On polynomial ascent and descent semistar operations on an integral domain

Akira Okabe*

INTRODUCTION

In 1994, A. Okabe and R. Matsuda introduced the notion of a semistar operation in [OM] as a generalization of the notion of a star operation which was introduced in 1936 by W. Krull and was developed in [G] by R. Gilmer. In 2000, M. Fontana and J.A. Huckaba investigated the relation between semistar operations and localizing systems and they associated the semistar operation $*_{\mathcal{F}}$ for each localizing system \mathcal{F} on D and the localizing system \mathcal{F}^* for each semistar operation * on D. Using these correspondences, they established a very natural bridge between semistar operations and localizing systems which has been proven to be a very important and essential tool in the study of semistar operation theory.

Let D be an integral domain with quotient field K and let D[X] be the ring of polynomials over D in indeterminate X. We shall denote the set of all semistar operations on D (resp. D[X]) by $\mathbf{SS}(D)$ (resp. $\mathbf{SS}(D[X])$) as in [O5]. We have much interest in considering the relation between $\mathbf{SS}(D)$ and $\mathbf{SS}(D[X])$. First, in [OM], a correspondence $* \mapsto *'$ from $\mathbf{SS}(D[X])$ into $\mathbf{SS}(D)$ was given by setting $E^{*'} = (ED[X])^* \cap K$ for each nonzero D-submodule E of K. In this paper, this semistar operation *' is called the polynomial descent semistar operation associated to * and is denoted by $*^{\delta}$. Next, in [P3], G. Picozza defined a reverse correspondence $* \mapsto *'$ from $\mathbf{SS}(D)$ into $\mathbf{SS}(D[X])$ by setting $*' = *_{\mathcal{F}^*[X]}$ for each $* \in \mathbf{SS}(D)$. In this paper, this semistar operation *' is called the polynomial ascent semistar operation associated to * and is denoted by $*^{\alpha}$. Thus we have two correspondences between $\mathbf{SS}(D)$ and $\mathbf{SS}(D[X])$. The purpose of this paper is to investigate the relation between $\mathbf{SS}(D)$ and $\mathbf{SS}(D[X])$ using these two semistar operations $*^{\alpha}$ and $*^{\delta}$.

In Section 1, we first recall some well-known results on semistar operations and localizing systems on an integral domain D which will be used in sequel and we shall show some new results concerning semistar operations [*] and $*_a$ which were introduced in [FL1].

In Section 2, we shall prove some important properties of semistar operations $*^{\delta}$ and $*^{\alpha}$. In Theorem 27, we show that $(*^{\alpha})^{\delta} = \bar{*}$ for each semistar operation * on D

Received 12 February, 2009; revised 24 August, 2009.

2000 Mathematics Subject Classification. 13A15.

Key Words and Phrases. semistar operation, polynomial ascent, polynomial descent.

^{*}Professor Emeritus, Oyama National College of Technology (aokabe@aw.wakwak.com)

and $|\overline{\mathbf{SS}}(D)| \leq |\overline{\mathbf{SS}}(D[X])|$ and in Theorem 28, we show that $(*^{\alpha})^{\delta} = \tilde{*}$ for each semistar operation * of finite type on D and $|\widetilde{\mathbf{SS}}(D)| \leq |\widetilde{\mathbf{SS}}(D[X])|$, where $\overline{\mathbf{SS}}(D)$ (resp. $\widetilde{\mathbf{SS}}(D)$) denotes the set of all stable semistar operations (resp. all stable semistar operations of finite type) on D. Moreover, we shall obtain two necessary and sufficient conditions for a semistar operation * to be stable in Theorem 27 and Corollary 40. Lastly, in Corollary 46, we shall give a semistar operation theoretic characterization of a Prüfer domain.

Throughout this paper, D will denote an integral domain with quotient field K. An integral domain which lies between D and K is called an *overring* of D. We denote the set of prime ideals of D by Spec(D) and denote the cardinality of a set X by |X|. The *integral closure* of an integral domain D is denoted by \overline{D} .

1. BACKGROUND ON SEMISTAR OPERATIONS AND LOCALIZ-ING SYSTEMS

In this paper, we shall denote the set of all nonzero *D*-submodules of *K* by $\mathbf{K}(D)$ and we shall call each element of $\mathbf{K}(D)$ a *K*-fractional ideal of *D* as in [O1]. Let $\mathbf{F}(D)$ be the set of all nonzero fractional ideals of *D*, that is, all elements $E \in \mathbf{K}(D)$ such that there exists a nonzero element $d \in D$ with $dE \subseteq D$. The set of finitely generated *K*- fractional ideals of *D* is denoted by $\mathbf{f}(D)$. Evidently $\mathbf{f}(D) \subseteq \mathbf{F}(D) \subseteq \mathbf{K}(D)$. The set of all nonzero integral ideals of *D* is denoted by $\mathbf{I}(D)$.

A map $E \mapsto E^*$ of $\mathbf{K}(D)$ into $\mathbf{K}(D)$ is called a *semistar operation* if the following conditions hold for all $a \in K \setminus \{0\}$ and $E, F \in \mathbf{K}(D)$:

 $(S_1) (aE)^* = aE^*;$

 (S_2) If $E \subseteq F$, then $E^* \subseteq F^*$; and

 $(S_3) E \subseteq E^* \text{ and } (E^*)^* = E^*.$

We shall denote the set of all semistar operations on D by SS(D) as in [O5].

Proposition 1. Let * be a semistar operation on D. Then, for all $E, F \in \mathbf{K}(D)$ and for every family $\{E_{\alpha}\}$ of elements in $\mathbf{K}(D)$, we have:

(1) $(EF)^* = (E^*F)^* = (EF^*)^* = (E^*F^*)^*;$ (2) $(E+F)^* = (E^*+F)^* = (E+F^*)^* = (E^*+F^*)^*;$ (3) $(E:F)^* \subseteq E^*: F^* = (E^*:F) = (E^*:F)^*;$ (4) $(\sum_{\alpha} E_{\alpha})^* = (\sum_{\alpha} E_{\alpha}^*)^*;$ (5) $\bigcap_{\alpha} E_{\alpha}^* = (\bigcap_{\alpha} E_{\alpha}^*)^*, \text{ if } \bigcap_{\alpha} E_{\alpha}^* \neq \{0\}.$

Example 2. (1) If we set $E^{\bar{d}_D} = E$ for each $E \in \mathbf{K}(D)$, then \bar{d}_D is a semistar operation on D and is called the *identity semistar operation* on D. The semistar operation \bar{d}_D is simply denoted by \bar{d} and is called the \bar{d} -operation on D.

(2) If we set $E^{\bar{e}_D} = K$ for all $E \in \mathbf{K}(D)$, then \bar{e}_D is a semistar operation on Dand is called the trivial semistar operation on D. The semistar operation \bar{e}_D is simply denoted by \bar{e} and is called the \bar{e} -operation on D.

(3) For every $E, F \in \mathbf{K}(D)$, the set $\{x \in K \mid xE \subseteq F\}$ is denoted by $F :_K E$, or simply by F : E. If $F : E \neq \{0\}$, then F : E is also a K-fractional ideal of D. If we set $F :_D E = (F :_K E) \cap D$, then $F :_D E$ is an integral ideal of D.

For each $E \in \mathbf{K}(D)$, we set $E^{-1} = D :_K E = \{x \in K \mid xE \subseteq D\}$ and $E^{\bar{v}} = (E^{-1})^{-1}$. Then \bar{v} is a semistar operation on D and is called the divisorial semistar operation (or simply the \bar{v} -operation) on D. If $E \in \mathbf{K}(D) \setminus \mathbf{F}(D)$, then $E^{-1} = (0)$ and so $E^{\bar{v}} = K$.

