Caloric morphisms between different radial metrics on semi-euclidean spaces of same dimension

Katsunori Shimomura*
Dedicated to Professor Yoshihiro Mizuta on the occasion of his sixtieth birthday

Abstract

This paper generalizes and improves the result of [8] to caloric morphisms between manifolds with different radial semi-euclidean metrics. It is based on the similar arguments as were used in [7] and [8] (cf. [4], [5], [6]), but it succeed to remove the technical assumption from the main result of [8].

1. Introduction

In [6], we defined the notion of caloric morphism, the transformation which preserves the solutions of the heat equation, between semi-riemannian manifolds, and obtained a characterization theorem. The Appell transformation is a typical example in euclidean spaces.

Let $n \geqq 2$ and (M, g) be an n-dimensional semi-riemannian manifold. We denote by Δ_{g} the Laplace-Beltrami operator on (M, g), which is given in a local coordinate $\left(x_{i}\right)_{i=1}^{n}$ by

$$
\Delta_{g} u=\sum_{i, j=1}^{n} \frac{1}{\sqrt{|\operatorname{det} g|}} \frac{\partial}{\partial x_{i}}\left(\sqrt{|\operatorname{det} g|} g^{i j} \frac{\partial u}{\partial x_{j}}\right)
$$

where $\operatorname{det} g=\operatorname{det}\left(g_{i j}\right)$ and $\left(g^{i j}\right)$ denotes the inverse matrix of $\left(g_{i j}\right)$.
Definition 1.1. A C^{2}-function $u(t, x)$ defined on an open set $D \subset \mathbb{R} \times M$ is said to be caloric if u satisfies the heat equation

$$
\frac{\partial u}{\partial t}-\Delta_{g} u=0
$$

on D. The operator $H_{g}:=\frac{\partial}{\partial t}-\Delta_{g}$ is called the heat operator on $\mathbb{R} \times M$.

[^0]Definition 1.2. Let M and N be semi-riemannian manifolds, f a C^{2}-mapping from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ and φ a strictly positive C^{2}-function on D. A pair (f, φ) is said to be a caloric morphism, if f and φ satisfy the following conditions:
(1) $f(D)$ is a domain in $\mathbb{R} \times N$;
(2) For any caloric function u defined on an open set E in $\mathbb{R} \times N$, the function $\varphi \cdot(u \circ f)$ is caloric on $f^{-1}(E)$.

Let $n \geqq 2$ and $\gamma=\left(\gamma_{i j}\right)$ be a non-degenerate real symmetric (n, n)-matrix. Assume that γ is not negative definite. Then the set $M_{0}=\left\{x \in \mathbb{R}^{n} ; \gamma(x, x)>0\right\}$ is not empty and we consider M_{0} as an open set of n-dimensional semi-euclidean space with the inner product

$$
\gamma(x, y)=\sum_{i, j} \gamma_{i j} x_{i} y_{j}
$$

We write $\langle x\rangle=\sqrt{\gamma(x, x)}$ for $x \in M_{0}$.
Let ρ be a strictly positive C^{∞}-function defined on an open interval $J_{\rho} \subset \mathbb{R}_{+}:=$ $(0, \infty)$ and let $M=M_{0} \cap\left\{x ;\langle x\rangle \in J_{\rho}\right\}$. We consider the semi-riemannian manifold (M, g) with the metric of form

$$
g(x)=\rho(\langle x\rangle) \gamma
$$

We call the metric of this type radial metric.
In our previous paper [8], we considered caloric morphisms with respect to a radial metric such that f has one of the following forms:

$$
f(t, x)=\left(f_{0}(t), \nu(t) R(t) x\right) \quad \text { or } \quad f(t, x)=\left(f_{0}(t),\langle x\rangle^{-2} \nu(t) R(t) x\right),
$$

where $\nu(t)$ is a strictly positive C^{∞}-function and $R(t)$ is an $O_{\gamma}(n)$-valued C^{∞}-function, where $O_{\gamma}(n):=\left\{R ; R \gamma^{-1 t} R=\gamma^{-1}\right\}$. In [8], we determined all the caloric morphisms under the assumption that $f(D) \cap D \neq \emptyset$.

