Note on g-monoids

Ryûki Matsuda*

With thanks to secretary Junko Fukasaku for her extended assistance over a long period of time

Abstract

We study almost pseudo-valuation semigroups S, especially will study semistar operations on S, and will determine the complete integral closure of S. We will study various cancellation properties of semistar operations on g-monoids. Also, we will study Kronecker function rings of any semistar operations on gmonoids.

A. Badawi and E. Houston [BH] introduced an almost pseudo-valuation domain. An integral domain D with quotient field K is called an almost pseudo-valuation domain (or, an APVD) if every prime ideal P of D is strongly primary, that is, if, for elements $x, y \in K$, $xy \in P$ and $x \notin P$ implies $y^n \in P$ for some positive integer n. In this paper we will introduce an almost pseudo-valuation semigroup (or, an APVS), and will study it, especially will study semistar operations on an APVS, and will determine the complete integral closure of an APVS. Let G be a torsion-free abelian additive group. A subsemigroup S of G which contains 0 is called a grading monoid (or, a g-monoid). We may confer [M3] for g-monoids. Also, we will study various cancellation properties of semistar operations on g-monoids. Moreover, we will study Kronecker function rings of any semistar operations on g-monoids. The paper consists of seven sections. In §1, we will introduce an APVS, and will show that [BH] holds for g-monoids. In §2, we will show a semigroup version of [KMOS], and will determine the complete integral closure of the APVS. In §3, we will give conditions for an APVS to have only a finite number of semistar operations. In $\S4$, we will study conditions for an APVD to have only a finite number of semistar operations. In §5, we will introduce various cancellation properties of semistar operations on a g-monoid, and will show various implications of the cancellation properties. In §6, we will study results for Kronecker function rings of e.a.b. semistar operations for any semistar operations on g-monoids. §7 is an appendix. Many parts in every $\S1 \sim \S4$ are restatements of [M7]. Since it seems that [M7] has not appeared about six years, and we refered [M7] in

Received 22 April, 2009; revised 12 November, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 13A15.

Key Words and Phrases. star operation, semistar operation.

^{*}Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

other papers, we will state them for the convenience.

§1 Almost pseudo-valuation semigroups

In this section we will show a semigroup version of [BH]. Almost all proofs of the semigroup version are easy and simple modification of those of [BH]. However, for convenience sake, we will note the definitions and the results.

Throughout the section, S will denote a g-monoid. The group $q(S) = \{x - y \mid x, y \in S\}$ is called the quotient group of S. A non-empty subset I of S is called an ideal if $S + I \subset I$. We define an ideal I of S to be powerful if, whenever $x + y \in I$ for elements $x, y \in q(S)$, we have $x \in S$ or $y \in S$.

(1.1). An ideal I of S is powerful if and only if $-x + I \subset S$ for every $x \in q(S) - S$.

A proper ideal P of S is called a prime ideal if $x + y \in P$ for $x, y \in S$, then $x \in P$ or $y \in P$. A prime ideal of S is called a strongly prime ideal if $x + y \in P$ for $x, y \in q(S)$, then $x \in P$ or $y \in P$.

(1.2). A prime ideal of S is strongly prime if and only if it is powerful.

(1.3). If $J \subset I$ are ideals of S with I powerful, then J is also powerful.

Let I be an ideal of S, and n be a positive integer. Then nI denotes the ideal generated by $\{x_1 + \cdots + x_n \mid \text{every } x_i \in I\}$. For subsets A, B of a torsion-free abelian group, the subset $\{x \in B \mid nx \in A \text{ for some } n > 0\}$ of B is denoted by $\text{Rad}_B(A)$.

(1.4) Theorem. Let I be a powerful ideal of S.

- (1) If J is an ideal of S, then either $J \subset I$ or $2I \subset J$.
- (2) If J is a prime ideal of S, then I and J are comparable.
- (3) The prime ideals of S contained in $\operatorname{Rad}_{S}(I)$ are linearly ordered.

An element a of S is called a unit of S if $-a \in S$. If q(S) = S, then S is a unique ideal of S. If $q(S) \supseteq S$, then S has a unique maximal ideal. If every prime ideal of S is a strongly prime ideal, then S is called a pseudo-valuation semigroup (or a PVS).

(1.5). S is a PVS if and only if the maximal ideal of S is powerful.

(1.6). If S contains a powerful ideal, then S contains a unique largest powerful ideal.

(1.7). If I is a proper powerful ideal of S, and if $P = \bigcap_{k=0}^{\infty} kI$ is non-empty, then P is a strongly prime ideal.

(1.8). Let I be a powerful ideal of S. If $x, y \in q(S)$ and $x + y \in \operatorname{Rad}_S(I)$, then there is a positive integer m such that either $mx \in I$ or $my \in I$. In particular, if I is a proper powerful ideal, then $\operatorname{Rad}_S(I)$ is a prime ideal. (1.9). Let I be a powerful ideal of S. If $x \in q(S)$ and $nx \in I$ for some n > 0, then $(n+k)x \in S$ for every $k \ge 0$.

An ideal J of S is called a radical ideal of S if $\operatorname{Rad}_S(I) = I$. A radical ideal J of S is called strongly radical if $x \in q(S)$ and $nx \in J$ for some n > 0 implies $x \in J$. S is called a seminormal semigroup if $x \in S$ whenever $x \in q(S)$ and $nx \in S$ for all sufficiently large n.

(1.10). Let I be a proper powerful ideal of S. Then $\operatorname{Rad}_{S}(I)$ is powerful (and therefore strongly prime) if and only if $\operatorname{Rad}_{S}(I)$ is strongly radical. In particular, if S is seminormal, then $\operatorname{Rad}_{S}(I)$ is strongly prime.

An intermediate g-monoid between S and q(S) is called an oversemigroup of S. Let G be a torsion-free abelian group, let Γ be a totally ordered abelian group, and let v be a mapping of G onto Γ . If v(a+b) = v(a) + v(b) for all $a, b \in G$, then v is called a valuation on G, and the subsemigroup $\{x \in G \mid v(x) \ge 0\}$ of G is called the valuation semigroup belonging to v. v is said to belong to V, Γ is called the value group of v, and Γ is also called the value group of V.

(1.11). Let I be a powerful ideal of S, and let T be an oversemigroup of S. Then I + T is a powerful ideal of T. In particular, if I + T = T, then T is a valuation semigroup.

(1.12). Let I be a powerful ideal of S, and suppose that $P \subset I$ is a finitely generated prime ideal of S. Then S is a PVS with maximal ideal P.

The oversemigroup $\operatorname{Rad}_{q(S)}(S)$ of S is called the integral closure of S, and is denoted by \overline{S} .

(1.13) Theorem. Suppose that S admits a powerful ideal I and that $M = \operatorname{Rad}_S(I)$ is a maximal ideal of S. Then :

(1) $I + \overline{S} \subset M$, and therefore $I + \overline{S}$ is an ideal of S.

(2) \bar{S} is a PVS with maximal ideal $N = \operatorname{Rad}_{\bar{S}}(I + \bar{S})$, and hence $(N : N) = \{x \in q(S) \mid x + N \subset N\}$ is a valuation oversemigroup of S with maximal ideal N.

If P is a prime ideal of S, then the oversemigroup $\{x - y \mid x \in S \text{ and } y \in S - P\}$ is denoted by S_P .

(1.14). Let I be a powerful ideal of S, and let $P = \operatorname{Rad}_S(I)$. Then $T = \overline{S_P}$ is a PVS with maximal ideal $N = \operatorname{Rad}_T(I+T)$. It follows that (N:N) is a valuation oversemigroup of S with maximal ideal N.

(1.15). Let I be a powerful ideal of S, and let $T \neq q(S)$ be an oversemigroup of S with maximal ideal N. Then S and T share an ideal which is powerful in both S and T. In fact:

(1) If I + T = T, then $P = N \cap S$ is a common ideal which is powerful in both semigroups.

(2) If $I + T \neq T$, then 2I + T is a common ideal, and 3I + T is powerful in both semigroups.

(1.16). Suppose that T is an oversemigroup of S, and that S and T share the ideal J. If J is powerful in T, then 3J is a powerful ideal of S.

A proper ideal I of S is called a primary ideal of S if $x + y \in I$ and $x \notin I$, then $ny \in I$ for some n > 0.

(1.17). A primary ideal of a valuation semigroup is strongly primary.

For a subset A of S, we define E(A) by $E(A) = \{x \in q(S) \mid nx \notin A \text{ for every } n \ge 1\}.$

(1.18). An ideal I of S is strongly primary if and only if $-x + I \subset I$ for every $x \in E(I)$.

(1.19) Theorem. Let S be a seminormal semigroup. If I is a proper stongly primary ideal of S, then I is powerful, and $\operatorname{Rad}_S(I)$ is strongly prime. In particular, a prime ideal of S is strongly prime if and only if it is strongly primary.

(1.20). Let I be a proper strongly primary ideal of S, and let T be an oversemigroup of S. Then either I + T = T or I + T = I.

(1.21). If I is a proper strongly primary ideal of S, then $I + \overline{S} = I$. Moreover, 3I is powerful in both S and \overline{S} .

(1.22). If I is a proper strongly primary ideal of S, and if $\bigcap_{n=1}^{\infty} nI$ is non-empty, then $\bigcap_{n=1}^{\infty} nI$ is a strongly prime ideal of S.

(1.23) Theorem. If I is a strongly primary ideal of S, then I is comparable to every radical ideal of S. Moreover, the prime ideals of S which are properly contained in I are strongly prime and linearly ordered.

(1.24). If P is a prime ideal of S which is strongly primary but not strongly prime, then P is the only prime with this property.

(1.25) Theorem. Let I be a strongly primary ideal of S, and let $T \neq q(S)$ be an oversemigroup of S. Then S and T share a strongly primary ideal. In fact:

(1) If $I + T \neq T$, then I + T = I is a common strongly primary ideal;

(2) If I + T = T, then T is strongly primary, and, for the maximal ideal N of T, $N \cap S$ is a common strongly prime ideal of S and T.

(1.26) Theorem. Let I be a proper ideal of S. Then the following statements

are equivalent.

(1) I is a strongly primary ideal of S.

(2) I is a primary ideal in some valuation oversemigroup of S.

(3) V = (I : I) is a valuation semigroup, and I is (an ideal of V which is) primary to the maximal ideal of V.

(1.27). If S admits a proper principal strongly primary ideal, then S is a valuation semigroup.

(1.28). Let I be a strongly primary ideal of S. Then,

(1) $I \subset x + S$ for every $x \in S - \operatorname{Rad}_S(I)$, and

(2) If I is finitely generated, then S has maximal ideal $\operatorname{Rad}_{S}(I)$.

(1.29). Let P be a strongly primary prime ideal of S, and let I be an ideal of S with $\operatorname{Rad}_S(I) = P$. Then P + I is strongly primary. In particular, nP is strongly primary for every $n \ge 1$.

