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Abstract

We study almost pseudo-valuation semigroups S, especially will study semis-
tar operations on S, and will determine the complete integral closure of S. We
will study various cancellation properties of semistar operations on g-monoids.
Also, we will study Kronecker function rings of any semistar operations on g-
monoids.

A. Badawi and E. Houston [BH] introduced an almost pseudo-valuation domain.
An integral domain D with quotient field K is called an almost pseudo-valuation
domain (or, an APVD) if every prime ideal P of D is strongly primary, that is, if, for
elements x, y ∈ K, xy ∈ P and x 6∈ P implies yn ∈ P for some positive integer n.
In this paper we will introduce an almost pseudo-valuation semigroup (or, an APVS),
and will study it, especially will study semistar operations on an APVS, and will
determine the complete integral closure of an APVS. Let G be a torsion-free abelian
additive group. A subsemigroup S of G which contains 0 is called a grading monoid
(or, a g-monoid). We may confer [M3] for g-monoids. Also, we will study various
cancellation properties of semistar operations on g-monoids. Moreover, we will study
Kronecker function rings of any semistar operations on g-monoids. The paper consists
of seven sections. In §1, we will introduce an APVS, and will show that [BH] holds
for g-monoids. In §2, we will show a semigroup version of [KMOS], and will determine
the complete integral closure of the APVS. In §3, we will give conditions for an APVS
to have only a finite number of semistar operations. In §4, we will study conditions for
an APVD to have only a finite number of semistar operations. In §5, we will introduce
various cancellation properties of semistar operations on a g-monoid, and will show
various implications of the cancellation properties. In §6, we will study results for
Kronecker function rings of e.a.b. semistar operations for any semistar operations on
g-monoids. §7 is an appendix. Many parts in every §1 ∼ §4 are restatements of [M7].
Since it seems that [M7] has not appeared about six years, and we refered [M7] in
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other papers, we will state them for the convenience.

§1 Almost pseudo-valuation semigroups

In this section we will show a semigroup version of [BH]. Almost all proofs of
the semigroup version are easy and simple modification of those of [BH]. However, for
convenience sake, we will note the definitions and the results.

Throughout the section, S will denote a g-monoid. The group q(S) = {x − y |
x, y ∈ S} is called the quotient group of S. A non-empty subset I of S is called an
ideal if S + I ⊂ I. We define an ideal I of S to be powerful if, whenever x + y ∈ I for
elements x, y ∈ q(S), we have x ∈ S or y ∈ S.

(1.1). An ideal I of S is powerful if and only if −x+I ⊂ S for every x ∈ q(S)−S.

A proper ideal P of S is called a prime ideal if x + y ∈ P for x, y ∈ S, then x ∈ P
or y ∈ P . A prime ideal of S is called a strongly prime ideal if x + y ∈ P for x, y ∈
q(S), then x ∈ P or y ∈ P .

(1.2). A prime ideal of S is strongly prime if and only if it is powerful.

(1.3). If J ⊂ I are ideals of S with I powerful, then J is also powerful.

Let I be an ideal of S, and n be a positive integer. Then nI denotes the ideal
generated by {x1 + · · ·+ xn | every xi ∈ I}. For subsets A,B of a torsion-free abelian
group, the subset {x ∈ B | nx ∈ A for some n > 0} of B is denoted by RadB(A).

(1.4) Theorem. Let I be a powerful ideal of S.
(1) If J is an ideal of S, then either J ⊂ I or 2I ⊂ J .
(2) If J is a prime ideal of S, then I and J are comparable.
(3) The prime ideals of S contained in RadS(I) are linearly ordered.

An element a of S is called a unit of S if −a ∈ S. If q(S) = S, then S is a unigue
ideal of S. If q(S) % S, then S has a unique maximal ideal. If every prime ideal of S
is a strongly prime ideal, then S is called a pseudo-valuation semigroup (or a PVS).

(1.5). S is a PVS if and only if the maximal ideal of S is powerful.

(1.6). If S contains a powerful ideal, then S contains a unique largest powerful
ideal.

(1.7). If I is a proper powerful ideal of S, and if P = ∩∞
k=0kI is non-empty, then

P is a strongly prime ideal.

(1.8). Let I be a powerful ideal of S. If x, y ∈ q(S) and x + y ∈ RadS(I), then
there is a positive integer m such that either mx ∈ I or my ∈ I. In particular, if I is
a proper powerful ideal, then RadS(I) is a prime ideal.
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(1.9). Let I be a powerful ideal of S. If x ∈ q(S) and nx ∈ I for some n > 0,
then (n + k)x ∈ S for every k ≥ 0.

An ideal J of S is called a radical ideal of S if RadS(I) = I. A radical ideal J
of S is called strongly radical if x ∈ q(S) and nx ∈ J for some n > 0 implies x ∈ J .
S is called a seminormal semigroup if x ∈ S whenever x ∈ q(S) and nx ∈ S for all
sufficiently large n.

(1.10). Let I be a proper powerful ideal of S. Then RadS(I) is powerful (and
therefore strongly prime) if and only if RadS(I) is strongly radical. In particular, if S
is seminormal, then RadS(I) is strongly prime.

An intermediate g-monoid between S and q(S) is called an oversemigroup of S.
Let G be a torsion-free abelian group, let Γ be a totally ordered abelian group, and let
v be a mapping of G onto Γ. If v(a+ b) = v(a)+v(b) for all a, b ∈ G, then v is called a
valuation on G, and the subsemigroup {x ∈ G | v(x) ≥ 0} of G is called the valuation
semigroup belonging to v. v is said to belong to V , Γ is called the value group of v,
and Γ is also called the value group of V .

(1.11). Let I be a powerful ideal of S, and let T be an oversemigroup of S.
Then I + T is a powerful ideal of T . In particular, if I + T = T , then T is a valuation
semigroup.

(1.12). Let I be a powerful ideal of S, and suppose that P ⊂ I is a finitely
generated prime ideal of S. Then S is a PVS with maximal ideal P .

The oversemigroup Radq(S)(S) of S is called the integral closure of S, and is
denoted by S̄.

(1.13) Theorem. Suppose that S admits a powerful ideal I and that M =
RadS(I) is a maximal ideal of S. Then :

(1) I + S̄ ⊂ M , and therefore I + S̄ is an ideal of S.
(2) S̄ is a PVS with maximal ideal N = RadS̄(I + S̄), and hence (N : N) = {x ∈

q(S) | x + N ⊂ N} is a valuation oversemigroup of S with maximal ideal N .

If P is a prime ideal of S, then the oversemigroup {x − y | x ∈ S and y ∈ S − P}
is denoted by SP .

(1.14). Let I be a powerful ideal of S, and let P = RadS(I). Then T = SP is
a PVS with maximal ideal N = RadT (I + T ). It follows that (N : N) is a valuation
oversemigroup of S with maximal ideal N .

(1.15). Let I be a powerful ideal of S, and let T 6= q(S) be an oversemigroup of
S with maximal ideal N . Then S and T share an ideal which is powerful in both S
and T . In fact:
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(1) If I + T = T , then P = N ∩ S is a common ideal which is powerful in both
semigroups.

(2) If I + T 6= T , then 2I + T is a common ideal, and 3I + T is powerful in both
semigroups.

(1.16). Suppose that T is an oversemigroup of S, and that S and T share the
ideal J . If J is powerful in T , then 3J is a powerful ideal of S.

A proper ideal I of S is called a primary ideal of S if x + y ∈ I and x 6∈ I, then
ny ∈ I for some n > 0.

(1.17). A primary ideal of a valuation semigroup is strongly primary.

For a subset A of S, we define E(A) by E(A) = {x ∈ q(S) | nx 6∈ A for every
n ≥ 1}.

(1.18). An ideal I of S is strongly primary if and only if −x + I ⊂ I for every
x ∈ E(I).

(1.19) Theorem. Let S be a seminormal semigroup. If I is a proper stongly
primary ideal of S, then I is powerful, and RadS(I) is strongly prime. In particular,
a prime ideal of S is strongly prime if and only if it is strongly primary.

(1.20). Let I be a proper strongly primary ideal of S, and let T be an oversemi-
group of S. Then either I + T = T or I + T = I.

(1.21). If I is a proper strongly primary ideal of S, then I + S̄ = I. Moreover,
3I is powerful in both S and S̄.

(1.22). If I is a proper strongly primary ideal of S, and if ∩∞
n=1nI is non-empty,

then ∩∞
n=1nI is a strongly prime ideal of S.

(1.23) Theorem. If I is a strongly primary ideal of S, then I is comparable to
every radical ideal of S. Moreover, the prime ideals of S which are properly contained
in I are strongly prime and linearly ordered.

(1.24). If P is a prime ideal of S which is strongly primary but not strongly
prime, then P is the only prime with this property.