The aim of this paper is to generalize the results in [8] to caloric morphisms between two different radial metrics on semi-riemannian spaces of same dimension. It is remarkable that this generalization makes it possible to remove the assumption $f(D) \cap D \neq \emptyset$ from the main result of [8].

Let $\gamma=\left(\gamma_{i j}\right)$ and $\eta=\left(\eta_{i j}\right)$ be two non-degenerate real symmetric ($\left.n, n\right)$-matrices ($n \geqq 2$), and consider two n-dimensional semi-euclidean spaces with the inner products $\gamma(x, y)=\sum_{i, j} \gamma_{i j} x_{i} y_{j}$ and $\eta(x, y)=\sum_{i, j} \eta_{i j} x_{i} y_{j}$. Assume that neither γ nor η is negative definite. Then the sets $M_{0}=\left\{x \in \mathbb{R}^{n} ; \gamma(x, x)>0\right\}$ and $N_{0}=\left\{y \in \mathbb{R}^{n} ; \eta(y, y)>\right.$ $0\}$ are not empty. For $x \in M_{0}$ and $y \in N_{0}$, we can put

$$
\langle x\rangle_{\gamma}=\sqrt{\gamma(x, x)} \quad \text { and } \quad\langle y\rangle_{\eta}=\sqrt{\eta(y, y)},
$$

respectively. We define the set $O_{\gamma, \eta}(n)$ as

$$
O_{\gamma, \eta}(n)=\left\{R \in G L(n, \mathbb{R}) ; R \gamma^{-1 t} R=\eta^{-1}\right\} .
$$

Let ρ and σ are strictly positive C^{∞}-functions defined on open intervals $J_{\rho}, J_{\sigma} \subset$ \mathbb{R}_{+}, respectively and let $M:=\left\{x \in M_{0} ;\langle x\rangle_{\gamma} \in J_{\rho}\right\}$ and $N:=\left\{y \in N_{0} ;\langle y\rangle_{\eta} \in J_{\sigma}\right\}$. We consider two semi-riemannian manifolds (M, g) and (N, h) with metrics of forms

$$
g=\rho\left(\langle x\rangle_{\gamma}\right) \gamma \quad \text { and } \quad h=\sigma\left(\langle y\rangle_{\eta}\right) \eta,
$$

respectively.
Let (f, φ) be a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that $f(t, x)$ has one of the following forms:

$$
\begin{equation*}
f(t, x)=\left(f_{0}(t), A(t) x\right) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t, x)=\left(f_{0}(t),\langle x\rangle_{\gamma}^{-2} A(t) x\right) \tag{b}
\end{equation*}
$$

where $A(t) \in G L(n, \mathbb{R})$ is a C^{∞}-function defined on the open interval $I_{0}=\{t \in$ $\left.\mathbb{R} ;\left(\{t\} \times \mathbb{R}^{n}\right) \cap D \neq \emptyset\right\}$.

Our main result is the following
Theorem 1.1. Let $M=\left\{x \in M_{0} ;\langle x\rangle_{\gamma} \in J_{\rho}\right\}$ and $N=\left\{y \in N_{0} ;\langle y\rangle_{\eta} \in J_{\sigma}\right\}$ are semi-riemannian manifolds with metrics $g=\rho\left(\langle x\rangle_{\gamma}\right) \gamma$ and $h=\sigma\left(\langle y\rangle_{\eta}\right) \eta$, respectively. If (f, φ) be a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that the mapping f has the form (a) or (b) in the above, then one of the following cases occurs:

Case 1-a. $n=2, \rho(r)=p_{1} r^{-2}, \sigma(r)=p_{2} r^{-2}$,

$$
\begin{aligned}
f(t, x) & =\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t} R_{0} e^{t \gamma^{-1}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right)}\right. \text {) } \\
\varphi(t, r, \theta) & =C r^{\frac{1}{2} a p_{1}} \exp \frac{p_{1}}{2}\left(\frac{b}{\sqrt{|\operatorname{det} \gamma|}} \theta+\frac{1}{2}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right) .
\end{aligned}
$$

