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The semistar operations on certain Prüfer domain
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Abstract

Let D be a 1-dimensional Prüfer domain with exactly two maximal ideals.
We determine the semistar operations on D.

Let D be an integral domain, let K be its quotient field, let F(D) be the set of
nonzero fractional ideals of D, and let F̄(D) be the set of nonzero D-submodules of
K. A mapping I 7−→ I? from F̄(D) to F̄(D) is called a semistar operaion on D, if it
satisfies the following conditions: (1) (xI)? = xI? for each x ∈ K \ {0} and I ∈ F̄(D);
(2) I ⊂ I? for each I ∈ F̄(D); (3) (I?)? = I? for each I ∈ F̄(D); (4) I ⊂ J implies
I? ⊂ J? for each I, J ∈ F̄(D). Let Σ′(D) (resp. Σ(D)) be the set of semistar operations
(resp. star operations) on D. We have the following,

Theorem ([H]). Let V be a valuation domain with maximal ideal M .
(1) If M is principal, then |Σ(V )| = 1.
(2) If M is not principal, then |Σ(V )| = 2.
Theorem ([M1]). Let V be an n-dimensional valuation domain, let v be a valua-

tion belonging to V , and let Γ be the value group of v. Let M = Pn % Pn−1 % · · · %
P1 % (0) be the prime ideals of V , and let Hn = {0} $ Hn−1 $ · · · $ H1 $ Γ be
the convex subgroups of Γ. Let m be an integer with n + 1 ≤ m ≤ 2n + 1. Then the
following conditions are equivalent.

(1) |Σ′(V )| = m.
(2) The maximal ideal of VPi is principal for exactly 2n+1−m of i in {1, · · · , n}.
(3) Γ/Hi has a minimal positive element for exactly 2n+1−m of i in {1, · · · , n}.
We want to know |Σ′(D)| for Prüfer domains D. Let Γ be a totally ordered set.

If each nonempty subset S of Γ which is bounded below has its infimum inf (S) in
Γ, then Γ is called complete. In this paper we determine |Σ′(D)| for a 1-dimensional
Prüfer domain D with two maximal ideals. Our result is the following,

Theorem. Let D be a 1-dimensional Prüfer domain with exactly two maximal
ideals M and N , and let Γ (resp. Γ′) be the value group of DM (resp. DN ).

(1) If both M and N are principal, then |Σ(D)| = 1 and |Σ′(D)| = 7.
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(2) If M is principal, and Γ′ is not complete, then |Σ(D)| = 2 and |Σ′(D)| = 14.
(3) If Γ is not complete, and N is principal, then |Σ(D)| = 2 and |Σ′(D)| = 14.
(4) If neither Γ nor Γ′ is complete, then |Σ(D)| = 9 and |Σ′(D)| = 54.

In §2 we will prove (1). In §3 we will prove (2). In §4 we will prove (4). The proof
for (3) is similar to that of (2). §1 is the general case.

Throughout the paper, let D be a 1-dimensional Prüfer domain with exactly two
maximal ideals M and N , let V = DM (resp. W = DN ), let v (resp. w) be a valuation
belonging to V (resp. W ), let Γ (resp. Γ′) be the value group of v (resp. w), and let
K be the quotient field of D. Let A (resp. B) be the D-submodule of K generated by

the subset {1
p
| p ∈ M \ N} (resp. {1

q
| q ∈ N \ M}) of K.

This is a continuation of [M2].

§1 The general case

Throughout the paper, p denotes an element of M \N , and q denotes an element
of N \ M .

(1.1) (1) Each element x ∈ D \{0} can be expressed as 1 or p or q or pq uniquely
up to associates, where p ∈ M \ N and q ∈ N \ M .

(2) Each element x ∈ K \ {0} can be expressed as 1 or p or q or pq or
1
p

or
1
q

or

q

p
or

p

q
or

1
pq

uniquely up to associates.

Proof. (1) Let 0 6= x ∈ M ∩N . Choose an element p ∈ M \N . Since Γ has rank
1, there exists a positive integer n such that v(pn) > v(x). Let p1 = pn + x. Then we
have v(p1) = v(x) and p1 ∈ M \N . Similarly, there exists an element q1 ∈ N \M such
that w(q1) = w(x). Then we have x = p1q1u for a unit u of D.