(1.25) Theorem. Let I be a strongly primary ideal of S, and let T 6= q(S) be
an oversemigroup of S. Then S and T share a strongly primary ideal. In fact:

(1) If I + T 6= T , then I + T = I is a common strongly primary ideal;
(2) If I + T = T , then T is strongly primary, and, for the maximal ideal N of T ,

N ∩ S is a common strongly prime ideal of S and T .

(1.26) Theorem. Let I be a proper ideal of S. Then the following statements
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are equivalent.
(1) I is a strongly primary ideal of S.
(2) I is a primary ideal in some valuation oversemigroup of S.
(3) V = (I : I) is a valuation semigroup, and I is (an ideal of V which is) primary

to the maximal ideal of V .

(1.27). If S admits a proper principal strongly primary ideal, then S is a valua-
tion semigroup.

(1.28). Let I be a strongly primary ideal of S. Then,
(1) I ⊂ x + S for every x ∈ S−RadS(I), and
(2) If I is finitely generated, then S has maximal ideal RadS(I).

(1.29). Let P be a strongly primary prime ideal of S, and let I be an ideal of
S with RadS(I) = P . Then P + I is strongly primary. In particular, nP is strongly
primary for every n ≥ 1.

We say that a g-monoid S is an almost pseudo-valuation semigroup (or, an APVS)
if every prime ideal of S is strongly primary. A prime ideal of S is called divided if it
is comparable to every ideal of S. If every prime ideal of S is divided, then S is called
a divided semigroup.

(1.30). Let S be an APVS. Then S is a divided semigroup. Moreover, every
non-maximal prime ideal of S is strongly prime.

(1.31). The followings are equivalent for a g-monoid S.
(1) Every primary ideal of S is strongly primary.
(2) Either S is a valuation semigroup or S is a PVS with unbranched maximal

ideal.

(1.32) Theorem. The following statements are equivalent for a g-monoid S.
(1) S is an APVS.
(2) The maximal ideal of S is strongly primary.
(3) If N is the maximal ideal of S, then −x+N ⊂ N for every element x ∈ E(N).
(4) The maximal ideal M of S is such that (M : M) is a valuation semigroup

with M primary to the maximal ideal of (M : M).
(5) There is a valuation oversemigroup in which M is a primary ideal.

(1.33). If S is strongly primary, then S is an APVS (and hence S admits a
proper strongly primary ideal).

(1.34). Let S be an APVS with maximal ideal M . If T is an oversemigroup of
S with M + T = T , then T is also an APVS.

(1.35). If S is an APVS with maximal ideal M , then S̄ is a PVS with maximal
ideal N = RadS̄(M + S̄).
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(1.36). If every oversemigroup of a g-monoid S is an APVS, then S̄ is a valuation
semigroup.

Proof. Suppose the contrary. Let P be the maximal ideal of S, (P : P ) = V,M =
RadV (P ), G be the unit group of V , and K be the unit group of S̄. S̄ is a PVS with
maximal ideal M . We may take an element g ∈ G − K. Set T = S̄[2g] = S̄ + Z02g,
and let N be the maximal ideal of T .

Let l ∈ Z. Then lg ∈ T if and only if l ∈ 2Z0. It follows that 2g ∈ N , 3g 6∈ N ,
and −ng 6∈ N for every positive integer n.

Since 2g = 3g + (−g), we have that N is not strongly primary, hence T is not an
APVS; a contradiction.

(1.37). Let S be an APVS with S̄ a valuation semigroup, and assume that every
integral oversemigroup of S is an APVS. Then every oversemigroup of S is an APVS.

If every oversemigroup of S which is different from q(S) has a non-empty conductor
to S, then S is called a conducive semigroup.

(1.38) Theorem. The following conditions are equivalent for a g-monoid S.
(1) S is a conducive semigroup.
(2) S admits a powerful ideal.
(3) S admits a strongly primary ideal.
(4) S shares an ideal with some conducive oversemigroup.

Assume that there are prime ideals Pi of S such that P1 $ P2 $ · · · $ Pn, and
that there does not exist prime ideals Qi of S such that Q1 $ Q2 $ · · · $ Qn+1, then
n is called the Krull dimension (or, the dimension) of S.

If every ideal of S is finitely generated, then S is called a Noetherian semigroup.
Let X be a non-empty set, and assume that, for every s ∈ S and x ∈ X, there is

defined the element s + x of X. If 0 + x = x and, for every s1, s2 ∈ S, (s1 + s2) + x =
s1 + (s2 + x), then X is called an S-module.

(1.39) Theorem. A Noetherian semigroup S with S 6= q(S) is conducive if and
only if each of the following conditions holds:

(1) S is of dimension 1.
(2) S̄ is a rank one discrete valuation semigroup.
(3) S̄ is a finitely generated S-module.

§2 The complete integral closure of an APVS

M. Kanemitsu, R. Matsuda, N. Onoda and T. Sugatani [KMOS] determined the
complete integral closure of an APVD. In this section, we will show a semigroup
version of [KMOS], and will determine the complete integral closure of an APVS. The
proofs of the semigroup version are easy modification of those in [KMOS]. However,
for convenience sake, we will note the results. Throughout this section, S will denote
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a g-monoid.
Let t be an element of an extension semigroup T of S. If there is s ∈ S such that

s + nx ∈ S for every positive integer n, then x is called almost integral over S. The
set of almost integral elements in q(S) is called the complete integral closure of S, and
is denoted by Sc.

(2.1). Let I be an ideal of S such that (I : I) is a valuation semigroup, then I is
comparable with any prime ideal of S.

(2.2). If P $ I are ideals of S with P prime, then (I : I) ⊂ (S : I) ⊂ (P : P ).

(2.3). The following two statements are equivalent.
(1) S has the maximal ideal M such that (M : M) is a valuation semigroup.
(2) For any prime ideal P of S, (P : P ) is a valuation semigroup.
Furthermore, if S satisfies one of these conditions, then the following statement

holds.
(3) The prime ideals of S are linearly ordered.

(2.4). Let P be a prime ideal of S, V = (P : P ), and M = RadV (P ). Then the
following statements are equivalent.

(1) P is a strongly primary ideal of S.
(2) V is a valuation semigroup and M is the maximal ideal of V .

(2.5). Assume that S is of dimension 1. If the maximal ideal P of S is strongly
primary, then (P : P ) is of dimension 1.

(2.6). Let P be an ideal of S, V = (P : P ), and M = RadV (P ). Then the
following conditions are equivalent.

(1) P is a strongly prime ideal of S.
(2) V is a valuation semigroup, and P is the maximal ideal of V .

(2.7). Let P be a prime ideal of S and V = (P : P ). Suppose that P is strongly
primary. Then the following statements hold.

(1) SP ⊂ V and P + SP = P .
(2) For every a ∈ S − P , we have P = a + P . In particular, P ⊂ ∩∞

n=1(na + S).
(3) For an ideal I of S, we have either I ⊂ P or P ⊂ I.
(4) If there is a prime ideal Q of S such that Q 6⊂ P and (Q : Q) is a valuation

semigroup, then SP = V . In particular, P is strongly prime.

(2.8). The following statements hold.
(1) Sc = q(S) if and only if ∩∞

n=1(na + S) 6= ∅ for every a ∈ S.
(2) Let P be a prime ideal of S of height 1. Then ∩∞

n=1(na + S) = ∅ for every
element a ∈ P .

(2.9) Theorem. Let S be an APVS. The following statements hold.
(1) If S has no prime ideal with height 1, then Sc = q(S).
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(2) If S has a prime ideal P with height 1, then,
(i) Sc = (P : P ).
(ii) If S is of dimension ≥ 2, then Sc = SP .
(iii) Sc is of dimension 1.

§3 Semistar operations on an APVS

Let I be an S-submodule of q(S) such that s + I ⊂ S for some s ∈ S. Then I is
called a fractional ideal of S. The set of fractional ideals of S is denoted by F(S).

A mapping ? of F(S) to F(S) is called a star operation on S if ? satisfies the
following conditions: For all a ∈ q(S) and I, J ∈ F(S), (a)? = (a), (a + I)? =
a + I?, I ⊂ I?, I ⊂ J implies I? ⊂ J?, and (I?)? = I?. The set of star operations on S
is denoted by Star(S).

Let F̄(S) be the set of S-submodules of q(S). A mapping ? of F̄(S) to F̄(S) is
called a semistar operation on S if ? satisfies the following conditions: For all a ∈
q(S) and I, J ∈ F̄(S), (a+I)? = a+I?, I ⊂ I?, I ⊂ J implies I? ⊂ J?, and (I?)? = I?.
The set of semistar operations on S is denoted by Sstar (S).

(3.1) ([M2, Theorem 2]). Let V be a valuation semigroup with finite dimension
n, and let Γ be its value group. Let M = Pn % · · · % P1 be the prime ideals of V , and
let {0} $ Hn−1 $ · · · $ H1 $ Γ be the convex subgroups of Γ. Let m be a positive
integer with n + 1 ≤ m ≤ 2n + 1. The following conditions are equivalent.