(4) Let R be an overring of D. If we set $E^{*(R)} = ER$ for each $E \in \mathbf{K}(D)$, then $*_{(R)}$ is a semistar operation on D and is called the semistar operation defined by an overring R. As easily seen, $*_{(D)} = \bar{d}_D$.

(5) Let $\mathcal{D} = \{D_{\alpha}\}$ be a family of overrings of D. If we set $E^{*\mathcal{D}} = \bigcap \{ED_{\alpha} \mid D_{\alpha} \in \mathcal{D}\}$ for each $E \in \mathbf{K}(D)$, then $*_{\mathcal{D}}$ is a semistar operation on D and is called the semistar operation defined by the family \mathcal{D} .

(6) Let \mathcal{V} be the set of all valuation overrings of D. If we set $E^{\bar{b}} = \bigcap \{EV_{\alpha} \mid V_{\alpha} \in \mathcal{V}\}$ for each $E \in \mathbf{K}(D)$, then \bar{b} is a semistar operation on D and is called the \bar{b} -operation on D. It follows that $D^{\bar{b}} = \bigcap \{V_{\alpha} \mid V_{\alpha} \in \mathcal{V}\} = \bar{D}$, the integral closure of D.

Let \mathcal{W} be a set of valuation overrings of D. If we set $E^{\bar{w}} = \bigcap \{EV_{\alpha} \mid V_{\alpha} \in \mathcal{W}\}$ for each $E \in \mathbf{K}(D)$, then \bar{w} is a semistar operation on D and is called *the* \bar{w} -operation on D.

A semistar operation * on D is said to be of finite type (or of finite character) if $E^* = \bigcup \{F^* \mid F \subseteq E \text{ and } F \in \mathbf{f}(D)\}$ for each $E \in \mathbf{K}(D)$. For each semistar operation * on D and each $E \in \mathbf{K}(D)$, we set $E^{*_f} = \bigcup \{F^* \mid F \subseteq E \text{ and } F \in \mathbf{f}(D)\}$. Then the map $E \mapsto E^{*_f}$ is a semistar operation of finite type on D and is called the semistar operation of finite type associated to *. It is easy to see that * is of finite type if and only if $* = *_f$. In particular, $*_f$ is of finite type for each semistar operation * on D. The semistar operation \bar{v}_f associated to \bar{v} is denoted by \bar{t} and is called the \bar{t} -operation. It is easily seen that $E^* = E^{*_f}$ for all $E \in \mathbf{f}(D)$. Note that $*_{(R)}$ is a semistar operation of finite type for all overrings R of D. We shall denote the set of all semistar operations of finite type on D by $\mathbf{SS}_f(D)$.

A map $E \mapsto E^*$ of $\mathbf{F}(D)$ into $\mathbf{F}(D)$ is called a *star operation* on D, if the following conditions hold for all $a \in K - \{0\}$ and $E, F \in \mathbf{F}(D)$:

 $(S_0) \ (aD)^* = aD;$

 $(S_1) \ (aE)^{\star} = aE^{\star};$

 (S_2) If $E \subseteq F$, then $E^* \subseteq F^*$; and

 $(S_3) E \subseteq E^*$ and $(E^*)^* = E^*$.

If we set $E^d = E$ for all $E \in \mathbf{F}(D)$ then d is a star operation on D and is called the *identity operation* (or simply the *d*-operation). Next, for each $E \in \mathbf{F}(D)$, we set $E^{-1} = D :_K E = \{x \in K \mid xE \subseteq D\}$ and $E^v = (E^{-1})^{-1}$ for each $E \in \mathbf{F}(D)$, then v is a star operation on D and is called the *v*-operation.

We shall denote the set of all star operations on D by $\mathbf{S}(D)$. For any overring R of D, we denote the set $\{* \in \mathbf{SS}(D) \mid D^* = R\}$ by $\mathbf{SS}(D, R)$ as in [P2].

We recall that there exists a canonical method which corresponds each star operation \star on D to a semistar operation \star^e on D:

Proposition 3 ([OM, Proposition 17]). Let \star be a star operation on D. For each

 $E \in \mathbf{K}(D)$, we set:

$$E^{\star^{e}} = \begin{cases} E^{\star}, & \text{for } E \in \mathbf{F}(D) \\ K, & \text{for } E \in \mathbf{K}(D) \backslash \mathbf{F}(D) \end{cases}$$

Then the map $E \longmapsto E^{\star^e}$ is a semistar operation on D.

This semistar operation \star^e is called the trivial semistar extension of a star operation \star . It is easily seen that the \bar{v} -operation is the trivial semistar extension of the v-operation.

In [O1], a semistar operation * is said to be *weak* if $D^* = D$ and is said to be *strong* if $D^* \neq D$. We denote the set of all weak semistar operations on D by $\mathbf{SS}_w(D)$ or $(\mathbf{S})\mathbf{S}(\mathbf{D})$. Evidently \star^e is a weak semistar operation for all star operations \star .

We denote the trivial semistar extension d^e of the *d*-operation on *D* by \bar{f} . For each overring *R* of *D*, we denote the *d*-operation on *R* by d_R and denote the trivial semistar extension $(d_R)^e$ of d_R by \bar{f}_R .

Remark 4. The map $\star \mapsto \star^e$ is evidently an injective map of $\mathbf{S}(D)$ into $\mathbf{SS}(D)$ and hence $|\mathbf{S}(D)| \leq |\mathbf{SS}(D)|$.

Remark 5. An integral domain D is called a *conducive domain* if $D : R = \{x \in K \mid xR \subseteq D\} \neq (0)$ for each overring R of D other than K. It is easy to see that D is a conducive domain if and only if $\overline{d} = \overline{f}$ holds. (see [O5, Proposition 5]).

In [OM] we defined a partial order \leq on $\mathbf{SS}(D)$ by $*_1 \leq *_2$ if and only if $E^{*_1} \subseteq E^{*_2}$ for each $E \in \mathbf{K}(D)$. It is evident that $\overline{d} \leq * \leq \overline{e}$ holds for each semistar operation * on D.

Proposition 6 (cf.[OM, Lemma 16]). For $*_1, *_2 \in \mathbf{SS}(D)$, the following conditions sre equivalent:

(1) $*_1 \leq *_2$;

(2) $(E^{*_2})^{*_1} = E^{*_2}$ for all $E \in \mathbf{K}(D)$;

(3) $(E^{*_1})^{*_2} = E^{*_2}$ for all $E \in \mathbf{K}(D)$.

Definition 7 ([FL1, Definition 4.2]). For each semistar operation * on D, we set:

$$F^{[*]} = \bigcup \{ ((H^* : H^*)F)^{*_f} \mid H \in \mathbf{f}(D) \} \text{ for each } F \in \mathbf{f}(D),$$

and

$$E^{[*]} = \bigcup \{ F^{[*]} \mid F \in \mathbf{f}(D) \text{ and } F \subseteq E \} \text{ for each } E \in \mathbf{K}(D).$$

Definition 8 ([FL1, Definition 4.4]). For each semistar operation * on D, we set:

 $F^{*_a} = \bigcup \{ ((FH)^* : H^*) \mid H \in \mathbf{f}(D) \} \text{ for each } F \in \mathbf{f}(D),$

and

On polynomial ascent and descent semistar operations on an integral domain

 $E^{*_a} = \bigcup \{ F^{*_a} \mid F \in \mathbf{f}(D) \text{ and } F \subseteq E \} \text{ for each } E \in \mathbf{K}(D).$

Now we must recall the definitons of an e.a.b. semistar operation and an a.b. semistar operation in order to state some of the fundamental properties of [*] and $*_a$. A semistar operation * on D is said to be *endlich arithmetisch brauchbar* (for short, e.a.b.) if for all $E, F, G \in \mathbf{f}(D), (EF)^* \subseteq (EG)^*$ implies $F^* \subseteq G^*$ and is said to be *arithmetisch brauchbar* (for short, a.b.) if for all $F, G \in \mathbf{K}(D)$ and for all $E \in \mathbf{f}(D), (EF)^* \subseteq (EG)^*$ implies $F^* \subseteq G^*$.