We note that V = B and W = A.
A fractional ideal A0 ∈ F(D) is called of type α, if there exists a subset {pλ | Λ}

of M \ N so that A0 is generated by the set { 1
pλ

| Λ}, v(A0) is bounded below, and

there does not exist inf v(A0). A fractional ideal B0 ∈ F(D) is called of type β, if there

exists a subset {qσ | Σ} of N \ M so that B0 is generated by the set { 1
qσ

| Σ}, w(B0)

is bounded below, and there does not exist inf w(B0).

(1.2) Let I be a nonzero fractional ideal of D. Then there may arise the following
9-cases:

(1) There exists min v(I), and there exists min w(I);
(2) There exists min v(I), and there exists inf w(I) with inf w(I) 6∈ w(I);
(3) There exists min v(I), and there does not exist inf w(I);
(4) There exists inf v(I) with inf v(I) 6∈ v(I), and there exists min w(I);
(5) There exists inf v(I) with inf v(I) 6∈ v(I), and there exists inf w(I) with
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inf w(I) 6∈ w(I);
(6) There exists inf v(I) with inf v(I) 6∈ v(I), and there does not exist inf w(I);
(7) There does not exist inf v(I), and there exists min w(I);
(8) There does not exist inf v(I), and there exists inf w(I) with inf w(I) 6∈ w(I);
(9) There does not exist inf v(I), and there does not exist inf w(I).

Case (1): There exist elements a, b ∈ I such that v(a) = min v(I) and w(b) =
min w(I). Let (a, b) = (c) for an element c ∈ I. Then we have I = (c).

Case (2): Assume that D $ I and min v(I) = 0. Let w(
1
q0

) = inf w(I) for an

element q0 ∈ N \ M . Then we have I =
1
q0

N and Iv = (
1
q0

).

Let J be a fractional ideal of D such that I ⊂ J ⊂ Iv. Then J is either I or Iv.
Case (3): Assume that D $ I and min v(I) = 0. Let {q ∈ N \ M | 1

q
∈ I} =

{qλ | Λ}. Then the fractional ideal (
1
qλ

| Λ) of D is of type β, and I = (
1
qλ

| Λ). Let

{qσ | Σ} be a subset of N \M so that {w(
1
qσ

) | Σ} is the lower bounds of w(I). Then

we have I = ∩σ(
1
qσ

), hence Iv = I.

Case (5): Assume that D $ I. Let v(
1
p0

) = inf v(I) for an element p0 ∈ M \ N ,

and let w(
1
q0

) = inf w(I) for an element q0 ∈ N \M . Then we have I =
1

p0q0
MN, Iv =

(
1

p0q0
) and Iv \I = { u

p0q0
,

q

p0
,

q

p0q0
,

p

q0
,

p

p0q0
| u is a unit of D, p ∈ M \N, q ∈ N \M}.

Let J be a fractional ideal of D such that I ⊂ J ⊂ Iv. Then J is either I or
(I,

1
p0

) or (I,
1
q0

) or Iv.

Case (6): Assume that D $ I. Let v(
1
p0

) = inf v(I) for an element p0 ∈ M \ N ,

and let {q ∈ N \ M | 1
q
∈ I} = {qλ | Λ}. Then we have I =

1
p0

M(
1
qλ

| Λ), and the

fractional ideal (
1
qλ

| Λ) of D is of type β. Let {qσ | Σ} be a subset of N \ M so that

{w(
1
qσ

) | Σ} is the lower bounds of w(I). Then we have Iv = ∩σ(
1

p0qσ
) =

1
p0

(
1
qλ

| Λ)

and Iv \ I = { u

p0
,

q

p0
,

u

p0qλ
,

q

p0qλ
| q ∈ N \ M,λ ∈ Λ, u is a unit of D}.

Let J be a fractional ideal of D such that I ⊂ J ⊂ Iv. Then J is either I or Iv.
Case (9): Assume that D $ I. Let {p ∈ M \ N | 1

p
∈ I} = {pλ | Λ}, and let

{q ∈ N \ M | 1
q
∈ I} = {qσ | Σ}. Then the fractional ideal (

1
pλ

| Λ) of D is of type

α, the fractional ideal (
1
qσ

| Σ) of D is of type β, and I = (
1
pλ

| Λ)(
1
qσ

| Σ). Let

{pλ′ | Λ′} be a subset of M \N so that {v(
1

pλ′
) | Λ′} is the lower bounds of v(I), and
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let {qσ′ | Σ′} be a subset of N \M so that {w(
1

qσ′
) | Σ′} is the lower bounds of w(I).