(1) |Sstar (V ) | = m.
(2) The maximal ideal of VPi is principal for exactly 2n + 1 − m of i.
(3) The ordered abelian grouop Γ/Hi has a minimal positive element for exactly

2n + 1 − m of i.

For a subset I of q(S), the subset {x ∈ q(S) | x + I ⊂ S} of q(S) is denotede by
I−1 (We set ∅−1 = q(S)), and (I−1)−1 is denotede by Iv.

(3.2) (cf., [M5, Theorem 2]). Let S be a PVS which is not a valuation semigroup,
let M be the maximal ideal of S, and let V = M−1. Let Σ′

1 be the set of semistar
operations ? on S such that S? ⊃ V , and let Σ′

2 be the set of semistar operations ? on
S such that S? $ V . Let H be the unit group of S, and let G be the unit group of V .
Assume that | G/H | < ∞ and that dim (S) < ∞. Let H1, · · · ,Hl be the subgroups
H ′ of G such that G % H ′ ⊃ H, and let Si = Hi ∪ M for every i.

(1) Sstar(S) = Σ′
1 ∪ Σ′

2.
(2) | Sstar(V ) | < ∞, and | Star(Si) | < ∞ for every i.
(3) | Σ′

1 | = | Sstar(V ) |.
(4) | Σ′

2 | =
∑l

1 | Star(Si) |.

(3.3). Let S be an APVS, P the maximal ideal of S, and V = (P : P ). If
|Sstar(S) | < ∞, then dim(S) < ∞ and V is a finitely generated S-module.

Proof. Then V is a finitely generated oversemigroup of S. By [M2, Lemma 8], S̄
is a valuation semigroup. Since S̄ ⊂ V , and the maximal ideal of S̄ is Radq(S)(P ), we
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have V = S̄. Therefore V is a finitely generated S-module.

Let T be an oversemigroup of S. Then we have canonical mappings α: Sstar(S)
−→ Sstar(T ) and δ: Sstar(T ) −→ Sstar(S). Thus, for every ? ∈ Sstar(S), α(?) is the
restriction of ? to F̄(T ). And, for every ?′ ∈ Sstar(T ), Iδ(?′) = (I + T )?′

for every
I ∈ F̄(S). α(?) is called the ascent of ? to T , and δ(?′) is called the descent of ?′ to S.

The semistar operation I 7−→ q(S) for every I ∈ F̄(S) is called the e-semistar
operation on S.

(3.4). Assume that |Sstar(S) | < ∞, S̄ is a valuation semigroup, the unit group
of S̄ coincides with the unit group of S, and that S̄ is a finitely generated S-module.
Then S need not be an APVS.

Example: Let S = {0, 2, 4, 5, 6, · · · }. Then V = S̄ = Z0 is a valuation semigroup,
the unit group of S̄ = {0}, the unit group of S = {0}, S̄ is a finitely generated
S-module, S is not an APVS, and dim(S) = 1. We must show that |Sstar(S) | < ∞.

Set Σ′
1 = {? ∈ Sstar(S) | S? = Z }, Σ′

2 = {? ∈ Sstar(S) | S? = V }, Σ′
3 = {? ∈

Sstar(S) | S $ S? $ V }, and Σ′
4 = {? ∈ Sstar(S) | S? = S}. Then we have

Sstar(S) = ∪4
i=1Σ

′
i. And we have Σ′

1 = {e}, and | Σ′
1 | = 1. Every ∗ ∈ Σ′

2 is induced
from a star operation on V . Since |Star(V ) | = 1, | Σ′

2 | = 1.
Let T = {0, 2, 3, 4, · · · }. Every ? ∈ Σ′

3 is induced from a star operation on T .
Hence | Σ′

3 | = |Star(T ) |. Similarly, we have | Σ′
4 | = |Star(S) |.

We will show that |Star(S) | < ∞ (The proof of |Star(T ) | < ∞ is simpler). Set
I0 = {0, 2, 3, 4, · · · }, F1 = {S, I0, V }, F2 = {I ∈ F(S) | S ⊂ I ⊂ V − 4}. Let FF1

2 be
the set of mappings of F1 to F2. Then F2 is a finite set, and FF1

2 is a finite set. Since
V + 4 ⊂ S, we have V ? ⊂ S − 4 ⊂ V − 4 for every ? ∈ Star(S).

For every ? ∈ Star(S), there is a canonical mapping θ? of F1 to F2: S 7−→ S,
I0 7−→ I?

0 , V 7−→ V ?. There arises a canonical mapping θ of Star(S) to FF1
2 : ? 7−→ θ?.

Assume that θ(?1) = θ(?2) for ?1, ?2 ∈ Star(S). Let I ∈ F(S). There is x ∈ Z
such that x + I ⊂ F1. Since θ?1 = θ?2 , we have (x + I)?1 = (x + I)?2 . It follows that
I?1 = I?2 , and hence ?1 = ?2. That is, θ is an injection, and hence |Star(S) | < ∞.

In this section, we will prove the following,

(3.5) Theorem. Let S be an APVS, P be the maximal ideal of S, and let
V = (P : P ). Then |Sstar(S) | < ∞ if and only if dim(S) < ∞ and V is a finitely
generated S-module.

(3.1) and (3.2) show that (3.5) holds for any PVS.
Thus in the remainder of this section, S denotes an APVS with dimension < ∞

which is not a PVS, P is the maximal ideal of S, V = (P : P ) which is a finitely
generated S-module, M is the maximal ideal of V , G is the unit group of V , H is the
unit group of S, v is the valuation which belongs to V , and Γ is the value group of v.

(3.6). (1) V = P−1.
(2) V = S̄.
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(3) | G/H | < ∞.

Proof. (1) Suppose the contrary. There is x ∈ P−1 − V . Since x + P 6⊂ P
and x + P ⊂ S, we have S = x + P . It follows that P = −x + S, and V = S; a
contradiction.

(3.7). F̄(S) = F(S) ∪ {q(S)}.

Proof. We note that V ∈ F(S). Let I ∈ F̄(S).
The case that v(I) is bounded below: There is x ∈ q(S) such that v(x) < v(I).

Then −x + I ⊂ V . Hence I is a fractional ideal of S.
The case that v(I) is not bounded below: Let x ∈ q(S), and let p ∈ P . There is

y ∈ I such that v(y) < v(x−p). Then x = (x−y−p)+p+y ∈ V +p+y ⊂ P +y ⊂ I.
Hence I = q(S).

(3.8). Let T be an oversemigroup of S. Then either T ⊃ V or T $ V .

Proof. Assume that T 6⊂ V . There is t ∈ T − V . Let x ∈ V . Then −t ∈ M ,
and hence −nt ∈ P for some n > 0. Then x = nt + (x − nt) ∈ T + P ⊂ T , and hence
V ⊂ T .

(3.9). (1) There are no gi ∈ G such that V = S[g1, · · · , gl].
(2) There are gi ∈ G and x0 ∈ M such that V = S[g1, · · · , gl, x0].
(3) In (2), v(x0) is a minimal positive element of Γ.
(4) Zv(x0) is the rank 1 convex subgroup of Γ.
(5) Let m be the minimal positive integer k such that kx0 ∈ S. Then v(P ) =

{γ ∈ Γ | γ ≥ mv(x0)}.

Proof. (1) Suppose the contrary. For any x ∈ M , we have x = s +
∑

kigi. Then
s ∈ P , hence x ∈ P . Therefore P = M ; a contradiction.

(2) There are g1, · · · , gl ∈ G and x1, · · · , xm ∈ M such that V = S[g1, · · · , gl, x1,
· · · , xm] with m > 0. Assume that, for instance, v(x2) > v(x1). We have x2 − x1 =
s +

∑
kigi +

∑
k′

ixi. Hence x2 = s +
∑

kigi + (1 + k′
1)x1 +

∑m
i=2 k′

ixi. It follows
that k′

2 = 0, and V = S[g1, · · · , gl, x1, x3, x4, · · · , xm]. Therefore we may assume that
v(x1) = · · · = v(xm). It follows that V = S[g1, · · · , gl, x1].

(3) Suppose the contrary. There is x ∈ M such that v(x) < v(x0). Then
x0 − x1 = s +

∑
kigi + kx0. If k > 0, then x ∈ G; a contradiction. If k = 0, then

s ∈ P . Then x0 = x1 + s +
∑

kigi ∈ P , and hence V = S[g1, · · · , gl]; a contradiction.
(4) follows from (3).
(5) Then mv(x0) = v(mx0) ∈ v(P ).
Assume that γ > mv(x0). Then γ − mv(x0) = v(x) for some x ∈ M , and

γ = v(mx0 + x) ∈ v(P ).
Suppose that v(p) < mv(x0) for some p ∈ P . By (3), we have v(p) ≤ (m−1)v(x0),

and hence (m − 1)x0 ∈ S; a contradiction.