We say that a g-monoid S is an almost pseudo-valuation semigroup (or, an APVS) if every prime ideal of S is strongly primary. A prime ideal of S is called divided if it is comparable to every ideal of S. If every prime ideal of S is divided, then S is called a divided semigroup.

(1.30). Let S be an APVS. Then S is a divided semigroup. Moreover, every non-maximal prime ideal of S is strongly prime.

(1.31). The followings are equivalent for a g-monoid S.

(1) Every primary ideal of S is strongly primary.

(2) Either S is a valuation semigroup or S is a PVS with unbranched maximal ideal.

(1.32) Theorem. The following statements are equivalent for a g-monoid S.

(1) S is an APVS.

(2) The maximal ideal of S is strongly primary.

(3) If N is the maximal ideal of S, then $-x + N \subset N$ for every element $x \in E(N)$.

(4) The maximal ideal M of S is such that (M : M) is a valuation semigroup with M primary to the maximal ideal of (M : M).

(5) There is a valuation oversemigroup in which M is a primary ideal.

(1.33). If S is strongly primary, then S is an APVS (and hence S admits a proper strongly primary ideal).

(1.34). Let S be an APVS with maximal ideal M. If T is an oversemigroup of S with M + T = T, then T is also an APVS.

(1.35). If S is an APVS with maximal ideal M, then \overline{S} is a PVS with maximal ideal $N = \operatorname{Rad}_{\overline{S}}(M + \overline{S})$.

(1.36). If every oversemigroup of a g-monoid S is an APVS, then \overline{S} is a valuation semigroup.

Proof. Suppose the contrary. Let P be the maximal ideal of S, $(P : P) = V, M = \operatorname{Rad}_V(P)$, G be the unit group of V, and K be the unit group of \overline{S} . \overline{S} is a PVS with maximal ideal M. We may take an element $g \in G - K$. Set $T = \overline{S}[2g] = \overline{S} + \mathbb{Z}_0 2g$, and let N be the maximal ideal of T.

Let $l \in \mathbb{Z}$. Then $lg \in T$ if and only if $l \in 2\mathbb{Z}_0$. It follows that $2g \in N$, $3g \notin N$, and $-ng \notin N$ for every positive integer n.

Since 2g = 3g + (-g), we have that N is not strongly primary, hence T is not an APVS; a contradiction.

(1.37). Let S be an APVS with \overline{S} a valuation semigroup, and assume that every integral oversemigroup of S is an APVS. Then every oversemigroup of S is an APVS.

If every oversemigroup of S which is different from q(S) has a non-empty conductor to S, then S is called a conducive semigroup.

(1.38) Theorem. The following conditions are equivalent for a g-monoid S.

- (1) S is a conducive semigroup.
- (2) S admits a powerful ideal.
- (3) S admits a strongly primary ideal.
- (4) S shares an ideal with some conducive oversemigroup.

Assume that there are prime ideals P_i of S such that $P_1 \subsetneq P_2 \subsetneq \cdots \subsetneq P_n$, and that there does not exist prime ideals Q_i of S such that $Q_1 \subsetneq Q_2 \gneqq \cdots \gneqq Q_{n+1}$, then n is called the Krull dimension (or, the dimension) of S.

If every ideal of S is finitely generated, then S is called a Noetherian semigroup.

Let X be a non-empty set, and assume that, for every $s \in S$ and $x \in X$, there is defined the element s + x of X. If 0 + x = x and, for every $s_1, s_2 \in S$, $(s_1 + s_2) + x = s_1 + (s_2 + x)$, then X is called an S-module.

(1.39) Theorem. A Noetherian semigroup S with $S \neq q(S)$ is conducive if and only if each of the following conditions holds:

(1) S is of dimension 1.

- (2) \overline{S} is a rank one discrete valuation semigroup.
- (3) \overline{S} is a finitely generated S-module.

§2 The complete integral closure of an APVS

M. Kanemitsu, R. Matsuda, N. Onoda and T. Sugatani [KMOS] determined the complete integral closure of an APVD. In this section, we will show a semigroup version of [KMOS], and will determine the complete integral closure of an APVS. The proofs of the semigroup version are easy modification of those in [KMOS]. However, for convenience sake, we will note the results. Throughout this section, S will denote

a g-monoid.

Let t be an element of an extension semigroup T of S. If there is $s \in S$ such that $s + nx \in S$ for every positive integer n, then x is called almost integral over S. The set of almost integral elements in q(S) is called the complete integral closure of S, and is denoted by S^c .

(2.1). Let I be an ideal of S such that (I : I) is a valuation semigroup, then I is comparable with any prime ideal of S.

(2.2). If $P \subsetneq I$ are ideals of S with P prime, then $(I:I) \subset (S:I) \subset (P:P)$.

(2.3). The following two statements are equivalent.

(1) S has the maximal ideal M such that (M:M) is a valuation semigroup.

(2) For any prime ideal P of S, (P : P) is a valuation semigroup.

Furthermore, if ${\cal S}$ satisfies one of these conditions, then the following statement holds.

(3) The prime ideals of S are linearly ordered.

(2.4). Let P be a prime ideal of S, V = (P : P), and $M = \text{Rad}_V(P)$. Then the following statements are equivalent.

(1) P is a strongly primary ideal of S.

(2) V is a valuation semigroup and M is the maximal ideal of V.

(2.5). Assume that S is of dimension 1. If the maximal ideal P of S is strongly primary, then (P:P) is of dimension 1.

(2.6). Let P be an ideal of S, V = (P : P), and $M = \operatorname{Rad}_V(P)$. Then the following conditions are equivalent.

(1) P is a strongly prime ideal of S.

(2) V is a valuation semigroup, and P is the maximal ideal of V.

(2.7). Let P be a prime ideal of S and V = (P : P). Suppose that P is strongly primary. Then the following statements hold.

(1) $S_P \subset V$ and $P + S_P = P$.

(2) For every $a \in S - P$, we have P = a + P. In particular, $P \subset \bigcap_{n=1}^{\infty} (na + S)$.

(3) For an ideal I of S, we have either $I \subset P$ or $P \subset I$.

(4) If there is a prime ideal Q of S such that $Q \not\subset P$ and (Q : Q) is a valuation semigroup, then $S_P = V$. In particular, P is strongly prime.

(2.8). The following statements hold.

(1) $S^c = q(S)$ if and only if $\bigcap_{n=1}^{\infty} (na+S) \neq \emptyset$ for every $a \in S$.

(2) Let P be a prime ideal of S of height 1. Then $\bigcap_{n=1}^{\infty} (na + S) = \emptyset$ for every element $a \in P$.

(2.9) Theorem. Let S be an APVS. The following statements hold.

(1) If S has no prime ideal with height 1, then $S^c = q(S)$.

(2) If S has a prime ideal P with height 1, then, (i) $S^c = (P : P)$. (ii) If S is of dimension ≥ 2 , then $S^c = S_P$. (iii) S^c is of dimension 1.

§3 Semistar operations on an APVS

Let I be an S-submodule of q(S) such that $s + I \subset S$ for some $s \in S$. Then I is called a fractional ideal of S. The set of fractional ideals of S is denoted by F(S).

A mapping \star of F(S) to F(S) is called a star operation on S if \star satisfies the following conditions: For all $a \in q(S)$ and $I, J \in F(S)$, $(a)^* = (a), (a+I)^* =$ $a + I^*, I \subset I^*, I \subset J$ implies $I^* \subset J^*$, and $(I^*)^* = I^*$. The set of star operations on S is denoted by $\operatorname{Star}(S)$.

Let $\overline{F}(S)$ be the set of S-submodules of q(S). A mapping \star of $\overline{F}(S)$ to $\overline{F}(S)$ is called a semistar operation on S if \star satisfies the following conditions: For all $a \in$ q(S) and $I, J \in \overline{F}(S), (a+I)^* = a+I^*, I \subset I^*, I \subset J$ implies $I^* \subset J^*$, and $(I^*)^* = I^*$. The set of semistar operations on S is denoted by Sstar (S).

(3.1) ([M2, Theorem 2]). Let V be a valuation semigroup with finite dimension n, and let Γ be its value group. Let $M = P_n \supseteq \cdots \supseteq P_1$ be the prime ideals of V, and let $\{0\} \subsetneqq H_{n-1} \subsetneqq \cdots \subsetneqq H_1 \gneqq \Gamma$ be the convex subgroups of Γ . Let m be a positive integer with $n+1 \le m \le 2n+1$. The following conditions are equivalent.

(1) |Sstar(V)| = m.

(2) The maximal ideal of V_{P_i} is principal for exactly 2n + 1 - m of *i*.

(3) The ordered abelian group Γ/H_i has a minimal positive element for exactly 2n + 1 - m of *i*.

For a subset I of q(S), the subset $\{x \in q(S) \mid x + I \subset S\}$ of q(S) is denoted by I^{-1} (We set $\emptyset^{-1} = q(S)$), and $(I^{-1})^{-1}$ is denoted by I^{v} .

(3.2) (cf., [M5, Theorem 2]). Let S be a PVS which is not a valuation semigroup, let M be the maximal ideal of S, and let $V = M^{-1}$. Let Σ'_1 be the set of semistar operations \star on S such that $S^{\star} \supset V$, and let Σ'_2 be the set of semistar operations \star on Such that $S^* \subsetneq V$. Let H be the unit group of S, and let G be the unit group of V. Assume that $|G/H| < \infty$ and that dim $(S) < \infty$. Let H_1, \dots, H_l be the subgroups H' of G such that $G \supsetneq H' \supset H$, and let $S_i = H_i \cup M$ for every i. (1) Sstar $(S) = \Sigma'_1 \cup \Sigma'_2$.

- (2) $|\operatorname{Sstar}(V)| < \infty$, and $|\operatorname{Star}(S_i)| < \infty$ for every *i*.
- (3) $|\Sigma'_1| = |\operatorname{Sstar}(V)|.$ (4) $|\Sigma'_2| = \sum_{i=1}^{l} |\operatorname{Star}(S_i)|.$

(3.3). Let S be an APVS, P the maximal ideal of S, and V = (P : P). If $|\text{Sstar}(S)| < \infty$, then dim $(S) < \infty$ and V is a finitely generated S-module.

Proof. Then V is a finitely generated oversemigroup of S. By [M2, Lemma 8], \overline{S} is a valuation semigroup. Since $\overline{S} \subset V$, and the maximal ideal of \overline{S} is $\operatorname{Rad}_{\mathfrak{q}(S)}(P)$, we

have $V = \overline{S}$. Therefore V is a finitely generated S-module.