Then we have I = ∩λ′,σ′(
1

pλ′qσ′
), hence Iv = I.

Let A0 (resp. B0) be a fractional ideal of D with type α (resp. type β). Then we
have A0 = Av

0, B0 = Bv
0 and A0B0 = (A0B0)v by (1.2).

(1.3) Let A0 (resp. B0) be a fractional ideal of D with type α (resp. type β),
and let x ∈ K \ {0}. If either xM = M or xN = N or xMN = MN or xA0N = A0N
or xB0M = B0M , then (x) = D.

(1.4) Example. Let A1 (resp. A2) be the additive group of all integers Z (resp.
all rational numbers Q), and introduce on each of them the canonical order. Let
A1 ⊕A2 be their direct sum with the lexicographic order: Let x = (a1, a2), y = (b1, b2)
be elements of A1 ⊕ A2 with a2 < b2, then let x < y. Let v0 (resp. w0) be the
projection mapping of A1 ⊕ A2 to the ordered group A1 (resp. A2). Let k be a field,
and let K be the quotient field of the semigroup ring k[X;A1 ⊕ A2]. Let v (resp. w)
be the canonical extension of the valuation v0 (resp. w0) on A1 ⊕ A2 to a valuation
on K, and let V (resp. W ) be the valuation ring on K belonging to v (resp. w), and
let M ′ (resp. N ′) be the maximal ideal of V (resp. W ). Let D = V ∩ W , and let
M = M ′ ∩ D and N = N ′ ∩ D. Then we have V = DM ,M ′ = MV,W = DN and
N ′ = NW . We have Γ = Z, and Γ′ = Q is not complete. Let r be a real number with

Q 63 r < 0, and le {q ∈ N \ M | w(
1
q
) > r} = {qσ | Σ}. Then the fractional ideal

(
1
qσ

| Σ) of D has type β. Let I = M(
1
qσ

) | Σ). Then there exists inf v(I) with inf

v(I) 6∈ v(I), and there does not exist inf w(I).

(1.5) Let ? be a star operation on D. Then we have that M? is either M or D, N?

is either N or D, and (MN)? is either MN or M or N or D. Either (A0N)? = A0N
for each fractional ideal A0 of D with type α, or (A0N)? = A0 for each fractional ideal
A0 of D with type α. Either (B0M)? = B0M for each fractional ideal B0 of D with
type β, or (B0M)? = B0 for each fractional ideal B0 of D with type β.

Proof. Suppose that (A1
0N)? = A1

0N and (A2
0N)? = A2

0 for some fractional ideals

A1
0, A

2
0 of D with type α. There exists an element p ∈ M \ N such that A2

0 ⊂ 1
p
A1

0. It

follows that A2
0 ⊂ 1

p
A1

0N ; a contradiction.

Let ? be a star operation on D. If (A0N)? = A0N for each fractional ideal A0 of
D with type α, and (B0M)? = B0M for each fractional ideal B0 of D with type β,
then we say that ? is of type (α, β). If (A0N)? = A0N for each fractional ideal A0 of
D with type α, and (B0M)? = B0 for each fractional ideal B0 of D with type β, then
we say that ? is of type (α, β′). If (A0N)? = A0 for each fractional ideal A0 of D with
type α, and (B0M)? = B0M for each fractional ideal B0 of D with type β, then we
say that ? is of type (α′, β). If (A0N)? = A0 for each fractional ideal A0 of D with
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type α, and (B0M)? = B0 for each fractional ideal B0 of D with type β, then we say
that ? is of type (α′, β′).

(1.6) We have |Σ(D)| ≤ 64.

Proof. (1.2) implies that {I ∈ F(D) | I $ Iv} ⊂ {xM, xN, xMN, xA0N,xB0M |
x ∈ K \ {0}, A0 (resp. B0) is a fractional ideal of D with type α (resp. type β)}. Let
? be a star operation on D. Then we have that M? is either M or D, N? is either N
or D, and (MN)? is either MN or M or N or D. ? has type (α, β) or type (α, β′) or
type (α′, β) or type (α′, β′).