Set Σ′ = {? ∈ Sstar(S) | S? = S}, Σ′
1 = {? ∈ Sstar(S) | S? ⊃ V }, and set
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Σ′
2 = {? ∈ Sstar(S) | S? $ V }.

(3.10). (1) There is a canonical bijection from Sstar(V ) onto Σ′
1.

(2) Sstar(S) = Σ′
1 ∪ Σ′

2 (disjoint).

Proof. (1) follows from (3.7).
(2) follows from (3.8).

Let g1, · · · , gl be a complete representatives of G modulo H. Then we have V =
S[g1, · · · , gl, x0] for some x0 ∈ M . Let m be the minimal positive integer k such that
kx0 ∈ S. Let C = {gi + kx0 | 1 ≤ i ≤ l, 0 ≤ k < m}, and Π = {σ | σ is a subset of C
which contains some gi}. We may assume that v(x0) = 1, and that Z is the rank 1
convex subgroup of Γ.

For every σ ∈ Π, the fractional ideal of S generated by σ is denoted by σ + S.

(3.11). (1) Let I be a fractional ideal of S with I ⊂ V which meets with G.
Then I ⊃ P , and there is a unique element σ ∈ Π such that I = σ + S.

(2) Let ? ∈ Σ(S) and σ ∈ Π. Then there is a unique element σ′ ∈ Π such that
(σ + S)? = σ′ + S.

Proof. (1) Let g ∈ G ∩ I and p ∈ P . Then p = (p − g) + g ∈ P + I ⊂ I, and
hence P ⊂ I.

Let σ be the set of elements of I which are contained in C. Then σ ∈ Π, and
P ⊂ σ + S ⊂ I. Let x ∈ I − P . Then v(x) = v(rx0) for some 0 ≤ r < m.

Then x = rx0 + gi +h, and then rx0 + gi ∈ I ∩C, and hence x ∈ σ +S. Therefore
I = σ + S.

Assume that I = σ1 + S = σ2 + S for σ1, σ2 ∈ Π. Let gi + kx0 ∈ σ1. Then
gi + kx0 = gj + k′x0 + s with gj + k′x0 ∈ σ2. Clearly k′ ≤ k. If k′ < k, then
s = gi − gj + (k− k′)x0, and 0 < v(s) < m; a contradiction. Hence k = k′, gi = gj + s,
gi = gj , and s = 0. Therefore σ1 ⊂ σ2. Similarly σ2 ⊂ σ.

(2) We have (σ + S)? ⊂ V ? ⊂ V v. Then (σ + S)? ⊂ V by (3.6). The proof is
complete by (1).

In (3.11)(2), set σ′ = f?(σ), and set F (σ) = f?. Then f? is a mapping from Π to
Π, and F is a mapping from Σ′

2(S) to ΠΠ, where ΠΠ denotes the set of mappings from
Π to Π. ΠΠ is a finite set.

(3.12). The set of non-maximal prime ideals of S coincides with the set of non-
maximal prime ideals of V .

(3.13). If dim(S) = 1, then F is injecticve. In particular, | Σ′
2(S) |< ∞.

Proof. We have Γ = Z. Assume that F (?) = F (?′) for ?, ?′ ∈ Σ′
2(S). We must

show that ? = ?′.
Let I ∈ F(S). We have min (v(x + I)) = 0 for some x ∈ q(S). There is σ ∈ Π

such that x + I = σ + S. Hence x + I? = (σ + S)? and x + I?′
= (σ + S)?′

. Since
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f? = f?′ , we have (σ + S)? = (σ + S)?′
. It follows that I? = I?′

, and hence ? = ?′.

(3.14). Assume that dim(S) ≥ 2. Then F is injective. In particular, | Σ′
2(S) |<

∞.

Proof. Assume that F (?) = F (?′) for ?, ?′ ∈ Star(S). We must show that ? = ?′.
Let Q be the prime ideal of V which correspond to the convex subgroup Z of Γ. Q is
a prime ideal of S, and Q = {x ∈ V | v(x) 6∈ Z}.

We note that Γ/Z is a totally ordered abelian group. For every element γ (resp.,
subset A) of Γ, γ + Z (resp., {a+Z| a ∈ A}) is denoted by γ̄ (resp., Ā).

Let I ∈ F(S). We have three cases: (1) v(I) has a minimal element. (2) v(I)
does not have a minimal element, and v(I) does not have a minimal element. (3) v(I)
does not have a mnimal element, and v(I) has a minimal element.

Case (1): Let v(x) be the minimal element of v(I) with x ∈ I. There is σ ∈ Π
such that I − x = σ + S. Since f? = f?′ , we have (σ + S)? = (σ + S)?′

. Then
I? = x + (σ + S)? = x + (σ + S)?′

= I?′
.

Case (2): Assume that x 6∈ I. For any i ∈ I, we have v(x) < v(i). Hence also
v(x + 1) < v(i). It follows that i ∈ x+1+S, and that I ⊂ x+1+S. Since x 6∈ x+1+S,
we have I = Iv. Hence I? = I?′

.
Case (3): Let v(x) be the minimal element of v(I) with x ∈ I. Then we have

v(I − x) = {γ ∈ Γ | l < γ for some integer l}. Let {x | v(x) < l for every integer
l} = {xλ | Λ}. Then I − x = ∩λ(xλ + S). Hence I = Iv, and hence I? = I?′

.
We have shown that ? = ?′.

(3.10) completes the proof of (3.5).
For a general g-monoid S, conditions for |Sstar(S)| < ∞ were studied in [M5].

§4 Semistar operations on an APVD

In this section we study semistar operations on APVD’s. For a domain D, the set
of non-zero fractional ideals of D is denoted by F(D), and the set of star operations
on D is denoted by Star(D).

(4.1) ([M2, Theorem 3]). Let V be a valuation domain with finite dimension n,
and let Γ be its value group. Let M = Pn % · · · % P1 % (0) be the prime ideals of
V , and let {0} $ Hn−1 $ · · · $ H1 $ Γ be the convex subgroups of Γ. Let m be a
positive integer with n + 1 ≤ m ≤ 2n + 1. The following conditions are equivalent:

(1) |Sstar(V ) |= m.
(2) The maximal ideal of VPi is principal for exactly 2n + 1 − m of i.
(3) The ordered group Γ/Hi has a minimal positive element for exactly 2n+1−m

of i.

(4.2) ([M8, §2, Proposition 3 and Lemma 3]). Let D be a PVD with maximal
ideal M , and set V = M−1. Assume that |Sstar(D) | < ∞, then dim(D) < ∞, and
V/M is a simple extension field of D/M with [V/M : D/M ] < ∞.
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(4.3) ([M8, §1, Proposition 1]). In (4.2), the converse does not hold.

Example: Let k be a field of characteristic 0, K be an extension field of k with
[K : k] = 4, V = K[[X]], M be the maximal ideal of V , and let D = k + M .

(4.4) ([M8, §2, Proposition 4]). Let D be a PVD which is not a valuation domain,
let M be the maximal ideal of D, and let V = M−1. Assume that dim (D) < ∞,
and that V/M is a simple extension field of D/M with [V/M : D/M ] < ∞. Let
{D1, · · · , Dl} be the set of overrings T of D such that T $ V . Let Σ′

1 be the semistar
operations ? on D such that D? ⊃ V , and let Σ′

2 be the set of semistar operations ?
on D such that D? $ V .

(1) Sstar(D) = Σ′
1 ∪ Σ′

2.
(2) |Sstar(V ) | < ∞.
(3) | Σ′

1 | = |Sstar(V ) |.
(4) ∪l

1Star(Di) is a disjoint union.
(5) There is a canonical bijection from Σ′

2 onto ∪l
1 Star(Di).

(4.5). (1) Assume that D̄ = D and |Sstar(D) | < ∞, then D need not be an
APVD (cf., [M5, Remark 1]).

(2) If |Sstar(D) | < ∞, and if D̄ is quasi-local, then D̄ is a valuation domain (cf.,
[M4, Theorem 3]).

In the remainder of this section, let D be an APVD with maximal ideal P , (P :
P ) = V , M be the maximal ideal of V , v be the valuation which belongs to V , and Γ
be the value group of v.

(4.6). (1) If D is not a valuation domain, then V = P−1.
(2) F̄(D) = F(D) ∪ {q(D)}.

Proof. (1) Suppose that P−1 % V . There is x ∈ P−1 − V . Then xP ⊂ D and
xP 6⊂ P . Hence xP = D and P = x−1D. Hence D = V ; a contradiction.

(2) Let I ∈ F̄(D). If v(I) is bounded below, then I ∈ F(D). If v(I) is not
bounded below, then I =q(D).

(4.7). Let T be an overring of D. Then T ⊃ V or T $ V .