Proposition 9. Let * be a semistar operation on D. Then

- (1) [*] is a semistar operation of finite type;
- (2) $D^{[*]}$ is an integrally closed overring of D;
- (3) $*_a$ is an e.a.b. semistar operation of finite type;
- (4) $*_a = *_f \iff *_f$ is an e.a.b. semistar operation;
- (5) [*] is e.a.b. if and only if $[*] = *_a$.

Proof. The proof of (1) is straightforward. (2) is in [FL1, Propositions 4.3]. (3) and (4) are in [FL1, Proposition 4.5]. (5) Since [*] is of finite type, by (4) of Proposition 9, $[*] = [*]_f$ is e.a.b. if and only if $[*]_a = [*]_f = [*]$. But, by [FL1, Proposition 4.5 (9)], $[*]_a = *_a$ and hence our assertion follows. \Box

Note. In general, for each semistar operation * on D, we have $[*] \leq *_a$ as shown in [FL1, Proposition 4.5 (3)].

Proposition 10 ([OM, Lemma 45]). Let R be an overring of D. Then (1) For each $* \in \mathbf{SS}(R)$, if we define $E^{\delta_D(*)} = (ER)^*$ for all $E \in \mathbf{K}(D)$, then

 $\delta_D(*) \in \mathbf{SS}(D).$ (2) If we define $\delta_{D-1} \in \mathbf{SS}(D) \to \mathbf{SS}(D)$ by $\delta_{-1}(*) = \delta_{-1}(*)$ then $\delta_{-1}(*) = \delta_{-1}(*)$

(2) If we define $\delta_{R/D}$: $\mathbf{SS}(R) \to \mathbf{SS}(D)$ by $\delta_{R/D}(*) = \delta_D(*)$, then $\delta_{R/D}$ is an injective map and therefore $|\mathbf{SS}(R)| \leq |\mathbf{SS}(D)|$.

(3) For each $* \in \mathbf{SS}(D)$, if we define $E^{\alpha_R(*)} = E^*$ for all $E \in \mathbf{K}(R) \subseteq \mathbf{K}(D)$, then $\alpha_R(*) \in \mathbf{SS}(R)$.

(4) If we define $\alpha_{R/D} : \mathbf{SS}(D) \to \mathbf{SS}(R)$ by $\alpha_{R/D}(*) = \alpha_R(*)$, then $\alpha_{R/D} \circ \delta_{R/D}$ is the identity map of $\mathbf{SS}(R)$.

The map $\delta_{R/D}$ (resp. $\alpha_{R/D}$) is called the descent map (resp. the ascent map). Here we collect fundamental properties of $\alpha_{R/D}$ and $\delta_{R/D}$ concerning e.a.b. property and a.b. property.

Proposition 11. (1) If * is an e.a.b. (resp. a.b.) semistar operation on D, then $\alpha_{D^*/D}(*)$ is an e.a.b. (resp. a.b.) semistar operation on D^* .

(2) If * is an e.a.b. (resp. a.b.) semistar operation on an overring R of D, then $\delta_{R/D}(*)$ is an e.a.b. (resp. a.b.) semistar operation on D.

Proof. (1) is in [FL1, Proposition 2.8] and (2) is in [FL1, Proposition 2.9]. \Box

We shall show two fundamental properties of $\delta_{R/D}$ concerning [*] and $*_a$ in the

following two lemmas:

Lemma 12. Let R be an overring of D and let * be a semistar operation on R. If we set $\delta = \delta_{R/D}$, then $(\delta(*))_a = \delta(*_a)$.

Proof. First, for each $F \in \mathbf{f}(D), F^{(\delta(*))_a} = \bigcup \{ (FH)^{\delta(*)} : H^{\delta(*)} \mid H \in \mathbf{f}(D) \} = \bigcup \{ (FRHR)^* : (HR)^* \mid H \in \mathbf{f}(D) \} = \bigcup \{ (FRG)^* : G^* \mid G \in \mathbf{f}(R) \} = (FR)^{*_a} = F^{\delta(*_a)}.$

Next, for each $E \in \mathbf{K}(D), E^{(\delta(*))_a} = \bigcup \{F^{(\delta(*))_a} \mid F \in \mathbf{f}(D) \text{ and } F \subseteq E\} = \bigcup \{F^{\delta(*_a)} \mid F \in \mathbf{f}(D) \text{ and } F \subseteq E\} = E^{\delta(*_a)} \text{ and therefore } (\delta(*))_a = \delta(*_a). \square$

Lemma 13. Let R be an overring of D and let * be a semistar operation on R. If we set $\delta = \delta_{R/D}$, then $[\delta(*)] = \delta([*])$.

Proof. For each $F \in \mathbf{f}(D)$, $F^{\delta([*])} = (FR)^{[*]} = \bigcup \{ (H^* : H^*)FR)^{*_f} | H \in \mathbf{f}(R) \} = \bigcup \{ (((GR)^* : (GR)^*)FR)^{*_f} | G \in \mathbf{f}(D) \} = \bigcup \{ (G^{\delta(*)} : G^{\delta(*)})FR)^{*_f} | G \in \mathbf{f}(D) \} = \bigcup \{ (((G^{\delta(*)} : G^{\delta(*)})FR)^{*_f} | G \in \mathbf{f}(D) \} = \bigcup \{ (((G^{\delta(*)} : G^{\delta(*)})F)^{\delta(*_f)} | G \in \mathbf{f}(D) \} \}$. Then, since $\delta(*_f) = (\delta(*))_f$ by [P2, Proposition 3.2 (1)], we have $F^{\delta([*])} = \bigcup \{ ((G^{\delta(*)} : G^{\delta(*)})F)^{\delta(*_f)} | G \in \mathbf{f}(D) \} = F^{[\delta(*)]}$. Hence, for each $E \in \mathbf{K}(D), E^{\delta([*])} = \bigcup \{ F^{\delta([*])} | F \in \mathbf{f}(D) \text{ and } F \subseteq E \} = \bigcup \{ F^{[\delta(*)]} | F \in \mathbf{f}(D) \text{ and } F \subseteq E \} = E^{[\delta(*)]}$ which implies that $[\delta(*)] = \delta([*])$. □

Remark 14. (1) $[\bar{e}] = (\bar{e})_a = \bar{e}$. In fact, since \bar{e} is of finite type, $\bar{e} = (\bar{e})_f \leq [\bar{e}] \leq (\bar{e})_a$ by [FL1, Proposition 4.5 (3)]. Hence $[\bar{e}] = (\bar{e})_a = \bar{e}$.