Let T be an oversemigroup of S. Then we have canonical mappings α : Sstar(S) \longrightarrow Sstar(T) and δ : Sstar(T) \longrightarrow Sstar(S). Thus, for every $\star \in$ Sstar(S), $\alpha(\star)$ is the restriction of \star to $\overline{F}(T)$. And, for every $\star' \in$ Sstar(T), $I^{\delta(\star')} = (I+T)^{\star'}$ for every $I \in \overline{F}(S)$. $\alpha(\star)$ is called the ascent of \star to T, and $\delta(\star')$ is called the descent of \star' to S. The semistar operation $I \mapsto q(S)$ for every $I \in \overline{F}(S)$ is called the *e*-semistar operation on S.

(3.4). Assume that $|Sstar(S)| < \infty$, \overline{S} is a valuation semigroup, the unit group of \bar{S} coincides with the unit group of S, and that \bar{S} is a finitely generated S-module. Then S need not be an APVS.

Example: Let $S = \{0, 2, 4, 5, 6, \dots\}$. Then $V = \overline{S} = \mathbb{Z}_0$ is a valuation semigroup, the unit group of $\overline{S} = \{0\}$, the unit group of $S = \{0\}$, \overline{S} is a finitely generated S-module, S is not an APVS, and dim(S) = 1. We must show that $|Sstar(S)| < \infty$.

Scholule, S is not an AI VS, and $\operatorname{dim}(S) = 1$. We must show that $|\operatorname{Sstar}(S)| < \infty$. Set $\Sigma'_1 = \{ \star \in \operatorname{Sstar}(S) \mid S^* = \mathbb{Z} \}, \Sigma'_2 = \{ \star \in \operatorname{Sstar}(S) \mid S^* = V \}, \Sigma'_3 = \{ \star \in \operatorname{Sstar}(S) \mid S \subsetneqq S^* \gneqq V \}$, and $\Sigma'_4 = \{ \star \in \operatorname{Sstar}(S) \mid S^* = S \}$. Then we have $\operatorname{Sstar}(S) = \bigcup_{i=1}^4 \Sigma'_i$. And we have $\Sigma'_1 = \{e\}$, and $|\Sigma'_1| = 1$. Every $\star \in \Sigma'_2$ is induced from a star operation on V. Since $|\operatorname{Star}(V)| = 1, |\Sigma'_2| = 1$. Let $T = \{0, 2, 3, 4, \cdots \}$. Every $\star \in \Sigma'_3$ is induced from a star operation on T.

Hence $|\Sigma'_3| = |\operatorname{Star}(T)|$. Similarly, we have $|\Sigma'_4| = |\operatorname{Star}(S)|$.

We will show that $|\operatorname{Star}(S)| < \infty$ (The proof of $|\operatorname{Star}(T)| < \infty$ is simpler). Set $I_0 = \{0, 2, 3, 4, \dots\}, F_1 = \{S, I_0, V\}, F_2 = \{I \in F(S) \mid S \subset I \subset V - 4\}.$ Let $F_2^{F_1}$ be the set of mappings of F_1 to F_2 . Then F_2 is a finite set, and $F_2^{F_1}$ is a finite set. Since $V + 4 \subset S$, we have $V^* \subset S - 4 \subset V - 4$ for every $* \in \text{Star}(S)$.

For every $\star \in \operatorname{Star}(S)$, there is a canonical mapping θ_{\star} of F_1 to $F_2: S \longmapsto S$, $I_0 \longmapsto I_0^{\star}, V \longmapsto V^{\star}$. There arises a canonical mapping θ of $\operatorname{Star}(S)$ to $F_2^{F_1}: \star \longmapsto \theta_{\star}$. Assume that $\theta(\star_1) = \theta(\star_2)$ for $\star_1, \star_2 \in \operatorname{Star}(S)$. Let $I \in F(S)$. There is $x \in \mathbb{Z}$ such that $x + I \subset F_1$. Since $\theta_{\star_1} = \theta_{\star_2}$, we have $(x + I)^{\star_1} = (x + I)^{\star_2}$. It follows that $I^{\star_1} = I^{\star_2}$, and hence $\star_1 = \star_2$. That is, θ is an injection, and hence $|\operatorname{Star}(S)| < \infty$.

In this section, we will prove the following,

(3.5) Theorem. Let S be an APVS, P be the maximal ideal of S, and let V = (P:P). Then $|Sstar(S)| < \infty$ if and only if dim $(S) < \infty$ and V is a finitely generated S-module.

(3.1) and (3.2) show that (3.5) holds for any PVS.

Thus in the remainder of this section, S denotes an APVS with dimension $< \infty$ which is not a PVS, P is the maximal ideal of S, V = (P : P) which is a finitely generated S-module, M is the maximal ideal of V, G is the unit group of V, H is the unit group of S, v is the valuation which belongs to V, and Γ is the value group of v.

(3.6). (1)
$$V = P^{-1}$$
.
(2) $V = \overline{S}$.

 $(3) \mid G/H \mid < \infty.$

Proof. (1) Suppose the contrary. There is $x \in P^{-1} - V$. Since $x + P \not\subset P$ and $x + P \subset S$, we have S = x + P. It follows that P = -x + S, and V = S; a contradiction.

(3.7). $\bar{F}(S) = F(S) \cup \{q(S)\}.$

Proof. We note that $V \in F(S)$. Let $I \in \overline{F}(S)$.

The case that v(I) is bounded below: There is $x \in q(S)$ such that v(x) < v(I). Then $-x + I \subset V$. Hence I is a fractional ideal of S.

The case that v(I) is not bounded below: Let $x \in q(S)$, and let $p \in P$. There is $y \in I$ such that v(y) < v(x-p). Then $x = (x-y-p) + p + y \in V + p + y \subset P + y \subset I$. Hence I = q(S).

(3.8). Let T be an oversemigroup of S. Then either $T \supset V$ or $T \subsetneq V$.

Proof. Assume that $T \not\subset V$. There is $t \in T - V$. Let $x \in V$. Then $-t \in M$, and hence $-nt \in P$ for some n > 0. Then $x = nt + (x - nt) \in T + P \subset T$, and hence $V \subset T$.

(3.9). (1) There are no $g_i \in G$ such that $V = S[g_1, \cdots, g_l]$.

(2) There are $g_i \in G$ and $x_0 \in M$ such that $V = S[g_1, \cdots, g_l, x_0]$.

(3) In (2), $v(x_0)$ is a minimal positive element of Γ .

(4) $\mathbf{Z}v(x_0)$ is the rank 1 convex subgroup of Γ .

(5) Let *m* be the minimal positive integer *k* such that $kx_0 \in S$. Then $v(P) = \{\gamma \in \Gamma \mid \gamma \geq mv(x_0)\}.$

Proof. (1) Suppose the contrary. For any $x \in M$, we have $x = s + \sum k_i g_i$. Then $s \in P$, hence $x \in P$. Therefore P = M; a contradiction.

(2) There are $g_1, \dots, g_l \in G$ and $x_1, \dots, x_m \in M$ such that $V = S[g_1, \dots, g_l, x_1, \dots, x_m]$ with m > 0. Assume that, for instance, $v(x_2) > v(x_1)$. We have $x_2 - x_1 = s + \sum k_i g_i + \sum k'_i x_i$. Hence $x_2 = s + \sum k_i g_i + (1 + k'_1) x_1 + \sum_{i=2}^m k'_i x_i$. It follows that $k'_2 = 0$, and $V = S[g_1, \dots, g_l, x_1, x_3, x_4, \dots, x_m]$. Therefore we may assume that $v(x_1) = \dots = v(x_m)$. It follows that $V = S[g_1, \dots, g_l, x_1]$.

(3) Suppose the contrary. There is $x \in M$ such that $v(x) < v(x_0)$. Then $x_0 - x_1 = s + \sum k_i g_i + k x_0$. If k > 0, then $x \in G$; a contradiction. If k = 0, then $s \in P$. Then $x_0 = x_1 + s + \sum k_i g_i \in P$, and hence $V = S[g_1, \dots, g_l]$; a contradiction.

(4) follows from (3).

(5) Then $mv(x_0) = v(mx_0) \in v(P)$.

Assume that $\gamma > mv(x_0)$. Then $\gamma - mv(x_0) = v(x)$ for some $x \in M$, and $\gamma = v(mx_0 + x) \in v(P)$.

Suppose that $v(p) < mv(x_0)$ for some $p \in P$. By (3), we have $v(p) \le (m-1)v(x_0)$, and hence $(m-1)x_0 \in S$; a contradiction.

Set $\Sigma' = \{ \star \in \text{Sstar}(S) \mid S^{\star} = S \}, \Sigma'_1 = \{ \star \in \text{Sstar}(S) \mid S^{\star} \supset V \}$, and set

 $\Sigma_2' = \{ \star \in \text{Sstar}(S) \mid S^\star \subsetneq V \}.$

(3.10). (1) There is a canonical bijection from $\operatorname{Sstar}(V)$ onto Σ'_1 . (2) $\operatorname{Sstar}(S) = \Sigma'_1 \cup \Sigma'_2$ (disjoint).

Proof. (1) follows from (3.7).

(2) follows from (3.8).

Let g_1, \dots, g_l be a complete representatives of G modulo H. Then we have $V = S[g_1, \dots, g_l, x_0]$ for some $x_0 \in M$. Let m be the minimal positive integer k such that $kx_0 \in S$. Let $C = \{g_i + kx_0 \mid 1 \leq i \leq l, 0 \leq k < m\}$, and $\Pi = \{\sigma \mid \sigma \text{ is a subset of } C \text{ which contains some } g_i\}$. We may assume that $v(x_0) = 1$, and that \mathbf{Z} is the rank 1 convex subgroup of Γ .

For every $\sigma \in \Pi$, the fractional ideal of S generated by σ is denoted by $\sigma + S$.

(3.11). (1) Let I be a fractional ideal of S with $I \subset V$ which meets with G. Then $I \supset P$, and there is a unique element $\sigma \in \Pi$ such that $I = \sigma + S$.

(2) Let $\star \in \Sigma(S)$ and $\sigma \in \Pi$. Then there is a unique element $\sigma' \in \Pi$ such that $(\sigma + S)^* = \sigma' + S$.

Proof. (1) Let $g \in G \cap I$ and $p \in P$. Then $p = (p - g) + g \in P + I \subset I$, and hence $P \subset I$.

Let σ be the set of elements of I which are contained in C. Then $\sigma \in \Pi$, and $P \subset \sigma + S \subset I$. Let $x \in I - P$. Then $v(x) = v(rx_0)$ for some $0 \leq r < m$.

Then $x = rx_0 + g_i + h$, and then $rx_0 + g_i \in I \cap C$, and hence $x \in \sigma + S$. Therefore $I = \sigma + S$.