(1.7) Let I ∈ F̄(D)\ F(D). There may arise the following 7-cases:
(1) There exists min v(I), and w(I) = Γ′;
(2) v(I) is bounded below, there exists inf v(I) with inf v(I) 6∈ v(I), and w(I) =

Γ′;
(3) v(I) is bounded below, there does not exist inf v(I), and w(I) = Γ′;
(4) v(I) = Γ, and there exists min w(I);
(5) v(I) = Γ, and there exists inf w(I) with inf w(I) 6∈ w(I);
(6) v(I) = Γ, w(I) is bounded below, and there does not exist inf w(I);
(7) v(I) = Γ, and w(I) = Γ′.
Case (1): Assume that min v(I) = 0. Then we have I = B.

Case (2): Assume that v(
1
p0

) = inf v(I) for an element p0 ∈ M \ N . Let

{p ∈ M \ N | 1
p
∈ I} = {pλ | Λ}. Then we have (

1
pλ

| Λ) =
1
p0

M, I =
1
p0

MB, and

Mv = D.
Case (3): Assume that I % D. Let {p ∈ M \ N | 1

p
∈ I} = {pλ | Λ}, and let

A0 = (
1
pλ

| Λ). Then A0 is a fractional ideal of D with type α, and I = A0B.

Case (7): I = K.

Let Id′
= I (resp. Iv′

= (I−1)−1, Ie = K) for each I ∈ F̄(D). Then d′ (resp.
v′, e) is a semistar operation on D, and is called the d′-operation (resp. v′-operation,
e-operation) on D.

Let I ⊂ J be an inclusion relation of elements of F̄(D). A mapping ? from F̄(D)
to F̄(D) is called monotone for I ⊂ J , if I? ⊂ J?.

(1.8) Let ? be a semistar operation on D.
(1) A? is either A or K. B? is either B or K.
(2) (AN)? is either AN or A or K. (BM)? is either BM or B or K.
(3) If A? = A, then (AB0)? = AB0 for each fractional ideal B0 of D with type

β. If B? = B, then (A0B)? = A0B for each fractional ideal A0 of D with type α.

Proof. (1) Assume that A $ A?. There exists an element q ∈ N \ M such that
1
q
∈ A?. Then we have

1
q
A ⊂ A?, and A? =

1
q
A?. Hence A? = K.



6 R. Matsuda

(2) We may assume that A? = A. We have (AN)? ⊂ A. Let AN $ J ⊂ A be
a D-submodule of K. There exists an element x ∈ J with w(x) = 0. It follows that
1
p0

∈ J for some p0 ∈ M \ N . Then we have D ⊂ J and
1
p
∈ J for each p ∈ M \ N .

Hence J = A.
(3) Suppose that AB0 $ (AB0)?. There exists an element q1 ∈ N \ M such that

AB0 63 1
q1

∈ (AB0)?. Then w(
1
q1

) is a lower bound of w(B0), and AB0 ⊂ A
1
q1

⊂

(AB0)?. There exists an element q2 ∈ N \ M with w(
1
q1

) < w(
1
q2

) so that w(
1
q2

)

is a lower bound of w(B0). Then we have AB0 ⊂ A
1
q2

$ A
1
q1

⊂ (AB0)?. Hence

(AB0)? ⊂ A
1
q2

$ A
1
q1

⊂ (AB0)?; a contradiction.

(1.9) We have |Σ′(D)| < ∞.

Proof. Let Σ′
0 be the set of extensions of star operations on D to semistar

operations on D. It is sufficient to prove that |Σ′
0| < ∞.

Let ? be an element of Σ′
0. Then the restriction ?|F (D) belongs to the finite set

Σ(D). A? is eitherA or K, B? is either B or K, (AN)? is either AN or A or K, and
(BM)? is either BM or B or K.

Let ?′ be an element of Σ′
0 satisfying the following conditions: ?|F (D) = ?′|F (D), A

? =
A?′

, B? = B?′
, (AN)? = (AN)?′

and (BM)? = (BM)?′
. To prove that |Σ′

0| < ∞, it is
sufficient to prove that ? = ?′.

Let I ∈ F̄(D). We must show that I? = I?′
.

If I ∈ F(D), we have I? = I?′
, since ?|F (D) = ?′|F (D).

Assume that there exists min v(I) and that w(I) = Γ′. Then I = xB for some
element x ∈ K. Then we have I? = xB? = xB?′

= I?′
.