(2) $[\bar{d}] = *_{(\bar{D})}$. If $F \in \mathbf{f}(\bar{D})$, then $F^{[\bar{d}]} = \bigcup \{((H^{\bar{d}} : H^{\bar{d}})F)^{\bar{d}} \mid H \in \mathbf{f}(D)\} = \bigcup \{(H : H)F \mid H \in \mathbf{f}(D)\} = \bar{D}F$. Hence $F^{[\bar{d}]} = F^{*_{(\bar{D})}}$ for all $F \in \mathbf{f}(D)$. Then for each $E \in \mathbf{K}(D), E^{[\bar{d}]} = \bigcup \{F^{[\bar{d}]} \mid F \in \mathbf{f}(D) \text{ and } F \subseteq E\} = \bigcup \{\bar{D}F \mid F \in \mathbf{f}(D) \text{ and } F \subseteq E\} = \bar{D}E = E^{*_{(\bar{D})}}$. Hence we get $[\bar{d}] = *_{(\bar{D})}$.

In [GA], the notion of a *localizing* (or *topologizing*) system of ideals was introduced by Gabriel. A set \mathcal{F} of ideals of D is called a *localizing system of ideals* (for short, *localizing system*) on D if the following conditions are satisfied:

(LS1) If $I \in \mathcal{F}$ and J is an ideal of D such that $I \subseteq J$, then $J \in \mathcal{F}$;

(LS2) If $I \in \mathcal{F}$ and J is an ideal of D such that $J :_D iD \in \mathcal{F}$ for all $i \in I$, then $J \in \mathcal{F}$.

To avoid uninteresting cases, we assume that every localizing system \mathcal{F} is nontrivial, i.e., $(0) \notin \mathcal{F}$ and \mathcal{F} is not empty.

A localizing system \mathcal{F} of D is said to be of *finite type* if for each $I \in \mathcal{F}$, there exists a finitely generated ideal $J \in \mathcal{F}$ such that $J \subseteq I$. If $I, J \in \mathcal{F}$, then $IJ \in \mathcal{F}$ and hence $I \cap J \in \mathcal{F}$ by (**LS1**) (see [FHP, Proposition 5.1.1]). Thus every localizing system becomes a *generalized multiplicative system*.

We shall denote the set of localizing systems on D by $\mathcal{LS}(D)$ and the set of localizing systems of finite type on D by $\mathcal{LS}_f(D)$.

Let \mathcal{F} be a localizing system on D. If we set $D_{\mathcal{F}} = \{x \in K \mid D : D x \in \mathcal{F}\}$, then $D_{\mathcal{F}}$ is a subring of K and is called the *quotient ring of D relative to* \mathcal{F} (see [PO, p.778]). It is easy to see that $D_{\mathcal{F}} = \bigcup \{ D : I \mid I \in \mathcal{F} \}.$

Let T be a flat overring of D. If we set $\mathcal{F}(T) = \{I \in \mathbf{I}(D) \mid IT = T\}$, then $\mathcal{F}(T)$ is a localizing system on D and $D_{\mathcal{F}(T)} = T$ [PO, Proposition 1.2 (i)]. It is easily seen that $\mathcal{F}(T)$ is a localizing system of finite type. Here we note that $\mathcal{F}(T)$ is denoted by $\mathcal{F}_1(T)$ in [FP] and $\mathcal{F}_0(T)$ in [FHP].

It is easily seen that if $\mathcal{F}_1 \subseteq \mathcal{F}_2$ are localizing systems of D, then $D_{\mathcal{F}_1} \subseteq D_{\mathcal{F}_2}$ and if $T_1 \subseteq T_2$ are overrings of D, then $\mathcal{F}(T_1) \subseteq \mathcal{F}(T_2)$.

Proposition 15 ([FH, Proposition 2.8]). Let * be a semistar operation on D. Then $\mathcal{F}^* = \{I \mid I \in \mathbf{I}(D) \text{ and } I^* = D^*\}$ is a localizing system on D.

 \mathcal{F}^* is called the localizing system associated to * for each $* \in \mathbf{SS}(D)$. Let * be a semistar operation on D. Then * is said to be stable if $(E \cap F)^* = E^* \cap F^*$ for all $E, F \in \mathbf{K}(D)$.

Proposition 16 ([FH, Proposition 2.4]). Let \mathcal{F} be a localizing system on D. For each $E \in \mathbf{K}(D)$, we set $E_{\mathcal{F}} = \bigcup \{E : J \mid J \in \mathcal{F}\}$. Then the map $E \mapsto E_{\mathcal{F}}$ of $\mathbf{K}(D)$ into $\mathbf{K}(D)$ is a stable semistar operation on D.

The semistar operation defined in Proposition 16 is denoted by $*_{\mathcal{F}}$ and is called the semistar operation associated to \mathcal{F} .

In general, $*_{(D_{\mathcal{F}})} \leq *_{\mathcal{F}}$ and the equality holds if and only if $D_{\mathcal{F}}$ is flat over D and $\mathcal{F} = \{I \in \mathbf{I}(D) \mid ID_{\mathcal{F}} = D_{\mathcal{F}}\}$ (see [FH, Proposition 2.6]).

Proposition 17 ([FH, Proposition 3.2]). Let \mathcal{F} be a localizing system on D and let * be a semistar operation on D. Then

(1) If \mathcal{F} is of finite type, then $*_{\mathcal{F}}$ is of finite type.

(2) If * is of finite type, then \mathcal{F}^* is of finite type.

2. POLYNOMIAL ASCENT AND DESCENT SEMISTAR OPERA-TIONS

In [P3], Picozza has proved that each localizing system \mathcal{F} on D induces in a canonical way the localizing system $\mathcal{F}[X]$ on the polynomial ring D[X].

Lemma 18 ([P3, Proposition 3.1]). Let \mathcal{F} be a localizing system on D. If we set

 $\mathcal{F}[X] = \{ I \text{ is an ideal of } D[X] \mid I \supseteq JD[X] \text{ for some } J \in \mathcal{F} \}$

then $\mathcal{F}[X]$ is a localizing system on D[X].

Note that it is shown in the proof of [P3, Proposition 3.1] that for an ideal I of $D[X], I \in \mathcal{F}[X]$ if and only if $I \cap D \in \mathcal{F}$.

Proposition 19 ([P3, Proposition 3.2]). If \mathcal{F} is a localizing system of finite type on D, then $\mathcal{F}[X]$ is a localizing system of finite type on D[X].

Proposition 20 (cf. [P3, Theorem 3.3]). Let * be a semistar operation on D. If we set $*^{\alpha} = *_{\mathcal{F}^*[X]}$ then $*^{\alpha}$ is a semistar operation on D[X].

Proof. If * is a semistar operation on D, then \mathcal{F}^* is a localizing system on D and then $\mathcal{F}^*[X]$ is a localizing system on D[X]. Hence $*^{\alpha}$ is a semistar operation on D[X]by Proposition 16.

Note. Let * be a semistar operation on D. Then it follows from the definition that $E^{*^{\alpha}} = \bigcup \{E : J \mid J \in \mathcal{F}^{*}[X]\} = \bigcup \{E : J \mid J \in \mathbf{I}(D[X]) \text{ and } J \supseteq I[X] \text{ for some } I \in I(D[X]) \}$ $\mathcal{F}^* = \bigcup \{E : J \mid J \supseteq I[X] \text{ and } I^* = D^* \} = \bigcup \{E : I[X] \mid I \in \mathbf{I}(D) \text{ and } I^* = D^* \}$ for each $E \in \mathbf{K}(D[X])$.

Proposition 21. Let * be a semistar operation on D. Then

(1) $*^{\alpha}$ is a stable semistar operation on D[X].

(2) If * is of finite type, then $*^{\alpha}$ is also of finite type.

(3) If $*_1 < *_2$ in **SS**(D), then $(*_1)^{\alpha} < (*_2)^{\alpha}$ in **SS**(D[X]).

Proof. (1) follows from Proposition 16 and (2) follows from Propositions 17 and 19.