Assume that $I = \sigma_1 + S = \sigma_2 + S$ for $\sigma_1, \sigma_2 \in \Pi$. Let $g_i + kx_0 \in \sigma_1$. Then $g_i + kx_0 = g_j + k'x_0 + s$ with $g_j + k'x_0 \in \sigma_2$. Clearly $k' \leq k$. If k' < k, then $s = g_i - g_j + (k - k')x_0$, and 0 < v(s) < m; a contradiction. Hence $k = k', g_i = g_j + s$, $g_i = g_j$, and s = 0. Therefore $\sigma_1 \subset \sigma_2$. Similarly $\sigma_2 \subset \sigma$.

(2) We have $(\sigma + S)^* \subset V^* \subset V^v$. Then $(\sigma + S)^* \subset V$ by (3.6). The proof is complete by (1).

In (3.11)(2), set $\sigma' = f_{\star}(\sigma)$, and set $F(\sigma) = f_{\star}$. Then f_{\star} is a mapping from Π to Π , and F is a mapping from $\Sigma'_2(S)$ to Π^{Π} , where Π^{Π} denotes the set of mappings from Π to Π . Π^{Π} is a finite set.

(3.12). The set of non-maximal prime ideals of S coincides with the set of non-maximal prime ideals of V.

(3.13). If dim(S) = 1, then F is injectic.e In particular, $|\Sigma'_2(S)| < \infty$.

Proof. We have $\Gamma = \mathbf{Z}$. Assume that $F(\star) = F(\star')$ for $\star, \star' \in \Sigma'_2(S)$. We must show that $\star = \star'$.

Let $I \in F(S)$. We have min (v(x+I)) = 0 for some $x \in q(S)$. There is $\sigma \in \Pi$ such that $x + I = \sigma + S$. Hence $x + I^* = (\sigma + S)^*$ and $x + I^{*'} = (\sigma + S)^{*'}$. Since

 $f_{\star} = f_{\star'}$, we have $(\sigma + S)^{\star} = (\sigma + S)^{\star'}$. It follows that $I^{\star} = I^{\star'}$, and hence $\star = \star'$.

(3.14). Assume that $\dim(S) \ge 2$. Then F is injective. In particular, $|\Sigma'_2(S)| < \infty$.

Proof. Assume that $F(\star) = F(\star')$ for $\star, \star' \in \text{Star}(S)$. We must show that $\star = \star'$. Let Q be the prime ideal of V which correspond to the convex subgroup \mathbf{Z} of Γ . Q is a prime ideal of S, and $Q = \{x \in V \mid v(x) \notin \mathbf{Z}\}$.

We note that Γ/\mathbf{Z} is a totally ordered abelian group. For every element γ (resp., subset A) of Γ , $\gamma + \mathbf{Z}$ (resp., $\{a + \mathbf{Z} | a \in A\}$) is denoted by $\bar{\gamma}$ (resp., \bar{A}).

Let $I \in F(S)$. We have three cases: (1) v(I) has a minimal element. (2) v(I) does not have a minimal element, and $\overline{v(I)}$ does not have a minimal element. (3) v(I) does not have a minimal element, and $\overline{v(I)}$ has a minimal element.

Case (1): Let v(x) be the minimal element of v(I) with $x \in I$. There is $\sigma \in \Pi$ such that $I - x = \sigma + S$. Since $f_{\star} = f_{\star'}$, we have $(\sigma + S)^{\star} = (\sigma + S)^{\star'}$. Then $I^{\star} = x + (\sigma + S)^{\star} = x + (\sigma + S)^{\star'} = I^{\star'}$.

Case (2): Assume that $x \notin I$. For any $i \in I$, we have $\overline{v(x)} < \overline{v(i)}$. Hence also $\overline{v(x+1)} < \overline{v(i)}$. It follows that $i \in x+1+S$, and that $I \subset x+1+S$. Since $x \notin x+1+S$, we have $I = I^v$. Hence $I^* = I^{*'}$.

Case (3): Let $\overline{v(x)}$ be the minimal element of $\overline{v(I)}$ with $x \in I$. Then we have $v(I - x) = \{\gamma \in \Gamma \mid l < \gamma \text{ for some integer } l\}$. Let $\{x \mid v(x) < l \text{ for every integer } l\} = \{x_{\lambda} \mid \Lambda\}$. Then $I - x = \cap_{\lambda}(x_{\lambda} + S)$. Hence $I = I^{v}$, and hence $I^{\star} = I^{\star'}$. We have shown that $\star = \star'$.

(3.10) completes the proof of (3.5).

For a general g-monoid S, conditions for $|\text{Sstar}(S)| < \infty$ were studied in [M5].

§4 Semistar operations on an APVD

In this section we study semistar operations on APVD's. For a domain D, the set of non-zero fractional ideals of D is denoted by F(D), and the set of star operations on D is denoted by Star(D).

(4.1) ([M2, Theorem 3]). Let V be a valuation domain with finite dimension n, and let Γ be its value group. Let $M = P_n \supseteq \cdots \supseteq P_1 \supseteq (0)$ be the prime ideals of V, and let $\{0\} \subseteq H_{n-1} \subseteq \cdots \subseteq H_1 \subseteq \Gamma$ be the convex subgroups of Γ . Let m be a positive integer with $n+1 \leq m \leq 2n+1$. The following conditions are equivalent:

(1) $|\operatorname{Sstar}(V)| = m.$

(2) The maximal ideal of V_{P_i} is principal for exactly 2n + 1 - m of *i*.

(3) The ordered group Γ/H_i has a minimal positive element for exactly 2n+1-m of i.

(4.2) ([M8, §2, Proposition 3 and Lemma 3]). Let D be a PVD with maximal ideal M, and set $V = M^{-1}$. Assume that $|\text{Sstar}(D)| < \infty$, then $\dim(D) < \infty$, and V/M is a simple extension field of D/M with $[V/M : D/M] < \infty$.

(4.3) ([M8, §1, Proposition 1]). In (4.2), the converse does not hold.

Example: Let k be a field of characteristic 0, K be an extension field of k with [K:k] = 4, V = K[[X]], M be the maximal ideal of V, and let D = k + M.

(4.4) ([M8, §2, Proposition 4]). Let D be a PVD which is not a valuation domain, let M be the maximal ideal of D, and let $V = M^{-1}$. Assume that dim $(D) < \infty$, and that V/M is a simple extension field of D/M with $[V/M : D/M] < \infty$. Let $\{D_1, \dots, D_l\}$ be the set of overrings T of D such that $T \subsetneq V$. Let Σ'_1 be the semistar operations \star on D such that $D^* \supset V$, and let Σ'_2 be the set of semistar operations \star on D such that $D^* \subsetneq V$.

- (1) $\operatorname{Sstar}(D) = \Sigma_1' \cup \Sigma_2'$.
- (2) $|\operatorname{Sstar}(V)| < \infty.$
- (3) $|\Sigma'_1| = |\operatorname{Sstar}(V)|.$
- (4) $\cup_{1}^{l} \operatorname{Star}(D_{i})$ is a disjoint union.
- (5) There is a canonical bijection from Σ'_2 onto \cup_1^l Star (D_i) .

(4.5). (1) Assume that $\overline{D} = D$ and $|\text{Sstar}(D)| < \infty$, then D need not be an APVD (cf., [M5, Remark 1]).

(2) If $|\text{Sstar}(D)| < \infty$, and if \overline{D} is quasi-local, then \overline{D} is a valuation domain (cf., [M4, Theorem 3]).

In the remainder of this section, let D be an APVD with maximal ideal P, (P : P) = V, M be the maximal ideal of V, v be the valuation which belongs to V, and Γ be the value group of v.

(4.6). (1) If D is not a valuation domain, then $V = P^{-1}$. (2) $\overline{F}(D) = F(D) \cup {q(D)}$.

Proof. (1) Suppose that $P^{-1} \stackrel{\supset}{\neq} V$. There is $x \in P^{-1} - V$. Then $xP \subset D$ and $xP \not\subset P$. Hence xP = D and $P = x^{-1}D$. Hence D = V; a contradiction.

(2) Let $I \in \overline{F}(D)$. If v(I) is bounded below, then $I \in F(D)$. If v(I) is not bounded below, then I = q(D).

(4.7). Let T be an overring of D. Then $T \supset V$ or $T \subsetneq V$.

The proof is a ring version of that of (3.8).

(4.8). Assume that $|\text{Sstar}(D)| < \infty$.

- (1) dim $(D) < \infty$.
- (2) V is a finitely generated D-module.
- (3) $V = \bar{D}$.
- (4) V/M is a simple extension field of D/P with $[V/M:D/P] < \infty$.

Proof. V is a finitely generated overring of D, and $\overline{D} \subset V$. \overline{D} is a quasi-local ring with maximal ideal $M = \operatorname{Rad}_V(P)$. Since $|\operatorname{Sstar}(\overline{D})| < \infty$, \overline{D} is a valuation ring.

Hence $V = \overline{D}$. Therefore V is a finitely generated D-module.

(4.9) Proposition. Let D be an APVD which is not a PVD, let P be the maximal ideal of D, and let V = (P : P). Assume that dim $(D) < \infty$, and V is a finitely generated D-module. Let $\{D_{\lambda} \mid \lambda \in \Lambda\}$ be the set of overrings T of D such that $T \subsetneq V$. Let Σ'_1 be the semistar operations \star on D such that $D^* \supset V$, and let Σ'_2 be the set of semistar operations \star on D such that $D^* \supseteq V$.

- (1) $\operatorname{Sstar}(D) = \Sigma'_1 \cup \Sigma'_2.$
- (2) $|\operatorname{Sstar}(V)| < \infty.$
- (3) $|\Sigma'_1| = |\text{Sstar}(V)|.$
- (4) $\cup_{\lambda} \operatorname{Star}(D_{\lambda})$ is a disjoint union.
- (5) There is a canonical bijection from Σ'_2 onto $\cup_{\lambda} \operatorname{Star}(D_{\lambda})$.

For any APVD D, conditions for $|\text{Sstar}(D)| < \infty$ were studied in [M9].

(4.10) ([M6, (2.5) Proposition]). Let D be a quasi-local domain with maximal ideal P, and assume that $\overline{D} = V$ is a valuation ring with maximal ideal M, v be a valuation belonging to V with value group Γ . Asume that $D \supset M^3$. Then,

(1) D is either a PVD or, we may assume that Z is the rank one convex subgroup of Γ .

(2) If D/P = V/M, then D is an APVD.

§5 Cancellation properties of semistar operations

In this section, we will study G. Picozza [P], and will introduce some cancellation properties of semistar operations on a g-monoid.

Let S be a g-monoid with quotient group q(S). A star operation \star on S is called a.b. if, for every $F \in f(S)$ and every $G_1, G_2 \in F(S), (F + G_1)^* = (F + G_2)^*$ implies $G_1^* = G_2^*$, and \star is called e.a.b. if the same holds for every $F, F_1, F_2 \in f(S)$. A semistar operation \star on S is called a.b. if, for every $F \in f(S)$ and every $H_1, H_2 \in \overline{F}(S)$, $(F + H_1)^* = (F + H_2)^*$ implies $H_1^* = H_2^*$, and \star is called e.a.b. if the same holds for every $F, F_1, F_2 \in f(S)$. The mapping $\overline{F}(S) \longrightarrow \overline{F}(S), H \longmapsto H^e = q(S)$ is a semistar operation on S, and is called the *e*-semistar operation on S as defined in §3.