The proof is a ring version of that of (3.8).

(4.8). Assume that |Sstar(D) | < ∞.
(1) dim (D) < ∞.
(2) V is a finitely generated D-module.
(3) V = D̄.
(4) V/M is a simple extension field of D/P with [V/M : D/P ] < ∞.

Proof. V is a finitely generated overring of D, and D̄ ⊂ V . D̄ is a quasi-local
ring with maximal ideal M = RadV (P ). Since |Sstar(D̄) |< ∞, D̄ is a valuation ring.
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Hence V = D̄. Therefore V is a finitely generated D-module.

(4.9) Proposition. Let D be an APVD which is not a PVD, let P be the
maximal ideal of D, and let V = (P : P ). Assume that dim (D) < ∞, and V is a
finitely generated D-module. Let {Dλ | λ ∈ Λ} be the set of overrings T of D such
that T $ V . Let Σ′

1 be the semistar operations ? on D such that D? ⊃ V , and let Σ′
2

be the set of semistar operations ? on D such that D? $ V .
(1) Sstar(D) = Σ′

1 ∪ Σ′
2.

(2) |Sstar(V ) | < ∞.
(3) | Σ′

1 | = |Sstar(V ) |.
(4) ∪λ Star(Dλ) is a disjoint union.
(5) There is a canonical bijection from Σ′

2 onto ∪λ Star(Dλ).

For any APVD D, conditions for |Sstar(D)| < ∞ were studied in [M9].

(4.10) ([M6, (2.5) Proposition]). Let D be a quasi-local domain with maximal
ideal P , and assume that D̄ = V is a valuation ring with maximal ideal M , v be a
valuation belonging to V with value group Γ. Asume that D ⊃ M3. Then,

(1) D is either a PVD or, we may assume that Z is the rank one convex subgroup
of Γ.

(2) If D/P = V/M , then D is an APVD.

§5 Cancellation properties of semistar operations

In this section, we will study G. Picozza [P], and will introduce some cancellation
properties of semistar operations on a g-monoid.

Let S be a g-monoid with quotient group q(S). A star operation ? on S is called
a.b. if, for every F ∈ f(S) and every G1, G2 ∈ F(S), (F + G1)? = (F + G2)? implies
G?

1 = G?
2, and ? is called e.a.b. if the same holds for every F, F1, F2 ∈ f(S). A semistar

operation ? on S is called a.b. if, for every F ∈ f(S) and every H1, H2 ∈ F̄(S),
(F + H1)? = (F + H2)? implies H?

1 = H?
2 , and ? is called e.a.b. if the same holds for

every F, F1, F2 ∈ f(S). The mapping F̄(S) −→ F̄(S),H 7−→ He = q(S) is a semistar
operation on S, and is called the e-semistar operation on S as defined in §3.

A semistar operation ? on S is called cancellative if, for every H,H1, H2 ∈ F̄(S),
(H + H1)? = (H + H2)? implies H?

1 = H?
2 .

(5.1). Let ? be a semistar operation on S. Then ? is cancellative if and only if
? = e.

Proof. The necessity: Let H ∈ F̄(D). Since q(S)+H = q(S), we have (q(S)+H)?

= (q(S) + q(S))?, and hence H? = q(S)?. Since q(S)? = q(S), we have H? = q(S),
and hence ? = e.

Let S be a g-monoid, and let ? be a semistar operation on S. Set (f(S))? =
{E? | E ∈ f(S)}.
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(5.2). Let S be a g-monoid, let T be an oversemigroup of S, let ? be a semistar
operation on S, and let α(?) be the ascent of ? to T .

(1) If ? is cancellative, then α(?) is cancellative.
(2) If ? is a.b., then α(?) is a.b.
(3) Assume that T ? ∈ (f(S))?. If ? is e.a.b., then α(?) is e.a.b.

(5.3). Let S be a g-monoid, let T be an oversemigroup of S, let ? be a semistar
operation on T , and let δ(?) be the descent of ? to S.

(1) If ? is cancellative, then δ(?) is cancellative.
(2) If ? is a.b., then δ(?) is a.b.
(3) If ? is e.a.b., then δ(?) is e.a.b.

(5.4) Proposition. Let S be a g-monoid, and let T = {Tλ | λ ∈ Λ} be the set
of oversemigroups of S.

(1) There is a canonical bijection between the set of cancellative semistar op-
erations on S and the set ∪λ {? | ? is a cancellative semistar operation on Tλ with
T ?

λ = Tλ}.
(2) There is a canonical bijection between the set of a.b. semistar operations on

S and the set ∪λ {? | ? is an a.b. semistar operation on Tλ with T ?
λ = Tλ}.

(3) There is a canonical bijection between the set of e.a.b. semistar operations
on S and the set ∪λ {? | ? is an e.a.b. semistar operation on Tλ with T ?

λ = Tλ}.

Some of the sets in (5.4) may be empty sets. For instanse, the set {? | ? is a
cancellative semistar operation on Tλ with T ?

λ = Tλ} is an empty set unless Tλ = q(S).
The notion of a cancellative semistar operation derives an s.a.b. semistar opera-

tion. Thus, we will say that a semistar operation ? on S is s.a.b. (or, strongly arith-
metisch brauchbar) if, for every G ∈ F(S), and H1,H2 ∈ F̄(S), (G+H1)? = (G+H2)?

implies H?
1 = H?

2 . Clearly, the e-semistar operation is an s.a.b. semistar operation,
and an s.a.b. semistar operation is an a.b. semistar operation.

An s.a.b. semistar operation need not be the e-semistar operation. For example,
let S be a principal ideal semigroup which is not a group, and let ? be a semistar
operation on S with ? 6= e. Then ? is s.a.b.

We note that, for domains, A.Okabe [O] calles an s.a.b. semistar operation a
cancellative semistar operation, and gives its characterization ([O, Theorem 28]).

The identity mapping d on F̄(S) is a semistar operation on S, and is called the
d-semistar operation on S.

(5.5). An a.b. semistar operation need not be an s.a.b. semistar operation.
For example, let S = V be a valuation semigroup which is not a group, let M be

the maximal ideal with M = 2M , and let ? = d. Then ? is a.b., and ? is not s.a.b., in
fact, (M + M)? = (M + S)? and M? 6= S?.

Let S be a g-monoid, and let ? be a semistar operation on S. Set (F(S))? =
{G? | G ∈ F(S)}.

(5.6) Proposition. (1) Let S be a g-monoid, let ? be a semistar operation on
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S, let T be an oversemigroup of S with (F(T ))? ⊂ (F(S))?, and let α(?) be the ascent
of ? to T . If ? is s.a.b., then α(?) is s.a.b.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let ? be a semistar
operation on T , and let δ(?) be the descent of ? to S. If ? is s.a.b., then δ(?) is s.a.b.

(3) Let S be a g-monoid, and let T = {Tλ | λ ∈ Λ} be the set of oversemigroup
T of S with T ∈ F(S). Then there is a canonical bijection between the set A = {? | ?
is an s.a.b. semistar operations ? on S with S? ∈ F(S)} and the set B = ∪λ {? | ? is
an s.a.b. semistar operation on Tλ with T ?

λ = Tλ}.

Proof. (1) Let (G+H1)α(?) = (G+H2)α(?), where G ∈ F(T ) and H1, H2 ∈ F̄(T ).
Then we have G ∈ F(S), H1, H2 ∈ F̄(S), and (G + H1)? = (G + H2)?. It follows that
H?

1 = H?
2 , and hence H

α(?)
1 = H

α(?)
2 .

(2) Let (g + h1)δ(?) = (g + h2)δ(?), where g ∈ F(S) and h1, h2 ∈ F̄(S). Then we
have g + T ∈ F(T ), h1 + T, h2 + T ∈ F̄(T ), and (g + T + h1 + T )? = (g + T + h2 + T )?.
Since ? is s.a.b., we have (h1 + T )? = (h2 + T )?, and hence h

δ(?)
1 = h

δ(?)
2 . Hence δ(?)

is s.a.b.
(3) Let ? ∈ A, and let α(?) be the ascent of ? to S?. Then α(?) ∈ B by (1).

For every h ∈ F̄(S), we have h? = (h + S?)α(?). Assume that α(?1) = α(?2), where
?1, ?2 ∈ A. Sine α(?1) (resp., α(?2)) is a semistar operation on S?1 (resp., S?2), we
have S?1 = S?2 . Then we have h?1 = (h + S?1)α(?1) and h?2 = (h + S?2)α(?2). Hence
we have ?1 = ?2. Assume that ? ∈ B, and let δ(?) be the descent of ? to S. Then we
have δ(?) ∈ A by (2), and α(δ(?)) = ?.

We may canonically introduce five more cancellation properties of semistar oper-
ations. Thus, let S be a g-monoid, and let ? be a semistar operation on S.