(3) As easily seen, $*_1 \leq *_2$ implies $\mathcal{F}^{*_1} \subseteq \mathcal{F}^{*_2}$ and then $\mathcal{F}^{*_1}[X] \subseteq \mathcal{F}^{*_2}[X]$. Hence $(*_1)^{\alpha} = *_{\mathcal{F}^{*_1}[X]} \leq *_{\mathcal{F}^{*_2}[X]} = (*_2)^{\alpha}.$

The semistar operation $*^{\alpha}$ is called the polynomial ascent semistar operation associated to a semistar operation *.

Example 22 (cf.[P3, Remark (1)]). If \overline{d} is the identity semistar operation on D, then $(\bar{d})^{\alpha} = \bar{d}_{D[X]}$, i.e., the identity semistar operation on D[X]. By definition, $\mathcal{F}^{\bar{d}} =$ {*I* is an ideal of $D \mid I^{\bar{d}} = D^{\bar{d}}$ } = {*D*}. Then it is easily seen that $\mathcal{F}^{\bar{d}}[X] = \{D[X]\}$ and then $E^{(\bar{d})^{\alpha}} = E^{*_{\mathcal{F}^{\bar{d}}}[X]} = \{E : J \mid J \in \mathcal{F}^{\bar{d}}[X]\} = E : D[X] = E$ for all $E \in \mathbf{K}(D[X])$. Therefore we have $(\bar{d})^{\alpha} = \bar{d}_{D[X]}$.

Proposition 23. Let * be a semistar operation on D[X]. We set $E^{*^{\delta}} =$ $(ED[X])^* \bigcap K$ for all $E \in \mathbf{K}(D)$. Then (1) $*^{\delta}$ is a semistar operation on D.

(2) $(ED[X])^* = (E^{*^{\delta}}D[X])^*$ for all $E \in \mathbf{K}(D)$.

(3) If * is a stable semistar operation on D[X], then $*^{\delta}$ is a stable semistar operation on D.

(4) If * is of finite type, then $*^{\delta}$ is of finite type.

(5) If $*_1 \leq *_2$ in **SS**(D[X]), then $(*_1)^{\delta} \leq (*_2)^{\delta}$ in **SS**(D).

Proof. (1) and (2) are consequences of [OM, Proposition 35].

(3) If * is stable, then $(E \cap F)^{*^{\delta}} = ((E \cap F)D[X])^* \cap K = (ED[X] \cap FD[X])^* \cap K =$ $((ED[X])^* \cap (FD[X])^*) \cap K = ((ED[X])^* \cap K) \cap ((FD[X])^* \cap K) = E^{*^{\delta}} \cap F^{*^{\delta}} \text{ for } F^{*^{\delta}} = E^{*^{\delta}} \cap F^{*^{\delta}} \cap F^{*^{\delta}} = E^{*^{\delta}} \cap F^{*^{\delta}} \cap F^{*^{\delta}} = E^{*^{\delta}} \cap F^{*^{\delta}} \cap F^{$ all $E, F \in \mathbf{K}(D)$ and therefore $*^{\delta}$ is also stable.

(4) Choose an element $E \in \mathbf{K}(D)$. Then $E^{*^{\delta}} = (ED[X])^* \cap K = (\lfloor |\{(FD[X])^* \mid$

 $F \subseteq E \text{ and } F \in \mathbf{f}(D) \} \cap K = \bigcup \{ (FD[X])^* \cap K \mid F \subseteq E \text{ and } F \in \mathbf{f}(D) \} = \bigcup \{ F^{*^{\delta}} \mid F \subseteq E \text{ and } F \in \mathbf{f}(D) \} \text{ which implies that } *^{\delta} \text{ is of finite type.}$ (5) This is straightforward from the definition.

The semistar operation $*^{\delta}$ defined in Proposition 23 is called the polynomial descent semistar operation associated to a semistar operation *.

As in [FH], we set $\bar{*} = *_{\mathcal{F}^*}$ and $\tilde{*} = (*)_{(\mathcal{F}^*)_f} = *_{\mathcal{F}^*f}$ for each $* \in \mathbf{SS}(D)$. Here we collect some fundamental properties of these semistar operations which were proved in [FH].

Proposition 24. Let * be a semistar operation on D. Then

(1) $(\bar{*})_f \leq *_f \leq *$ and $(\bar{*})_f \leq \bar{*} \leq *$; (2) $(\bar{*}_f) = (\bar{*}_f) = \tilde{*}$; (3) * is a stable semistar operation if and only if $* = \bar{*}$; (4) $\bar{*} = \tilde{*} \iff \bar{*}$ is of finite type; (5) $* = \tilde{*} \iff *$ is stable and of finite type; (6) $\tilde{\bar{*}} = \tilde{\bar{*}} = \tilde{*}$. (7) $\bar{\bar{*}} = \bar{*}, \tilde{\tilde{*}} = \tilde{*}$ and $\tilde{*} \leq \bar{*}$.

In [FL2], an ideal $I \in \mathbf{I}(D)$ is called a *quasi-*-ideal* of D if $I^* \cap D = I$. A maximal element in the set of all proper quasi-*-ideals of D is called a *quasi-*-maximal ideal* of D and the set of all quasi-*-maximal ideals of D is denoted by $\mathrm{QMax}^*(D)$. For the sake of simplicity, when * is of finite type, $\mathrm{QMax}^*(D)$ is simply denoted by $\mathcal{M}(*)$ (see [FL2, p.4782]).

If * is a semistar operation of finite type on D, then $QMax^*(D)$ is not an empty set and each element P of $QMax^*(D)$ is a prime ideal of D [FL2, Lemma 2.3]. Furthermore, it was proved in [FL2, Corollary 2.7 (1)] that $\tilde{*} = *_{\mathcal{M}(*_f)}$ for each semistar operation * on D.

Proposition 25. Let * be a semistar operation of finite type on D. Then $*^{\alpha} = (\tilde{*})^{\alpha}$.

Proof. Let *E* be an element of $\mathbf{K}(D[X])$. Then $E^{(\tilde{*})^{\alpha}} = \bigcup \{E : I[X] \mid I^{\tilde{*}} = D^{\tilde{*}}\} = \bigcup \{E : I[X] \mid I \not\subseteq M \text{ for all } M \in \operatorname{QMax}^{\tilde{*}}(D)\} = \bigcup \{E : I[X] \mid I \not\subseteq M \text{ for all } M \in \mathcal{M}(\tilde{*})\}.$

But, by [FL2, Corollary 3.5 (2)], $\mathcal{M}(\tilde{*}) = \mathcal{M}(*_f) = \mathcal{M}(*)$. Hence $E^{(\tilde{*})^{\alpha}} = \bigcup \{E : I[X] \mid I \not\subseteq M$ for all $M \in \mathcal{M}(*)\} = \bigcup \{E : I[X] \mid I^* = D^*\} = E^{*^{\alpha}}$ which implies that $*^{\alpha} = (\tilde{*})^{\alpha}$. \Box

Remark 26. Let \mathcal{F} be a localizing system on D. Then $\mathcal{F} = \mathcal{F}^{*_{\mathcal{F}}}$ by [FH, Theorem 2.10 (A)]. Using this result, we can give another proof of Proposition 25. First, by definition $\bar{*} = *_{\mathcal{F}^*}$ for each semistar operation * on D and so $\mathcal{F}^{\bar{*}} = \mathcal{F}^{*_{\mathcal{F}^*}} = \mathcal{F}^*$ by [FH, Theorem 2.10 (A)]. Hence $(\bar{*})^{\alpha} = *_{\mathcal{F}^*[X]} = *_{\mathcal{F}^*[X]} = *^{\alpha}$. In particular, if * is of finite type, then $\bar{*} = \tilde{*}$ and so $*^{\alpha} = (\tilde{*})^{\alpha}$.