A semistar operation \star on S is called cancellative if, for every $H, H_1, H_2 \in \overline{F}(S)$, $(H + H_1)^{\star} = (H + H_2)^{\star}$ implies $H_1^{\star} = H_2^{\star}$.

(5.1). Let \star be a semistar operation on S. Then \star is cancellative if and only if $\star = e$.

Proof. The necessity: Let $H \in \overline{F}(D)$. Since q(S)+H = q(S), we have $(q(S)+H)^* = (q(S) + q(S))^*$, and hence $H^* = q(S)^*$. Since $q(S)^* = q(S)$, we have $H^* = q(S)$, and hence $\star = e$.

Let S be a g-monoid, and let \star be a semistar operation on S. Set $(f(S))^{\star} = \{E^{\star} \mid E \in f(S)\}.$

(5.2). Let S be a g-monoid, let T be an oversemigroup of S, let \star be a semistar operation on S, and let $\alpha(\star)$ be the ascent of \star to T.

- (1) If \star is cancellative, then $\alpha(\star)$ is cancellative.
- (2) If \star is a.b., then $\alpha(\star)$ is a.b.
- (3) Assume that $T^* \in (f(S))^*$. If \star is e.a.b., then $\alpha(\star)$ is e.a.b.

(5.3). Let S be a g-monoid, let T be an oversemigroup of S, let \star be a semistar operation on T, and let $\delta(\star)$ be the descent of \star to S.

(1) If \star is cancellative, then $\delta(\star)$ is cancellative.

- (2) If \star is a.b., then $\delta(\star)$ is a.b.
- (3) If \star is e.a.b., then $\delta(\star)$ is e.a.b.

(5.4) **Proposition**. Let S be a g-monoid, and let $\mathcal{T} = \{T_{\lambda} \mid \lambda \in \Lambda\}$ be the set of oversemigroups of S.

(1) There is a canonical bijection between the set of cancellative semistar operations on S and the set $\cup_{\lambda} \{ \star \mid \star \text{ is a cancellative semistar operation on } T_{\lambda} \text{ with } T_{\lambda}^{\star} = T_{\lambda} \}.$

(2) There is a canonical bijection between the set of a.b. semistar operations on S and the set $\cup_{\lambda} \{ \star \mid \star \text{ is an a.b. semistar operation on } T_{\lambda} \text{ with } T_{\lambda}^{\star} = T_{\lambda} \}.$

(3) There is a canonical bijection between the set of e.a.b. semistar operations on S and the set $\cup_{\lambda} \{ \star \mid \star \text{ is an e.a.b. semistar operation on } T_{\lambda} \text{ with } T_{\lambda}^{\star} = T_{\lambda} \}.$

Some of the sets in (5.4) may be empty sets. For instanse, the set $\{\star \mid \star \text{ is a cancellative semistar operation on } T_{\lambda} \text{ with } T_{\lambda}^{\star} = T_{\lambda}\}$ is an empty set unless $T_{\lambda} = q(S)$.

The notion of a cancellative semistar operation derives an s.a.b. semistar operation. Thus, we will say that a semistar operation \star on S is s.a.b. (or, strongly arithmetisch brauchbar) if, for every $G \in F(S)$, and $H_1, H_2 \in \overline{F}(S), (G+H_1)^{\star} = (G+H_2)^{\star}$ implies $H_1^{\star} = H_2^{\star}$. Clearly, the *e*-semistar operation is an s.a.b. semistar operation, and an s.a.b. semistar operation is an a.b. semistar operation.

An s.a.b. semistar operation need not be the *e*-semistar operation. For example, let S be a principal ideal semigroup which is not a group, and let \star be a semistar operation on S with $\star \neq e$. Then \star is s.a.b.

We note that, for domains, A.Okabe [O] calles an s.a.b. semistar operation a cancellative semistar operation, and gives its characterization ([O, Theorem 28]).

The identity mapping d on F(S) is a semistar operation on S, and is called the d-semistar operation on S.

(5.5). An a.b. semistar operation need not be an s.a.b. semistar operation.

For example, let S = V be a valuation semigroup which is not a group, let M be the maximal ideal with M = 2M, and let $\star = d$. Then \star is a.b., and \star is not s.a.b., in fact, $(M + M)^{\star} = (M + S)^{\star}$ and $M^{\star} \neq S^{\star}$.

Let S be a g-monoid, and let \star be a semistar operation on S. Set $(F(S))^{\star} = \{G^{\star} \mid G \in F(S)\}.$

(5.6) Proposition. (1) Let S be a g-monoid, let \star be a semistar operation on

S, let T be an oversemigroup of S with $(F(T))^* \subset (F(S))^*$, and let $\alpha(\star)$ be the ascent of \star to T. If \star is s.a.b., then $\alpha(\star)$ is s.a.b.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let \star be a semistar operation on T, and let $\delta(\star)$ be the descent of \star to S. If \star is s.a.b., then $\delta(\star)$ is s.a.b.

(3) Let S be a g-monoid, and let $\mathcal{T} = \{T_{\lambda} \mid \lambda \in \Lambda\}$ be the set of oversemigroup T of S with $T \in F(S)$. Then there is a canonical bijection between the set $A = \{\star \mid \star i \text{ is an s.a.b. semistar operations } \star \text{ on } S \text{ with } S^{\star} \in F(S)\}$ and the set $B = \bigcup_{\lambda} \{\star \mid \star i \text{ is an s.a.b. semistar operation on } T_{\lambda} \text{ with } T_{\lambda}^{\star} = T_{\lambda}\}.$

Proof. (1) Let $(G+H_1)^{\alpha(\star)} = (G+H_2)^{\alpha(\star)}$, where $G \in F(T)$ and $H_1, H_2 \in \overline{F}(T)$. Then we have $G \in F(S), H_1, H_2 \in \overline{F}(S)$, and $(G+H_1)^{\star} = (G+H_2)^{\star}$. It follows that $H_1^{\star} = H_2^{\star}$, and hence $H_1^{\alpha(\star)} = H_2^{\alpha(\star)}$.

Then we have $G \in F(S)$, $H_1, H_2 \in F(S)$, and $(G + H_1)^* = (G + H_2)^*$. It follows that $H_1^* = H_2^*$, and hence $H_1^{\alpha(*)} = H_2^{\alpha(*)}$. (2) Let $(g + h_1)^{\delta(*)} = (g + h_2)^{\delta(*)}$, where $g \in F(S)$ and $h_1, h_2 \in \overline{F}(S)$. Then we have $g + T \in F(T), h_1 + T, h_2 + T \in \overline{F}(T)$, and $(g + T + h_1 + T)^* = (g + T + h_2 + T)^*$. Since \star is s.a.b., we have $(h_1 + T)^* = (h_2 + T)^*$, and hence $h_1^{\delta(*)} = h_2^{\delta(*)}$. Hence $\delta(\star)$ is s.a.b.

(3) Let $\star \in A$, and let $\alpha(\star)$ be the ascent of \star to S^{\star} . Then $\alpha(\star) \in B$ by (1). For every $h \in \overline{F}(S)$, we have $h^{\star} = (h + S^{\star})^{\alpha(\star)}$. Assume that $\alpha(\star_1) = \alpha(\star_2)$, where $\star_1, \star_2 \in A$. Sine $\alpha(\star_1)$ (resp., $\alpha(\star_2)$) is a semistar operation on S^{\star_1} (resp., S^{\star_2}), we have $S^{\star_1} = S^{\star_2}$. Then we have $h^{\star_1} = (h + S^{\star_1})^{\alpha(\star_1)}$ and $h^{\star_2} = (h + S^{\star_2})^{\alpha(\star_2)}$. Hence we have $\star_1 = \star_2$. Assume that $\star \in B$, and let $\delta(\star)$ be the descent of \star to S. Then we have $\delta(\star) \in A$ by (2), and $\alpha(\delta(\star)) = \star$.

We may canonically introduce five more cancellation properties of semistar operations. Thus, let S be a g-monoid, and let \star be a semistar operation on S.

Then \star is called h.g. if, for every $H \in \overline{F}(S)$ and $G_1, G_2 \in F(S), (H + G_1)^{\star} = (H + G_2)^{\star}$ implies $G_1^{\star} = G_2^{\star}$;

* is called g.g. if, for every $G, G_1, G_2 \in F(D)$, $(G + G_1)^* = (G + G_2)^*$ implies $G_1^* = G_2^*$;

 \star is called f.g. if, for every $F \in f(S)$ and $G_1, G_2 \in F(S), (F + G_1)^{\star} = (F + G_2)^{\star}$ implies $G_1^{\star} = G_2^{\star}$;

 \star is called h.f. if, for every $H \in \overline{F}(S)$ and $F_1, F_2 \in f(S), (H + F_1)^{\star} = (H + F_2)^{\star}$ implies $F_1^{\star} = F_2^{\star}$;

 \star is called g.f. if, for every $G \in F(S)$ and $F_1, F_2 \in f(S), (G + F_1)^{\star} = (G + F_2)^{\star}$ implies $F_1^{\star} = F_2^{\star}$.

If \star is cancellative (resp., s.a.b., a.b., e.a.b.), then we may call \star to be h.h. (resp., g.h., f.h., f.f.).

What the property names as above stand for: Let \star be a semistar operation on S. Set $f(S) = X_1$, $F(S) = X_2$, and set $\overline{F}(S) = X_3$. If, for every $A \in X_i$ and $B, C \in X_j$, $(A+B)^{\star} = (A+C)^{\star}$ implies $B^{\star} = C^{\star}$, then \star is called $f_i.f_j$. Since an element of f(S)is called finitely generated, we set also $f_1 = f$. And considering the alphabetical order, we set also $f_2 = g$ and $f_3 = h$.

(5.7). Let \star be a semistar operation on a g-monoid S. Then \star is h.g. if and ony if \star is h.f. if and only if $\star = e$.

Proof. Assume that \star is h.f. Let $F_1, F_2 \in f(S)$. Since $(q(S) + F_1)^* = (q(S) + F_2)^*$, we have $F_1^* = F_2^*$. Hence there is $H \in \overline{F}(S)$ such that $H = F^*$ for every $F \in f(S)$. Let $a \in q(S) - \{0\}$. Since $a \in (S + a)^* = H$, we have H = q(S). Hence $\star = e$.

- **(5.8)**. (1) s.a.b. implies g.g.
- (2) g.g. implies g.f.
- (3) a.b. implies f.g.
- (4) f.g. implies e.a.b.
- (5) g.g. implies f.g.
- (6) g.f. implies e.a.b.