Then ? is called h.g. if, for every H ∈ F̄(S) and G1, G2 ∈ F(S), (H + G1)? =
(H + G2)? implies G?

1 = G?
2;

? is called g.g. if, for every G,G1, G2 ∈ F(D), (G + G1)? = (G + G2)? implies
G?

1 = G?
2;

? is called f.g. if, for every F ∈ f(S) and G1, G2 ∈ F(S), (F + G1)? = (F + G2)?

implies G?
1 = G?

2;
? is called h.f. if, for every H ∈ F̄(S) and F1, F2 ∈ f(S), (H + F1)? = (H + F2)?

implies F ?
1 = F ?

2 ;
? is called g.f. if, for every G ∈ F(S) and F1, F2 ∈ f(S), (G + F1)? = (G + F2)?

implies F ?
1 = F ?

2 .
If ? is cancellative (resp., s.a.b., a.b., e.a.b.), then we may call ? to be h.h. (resp.,

g.h., f.h., f.f.).
What the property names as above stand for: Let ? be a semistar operation on S.

Set f(S) = X1, F(S) = X2, and set F̄(S) = X3. If, for every A ∈ Xi and B,C ∈ Xj ,
(A + B)? = (A + C)? implies B? = C?, then ? is called fi.fj . Since an element of f(S)
is called finitely generated, we set also f1 = f. And considering the alphabetical order,
we set also f2 = g and f3 = h.

(5.7). Let ? be a semistar operation on a g-monoid S. Then ? is h.g. if and ony
if ? is h.f. if and only if ? = e.
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Proof. Assume that ? is h.f. Let F1, F2 ∈ f(S). Since (q(S)+F1)? = (q(S)+F2)?,
we have F ?

1 = F ?
2 . Hence there is H ∈ F̄(S) such that H = F ? for every F ∈ f(S). Let

a ∈ q(S) − {0}. Since a ∈ (S + a)? = H, we have H = q(S). Hence ? = e.

(5.8). (1) s.a.b. implies g.g.
(2) g.g. implies g.f.
(3) a.b. implies f.g.
(4) f.g. implies e.a.b.
(5) g.g. implies f.g.
(6) g.f. implies e.a.b.

The proofs of the following (5.9), (5.10) and (5.11) are similar to that of (5.6).

(5.9) Proposition. (1) Let S be a g-monoid, let ? be a semistar operation on
S, let T be an oversemigroup of S with (F(T ))? ⊂ (F(S))?, and let α(?) be the ascent
of ? to T . If ? is g.g., then α(?) is g.g.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let ? be a semistar
operation on T , and let δ(?) be the descent of ? to S. If ? is g.g., then δ(?) is g.g.

(3) Let S be a g-monoid, and let T = {Tλ | λ ∈ Λ} be the set of oversemigroups
T of D with T ∈ F(S). Then there is a canonical bijection between the set A = {? | ?
is a g.g. semistar operation on S with S? ∈ F(S)} and the set B = ∪λ {? | ? is a g.g.
semistar operation on Tλ with T ?

λ = Tλ}.

(5.10) Proposition. (1) Let S be a g-monoid, let T be an oversemigroup of S
with T ∈ F(S), let ? be a semistar operation on S, and let α(?) be the ascent of ? to
T . If ? is f.g., then α(?) is f.g.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let ? be a semistar
operation on T , and let δ(?) be the descent of ? to S. If ? is f.g., then δ(?) is f.g.

(3) Let S be a g-monoid, and let T = {Tλ | λ ∈ Λ} be the set of oversemigroups
T of S with T ∈ F(S). Then there is a canonical bijection between the set A = {? | ?
is a f.g. semistar operation on S with S? ∈ F(S)} and the set B = ∪λ {? | ? is a f.g.
semistar operation on Tλ with T ?

λ = Tλ}.

(5.11) Proposition. (1) Let S be a g-monoid, let T be an oversemigroup of S
with T ∈ F(S), let ? be a semistar operation on S, and let α(?) be the ascent of ? to
T . If ? is g.f., then α(?) is g.f.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let ? be a semistar
operation on T , and let δ(?) be the descent of ? to S. If ? is g.f., then δ(?) is g.f.

(3) Let S be a g-monoid, and let T = {Tλ | λ ∈ Λ} be the set of oversemigroups
T of S with T ∈ F(S). Then there is a canonical bijection between the set A = {? | ?
is an g.f. semistar operation on S with S? ∈ F(S)} and the set B = ∪λ {? | ? is a g.f.
semistar operation on Tλ with T ?

λ = Tλ}.

We must check some more implications of the cancellation properties of semistar
operations.
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(5.12). Let ? be a semistar operation on S.
? is g.h. if and only if, for every G ∈ F(S) and H ∈ F̄(S), G ⊂ (G + H)? implies

0 ∈ H?.
A similar characterization holds for every g.g., g.f., f.h., f.g., f.f. semistar operation

?.
For instance, ? is f.g. if and only if, for every F ∈ f(S) and G ∈ F(S), F ⊂ (F +G)?

implies 0 ∈ G?.

(5.13). (1) a.b. need not imply g.f.
(2) g.f. need not imply g.g.

Proof. (1) Let S = V be a 2-dimensional valuation semigroup, let M % P be
the prime ideals of V , and let ? = d. Let x ∈ M − P , and set F1 = (x) and F2 = S.
Then we have (P + F1)? = (P + F2)? and F ?

1 6= F ?
2 . It follows that ? is a.b., and that

? is not g.f.
(2) Let R be the set of real numbers. Let S = V be an R-valued valuation

semigroup, and let v be the valuation belnging to V with value group R, and let
? = d. We have (M + M)? = (M + S)? and M? 6= S?, and hence ? is not g.g.

Let (G + F1)? = (G + F2)?, where G ∈ F(S) and F1, F2 ∈ f(S). Let F1 = V + a
and F2 = V + b with a, b ∈ q(S), and set inf v(G) = v(x) with x ∈ q(S). Then inf
v(G + F1) = v(x) + v(a) and inf v(G + F2) = v(x) + v(b). It follows that v(a) = v(b),
hence V + a = V + b, and hence F1 = F2. Therefore ? is g.f.

(5.14). (1) (cf., [M3, p.69, Corollary 3]). Let ? be a semistar operation on S.
If S? is not integrally closed, then ? is not e.a.b.

(2) (cf., [M3, p.76]) Let S be an integrally closed semigroup. Then there is a f.h.
semistar operation ? on S such that S? = S.

Proof. (2) Let {Vλ | λ ∈ Λ} be the set of valuation oversemigroups of S. Let ?
be the semistar operation H 7−→ ∩λ(H + Vλ).

For every λ0, we have H + Vλ0 = H? + Vλ0 . For, H? + Vλ = (∩λH + Vλ) + Vλ0 ⊂
(H + Vλ0) + Vλ0 = H + Vλ0 .

Assume that (F + H1)? = (F + H2)? for F ∈ f(S) and H1,H2 ∈ F̄(S). Then,
for every λ, F + H1 + Vλ = (F + H1)? + Vλ = (F + H2)? + Vλ = F + H2 + Vλ.
Since F + Vλ is a principal ideal of Vλ, we have H1 + Vλ = H2 + Vλ. Therefore,
H?

1 = ∩λ(H1 + Vλ) = ∩λ(H2 + Vλ) = H?
2 .

Finally, we will call a star operation ? on S to be g0.g0. if, for every G,G1, G2 ∈
F(S), (G + G1)? = (G + G2)? implies G?

1 = G?
2; and we will call a star operation ?

to be g0.f0. if, for every G ∈ F(S) and F1, F2 ∈ f(S) , (G + F1)? = (G + F2)? implies
F ?

1 = F ?
2 .

If ? is an a.b. star operation (resp., e.a.b. star operation), then we may call ? to
be f0.g0 star operation (resp., f0.f0. star operation).

(5.15). Let ? be a star operation on S.
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(1) (i) g0.g0. implies a.b.
(ii) g0.g0. implies g0.f0.
(iii) g0.f0. implies e.a.b.
(2) (i) a.b. need not imply g0.f0.
(ii) g0.f0. need not imply g0.g0.

The proof follows from (5.13).

(5.16). The followings are equivalent.
(1) Every e.a.b. semistar operation is an f.g. semistar operation.
(2) Every e.a.b. star operation is an a.b. star operation.

(5.17). Let S be a g-monoid. The followings are equivalent.
(1) The d-semistar operation on S is f.g.
(2) S is a valuation semigroup.

Proof. (1) =⇒ (2): Then every F ∈ f(S) is principal by [MSi, (8.2) Theorem].
Then S is a valuation semigroup by [MSk, Lemma 13].

(5.18) (cf., [MSi, (8.3)]). Assume that S is not a group. The followings are
equivalent.

(1) The d-semistar operation on S is g.g.
(2) S is a rank 1 discrete valuation semigroup.