We shall denote the set of all stable semistar operations on D (resp. all stable semistar operations of finite type on D) by $\overline{\mathbf{SS}}(D)$ (resp. $\widetilde{\mathbf{SS}}(D)$). It easily follows from Proposition 24 that $\overline{\mathbf{SS}}(D) = \{\bar{*} \mid * \in \mathbf{SS}(D)\}$ and $\widetilde{\mathbf{SS}}(D) = \{\tilde{*} \mid * \in \mathbf{SS}_f(D)\}$.

Theorem 27. Let * be a semistar operation on D. Then

- (1) $(\ast^{\alpha})^{\delta} = \bar{\ast}.$
- (2) * is stable if and only if $(*^{\alpha})^{\delta} = *$.
- (3) $|\overline{\mathbf{SS}}(D)| \leq |\overline{\mathbf{SS}}(D[X])|.$

Proof. (1) For each $E \in \mathbf{K}(D)$, $E^{(*^{\alpha})^{\delta}} = (ED[X])^{*^{\alpha}} \cap K = (ED[X])^{*_{\mathcal{F}^*[X]}} \cap K = \bigcup \{ED[X] : JD[X] \mid J \in \mathcal{F}^*\} \cap K = \bigcup \{(ED[X] : JD[X]) \cap K \mid J \in \mathcal{F}^*\} = \bigcup \{E : J \mid J \in \mathcal{F}^*\} = E^{\overline{*}} \text{ which implies } (*^{\alpha})^{\delta} = \overline{*}.$

(2) This follows from Theorem 27 (1) and [FH, Proposition 3.7 (1)].

(3) First, for each $* \in \mathbf{SS}(D)$, we have $*^{\alpha} \in \overline{\mathbf{SS}}(D[X])$ by Proposition 21 (1). Next, if * is stable, then $(*^{\alpha})^{\delta} = \overline{*} = *$ by Proposition 24 (3) and Theorem 27 (1). Hence the map $* \mapsto *^{\alpha}$ of $\overline{\mathbf{SS}}(D)$ into $\overline{\mathbf{SS}}(D[X])$ is injective and therefore $|\overline{\mathbf{SS}}(D)| \leq |\overline{\mathbf{SS}}(D[X])|$. \Box

Theorem 28. Let * be a semistar operation on D. Then

(1) $(*^{\alpha})^{\delta} = \tilde{*}$ for each $* \in \mathbf{SS}_f(D)$.

 $(2) \mid \mathbf{SS}(D) \mid \leq \mid \mathbf{SS}(D[X]) \mid.$

Proof. (1) This follows from Proposition 24 (2) and Theorem 27 (1).

(2) Let $* \in \widetilde{\mathbf{SS}}(D)$. Then, by Proposition 21 (1) and (2), $*^{\alpha} \in \widetilde{\mathbf{SS}}(D[X])$. Moreover, $(*^{\alpha})^{\delta} = \tilde{*}$ by Theorem 28 (1). Therefore the map $* \mapsto *^{\alpha}$ of $\widetilde{\mathbf{SS}}(D)$ into $\widetilde{\mathbf{SS}}(D[X])$ is injective and so $|\widetilde{\mathbf{SS}}(D)| \leq |\widetilde{\mathbf{SS}}(D[X])|$. \Box

Let Δ be a subset of $\operatorname{Spec}(D)$. Then $\mathcal{F}(\Delta) = \bigcap \{\mathcal{F}(P) \mid P \in \Delta\}$, where $\mathcal{F}(P) = \{I \in \mathbf{I}(D) \mid I \not\subseteq P\}$ is a localizing system on D. A localizing system \mathcal{F} on D is called *spectral* if there exists a subset Δ of $\operatorname{Spec}(D)$ such that $\mathcal{F} = \mathcal{F}(\Delta)$. For each subset Δ of $\operatorname{Spec}(D)$, if we set $E^{*_{\Delta}} = \bigcap \{ED_P \mid P \in \Delta\}$ for each $E \in \mathbf{K}(D)$, then $*_{\Delta}$ is a stable semistar operation on D by [OM, Theorem 20 (1)]. A semistar operation * on D is called *spectral* if $* = *_{\Delta}$ for some subset Δ of $\operatorname{Spec}(D)$.

In this paper, we denote the set $\{P[X] \mid P \in \Delta\}$ by $\Delta[X]$ for each subset Δ of Spec(D).

Lemma 29. If Δ is a subset of Spec(D), then $\mathcal{F}(\Delta)[X] \subseteq \mathcal{F}(\Delta[X])$.

Proof. Let $J \in \mathcal{F}(\Delta)[X]$. Then $J \supseteq I[X]$ for some $I \in \mathcal{F}(\Delta)$. Since $I \not\subseteq P$ for all $P \in \Delta, I[X] \not\subseteq P[X]$ for all $P[X] \in \Delta[X]$ which implies that $I[X] \in \mathcal{F}(\Delta[X])$ and therefore $J \in \mathcal{F}(\Delta[X])$. \Box

Proposition 30. If $\Delta = \{P_{\alpha}\}$ is a subset of Spec(D), then $(*_{\Delta[X]})^{\delta} = *_{\Delta}$.

Proof. For each $E \in \mathbf{K}(D)$, we have $E^{(*_{\Delta[X]})^{\delta}} = (ED[X])^{*_{\Delta[X]}} \cap K = (\bigcap \{E[X]_{P_{\alpha}[X]} \mid$

 $P_{\alpha} \in \Delta\}) \bigcap K = \bigcap \{ E[X]_{P_{\alpha}[X]} \bigcap K \mid P_{\alpha} \in \Delta \} = \bigcap \{ E_{P_{\alpha}} \mid P_{\alpha} \in \Delta \} = E^{*_{\Delta}} \text{ and hence } (*_{\Delta[X]})^{\delta} = *_{\Delta}. \square$

Proposition 31 ([FH, Lemma 4.2]). Let Δ be a subset of Spec(D). Then $*_{\Delta} = *_{\mathcal{F}(\Delta)}$ and $\mathcal{F}^{*_{\Delta}} = \mathcal{F}(\Delta)$.

Note. It follows from Proposition 16 that $*_{\Delta}$ is stable for each subset Δ of Spec(D), because, by Proposition 31, $*_{\Delta} = *_{\mathcal{F}(\Delta)}$ and $\mathcal{F}(\Delta)$ is a localizing system on D. Thus every spectral semistar operation is a stable semistar operation.

Lemma 32. Let \mathcal{F} be a localizing system on D[X]. If we set $\mathcal{F}_D = \{I \in \mathbf{I}(D) \mid I[X] \in \mathcal{F}\} = \{J \cap D \mid J \in \mathbf{I}(D[X]) \text{ such that } J \cap D \neq (0) \text{ and } (J \cap D)[X] \in \mathcal{F}\}, \text{ then } \mathcal{F}_D \text{ is a localizing system on } D.$

Proof. We need only to show that \mathcal{F}_D satisfies (LS1) and (LS2).

(LS1) Let $I \in \mathcal{F}_D$ and let J be an ideal of D containing I. Then $I[X] \in \mathcal{F}$ and $I[X] \subseteq J[X]$ and hence $J[X] \in \mathcal{F}$ which implies $J \in \mathcal{F}_D$.