The proofs of the following (5.9), (5.10) and (5.11) are similar to that of (5.6).

(5.9) Proposition. (1) Let S be a g-monoid, let \star be a semistar operation on S, let T be an oversemigroup of S with $(F(T))^* \subset (F(S))^*$, and let $\alpha(\star)$ be the ascent of \star to T. If \star is g.g., then $\alpha(\star)$ is g.g.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let \star be a semistar operation on T, and let $\delta(\star)$ be the descent of \star to S. If \star is g.g., then $\delta(\star)$ is g.g.

(3) Let S be a g-monoid, and let $\mathcal{T} = \{T_{\lambda} \mid \lambda \in \Lambda\}$ be the set of oversemigroups T of D with $T \in F(S)$. Then there is a canonical bijection between the set $A = \{\star \mid \star$ is a g.g. semistar operation on S with $S^{\star} \in F(S)\}$ and the set $B = \bigcup_{\lambda} \{\star \mid \star$ is a g.g. semistar operation on T_{λ} with $T_{\lambda}^{\star} = T_{\lambda}\}$.

(5.10) Proposition. (1) Let S be a g-monoid, let T be an oversemigroup of S with $T \in F(S)$, let \star be a semistar operation on S, and let $\alpha(\star)$ be the ascent of \star to T. If \star is f.g., then $\alpha(\star)$ is f.g.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let \star be a semistar operation on T, and let $\delta(\star)$ be the descent of \star to S. If \star is f.g., then $\delta(\star)$ is f.g.

(3) Let S be a g-monoid, and let $\mathcal{T} = \{T_{\lambda} \mid \lambda \in \Lambda\}$ be the set of oversemigroups T of S with $T \in F(S)$. Then there is a canonical bijection between the set $A = \{\star \mid \star i \text{ is a f.g. semistar operation on } S$ with $S^{\star} \in F(S)\}$ and the set $B = \bigcup_{\lambda} \{\star \mid \star \text{ is a f.g. semistar operation on } T_{\lambda} \text{ with } T_{\lambda}^{\star} = T_{\lambda}\}.$

(5.11) Proposition. (1) Let S be a g-monoid, let T be an oversemigroup of S with $T \in F(S)$, let \star be a semistar operation on S, and let $\alpha(\star)$ be the ascent of \star to T. If \star is g.f., then $\alpha(\star)$ is g.f.

(2) Let S be a g-monoid, let T be an oversemigroup of S, let \star be a semistar operation on T, and let $\delta(\star)$ be the descent of \star to S. If \star is g.f., then $\delta(\star)$ is g.f.

(3) Let S be a g-monoid, and let $\mathcal{T} = \{T_{\lambda} \mid \lambda \in \Lambda\}$ be the set of oversemigroups T of S with $T \in F(S)$. Then there is a canonical bijection between the set $A = \{\star \mid \star$ is an g.f. semistar operation on S with $S^{\star} \in F(S)\}$ and the set $B = \bigcup_{\lambda} \{\star \mid \star$ is a g.f. semistar operation on T_{λ} with $T_{\lambda}^{\star} = T_{\lambda}\}$.

We must check some more implications of the cancellation properties of semistar operations.

(5.12). Let \star be a semistar operation on S.

* is g.h. if and only if, for every $G \in F(S)$ and $H \in \overline{F}(S)$, $G \subset (G + H)^*$ implies $0 \in H^*$.

A similar characterization holds for every g.g., g.f., f.h., f.g., f.f. semistar operation $\star.$

For instance, \star is f.g. if and only if, for every $F \in f(S)$ and $G \in F(S)$, $F \subset (F+G)^{\star}$ implies $0 \in G^{\star}$.

(5.13). (1) a.b. need not imply g.f.

(2) g.f. need not imply g.g.

Proof. (1) Let S = V be a 2-dimensional valuation semigroup, let $M \supseteq P$ be the prime ideals of V, and let $\star = d$. Let $x \in M - P$, and set $F_1 = (x)$ and $F_2 = S$. Then we have $(P + F_1)^* = (P + F_2)^*$ and $F_1^* \neq F_2^*$. It follows that \star is a.b., and that \star is not g.f.

(2) Let \mathbf{R} be the set of real numbers. Let S = V be an \mathbf{R} -valued valuation semigroup, and let v be the valuation beloging to V with value group \mathbf{R} , and let $\star = d$. We have $(M + M)^{\star} = (M + S)^{\star}$ and $M^{\star} \neq S^{\star}$, and hence \star is not g.g.

Let $(G + F_1)^* = (G + F_2)^*$, where $G \in F(S)$ and $F_1, F_2 \in f(S)$. Let $F_1 = V + a$ and $F_2 = V + b$ with $a, b \in q(S)$, and set inf v(G) = v(x) with $x \in q(S)$. Then inf $v(G + F_1) = v(x) + v(a)$ and inf $v(G + F_2) = v(x) + v(b)$. It follows that v(a) = v(b), hence V + a = V + b, and hence $F_1 = F_2$. Therefore \star is g.f.

(5.14). (1) (cf., [M3, p.69, Corollary 3]). Let \star be a semistar operation on S. If S^{\star} is not integrally closed, then \star is not e.a.b.

(2) (cf., [M3, p.76]) Let S be an integrally closed semigroup. Then there is a f.h. semistar operation \star on S such that $S^{\star} = S$.

Proof. (2) Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be the set of valuation oversemigroups of S. Let \star be the semistar operation $H \mapsto \cap_{\lambda}(H + V_{\lambda})$.

For every λ_0 , we have $H + V_{\lambda_0} = H^* + V_{\lambda_0}$. For, $H^* + V_{\lambda} = (\cap_{\lambda} H + V_{\lambda}) + V_{\lambda_0} \subset (H + V_{\lambda_0}) + V_{\lambda_0} = H + V_{\lambda_0}$.

 $\begin{array}{l} (H+V_{\lambda_0})+V_{\lambda_0}=H+V_{\lambda_0}.\\ \text{Assume that } (F+H_1)^{\star}=(F+H_2)^{\star} \text{ for } F\in \mathrm{f}(S) \text{ and } H_1,H_2\in \bar{\mathrm{F}}(S). \text{ Then,}\\ \text{for every } \lambda,\ F+H_1+V_{\lambda}=(F+H_1)^{\star}+V_{\lambda}=(F+H_2)^{\star}+V_{\lambda}=F+H_2+V_{\lambda}.\\ \text{Since } F+V_{\lambda} \text{ is a principal ideal of } V_{\lambda}, \text{ we have } H_1+V_{\lambda}=H_2+V_{\lambda}. \text{ Therefore,}\\ H_1^{\star}=\cap_{\lambda}(H_1+V_{\lambda})=\cap_{\lambda}(H_2+V_{\lambda})=H_2^{\star}. \end{array}$

Finally, we will call a star operation \star on S to be $g_0.g_0$. if, for every $G, G_1, G_2 \in F(S)$, $(G + G_1)^{\star} = (G + G_2)^{\star}$ implies $G_1^{\star} = G_2^{\star}$; and we will call a star operation \star to be $g_0.f_0$. if, for every $G \in F(S)$ and $F_1, F_2 \in f(S)$, $(G + F_1)^{\star} = (G + F_2)^{\star}$ implies $F_1^{\star} = F_2^{\star}$.

If \star is an a.b. star operation (resp., e.a.b. star operation), then we may call \star to be f₀.g₀ star operation (resp., f₀.f₀. star operation).

(5.15). Let \star be a star operation on S.

- (1) (i) $g_0.g_0$. implies a.b.
- (ii) $g_0.g_0$. implies $g_0.f_0$.
- (iii) $g_0.f_0.$ implies e.a.b.
- (2) (i) a.b. need not imply $g_0.f_0$.
- (ii) $g_0.f_0$. need not imply $g_0.g_0$.

The proof follows from (5.13).

- (5.16). The followings are equivalent.
- (1) Every e.a.b. semistar operation is an f.g. semistar operation.
- (2) Every e.a.b. star operation is an a.b. star operation.

(5.17). Let S be a g-monoid. The followings are equivalent.

- (1) The *d*-semistar operation on S is f.g.
- (2) S is a valuation semigroup.

Proof. (1) \implies (2): Then every $F \in f(S)$ is principal by [MS_i, (8.2) Theorem]. Then S is a valuation semigroup by [MS_k, Lemma 13].

(5.18) (cf., $[MS_i, (8.3)]$). Assume that S is not a group. The followings are equivalent.

- (1) The *d*-semistar operation on S is g.g.
- (2) S is a rank 1 discrete valuation semigroup.

§6 Kronecker function rings of semistar operations

Let S be a g-monoid, let D be a domain, and let D[X;q(S)] be the group ring of q(S) over D. For an element $f = \sum_{1}^{n} a_i X^{s_i}$ with every $a_i \neq 0$ and $s_i \neq s_j$ for every $i \neq j$, the fractional ideal (s_1, \dots, s_n) of S is denoted by $e_S(f)$ (or, by e(f)), and the subset $\{s_1, \dots, s_n\}$ of S is denoted by $\exp(f)$. The additive group $\{(a) \mid a \in q(S)\}$ is called the group of divisibility of S. Let \star be a semistar operation on S. We set $U^* = \{f \in D[X; S^*] - \{0\} \mid e_S(f)^* = S^*\}.$

If the set $\{I^* \mid I \in f(S)\}$ is a group under the mapping $(I_1^*, I_2^*) \longmapsto (I_1^* + I_2^*)^*$, then S is called a Prüfer *-multiplication semigroup.

Let \star be an e.a.b. semistar operation on S. Then there is defined the Kronecker function ring $\operatorname{Kr}(S, \star, D) = \{\frac{f}{g} \mid f, g \in D[X; S] - \{0\}$ such that $e(f)^{\star} \subset e(g)^{\star}\} \cup \{0\}$ (cf., [M1, Proposition 4]). $\operatorname{Kr}(S, \star, D)$ is also denoted simply, by $\operatorname{Kr}(S, \star)$, or by S_{\star}^{D} , or by S_{\star} .

(6.1) (cf., [M1, Proposition 4]). Let \star be an e.a.b. semistar operation on S.

- (1) S_{\star} is a Bezout domain.
- (2) If $I \in f(S)$, then $IS_{\star} \cap q(S) = I^{\star}$ and $IS_{\star} = I^{\star}S_{\star}$.

(6.2) (cf., [G1, Theorem 2.5], [A, Theorem 4], [AB, Theorem 3], $[MS_k, Theorem 25]$, [M1, Theorem 23]). Let \star be an e.a.b. semistar operation on S. Then the

following conditions are equivalent:

- (1) S is a Prüfer \star -multiplication semigroup.
- (2) $D[X; S^*]_{U^*} = S_*.$
- (3) $D[X; S^{\star}]_{U^{\star}}$ is a Prüfer domain.
- (4) S_{\star} is a quotient ring of $D[X; S^{\star}]$.
- (5) Every prime ideal of $D[X; S^*]_{U^*}$ is the contraction of a prime ideal of S_* .
- (6) Every non-zero prime ideal of $D[X; S^*]_{U^*}$ is the extension of a prime ideal of S^* .