Assume that there exists inf v(I) with inf v(I) 6∈ v(I) and that w(I) = Γ′. Then
we have I = xBM for some element x ∈ K. Hence I? = I?′

.
Assume that v(I) is bounded, there does not exist inf v(I), and w(I) = Γ′. There

exists an element x ∈ K and a fractional ideal A0 with type α such that xI = A0B.

If B? = K, then I? = I?′
= K. If B? = B, then I? = I?′

=
1
x

A0B.

Assume that v(I) = Γ and w(I) = Γ′. Then I = K. Hence I? = I?′
.

The proof is complete.

§2 The case where both M and N are principal

This case is just the case of [M2, Proposition 6 (2)]. We will review it for our
convenience. Thus, each fractional ideal of D is principal. Hence we have Σ(D) = {d}.

We have F̄(D)\F(D) = {xA, xB,K | x ∈ K \ {0}}.
Let ? be a semistar operation on D. Then A? is either A or K, and B? is either

B or K.

(2.1) (1) Set I?
0 = I0 for each I0 ∈ F(D), and set A? = A and B? = B. Then
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there is determined a semistar operation ? on D uniquely, and ? = d′.
(2) Set I?

0 = I0 for each I0 ∈ F(D), and set A? = A and B? = K. Then there is
determined a semistar operation ? on D uniquely.

(3) Set I?
0 = I0 for each I0 ∈ F(D), and set A? = K and B? = B. Then there is

determined a semistar operation ? on D uniquely.
(4) Set I?

0 = I0 for each I0 ∈ F(D), and set A? = K and B? = K. Then there is
determined a semistar operation ? on D uniquely, and ? = v′.

(2.2) We have |Σ(D)| = 1 and |Σ′(D)| = 7.

§3 The case where M is principal and Γ′ is not complete

Then N is not principal.

(3.1) We have {I ∈ F(D) | I $ Iv} = {xN | x ∈ K \ {0}}.

If xN ⊂ N for an element x ∈ K \ {0}, then x ∈ D.

(3.2) (1) Set N?1 = N . Then there is determined a star operation ?1 on D
uniquely, and then ?1 = d.

(2) Set N?2 = D. Then there is determined a star operation ?2 on D uniquely,
and then ?2 = v.

(3.3) We have |Σ(D)| = 2 and Σ(D) = {d, v }.

(3.4) We have F̄(D)\ F(D) = {xA, xB, xAN, xAB0,K | x ∈ K \ {0}, B0 is a
fractional ideal of D with type β}.

(3.5) Let ? be a semistar operation on D. Then we have that A? is either A
or K, B? is either B or K, and (AN)? is either AN or A or K. If A? = A, then
(AB0)? = AB0 for each fractional ideal B0 of D with type β.

(3.6) Let ?i be a star operation on D.
(1) Set I

?1
i

0 = I?i
0 for each I0 ∈ F(D), and set A?1

i = A,B?1
i = B and (AN)?1

i =
AN . Then there is determined a unique mapping ?1

i from F̄(D) to F̄(D).

(2) Set I
?2

i
0 = I?i

0 for each I0 ∈ F(D), and set A?2
i = A,B?2

i = B and (AN)?2
i = A.

Then there is determined a unique mapping ?2
i from F̄(D) to F̄(D).

(3) Set I
?3

i
0 = I?i

0 for each I0 ∈ F(D), and set A?3
i = A,B?3

i = K and (AN)?3
i =

AN . Then there is determined a unique mapping ?3
i from F̄(D) to F̄(D).

(4) Set I
?4

i
0 = I?i

0 for each I0 ∈ F(D), and set A?4
i = A,B?4

i = K and (AN)?4
i = A.

Then there is determined a unique mappping ?4
i from F̄(D) to F̄(D).

(5) Set I
?5

i
0 = I?i

0 for each I0 ∈ F(D), and set A?5
i = K and B?5

i = B. Then there
is determined a unique mapping ?5

i from F̄(D) to F̄(D).

(6) Set I
?6

i
0 = I?i

0 for each I0 ∈ F(D), and set A?6
i = K and B?6

i = K. Then there
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is determined a unique mapping ?6
i from F̄(D) to F̄(D).

(3.7) Each ?j
i satisfies the following conditions: (xI)? = xI? for each x ∈ K \{0}

and I ∈ F̄(D); I ⊂ I? for each I ∈ F̄(D); and (I?)? = I? for each I ∈ F̄(D).