§6 Kronecker function rings of semistar operations

Let S be a g-monoid, let D be a domain, and let D[X;q(S)] be the group ring of
q(S) over D. For an element f =

∑n
1 aiX

si with every ai 6= 0 and si 6= sj for every
i 6= j, the fractional ideal (s1, · · · , sn) of S is denoted by eS(f) (or, by e(f)), and the
subset {s1, · · · , sn} of S is denoted by Exp(f). The additive group {(a) | a ∈ q(S)}
is called the group of divisibility of S. Let ? be a semistar operation on S. We set
U? = {f ∈ D[X;S?] − {0} | eS(f)? = S?}.

If the set {I? | I ∈ f(S)} is a group under the mapping (I?
1 , I?

2 ) 7−→ (I?
1 + I?

2 )?,
then S is called a Prüfer ?-multiplication semigroup.

Let ? be an e.a.b. semistar operation on S. Then there is defined the Kronecker
function ring Kr(S, ?,D) = { f

g | f, g ∈ D[X;S] − {0} such that e(f)? ⊂ e(g)?} ∪ {0}
(cf., [M1, Proposition 4]). Kr(S, ?,D) is also denoted simply, by Kr(S, ?), or by SD

? ,
or by S?.

(6.1) (cf., [M1, Proposition 4]). Let ? be an e.a.b. semistar operation on S.
(1) S? is a Bezout domain.
(2) If I ∈ f(S), then IS?∩ q(S) = I? and IS? = I?S?.

(6.2) (cf., [G1, Theorem 2.5], [A, Theorem 4], [AB, Theorem 3], [MSk, Theorem
25], [M1, Theorem 23]). Let ? be an e.a.b. semistar operation on S. Then the
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following conditions are equivalent:
(1) S is a Prüfer ?-multiplication semigroup.
(2) D[X;S?]U? = S?.
(3) D[X;S?]U? is a Prüfer domain.
(4) S? is a quotient ring of D[X;S?].
(5) Every prime ideal of D[X;S?]U? is the contraction of a prime ideal of S?.
(6) Every non-zero prime ideal of D[X;S?]U? is the extension of a prime ideal of

S?.
(7) Every proper valuation overring of S? is of the form of D[X;S?]QD[X;S?],

where Q is a prime ideal of S? such that (S?)Q is a valuation oversemigroup of S?.
(8) S? is a flat D[X;S?]-module.

(6.3) (cf., [AB, Corollary 4], [MSk, Theorem 30], [M1, Theorem 26]). Let ? be
an e.a.b. semistar operation on S, and let v1 be the v-star operation on S?. Assume
that v1 is e.a.b. and S? is a flat D[X;S?]-module. Then S? = (S?)v1 .

(6.4) (cf., [G2, (34.11) Theorem], [M1, Remark 29]). Let ? be an e.a.b. semistar
operation on S. If S is a Prüfer ?-multiplication semigroup, then the group {I? | I ∈
f(S)} is canonically isomorphic with the group of divisibility of S?.

In this section, we will study (6.2) ∼ (6.4) for any semistar operation on S.
Let {Vλ | λ ∈ Λ} be a set of valuation oversemigroups of S. Then the mapping

I 7−→ ∩λ(I +Vλ) from F̄(S) to F̄(S) is a semistar operation, and is called a w-semistar
operation induced by the set {Vλ | λ ∈ Λ}.

Let v be a valuation on q(S). Let f =
∑

i aiX
si ∈ D[X;S]−{0} with every ai 6= 0

and si 6= sj for every i 6= j. If we set w(f) = min i{v(si)}, then there is a valuation w
on q(D[X;S]), and w is called the canonical extension of v to q(D[X;S]).

(6.5) (cf., [M1, Proposition 9]). Let {Vλ | λ ∈ Λ} be a set of valuation oversemi-
groups of S, let w be the w-semistar operation induced by the set {Vλ | λ ∈ Λ}, and
let Wλ be the canonical extension of Vλ to q(D[X;S]). Then w is an a.b. semistar
operation on S, and Sw = ∩λWλ.

(6.6) (Dedekind-Mertens Lemma for semigroups) (cf., [GP, 6.2. Proposition]).
Let f, g ∈ D[X;S]−{0}. Then there is a positive integer m such that e(g)m+1+e(f) =
e(g)m + e(fg).

(6.7) ([OM, Lemma (4.2)]). Let ? be a semistar operation on S. Let f, g, f ′, g′ ∈
D[X;S]−{0} with f

g = f ′

g′ such that (e(f) + e(h))? ⊂ (e(g) + e(h))? for some element
h ∈ D[X;S] − {0}. Then there is an element h′ ∈ D[X;S] − {0} such that (e(f ′) +
e(h′))? ⊂ (e(g′) + e(h′))?.

Set Kr(S, ?,D) = { f
g | f, g ∈ D[X;S]−{0} such that (e(f)+e(h))? ⊂ (e(g)+e(h))?

for some element h ∈ D[X;S] − {0}} ∪ {0}. (6.7) shows that Kr(S, ?,D) is a well-
defined subset of q(D[X;S]). Kr(S, ?,D) is also denoted simply, by Kr(S, ?), or by



Note on g-monoids 37

SD
? , or by S?. If ? is e.a.b., this coincides with the Kronecker function ring of the e.a.b.

semistar operation ?.

(6.8) ([OM, Proposition (4.4)]). S? is a Bezout domain.

(6.9) ([R, Theorem 2]). Let D be a domain, and let R be an overring of D. Then
R is a flat D-module if and only if RM = DD∩M for every maximal ideal M of R.

(6.10). Let ? be a semistar operation on S, let T = S?, and let α(?) be the
ascent of ? to T .

(1) We have {f ∈ D[X;S?]−{0} | eS(f)? = S?} = {f ∈ D[X;T ]−{0} | eT (f)? =
T}, that is, U? = Uα(?).

(2) S is a Prüfer ?-multiplication semigroup if and only if T is a Prüfer α(?)-
multiplication semigroup.

(3) We have S? = Tα(?).
(4) The set {I? | I ∈ f(S)} and its addition (I?

1 , I?
2 ) 7−→ (I?

1 + I?
2 )? is identical to

the set {J? | J ∈ f(T )} and its addition (J?
1 , J?

2 ) 7−→ (J?
1 + J?

2 )?.

Proof. The proof is almost straightforward from the definitions.

(6.11) Proposition. Let ? be a semistar operation on S. In the following
conditions we have that (1) =⇒ (5) =⇒ (3) =⇒ (4) =⇒ (2), and (1) =⇒ (6) =⇒ (7).

(1) S is a Prüfer ?-multiplication semigroup.
(2) S? is a quotient ring of D[X;S?].
(3) Every proper valuation overring of S? is of the form of D[X;S?]QD[X;S?],

where Q is a prime ideal of S? such that (S?)Q is a valuation oversemigroup of S?.
(4) S? is a flat D[X;S?]-module.
(5) D[X;S?]U? is a Prüfer domain.
(6) Every prime ideal of D[X;S?]U? is the contraction of a prime ideal of S?.
(7) Every non-zero prime ideal of D[X;S?]U? is the extension of a prime ideal of

S?.

Proof. By (6.10), we may assume that S? = S.
(1) implies (5): Then ? is an e.a.b. semistar operation. (5) follows from (6.2).
(5) implies (3): Let W be a proper valuation overring of S? with maximal ideal

N . Set S? ∩ N = Q, D[X;S]U? ∩ Q = Q′, D[X;S] ∩ Q′ = P ′, and S ∩ P ′ = P . Let
f = a1X

s1 + · · · + anXsn ∈ P ′ − {0} with every ai 6= 0 and si 6= sj for every i 6= j.
Since si

f ∈ S? for every i, we have that si ∈ fS? ⊂ Q, si ∈ P , and f ∈ PD[X;S]. It
follows that P ′ = PD[X;S], and hence Q′ = PD[X;S]U? . Since D[X;S]U? is a Prüfer
domain, we have W = ((D[X;S]U?)Q′ = D[X;S]PD[X;S]. Then SP is a valuation
oversemigroup of S, because D[X;S]PD[X;S]∩ q(S) = SP .

(3) implies (4): Let M be a maximal ideal of S?. Let W = (S?)M , and let
N = MW . Since W is of the form D[X;S]PD[X;S], we have D[X;S]∩N = PD[X;S],
and D[X;S] ∩ M = PD[X;S]. By (6.9), S? is a flat D[X;S]-module.