(7) Every proper valuation overring of S_{\star} is of the form of $D[X; S^{\star}]_{QD[X; S^{\star}]}$, where Q is a prime ideal of S^{\star} such that $(S^{\star})_Q$ is a valuation oversemigroup of S^{\star} .

(8) S_{\star} is a flat $D[X; S^{\star}]$ -module.

(6.3) (cf., [AB, Corollary 4], [MS_k, Theorem 30], [M1, Theorem 26]). Let \star be an e.a.b. semistar operation on S, and let v_1 be the *v*-star operation on S^{\star} . Assume that v_1 is e.a.b. and S_{\star} is a flat $D[X; S^{\star}]$ -module. Then $S_{\star} = (S^{\star})_{v_1}$.

(6.4) (cf., [G2, (34.11) Theorem], [M1, Remark 29]). Let \star be an e.a.b. semistar operation on S. If S is a Prüfer \star -multiplication semigroup, then the group $\{I^{\star} \mid I \in f(S)\}$ is canonically isomorphic with the group of divisibility of S_{\star} .

In this section, we will study $(6.2) \sim (6.4)$ for any semistar operation on S.

Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be a set of valuation oversemigroups of S. Then the mapping $I \mapsto \bigcap_{\lambda} (I + V_{\lambda})$ from $\overline{F}(S)$ to $\overline{F}(S)$ is a semistar operation, and is called a *w*-semistar operation induced by the set $\{V_{\lambda} \mid \lambda \in \Lambda\}$.

Let v be a valuation on q(S). Let $f = \sum_i a_i X^{s_i} \in D[X; S] - \{0\}$ with every $a_i \neq 0$ and $s_i \neq s_j$ for every $i \neq j$. If we set $w(f) = \min_i \{v(s_i)\}$, then there is a valuation w on q(D[X;S]), and w is called the canonical extension of v to q(D[X;S]).

(6.5) (cf., [M1, Proposition 9]). Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be a set of valuation oversemigroups of S, let w be the w-semistar operation induced by the set $\{V_{\lambda} \mid \lambda \in \Lambda\}$, and let W_{λ} be the canonical extension of V_{λ} to q(D[X;S]). Then w is an a.b. semistar operation on S, and $S_w = \cap_{\lambda} W_{\lambda}$.

(6.6) (Dedekind-Mertens Lemma for semigroups) (cf., [GP, 6.2. Proposition]). Let $f, g \in D[X; S] - \{0\}$. Then there is a positive integer m such that $e(g)^{m+1} + e(f) = e(g)^m + e(fg)$.

(6.7) ([OM, Lemma (4.2)]). Let \star be a semistar operation on S. Let $f, g, f', g' \in D[X; S] - \{0\}$ with $\frac{f}{g} = \frac{f'}{g'}$ such that $(e(f) + e(h))^{\star} \subset (e(g) + e(h))^{\star}$ for some element $h \in D[X; S] - \{0\}$. Then there is an element $h' \in D[X; S] - \{0\}$ such that $(e(f') + e(h'))^{\star} \subset (e(g') + e(h'))^{\star}$.

Set $\operatorname{Kr}(S, \star, D) = \{\frac{f}{g} \mid f, g \in D[X; S] - \{0\}$ such that $(e(f) + e(h))^{\star} \subset (e(g) + e(h))^{\star}$ for some element $h \in D[X; S] - \{0\}\} \cup \{0\}$. (6.7) shows that $\operatorname{Kr}(S, \star, D)$ is a welldefined subset of q(D[X; S]). $\operatorname{Kr}(S, \star, D)$ is also denoted simply, by $\operatorname{Kr}(S, \star)$, or by

 S^D_{\star} , or by S_{\star} . If \star is e.a.b., this coincides with the Kronecker function ring of the e.a.b. semistar operation \star .

(6.8) ([OM, Proposition (4.4)]). S_{\star} is a Bezout domain.

(6.9) ([R, Theorem 2]). Let D be a domain, and let R be an overring of D. Then R is a flat D-module if and only if $R_M = D_{D \cap M}$ for every maximal ideal M of R.

(6.10). Let \star be a semistar operation on S, let $T = S^{\star}$, and let $\alpha(\star)$ be the ascent of \star to T.

(1) We have $\{f \in D[X; S^*] - \{0\} \mid e_S(f)^* = S^*\} = \{f \in D[X; T] - \{0\} \mid e_T(f)^* = T\}$, that is, $U^* = U^{\alpha(*)}$.

(2) S is a Prüfer *-multiplication semigroup if and only if T is a Prüfer $\alpha(\star)$ -multiplication semigroup.

(3) We have $S_{\star} = T_{\alpha(\star)}$.

(4) The set $\{I^* \mid I \in f(S)\}$ and its addition $(I_1^*, I_2^*) \longmapsto (I_1^* + I_2^*)^*$ is identical to the set $\{J^* \mid J \in f(T)\}$ and its addition $(J_1^*, J_2^*) \longmapsto (J_1^* + J_2^*)^*$.

Proof. The proof is almost straightforward from the definitions.

(6.11) Proposition. Let \star be a semistar operation on S. In the following conditions we have that $(1) \Longrightarrow (5) \Longrightarrow (3) \Longrightarrow (4) \Longrightarrow (2)$, and $(1) \Longrightarrow (6) \Longrightarrow (7)$. (1) S is a Prüfer \star -multiplication semigroup.

(1) 5 is a Finer *-inumplication semigroup

(2) S_{\star} is a quotient ring of $D[X; S^{\star}]$.

(3) Every proper valuation overring of S_{\star} is of the form of $D[X; S^{\star}]_{QD[X; S^{\star}]}$, where Q is a prime ideal of S^{\star} such that $(S^{\star})_Q$ is a valuation oversemigroup of S^{\star} .

(4) S_{\star} is a flat $D[X; S^{\star}]$ -module.

(5) $D[X; S^*]_{U^*}$ is a Prüfer domain.

(6) Every prime ideal of $D[X; S^*]_{U^*}$ is the contraction of a prime ideal of S_* .

(7) Every non-zero prime ideal of $D[X; S^{\star}]_{U^{\star}}$ is the extension of a prime ideal of S^{\star} .

Proof. By (6.10), we may assume that $S^* = S$.

(1) implies (5): Then \star is an e.a.b. semistar operation. (5) follows from (6.2).

(5) implies (3): Let W be a proper valuation overring of S_{\star} with maximal ideal N. Set $S_{\star} \cap N = Q, D[X; S]_{U^{\star}} \cap Q = Q', D[X; S] \cap Q' = P'$, and $S \cap P' = P$. Let $f = a_1 X^{s_1} + \dots + a_n X^{s_n} \in P' - \{0\}$ with every $a_i \neq 0$ and $s_i \neq s_j$ for every $i \neq j$. Since $\frac{s_i}{f} \in S_{\star}$ for every *i*, we have that $s_i \in fS_{\star} \subset Q, s_i \in P$, and $f \in PD[X; S]$. It follows that P' = PD[X; S], and hence $Q' = PD[X; S]_{U^{\star}}$. Since $D[X; S]_{U_{\star}}$ is a Prüfer domain, we have $W = ((D[X; S]_{U^{\star}})_{Q'} = D[X; S]_{PD[X;S]}$. Then S_P is a valuation oversemigroup of S, because $D[X; S]_{PD[X;S]} \cap q(S) = S_P$.

(3) implies (4): Let M be a maximal ideal of S_{\star} . Let $W = (S_{\star})_M$, and let N = MW. Since W is of the form $D[X;S]_{PD[X;S]}$, we have $D[X;S] \cap N = PD[X;S]$, and $D[X;S] \cap M = PD[X;S]$. By (6.9), S_{\star} is a flat D[X;S]-module.

(4) implies (2): Let $E = \{f \in D[X; S] - \{0\} \mid \frac{1}{f} \in S_{\star}\}$. Let M be a maximal

ideal of $D[X; S]_E$, and set $M \cap D[X; S] = M_0$. Suppose that $MS_\star = S_\star$. There are elements $f_i \in M$ such that $S_\star = (f_1, \dots, f_n)S_\star$. Clearly, we may assume that $f_i \in M_0$ for every *i*. There is an element $s \in S$ so that, for $f = f_1X^s + f_2X^{2s} + \dots + f_nX^{ns}$, we have $\operatorname{Exp}(f) = \operatorname{Exp}(f_1) \cup \dots \cup \operatorname{Exp}(f_n)$. Then we have $(f_1, \dots, f_n)S_\star = fS_\star$; and have a contradiction of $f \in M_0 \cap E$. It follows that $MS_\star \subsetneq S_\star$. For every maximal ideal M' of S_\star containing MS_\star , we have $M' \cap D[X;S]_E = M$. Let $\{M_\lambda \mid \lambda \in \Lambda\}$ be the set of maximal ideals of $D[X;S]_E$, and let M'_λ be a maximal ideal of S_\star such that $M'_\lambda \cap D[X;S]_E = M_\lambda$ for every λ . Then we have $(S_\star)_{M'_\lambda} = (D[X;S]_E)_{M_\lambda}$ by (6.9) for every λ , and have $\cap_\lambda (D[X;S]_E)_{M_\lambda} = D[X;S]_E$ (cf., [G2, (4.10) Theorem]). It follows that $S_\star = D[X;S]_E$.

 $(1) \Longrightarrow (6) \Longrightarrow (7)$ are easy.

(6.12) (1) ([MS_i, (8.2) Theorem]). Every invertible ideal of S is principal. (2)([MS_k, Lemma 13]). If every finitely generated ideal of S is principal, then S is a valuation semigroup.

(6.13). If the semistar operation \star is not e.a.b., the eight conditions in (6.11) need not be equivalent.

Example: Let S be 1-dimensional which is not integrally closed, and let D = k be a field. Assume that k[X; S] is 1-dimensional. For example, $S = \{0, 2, 3, 4, \dots\}$. Let \star be the *d*-semistar operation on S. Then $k[X; S]_{U^{\star}}$ is a 1-dimensional quasi-local domain. Every non-zero prime ideal of $k[X; S]_{U^{\star}}$ is the extension of a prime ideal of S. But S is not a Prüfer \star -multiplication semigroup by (6.12).

(6.14). Let \star be a semistar operation on S, and let w be a valuation on q(D[X; S])non-negative on S_{\star} with value group Γ . Then the restriction v of w to q(S) is a valuation on q(S) non-negative on S with value group Γ , and the canonical extension of v to q(D[X; S]) is w.