(LS2) Suppose that $I \in \mathcal{F}_D$ and J is an ideal of D such that $J :_D iD \in \mathcal{F}_D$ for all $i \in I$. Then $(J :_D iD)[X] \in \mathcal{F}$ and $(J :_D iD)[X]iD[X] \subseteq J[X]$. Hence $(J :_D iD)[X] \subseteq J[X] :_{D[X]} iD[X]$ and so $J[X] :_{D[X]} iD[X] \in \mathcal{F}$, because $(J :_D iD)[X] \in \mathcal{F}$. Thus $J[X] :_{D[X]} iD[X] \in \mathcal{F}$ for all $i \in I$. Choose $f \in I[X]$ and set $f = a_0 + a_1X + \dots + a_nX^n$. Then $J[X] :_{D[X]} a_iD[X] \in \mathcal{F}$ for all $i = 0, 1, \dots, n$ and so $\bigcap_{i=0}^n (J[X] :_{D[X]} a_iD[X]) \in \mathcal{F}$. If we choose $g(X) \in \bigcap_{i=0}^n (J[X] :_{D[X]} a_iD[X])$, then $f(X)g(X) = (a_0 + a_1X + \dots + a_nX^n)g(X) = a_0g(X) + a_1g(X)X + \dots + a_ng(X)X^n \in J[X]$ and so $g(X) \in J[X] :_{D[X]} f(X)D[X]$. Thus $\bigcap_{i=0}^n (J[X] :_{D[X]} a_iD[X]) \subseteq J[X] :_{D[X]} f(X)D[X]$ and then $J[X] :_{D[X]} f(X)D[X] \in \mathcal{F}$. Hence $J[X] :_{D[X]} f(X)D[X] \in \mathcal{F}$ for all $f \in I[X]$ which implies that $J[X] \in \mathcal{F}$ and so $J \in \mathcal{F}_D$. □

Proposition 33. If \mathcal{F} is a localizing system of finite type on D[X], then \mathcal{F}_D is also a localizing system of finite type on D.

Proof. Choose $I \in \mathcal{F}_D$. Then $I[X] \in \mathcal{F}$. By hypothesis, \mathcal{F} is of finite type and so there exists a finitely generated ideal $J \in \mathcal{F}$ such that $J \subseteq I[X]$. Set $J = (f_1, f_2, \dots, f_n)$. Then $c(f_i) \subseteq I$ for all $i = 1, 2, \dots, n$. Then $I_0 = \sum_{i=1}^n c(f_i)$ is finitely generated and $I_0 \subseteq I$. Since $J \subseteq I_0[X]$, we obtain $I_0[X] \in \mathcal{F}$. Thus $I_0 \in \mathcal{F}_D$ and $I_0 \subseteq I$. Therefore \mathcal{F}_D is of finite type. \Box

Proposition 34. Let \mathcal{F} be a localizing system on D. Then $\mathcal{F}[X]_D = \mathcal{F}$.

Proof. (⊇) If $I \in \mathcal{F}$, then $I[X] \in \mathcal{F}[X]$ and therefore $I \in \mathcal{F}[X]_D$. (⊆) Suppose that $I \in \mathcal{F}[X]_D$. Then $I[X] \in \mathcal{F}[X]$ and then $I[X] \supseteq J[X]$ for some $J \in \mathcal{F}$. Then, since $I \supseteq J$ and $J \in \mathcal{F}$, we have $I \in \mathcal{F}$. □

Proposition 35. Let \mathcal{F} be a localizing system on D[X]. Then (1) $\mathcal{F}_D[X] \subseteq \mathcal{F}$. (2) $\mathcal{F} = \mathcal{F}_D[X] \iff J \cap D \neq (0)$ and $(J \cap D)[X] \in \mathcal{F}$ for all $J \in \mathcal{F}$.

Proof. (1) Suppose that $J \in \mathcal{F}_D[X]$. Then $J \supseteq I[X]$ for some $I \in \mathcal{F}_D$. Then $I[X] \in \mathcal{F}$ and so we get $J \in \mathcal{F}$.

(2) (\Leftarrow) Choose $J \in \mathcal{F}$. Then $J \cap D \neq (0)$ and $(J \cap D)[X] \in \mathcal{F}$. Then, since $(J \cap D)[X] \in \mathcal{F}_D[X]$, evidently $J \in \mathcal{F}_D[X]$. Thus $\mathcal{F} \subseteq \mathcal{F}_D[X]$ and therefore $\mathcal{F} = \mathcal{F}_D[X]$.

 (\Longrightarrow) Let $J \in \mathcal{F} = \mathcal{F}_D[X]$. Then $J \supseteq I[X]$ with $I \in \mathcal{F}_D$. Hence $J \bigcap D \supseteq I$ with $I \in \mathcal{F}_D$ and therefore $J \bigcap D \neq (0)$ and $(J \bigcap D)[X] \in \mathcal{F}_D[X] = \mathcal{F}$. \Box

Proposition 36. Let * be a semistar operation on D[X]. Then $(*^{\delta})^{\alpha} \leq \bar{*} \leq *$.

Proof. Let E be an element of $\mathbf{K}(D[X])$. Then $(E^*)^{(*^{\delta})^{\alpha}} = (E^*)^{*_{\mathcal{F}^*}\delta_{[X]}} = \bigcup \{E^* : J \mid J \in \mathcal{F}^{*^{\delta}}[X]\} = \bigcup \{E^* : I[X] \mid I \in \mathcal{F}^{*^{\delta}}\} = \bigcup \{E^* : I[X]^* \mid I \in \mathcal{F}^{*^{\delta}}\}$. But, by definition, $I \in \mathcal{F}^{*^{\delta}}$ if and only if $I^{*^{\delta}} = D^{*^{\delta}}$. Then, by [OM, Proposition 35], $(I[X])^* = (I^{*^{\delta}}[X])^* = (D^{*^{\delta}}[X])^* = D[X]^*$ for each $I \in \mathcal{F}^{*^{\delta}}$. Hence $(E^*)^{(*^{\delta})^{\alpha}} = \bigcup \{E^* : I[X]^* \mid I \in \mathcal{F}^{*^{\delta}}\} = E^* : D[X]^* = E^* : D[X] = E^*$ for all $E \in \mathbf{K}(D[X])$ and therefore $(*^{\delta})^{\alpha} \leq *$ by [OM, Lemma 16]. Then, by Proposition 21 (1), $(*^{\delta})^{\alpha}$ is stable and so $(*^{\delta})^{\alpha} \leq * \leq *$ by [FH, Proposition 3.6 (a) and Proposition 3.7 (1)]. \Box

Theorem 37. Let * be a semistar operation on D[X]. If we set $*_{[X]} = *_{(\mathcal{F}^*)_D}$, then $*_{[X]}$ is a semistar operation on D and $*_{[X]} \leq *^{\delta}$.

Proof. By definition, $E^{*[X]} = E^{*(\mathcal{F}^*)_D} = \bigcup \{E : J \mid J \in (\mathcal{F}^*)_D\}$ for each $E \in \mathbf{K}(D)$ and $J \in (\mathcal{F}^*)_D \iff J[X] \in \mathcal{F}^* \iff J[X]^* = D[X]^*$. Hence if $x \in E : J$, then $xJ \subseteq E$ and then $xJ[X] \subseteq E[X]$ and so $x(J[X])^* \subseteq E[X]^*$. But then, since $J[X]^* = D[X]^*$ for each $J \in (\mathcal{F}^*)_D$, we have $xD[X]^* \subseteq E[X]^*$ and so $x \in E[X]^*$. Thus $E : J \subseteq E[X]^* \cap K = E^{*^{\delta}}$ for all $E \in \mathbf{K}(D)$ and all $J \in (\mathcal{F}^*)_D$ which implies that $E^{*[X]} \subseteq E^{*^{\delta}}$ for all $E \in \mathbf{K}(D)$ and therefore $*_{[X]} \leq *^{\delta}$. \Box

Lemma 38. Let * be a semistar operation on D. Then $(\mathcal{F}^{*^{\alpha}})_{D} = \mathcal{F}^{*}$.