(4) implies (2): Let E = {f ∈ D[X;S] − {0} | 1
f ∈ S?}. Let M be a maximal
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ideal of D[X;S]E , and set M ∩ D[X;S] = M0. Suppose that MS? = S?. There are
elements fi ∈ M such that S? = (f1, · · · , fn)S?. Clearly, we may assume that fi ∈ M0

for every i. There is an element s ∈ S so that, for f = f1X
s + f2X

2s + · · · + fnXns,
we have Exp(f) = Exp(f1) ∪ · · · ∪ Exp(fn). Then we have (f1, · · · , fn)S? = fS?; and
have a contradiction of f ∈ M0 ∩ E. It follows that MS? $ S?. For every maximal
ideal M ′ of S? containing MS?, we have M ′ ∩ D[X;S]E = M . Let {Mλ | λ ∈ Λ} be
the set of maximal ideals of D[X;S]E , and let M ′

λ be a maximal ideal of S? such that
M ′

λ ∩D[X;S]E = Mλ for every λ. Then we have (S?)M ′
λ

= (D[X;S]E)Mλ
by (6.9) for

every λ, and have ∩λ(D[X;S]E)Mλ
= D[X;S]E (cf., [G2, (4.10) Theorem]). It follows

that S? = D[X;S]E .
(1) =⇒ (6) =⇒ (7) are easy.

(6.12) (1) ([MSi, (8.2) Theorem]). Every invertible ideal of S is principal.
(2)([MSk, Lemma 13]). If every finitely generated ideal of S is principal, then S

is a valuation semigroup.

(6.13). If the semistar operation ? is not e.a.b., the eight conditions in (6.11)
need not be equivalent.

Example: Let S be 1-dimensional which is not integrally closed, and let D = k
be a field. Assume that k[X;S] is 1-dimensional. For example, S = {0, 2, 3, 4, · · · }.
Let ? be the d-semistar operation on S. Then k[X;S]U? is a 1-dimensional quasi-local
domain. Every non-zero prime ideal of k[X;S]U? is the extension of a prime ideal of
S. But S is not a Prüfer ?-multiplication semigroup by (6.12).

(6.14). Let ? be a semistar operation on S, and let w be a valuation on q(D[X;S])
non-negative on S? with value group Γ. Then the restriction v of w to q(S) is a
valuation on q(S) non-negative on S with value group Γ, and the canonical extension
of v to q(D[X;S]) is w.

Proof. Let v′ be the canonical extension of v to q(D[X;S]). Let f = a1X
s1 +

· · · + anXsn ∈ D[X;S] − {0} with every ai 6= 0 and si 6= sj for every i 6= j. If v(sk)
= min iv(si), we have v′(f) = v(sk), and have w(f) ≥ min iw(aiX

si) = v(sk). Since
sk

f ∈ S?, we have 0 ≤ w( sk

f ) = v(sk)−w(f). It follows that w(f) = v(sk) = v′(f), and
hence w = v′.

(6.15). Let v be the v-semistar operation on S. Let {Pλ | λ ∈ Λ} be a set of
prime ideals of S such that Vλ = SPλ

is a valuation overring of S with S = ∩λVλ.
Let w be the w-semistar operation induced by the set {Vλ | λ ∈ Λ}. Then we have
Sw = Sv.

Proof. Let I be a finitely generated ideal of S. Since S = ∩λVλ, it is obvious
that Iw ⊂ Iv. Suppose that Iw $ Iv, and choose an element x ∈ Iv − Iw. Then we
have x 6∈ I + Vλ for some λ. There is an element a ∈ S such that I + Vλ = a + Vλ,
and there is an element s ∈ S − Pλ such that s + I ⊂ (a). Since a + Vλ $ x + Vλ, we
have x 6∈ (a − s). Since I ⊂ (a − s), we have x 6∈ Iv; a contradiction. Hence we have
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Iw = Iv. It follows that Sw = Sv.

(6.16) Proposition. Let ? be a semistar operation on S, and let v1 be the v-star
operation on S?. Assume that v1 is e.a.b., and that S? is a flat D[X;S?]-module. Then
we have S? = (S?)v1 .

Proof. By (6.10), we may assume that S? = S. Let W be a proper valuation
overring of S? with maximal ideal N . We set N ∩ S? = Q,Q ∩ D[X;S] = P ′ and
P ′ ∩ S = P . Then we have PD[X;S] = P ′. By (6.9), we have W = (S?)Q =
D[X;S]P ′ = D[X;S]PD[X;S]. Since D[X;S]PD[X;S] ∩ q(S) = SP , SP is a valuation
oversemigroup of S. Let {Wλ | λ ∈ Λ} be the set of proper valuation overrings of S?, let
Nλ be the maximal ideal of Wλ, let S ∩Nλ = Pλ, let Wλ ∩ q(S) = SPλ

= Vλ for every
λ, and let w be the w-semistar operation induced by the set {Vλ | λ ∈ Λ}. We have
∩λWλ = S?. Since I? ⊂ Iv1 for every I ∈ f(S), we have S? ⊂ Sv1 . Since v1 is e.a.b.,
we have Sv1 ∩ q(S) = S. It follows that S? ∩ q(S) = S, and that ∩λVλ = ∩λWλ ∩
q(S) = S? ∩ q(S) = S. We have Sw = Sv1 by (6.15). Since Wλ is the canonical
extension of Vλ by (6.14), we have Sw = ∩λWλ by (6.5). Therefore S? = Sv1 .

(6.17) Proposition. Let ? be a semistar operation on S. Assume that S is
a Prüfer ?-multiplication semigroup. Then the group {I? | I ∈ f(S)} is canonically
isomorphic onto the group of divisibility of S?.

Proof. Then ? is an e.a.b. semistar operation. The proof follows from (6.4).

§7 Appendix

(7.1). Let S be an APVS with maximal ideal P , and let M = Radq(S)(P ). Then
there is the smallest oversemigroup T of S such that T is a PVS with maximal ideal
M .

Proof. Let H be the unit group of S, and set T = H ∪ M .

(7.2). Let D be an APVD with maximal ideal P , and let M = Radq(D)(P ). Then
there is the smallest overring T of D such that T is a PVD with maximal ideal M .

Proof. Set T = (D + M)M .

(7.3). Assume that S is a 1-dimensional g-monoid with maximal ideal P . If
(P : P ) is a valuation semigroup, then S need not be an APVS.

Example: Let V be a 2-dimensional valuation semigroup, let Q be the height 1
prime ideal, and let q ∈ Q. Set P = q + V , and set S = {0} ∪ P . Then P is a prime
ideal of S, V = (P : P ), and in V , RadV (P ) is not the maximal ideal of V . Suppose
that P % I be an ideal of S, and choose x ∈ P − I. We have nx ∈ I for a sufficiently
large n. Hence S is 1-dimensional.
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(7.4). There is a 1-dimensional quasi-local domain D with maximal ideal P such
that (P : P ) is a valuation domain and D is not an APVD.

Example: Let 1, e be linearly independent over Z, and set Γ = Z+ Ze. Introduce
the lexicographic order on Γ with 1 < e. Set v(X) = 1 and v(Y ) = e. Then we have
a valuation v on k(X,Y ), where k is a field. The valuation domain V of v is 2-
dimensional. Let M % Q % (0) be the prime ideals of V . Set P = Y V , and set
D = k + P . Then P is a maximal ideal of D, and (P : P ) = V . In V , we see that
RadV (P ) is not a maximal ideal, and hence D is not an APVD. Let I $ P be a
non-zero ideal of D. Assume that P % I be an ideal of D, and choose x ∈ P − I. We
have nx ∈ I for a sufficiently large n. Hence I is not a prime ideal of D. Hence D is
1-dimensional.

Let ? be a semistar operation on D. If (I ∩J)? = I? ∩J? for all I, J ∈ F̄(D), then
? is called stable.

M. Fontana and J. Huckaba [FH] gives the following example: Let k be a field,
and let D = k + X3k[[X]]. Then D is an APVD. The v-semistar operation on D is
not stable.

For let I = (X3, X4) and J = (X3, X5). Then (I ∩ J)v 6= Iv ∩ Jv.

If V is a valuation domain, then every semistar operation ? on V is stable.

(7.5). There is a PVD D and a semistar operation ? on D such that ? is not
stable.

Example: Let k be a field with characteristic 0, K be an extension field with
[K : k] = 4,K = k + ku + kv + ks, U0 = k + ku, W0 = k + kv + ks, V = K[[X]], and
D = k + M , where M is the maximal ideal of V . D is a PVD.

Let I be a non-zero fractional ideal of D. Then there is x ∈ q(D) − {0} and a
k-subspace U of K with U ⊃ k such that I = xUD. For, let v(x) = min v(I) with
x ∈ I, where v is the canonical valuation for V . Set U = x−1I ∩ K.

Set D? = D,V ? = V and (U0D)? = V .
For every 2-dimensional k-subspace U ′ of K such that U0 6= U ′ ⊃ k, set (U ′D)? =

U ′D.
For every 3-dimensional k-subspace W of K with W ⊃ k, set (WD)? = V .
Then there is canonically defined a mapping ? from F̄(D) to F̄(D), and ? is a

semistar operation on D.
Let I = U0D, and J = W0D. Then I? ∩ J? = V . I ∩ J = D, and (I ∩ J)? = D.
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