Proof. Let v' be the canonical extension of v to q(D[X; S]). Let $f = a_1 X^{s_1} + \cdots + a_n X^{s_n} \in D[X; S] - \{0\}$ with every $a_i \neq 0$ and $s_i \neq s_j$ for every $i \neq j$. If $v(s_k) = \min_i v(s_i)$, we have $v'(f) = v(s_k)$, and have $w(f) \geq \min_i w(a_i X^{s_i}) = v(s_k)$. Since $\frac{s_k}{f} \in S_*$, we have $0 \leq w(\frac{s_k}{f}) = v(s_k) - w(f)$. It follows that $w(f) = v(s_k) = v'(f)$, and hence w = v'.

(6.15). Let v be the v-semistar operation on S. Let $\{P_{\lambda} \mid \lambda \in \Lambda\}$ be a set of prime ideals of S such that $V_{\lambda} = S_{P_{\lambda}}$ is a valuation overring of S with $S = \bigcap_{\lambda} V_{\lambda}$. Let w be the w-semistar operation induced by the set $\{V_{\lambda} \mid \lambda \in \Lambda\}$. Then we have $S_w = S_v$.

Proof. Let I be a finitely generated ideal of S. Since $S = \bigcap_{\lambda} V_{\lambda}$, it is obvious that $I^w \subset I^v$. Suppose that $I^w \subsetneq I^v$, and choose an element $x \in I^v - I^w$. Then we have $x \notin I + V_{\lambda}$ for some λ . There is an element $a \in S$ such that $I + V_{\lambda} = a + V_{\lambda}$, and there is an element $s \in S - P_{\lambda}$ such that $s + I \subset (a)$. Since $a + V_{\lambda} \lneq x + V_{\lambda}$, we have $x \notin (a - s)$. Since $I \subset (a - s)$, we have $x \notin I^v$; a contradiction. Hence we have $I^w = I^v$. It follows that $S_w = S_v$.

(6.16) Proposition. Let \star be a semistar operation on S, and let v_1 be the v-star operation on S^* . Assume that v_1 is e.a.b., and that S_{\star} is a flat $D[X; S^*]$ -module. Then we have $S_{\star} = (S^{\star})_{v_1}$.

Proof. By (6.10), we may assume that $S^{\star} = S$. Let W be a proper valuation overring of S_{\star} with maximal ideal N. We set $N \cap S_{\star} = Q, Q \cap D[X; S] = P'$ and $P' \cap S = P$. Then we have PD[X; S] = P'. By (6.9), we have $W = (S_{\star})_Q =$ $D[X; S]_{P'} = D[X; S]_{PD[X;S]}$. Since $D[X; S]_{PD[X;S]} \cap q(S) = S_P$, S_P is a valuation oversemigroup of S. Let $\{W_{\lambda} \mid \lambda \in \Lambda\}$ be the set of proper valuation overrings of S_{\star} , let N_{λ} be the maximal ideal of W_{λ} , let $S \cap N_{\lambda} = P_{\lambda}$, let $W_{\lambda} \cap q(S) = S_{P_{\lambda}} = V_{\lambda}$ for every λ , and let w be the w-semistar operation induced by the set $\{V_{\lambda} \mid \lambda \in \Lambda\}$. We have $\cap_{\lambda}W_{\lambda} = S_{\star}$. Since $I^{\star} \subset I^{v_1}$ for every $I \in f(S)$, we have $S_{\star} \subset S_{v_1}$. Since v_1 is e.a.b., we have $S_{v_1} \cap q(S) = S$. It follows that $S_{\star} \cap q(S) = S$, and that $\cap_{\lambda}V_{\lambda} = \cap_{\lambda}W_{\lambda} \cap$ $q(S) = S_{\star} \cap q(S) = S$. We have $S_w = S_{v_1}$ by (6.15). Since W_{λ} is the canonical extension of V_{λ} by (6.14), we have $S_w = \cap_{\lambda}W_{\lambda}$ by (6.5). Therefore $S_{\star} = S_{v_1}$.

(6.17) Proposition. Let \star be a semistar operation on S. Assume that S is a Prüfer \star -multiplication semigroup. Then the group $\{I^{\star} \mid I \in f(S)\}$ is canonically isomorphic onto the group of divisibility of S_{\star} .

Proof. Then \star is an e.a.b. semistar operation. The proof follows from (6.4).

§7 Appendix

(7.1). Let S be an APVS with maximal ideal P, and let $M = \operatorname{Rad}_{q(S)}(P)$. Then there is the smallest oversemigroup T of S such that T is a PVS with maximal ideal M.

Proof. Let H be the unit group of S, and set $T = H \cup M$.

(7.2). Let D be an APVD with maximal ideal P, and let $M = \operatorname{Rad}_{q(D)}(P)$. Then there is the smallest overring T of D such that T is a PVD with maximal ideal M.

Proof. Set $T = (D + M)_M$.

(7.3). Assume that S is a 1-dimensional g-monoid with maximal ideal P. If (P:P) is a valuation semigroup, then S need not be an APVS.

Example: Let V be a 2-dimensional valuation semigroup, let Q be the height 1 prime ideal, and let $q \in Q$. Set P = q + V, and set $S = \{0\} \cup P$. Then P is a prime ideal of S, V = (P : P), and in V, $\operatorname{Rad}_V(P)$ is not the maximal ideal of V. Suppose that $P \supseteq I$ be an ideal of S, and choose $x \in P - I$. We have $nx \in I$ for a sufficiently large n. Hence S is 1-dimensional.

(7.4). There is a 1-dimensional quasi-local domain D with maximal ideal P such that (P : P) is a valuation domain and D is not an APVD.

Example: Let 1, e be linearly independent over Z, and set $\Gamma = Z + Ze$. Introduce the lexicographic order on Γ with 1 < e. Set v(X) = 1 and v(Y) = e. Then we have a valuation v on k(X, Y), where k is a field. The valuation domain V of v is 2dimensional. Let $M \supseteq Q \supseteq (0)$ be the prime ideals of V. Set P = YV, and set D = k + P. Then P is a maximal ideal of D, and (P : P) = V. In V, we see that $\operatorname{Rad}_V(P)$ is not a maximal ideal, and hence D is not an APVD. Let $I \subseteq P$ be a non-zero ideal of D. Assume that $P \supseteq I$ be an ideal of D, and choose $x \in P - I$. We have $nx \in I$ for a sufficiently large n. Hence I is not a prime ideal of D. Hence D is 1-dimensional.

Let \star be a semistar operation on D. If $(I \cap J)^{\star} = I^{\star} \cap J^{\star}$ for all $I, J \in \overline{F}(D)$, then \star is called stable.

M. Fontana and J. Huckaba [FH] gives the following example: Let k be a field, and let $D = k + X^3 k[[X]]$. Then D is an APVD. The v-semistar operation on D is not stable.

For let $I = (X^3, X^4)$ and $J = (X^3, X^5)$. Then $(I \cap J)^v \neq I^v \cap J^v$.

If V is a valuation domain, then every semistar operation \star on V is stable.

(7.5). There is a PVD D and a semistar operation \star on D such that \star is not stable.

Example: Let k be a field with characteristic 0, K be an extension field with $[K:k] = 4, K = k + ku + kv + ks, U_0 = k + ku, W_0 = k + kv + ks, V = K[[X]]$, and D = k + M, where M is the maximal ideal of V. D is a PVD.

Let I be a non-zero fractional ideal of D. Then there is $x \in q(D) - \{0\}$ and a k-subspace U of K with $U \supset k$ such that I = xUD. For, let $v(x) = \min v(I)$ with $x \in I$, where v is the canonical valuation for V. Set $U = x^{-1}I \cap K$.

Set $D^* = D, V^* = V$ and $(U_0 D)^* = V$.

For every 2-dimensional k-subspace U' of K such that $U_0 \neq U' \supset k$, set $(U'D)^* = U'D$.

For every 3-dimensional k-subspace W of K with $W \supset k$, set $(WD)^* = V$.

Then there is canonically defined a mapping \star from $\overline{F}(D)$ to $\overline{F}(D)$, and \star is a semistar operation on D.

Let $I = U_0 D$, and $J = W_0 D$. Then $I^* \cap J^* = V$. $I \cap J = D$, and $(I \cap J)^* = D$.

REFERENCES

[A] J. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21 (1969), 558-563.

[AB] J. Arnold and J. Brewer, Kronecker function rings and flat D[X]-modules, Proc. Amer. Math. Soc. 27 (1971), 483-485.

 $[{\rm BH}]$ A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg. 30(2002), 1591-1606.

[FH] M. Fontana and J. Huckaba, Localizing systems and semistar operations, Non Noetherian Commutative Ring Theory, Dordrecht, Kluwer Academic Publishers, 2000, 169-197.

[G1] R. Gilmer, An embedding theorem for HCF-rings, Proc. Camb. Phil. Soc. 68 (1970), 583-587.

[G2] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.

[GP] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.

[KMOS] M. Kanemitsu, R. Matsuda, N. Onoda and T. Sugatani, Idealizers, complete integral closures and almost pseudo-valuation domains, Kyungpook Math. J. 44 (2004), 557-563.

[M1] R. Matsuda, Kronecker function rings of semistar-operations on semigroups, Math. J. Toyama Univ. 19 (1996), 159-170.

[M2] R. Matsuda, Note on the number of semistar-operations. Math. J. Ibaraki Univ. 31 (1999), 47-53.

[M3] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd. ed. (English), Kaisei, Tokyo, 2002.

[M4] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ. 37 (2005), 53-79.

[M5] R. Matsuda, Note on the number of semistar operations, VI, Focus on Commutative Rings Research, Ayman Badawi (EDT), Nova Science Pub. Inc. 2006, 187-192.

[M6] R. Matsuda, Note on the number of semistar operations, XIV, Math. J. Ibaraki Univ. 40 (2008), 11-17.

[M7] R. Matsuda, Note on almost pseudo-valuation domains, Proc. UAE Math-Day Conference, Nova Science, New York, to appear.

[M8] R. Matsuda, Note on the number of semistar operations, VII, J. Commutative Algebra, to appear.

[M9] R. Matsuda, Semistar operations on almost pseudo-valuation domains, J. Commutative Algebra, to appear.

 $[\rm MS_i]$ R. Matsuda and I. Sato, Note on star-operations and semistar-operations, Bull. Fac. Sci., Ibaraki Univ. 28 (1996), 5-22.

 $[\rm MS_k]$ R. Matsuda and K. Satô, Kronecker function rings of semigroups, Bull. Fac. Sci., Ibaraki Univ. 19 (1987), 31-46.

[O] A. Okabe, Some results on semistar operations, JP J. Algebra, Number theory and Appl. 3 (2003), 187-210.

[OM] A. Okabe and R. Matsuda, Kronecker function rings of semistar operations on semigroups, II, Math. J. Ibaraki Univ. 40 (2008), 1-10.

[P] G. Picozza, Star operations on overrings and semistar operations, Comm. Alg. 33 (2005), 2051-2073.

[R] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799.