that J [X] ∈ F and so J ∈ FD. ¤

Proposition 33. If F is a localizing system of finite type on D[X], then FD is
also a localizing system of finite type on D.

Proof. Choose I ∈ FD. Then I[X] ∈ F . By hypothesis, F is of finite type
and so there exists a finitely generated ideal J ∈ F such that J ⊆ I[X]. Set J =
(f1, f2, · · · , fn). Then c(fi) ⊆ I for all i = 1, 2, · · · , n. Then I0 =

∑n
i=1 c(fi) is finitely

generated and I0 ⊆ I. Since J ⊆ I0[X], we obtain I0[X] ∈ F . Thus I0 ∈ FD and
I0 ⊆ I. Therefore FD is of finite type. ¤

Proposition 34. Let F be a localizing system on D. Then F [X]D = F .

Proof. (⊇) If I ∈ F , then I[X] ∈ F [X] and therefore I ∈ F [X]D.
(⊆) Suppose that I ∈ F [X]D. Then I[X] ∈ F [X] and then I[X] ⊇ J [X] for some

J ∈ F . Then, since I ⊇ J and J ∈ F , we have I ∈ F . ¤

Proposition 35. Let F be a localizing system on D[X]. Then
(1) FD[X] ⊆ F .
(2) F = FD[X] ⇐⇒ J

⋂
D 6= (0) and (J

⋂
D)[X] ∈ F for all J ∈ F .
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Proof. (1) Suppose that J ∈ FD[X]. Then J ⊇ I[X] for some I ∈ FD. Then
I[X] ∈ F and so we get J ∈ F .

(2) (⇐=) Choose J ∈ F . Then J
⋂

D 6= (0) and (J
⋂

D)[X] ∈ F . Then, since
(J

⋂
D)[X] ∈ FD[X], evidently J ∈ FD[X]. Thus F ⊆ FD[X] and therefore F =

FD[X].
(=⇒) Let J ∈ F = FD[X]. Then J ⊇ I[X] with I ∈ FD. Hence J

⋂
D ⊇ I with

I ∈ FD and therefore J
⋂

D 6= (0) and (J
⋂

D)[X] ∈ FD[X] = F . ¤

Proposition 36. Let ∗ be a semistar operation on D[X]. Then (∗δ)α ≤ ∗̄ ≤ ∗.

Proof. Let E be an element of K(D[X]). Then (E∗)(∗
δ)α

= (E∗)
∗
F∗δ [X] =

⋃
{E∗ :

J | J ∈ F∗δ

[X]} =
⋃
{E∗ : I[X] | I ∈ F∗δ} =

⋃
{E∗ : I[X]∗ | I ∈ F∗δ}. But,

by definition, I ∈ F∗δ

if and only if I∗
δ

= D∗δ

. Then, by [OM, Proposition 35],
(I[X])∗ = (I∗

δ

[X])∗ = (D∗δ

[X])∗ = D[X]∗ for each I ∈ F∗δ

. Hence (E∗)(∗
δ)α

=⋃
{E∗ : I[X]∗ | I ∈ F∗δ} = E∗ : D[X]∗ = E∗ : D[X] = E∗ for all E ∈ K(D[X]) and

therefore (∗δ)α ≤ ∗ by [OM, Lemma 16]. Then, by Proposition 21 (1), (∗δ)α is stable
and so (∗δ)α ≤ ∗̄ ≤ ∗ by [FH, Proposition 3.6 (a) and Proposition 3.7 (1)]. ¤

Theorem 37. Let ∗ be a semistar operation on D[X]. If we set ∗[X] = ∗(F∗)D
,

then ∗[X] is a semistar operation on D and ∗[X] ≤ ∗δ.