(3.8) Let B0 be a fractional ideal of D with type β, and let x ∈ K \ {0}.
If xN ⊂ A, then (x) ⊂ A.
If xN ⊂ B, then (x) ⊂ B.
If xN ⊂ AB0, then (x) ⊂ AB0.
If xAN ⊂ A, then xA ⊂ A.
If xAN ⊂ AB0, then xA ⊂ AB0.

Proof. x is either u or p or q or pq or
1
p

or
1
q

or
q

p
or

p

q
or

1
pq

, where p ∈

M \ N, q ∈ N \ M , and u is a unit of D.

(3.9) ?1
1 is a semistar operation on D, and ?1

1 = d′.
?2
1 is a semistar operation on D.

?2
2 is a semistar operation on D.

?3
1 is a semistar operation on D.

?4
1 is a semistar operation on D.

?4
2 is a semistar operation on D.

?5
1 is a semistar operation on D.

?5
2 is a semistar operation on D.

?6
1 is a semistar operation on D.

?6
2 is a semistar operation on D, and ?6

2 = v′.

(3.10) ?1
2 is not monotone for N ⊂ AN . ?3

2 is not monotone for N ⊂ AN .

(3.11) |Σ′(D)| = 14.

§4 The case where neither Γ nor Γ′ is complete

Then neither M nor N is principal.

(4.1) We have {I ∈ F(D) | I $ Iv} = {xM, xN, xMN, xA0N,xB0M | x ∈
K \ {0}, A0 (resp. B0) is a fractional ideal of D with type α (resp. type β)}.

(4.2) Let ? be a star operation on D. Then we have that M? is either M or D,
N? is either N or D, and (MN)? is either MN or M or N or D. ? has the type (α, β)
or (α, β′) or (α′, β) or (α′, β′).

(4.3) Let A0 (resp. B0) be a fractional ideal of D with type α (resp. type β).
(1) Set M?1 = M , N?1 = N , (A0N)?1 = A0N and (B0M)?1 = B0M . Then there

is determined a unique mapping ?1 from F(D) to F(D).
(2) Set M?2 = M , N?2 = N , (A0N)?2 = A0N and (B0M)?2 = B0. Then there
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is determined a unique maping ?2 from F(D) to F(D).
(3) Set M?3 = M , N?3 = N , (A0N)?3 = A0 and (B0M)?3 = B0M . Then there

is determined a unique mapping ?3 from F(D) to F(D).
(4) Set M?4 = M , N?4 = N , (A0N)?4 = A0 and (B0M)?4 = B0. Then there is

determined a unique mapping ?4 from F(D) to F(D).
(5) Set M?5 = M , N?5 = D and (B0M)?5 = B0M . Then there is determined a

unique mapping ?5 from F(D) to F(D).
(6) Set M?6 = M , N?6 = D and (B0M)?6 = B0. Then there is determined a

unique mapping ?6 from F(D) to F(D).
(7) Set M?7 = D, N?7 = N and (A0N)?7 = A0N . Then there is determined a

unique mapping ?7 from F(D) to F(D).
(8) Set M?8 = D, N?8 = N and (A0N)?8 = A0. Then there is determined a

unique mapping ?8 from F(D) to F(D).
(9) Set M?9 = D and N?9 = D. Then there is determined a unique mapping ?9

from F(D) to F(D).

(4.4) Let A0 (resp. B0) be a fractional ideal of D with type α (resp. type β),
and let x ∈ K \ {0}.