Proof. By definition, $*^{\alpha} = *_{\mathcal{F}^*[X]}$ and hence $\mathcal{F}^{*^{\alpha}} = \mathcal{F}^{*_{\mathcal{F}^*[X]}} = \mathcal{F}^*[X]$ by [FH, Theorem 2.10 (A)]. Therefore $(\mathcal{F}^{*^{\alpha}})_D = \mathcal{F}^*[X]_D = \mathcal{F}^*$ by Proposition 34.

Theorem 39. $(*^{\alpha})_{[X]} = (*^{\alpha})^{\delta}$ for each semistar operation * on D.

Proof. By Lemma 38, $(*^{\alpha})_{[X]} = *_{(\mathcal{F}^{*^{\alpha}})_D} = *_{\mathcal{F}^*} = \bar{*}$. But $(*^{\alpha})^{\delta} = \bar{*}$ also holds by Theorem 27. Therefore we get $(*^{\alpha})_{[X]} = (*^{\alpha})^{\delta}$. \Box

Corollary 40. Let * be a semistar operation on D. Then * is stable if and only if $* = (*^{\alpha})_{[X]}$.

Proof. This follows immediately from Theorems 27 and $39.\square$

Example 41. As easily seen, $\mathcal{F}^{\bar{d}_D} = \{D\}$ for each integral domain D and there-

fore $\mathcal{F}^{\bar{d}_D[X]} = \{D[X]\}$. Then $(\mathcal{F}^{\bar{d}_D[X]})_D = \{D\}$ and so $(\bar{d}_{D[X]})_{[X]} = *_{(\mathcal{F}^{\bar{d}_D[X]})_D} = \bar{d}_D$. On the other hand, $E^{(\bar{d}_D[X])^{\delta}} = E[X]^{\bar{d}_D[X]} \bigcap K = E[X] \bigcap K = E = E^{\bar{d}_D}$ for each $E \in \mathbf{K}(D)$ and so $(\bar{d}_{D[X]})^{\delta} = \bar{d}_D$. Thus $(\bar{d}_{D[X]})^{\delta} = (\bar{d}_{D[X]})_{[X]} = \bar{d}_D$.

Remark 42. The above result shown in Example 41 follows directly from Theorem 39. In fact, $(\bar{d}_D)^{\alpha} = \bar{d}_{D[X]}$ by Example 22 and therefore $(\bar{d}_{D[X]})^{\delta} = ((\bar{d}_D)^{\alpha})^{\delta} = ((\bar{d}_D)^{\alpha})_{[X]} = (\bar{d}_{D[X]})_{[X]}$.

Proposition 43. Let R be an overring of D. Then $(*_{(R[X])})^{\delta} = *_{(R)}$.

Proof. $E^{(*(R[X]))^{\delta}} = (ED[X])^{*(R[X])} \bigcap K = ER[X] \bigcap K = ER = E^{*(R)}$ for each $E \in \mathbf{K}(D)$ and hence $(*(R[X]))^{\delta} = *(R)$. \Box

Proposition 44. Let R be an overring of D. Then $(*_{(R[X])})_{[X]} = \widetilde{*_{(R)}}$.

Proof. $E^{(*(R[X]))[X]} = \bigcup \{E : J \mid J \in (\mathcal{F}^{*(R[X])})_D\} = \bigcup \{E : J \mid J[X]^{*(R[X])} = D[X]^{*(R[X])}\} = \bigcup \{E : J \mid JR[X] = R[X]\} = \bigcup \{E : J \mid JR = R\} = \bigcup \{E : J \mid J^{*(R)} = D^{*(R)}\} = E^{\widehat{*(R)}} = E^{\widehat{*(R)}}$ for each $E \in \mathbf{K}(D)$, since $*_{(R)}$ is of finite type. Hence we have $(*_{(R[X])})_{[X]} = \widehat{*(R)}$. \Box

Corollary 45. Let R be an overring of D. Then $(*_{(R[X])})^{\delta} = (*_{(R[X])})_{[X]}$ if and only if $*_{(R)} = \widetilde{*_{(R)}}$, i.e., $*_{(R)}$ is a stable semistar operation on D.

Proof. This follows immediately from Propositions 43 and 44. \Box

Corollary 46. (1) An overring R of D is a flat overring of D if and only if $(*_{(R[X])})^{\delta} = (*_{(R[X])})_{[X]}$.

(2) D is a Prüfer domain if and only if $(*_{(R[X])})^{\delta} = (*_{(R[X])})_{[X]}$ for each overring R of D.

Proof. (1) By [O3, Remark 37 (1)], R is a flat overring of D if and only if $*_{(R)}$ is a stable semistar operation on D and hence our assertion follows from Corollary 45.

(2) Since D is a Prüfer domain if and only if each overring R of D is a flat overring of D, our assertion also follows from Corollary 45. \Box

References

- [FH] M. Fontana and J.A. Huckaba, Localizing systems and semistar operations, in "Non-Noetherian Commutative Ring Theory" (S. T. Chapman and S. Glaz (Eds.)), Kluwer Academic Publishers, (2000), Chapter 8, 169-197.
- [FHP] M. Fontana, J.A. Huckaba and I.J. Papick, Prüfer domains, Marcel Dekker, INC., 1997.

- [FL1] M. Fontana and K. Alan Loper, Kronecker function rings: a general approach, In *Ideal Theoretic Methods in Commutative Algebra* (D.D. Anderson and I.J. Papick, Eds.), Marcel Dekker, Lecture Notes Pure Appl. Math. 220(2001), 189-205.
- [FL2] M. Fontana and K. Alan Loper, Nagata rings, Kronecker function rings, and related semistar operations, Comm. Algebra 31(2003), 4775-4805.
- [FP] M. Fontana and N. Popescu, Sue une classe d'anneaux qui généralisent les anneaux de Dedekind, J. Algebra 173(1995), 44-66.
- [GA] P. Gabriel, Des Catégories abéliennes, Boll. Soc. Math. France 90(1962), 323-448.
- [G] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [O1] A. Okabe, Some results on semistar operations, JP Jour. Algebra, Number theory and Appl. 3(2003), 187-210.
- [O2] A. Okabe, Semistar operations on conducive domains, Math. J. Ibaraki Univ. 35 (2003), 11-19.
- [O3] A. Okabe, On generalized Dedekind domains, Math. J. Ibaraki Univ. 36(2004), 5-23.
- [O4] A. Okabe, A note on semistar operations and localizing systems, JP Jour. Algebra Number Theory and Appl. 6 (2006), 149-174.
- [O5] A. Okabe, On generalized divisorial semistar operations on integral domains, Math. J. Ibaraki Univ. 41(2009), to appear.
- [OM] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1-21.
- [P1] G. Picozza, Semistar Operations and Multiplicative Ideal Theory, PhD thesis, Università degli Studi "Roma Tre", June 2004.
- [P2] G. Picozza, Star operations on overrings and semistar operations, Comm. Algebra 33(2005), 2051-2073.
- [P3] G. Picozza, A note on semistar Noetherian domains, Houston J. Math. 33(2007), 415-432.
- [PO] N. Popescu, On a class of Prüfer domains, Rev. Roumanie Math. Pures Appl. 29(1984), 777-786.