Proof. By definition, E∗[X] = E∗(F∗)D =
⋃
{E : J | J ∈ (F∗)D} for each E ∈

K(D) and J ∈ (F∗)D ⇐⇒ J [X] ∈ F∗ ⇐⇒ J [X]∗ = D[X]∗. Hence if x ∈ E : J ,
then xJ ⊆ E and then xJ [X] ⊆ E[X] and so x(J [X])∗ ⊆ E[X]∗. But then, since
J [X]∗ = D[X]∗ for each J ∈ (F∗)D, we have xD[X]∗ ⊆ E[X]∗ and so x ∈ E[X]∗.
Thus E : J ⊆ E[X]∗

⋂
K = E∗δ

for all E ∈ K(D) and all J ∈ (F∗)D which implies
that E∗[X] ⊆ E∗δ

for all E ∈ K(D) and therefore ∗[X] ≤ ∗δ. ¤

Lemma 38. Let ∗ be a semistar operation on D. Then (F∗α

)D = F∗.

Proof. By definition, ∗α = ∗F∗[X] and hence F∗α

= F∗F∗[X] = F∗[X] by [FH,
Theorem 2.10 (A)]. Therefore (F∗α

)D = F∗[X]D = F∗ by Proposition 34.¤

Theorem 39. (∗α)[X] = (∗α)δ for each semistar operation ∗ on D.

Proof. By Lemma 38, (∗α)[X] = ∗(F∗α )D
= ∗F∗ = ∗̄. But (∗α)δ = ∗̄ also holds by

Theorem 27. Therefore we get (∗α)[X] = (∗α)δ. ¤

Corollary 40. Let ∗ be a semistar operation on D. Then ∗ is stable if and only
if ∗ = (∗α)[X].

Proof. This follows immediately from Theorems 27 and 39.¤

Example 41. As easily seen, F d̄D = {D} for each integral domain D and there-
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fore F d̄D[X] = {D[X]}. Then (F d̄D[X])D = {D} and so (d̄D[X])[X] = ∗
(F d̄D[X] )D

= d̄D.

On the other hand, E(d̄D[X])
δ

= E[X]d̄D[X]
⋂

K = E[X]
⋂

K = E = Ed̄D for each
E ∈ K(D) and so (d̄D[X])δ = d̄D. Thus (d̄D[X])δ = (d̄D[X])[X] = d̄D.

Remark 42. The above result shown in Example 41 follows directly from Theorem
39. In fact, (d̄D)α = d̄D[X] by Example 22 and therefore (d̄D[X])δ = ((d̄D)α)δ =
((d̄D)α)[X] = (d̄D[X])[X].

Proposition 43. Let R be an overring of D. Then (∗(R[X]))δ = ∗(R).

Proof. E(∗(R[X]))
δ

= (ED[X])∗(R[X])
⋂

K = ER[X]
⋂

K = ER = E∗(R) for each
E ∈ K(D) and hence (∗(R[X]))δ = ∗(R). ¤

Proposition 44. Let R be an overring of D. Then (∗(R[X]))[X] = ∗̃(R).

Proof. E(∗(R[X]))[X] =
⋃
{E : J | J ∈ (F∗(R[X]))D} =

⋃
{E : J | J [X]∗(R[X]) =

D[X]∗(R[X])} =
⋃
{E : J | JR[X] = R[X]} =

⋃
{E : J | JR = R} =

⋃
{E : J | J∗(R) =

D∗(R)} = E∗(R) = E g∗(R) for each E ∈ K(D), since ∗(R) is of finite type. Hence we have
(∗(R[X]))[X] = ∗̃(R). ¤

Corollary 45. Let R be an overring of D. Then (∗(R[X]))δ = (∗(R[X]))[X] if and
only if ∗(R) = ∗̃(R),i.e., ∗(R) is a stable semistar operation on D.

Proof. This follows immediately from Propositions 43 and 44. ¤

Corollary 46. (1) An overring R of D is a flat overring of D if and only if
(∗(R[X]))δ = (∗(R[X]))[X].

(2) D is a Prüfer domain if and only if (∗(R[X]))δ = (∗(R[X]))[X] for each overring
R of D.

Proof. (1) By [O3, Remark 37 (1)], R is a flat overring of D if and only if ∗(R) is
a stable semistar operation on D and hence our assertion follows from Corollary 45.

(2) Since D is a Prüfer domain if and only if each overring R of D is a flat overring
of D, our assertion also follows from Corollary 45. ¤
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neaux de Dedekind, J. Algebra 173(1995), 44-66.
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