If xM ⊂ D, then (x) ⊂ D.
If xM ⊂ N , then (x) ⊂ N .
If xM ⊂ A0N , then (x) ⊂ A0N .
If xM ⊂ B0M , then (x) ⊂ B0.
If xN ⊂ D, then (x) ⊂ D.
If xN ⊂ M , then (x) ⊂ M .
If xN ⊂ A0N , then (x) ⊂ A0.
If xN ⊂ B0M , then (x) ⊂ B0M .
If xMN ⊂ D, then (x) ⊂ D.
If xMN ⊂ M , then xM ⊂ M .
If xMN ⊂ M , then xN ⊂ D.
If xMN ⊂ N , then xM ⊂ D.
If xMN ⊂ N , then xN ⊂ N .
If xMN ⊂ A0N , then (x) ⊂ A0.
If xMN ⊂ B0M , then (x) ⊂ B0.
If xA0N ⊂ D, then xA0 ⊂ D.
If xA0N ⊂ M , then xA0 ⊂ M .
If xA0N ⊂ N , then xA0 ⊂ N .
If xA0N ⊂ MN , then xA0 ⊂ MN .
If xA0N ⊂ A0N , then xA0 ⊂ A0.
If xA0N ⊂ B0M , then xA0 ⊂ B0M .
If xB0M ⊂ D, then xB0 ⊂ D.
If xB0M ⊂ M , then xB0 ⊂ M .
If xB0M ⊂ N , then xB0 ⊂ N .
If xB0M ⊂ MN , then xB0 ⊂ MN .
If xB0M ⊂ A0N , then xB0 ⊂ A0N .
If xB0M ⊂ B0M , then xB0 ⊂ B0.
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(4.5) Each ?i is a star operation on D. We have ?1 = d and ?9 = v.

(4.6) |Σ(D)| = 9.

(4.7) We have F̄(D)\ F(D) = {xA, xB, xAN, xBM,xAB0, xA0B,K | x ∈ K \
{0}, A0 (resp. B0) is a fractional ideal of D with type α (resp. type β)}.

(4.8) Let ? be a semistar operation on D. Then we have that A? is either A or
K, B? is either B or K, (AN)? is either AN or A or K, and (BM)? is either BM or
B or K. If A? = A, then (AB0)? = AB0 for each fractional ideal B0 of D with type
β, and if B? = B, then (A0B)? = A0B for each fractional ideal A0 of D with type α.

(4.9) Let ?i be a star operation on D.
(1) Set I

?1
i

0 = I?i
0 for each I0 ∈ F(D), and set A?1

i = A, B?1
i = B, (AN)?1

i = AN

and (BM)?1
i = BM . Then there is determined a unique mapping ?1

i from F̄(D) to
F̄(D).

(2) Set I
?2

i
0 = I?i

0 for each I0 ∈ F(D), and set A?2
i = A, B?2

i = B, (AN)?2
i = AN

and (BM)?2
i = B. Then there is determined a unique mapping ?2

i from F̄(D) to F̄(D).
(3) Set I

?3
i

0 = I?i
0 for each I0 ∈ F(D), and set A?3

i = A,B?3
i = B, (AN)?3

i = A

and (BM)?3
i = BM . Then there is determined a unique mapping ?3

i from F̄(D) to
F̄(D).

(4) Set I
?4

i
0 = I?i

0 for each I0 ∈ F(D), and set A?4
i = A,B?4

i = B, (AN)?4
i = A and

(BM)?4
i = B. Then there is determined a unique mappping ?4

i from F̄(D) to F̄(D).

(5) Set I
?5

i
0 = I?i

0 for each I0 ∈ F(D), and set A?5
i = A,B?5

i = K and (AN)?5
i =

AN . Then there is determined a unique mapping ?5
i from F̄(D) to F̄(D).

(6) Set I
?6

i
0 = I?i

0 for each I0 ∈ F(D), and set A?6
i = A,B?6

i = K and (AN)?6
i = A.

Then there is determined a unique mapping ?6
i from F̄(D) to F̄(D).

(7) Set I
?7

i
0 = I?i

0 for each I0 ∈ F(D), and set A?7
i = K,B?7

i = B and (BM)?7
i =

BM . Then there is determined a unique mapping ?7
i from F̄(D) to F̄(D).

(8) Set I
?8

i
0 = I?i

0 for each I0 ∈ F(D), and set A?8
i = K,B?8

i = B and (BM)?8
i = B.

Then there is determined a unique mapping ?8
i from F̄(D) to F̄(D).

(9) Set I
?9

i
0 = I?i

0 for each I0 ∈ F(D), and set A?9
i = K and B?9

i = K. Then there
is determined a unique mapping ?9

i from F̄(D) to F̄(D).

(4.10) Each ?j
i satisfies the following conditions: (xI)? = xI? for each x ∈ K\{0}

and I ∈ F̄(D); I ⊂ I? for each I ∈ F̄(D); and (I?)? = I? for each I ∈ F̄(D).

(4.11) Let x ∈ K \ {0}, and let A0 (resp. B0) be a fractional ideal of D with
type α (resp. type β).

If xM ⊂ AN , then (x) ⊂ AN .
If xM ⊂ BM , then (x) ⊂ B.
If xM ⊂ AB0, then (x) ⊂ AB0.
If xM ⊂ A0B, then (x) ⊂ A0B.
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If xN ⊂ AN , then (x) ⊂ A.
If xN ⊂ BM , then (x) ⊂ BM .
If xN ⊂ AB0, then (x) ⊂ AB0.
If xN ⊂ A0B, then (x) ⊂ A0B.
If xMN ⊂ AN , then (x) ⊂ A.
If xMN ⊂ BM , then (x) ⊂ B.
If xMN ⊂ AB0, then (x) ⊂ AB0.
If xMN ⊂ A0B, then (x) ⊂ A0B.
If xA0N ⊂ AN , then xA0 ⊂ A.
If xA0N ⊂ BM , then xA0 ⊂ BM .
If xA0N ⊂ AB0, then xA0 ⊂ AB0.
If xA0N ⊂ A0B, then xA0 ⊂ A0B.
If xB0M ⊂ AN , then xB0 ⊂ AN .
If xB0M ⊂ BM , then xB0 ⊂ B.
If xB0M ⊂ AB0, then xB0 ⊂ AB0.
If xB0M ⊂ A0B, then xB0 ⊂ A0B.

(4.12) Let I ∈ F(D) and J ∈ F̄(D) such that I ⊂ J . Then each member in
{?1

1, ?
2
1, ?

2
2, ?2

7, ?
3
1, ?3

3, ?3
5, ?

4
1, ?

4
2, ?

4
3, ?

4
4, ?4

5, ?
4
6, ?

4
7, ?

4
8, ?

4
9, ?5

1, ?
5
2, ?

5
7, ?

6
1, ?

6
2, ?6

3, ?
6
4, ?

6
5, ?

6
6, ?

6
7,

?6
8, ?

6
9, ?

7
1, ?

7
3, ?

7
5, ?8

1, ?
8
2, ?

8
3, ?

8
4, ?

8
5, ?8

6, ?
8
7, ?

8
8, ?

8
9, ?

9
1, ?9

2, ?
9
3, ?

9
4, ?

9
5, ?

9
6, ?9

7, ?
9
8, ?

9
9} is mono-

tone for I ⊂ J .

(4.13) (1) Each of ?1
2, ?

1
7, ?

3
2, ?

3
4, ?

3
6, ?

3
7, ?

3
8, ?

3
9, ?

7
2, ?

7
4, ?

7
6, ?

7
7, ?

7
8, ?

7
9 is not monotone

for B0M ⊂ BM .
(2) Each of ?1

3, ?
1
4, ?

1
5, ?

1
6, ?

1
8, ?

1
9, ?

2
3, ?

2
4, ?

2
5, ?

2
6, ?

2
8, ?

2
9, ?

5
3, ?

5
4, ?

5
5, ?

5
6, ?

5
8, ?

5
9 is not mono-

tone for A0N ⊂ AN .

(4.14) Let A0 (resp. B0) be a fractional ideal of D with type α (resp. type β),
and let x ∈ K \ {0}.

If xAN ⊂ A, then xA ⊂ A.
If xAN ⊂ AB0, then xA ⊂ AB0.
If xBM ⊂ B, then xB ⊂ B.
If xBM ⊂ A0B, then xB ⊂ A0B.

(4.15) Each member in {?1
1, ?2

1, ?
2
2, ?

2
7, ?

3
1, ?

3
3, ?3

5, ?
4
1, ?

4
2, ?

4
3, ?

4
4, ?4

5, ?
4
6, ?

4
7, ?

4
8, ?

4
9,

?5
1, ?

5
2, ?

5
7, ?

6
1, ?

6
2, ?6

3, ?
6
4, ?

6
5, ?

6
6, ?

6
7, ?6

8, ?
6
9, ?

7
1, ?

7
3, ?

7
5, ?8

1, ?
8
2, ?

8
3, ?

8
4, ?

8
5, ?8

6, ?
8
7, ?

8
8, ?

8
9, ?

9
1, ?9

2,
?9
3, ?9

4, ?
9
5, ?

9
6, ?9

7, ?
9
8, ?

9
9} is a semistar operation on D. We have ?1

1 = d′ and ?9
9 = v′.

(4.16) We have | Σ′(D) | = 54.
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