Case 1-b. $n=2, \rho(r)=p_{1} r^{-2}, \sigma(r)=p_{2} r^{-2}$,

$$
\begin{aligned}
f(t, x) & =\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t}\langle x\rangle_{\gamma}^{-2} R_{0} e^{t \gamma^{-1}}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right) x\right) \\
\varphi(t, r, \theta) & =C r^{-\frac{1}{2} a p_{1}} \exp \frac{p_{1}}{2}\left(\frac{b}{\sqrt{|\operatorname{det} \gamma|}} \theta+\frac{1}{2}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right) .
\end{aligned}
$$

In the cases 1-a and 1-b, $a, b, d \in \mathbb{R}, c, C, p_{1}, p_{2} \in \mathbb{R}_{+}, R_{0} \in O_{\gamma, \eta}(2)$, and (r, θ) is the polar coordinate of \mathbb{R}^{2} with respect to γ (see $\S 4$ below).

Case 2-a. $n \geqq 2, \rho(r)=p_{1} r^{-2}, \sigma(r)=p_{2} r^{-2}$,

$$
f(t, x)=\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t} R_{0} x\right), \quad \varphi(t, x)=C\langle x\rangle_{\gamma}^{\frac{1}{2} a p_{1}} \exp \left(\frac{p_{1}}{4} a^{2} t\right)
$$

Case 2-b. $n \geqq 2, \rho(r)=p_{1} r^{-2}, \sigma(r)=p_{2} r^{-2}$,

$$
f(t, x)=\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t}\langle x\rangle_{\gamma}^{-2} R_{0} x\right), \quad \varphi(t, x)=C\langle x\rangle_{\gamma}^{-\frac{1}{2} a p_{1}} \exp \left(\frac{p_{1}}{4} a^{2} t\right)
$$

In the cases 2 -a and 2-b, $a, d \in \mathbb{R}, c, C, p_{1}, p_{2} \in \mathbb{R}_{+}$and $R_{0} \in O_{\gamma, \eta}(n)$.
Case 3-a. $\quad n \geqq 2, \rho(r)=p_{1} r^{q}, \sigma(r)=p_{2} r^{q}$,

$$
\begin{aligned}
& f(t, x)=\left(\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b},|a t+b|^{-2 /(q+2)} R_{0} x\right) \\
& \varphi(t, x)=\frac{C}{|a t+b|^{n / 2}} \exp \left[-\frac{p_{1} a\langle x\rangle_{\gamma}^{q+2}}{(q+2)^{2}(a t+b)}\right]
\end{aligned}
$$

Case 3-b. $\quad n \geqq 2, \rho(r)=p_{1} r^{q}, \sigma(r)=p_{2} r^{-q-4}$,

$$
\begin{aligned}
& f(t, x)=\left(\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b},|a t+b|^{2 /(q+2)}\langle x\rangle_{\gamma}^{-2} R_{0} x\right) \\
& \varphi(t, x)=\frac{C}{|a t+b|^{n / 2}} \exp \left[-\frac{p_{1} a\langle x\rangle_{\gamma}^{q+2}}{(q+2)^{2}(a t+b)}\right] .
\end{aligned}
$$

In the cases 3-a and 3-b, a,b,c,d,q$\in \mathbb{R}(b c-a d=1, q \neq-2), C, p_{1}, p_{2} \in \mathbb{R}_{+}$and $R_{0} \in O_{\gamma, \eta}(n)$.

Case 4-a. $n \geqq 2, \sigma(\nu r)=\frac{\lambda}{\nu^{2}} \rho(r)$ holds for all r with some positive constants ν and λ,

$$
f(t, x)=\left(\lambda t+d, \nu R_{0} x\right), \quad \varphi(t, x)=C
$$

where $C \in \mathbb{R}_{+}, d \in \mathbb{R}$ and $R_{0} \in O_{\gamma, \eta}(n)$.
Case 4-b. $n \geqq 2, \sigma\left(\frac{\nu}{r}\right)=\frac{\lambda r^{4}}{\nu^{2}} \rho(r)$ holds for all r with some positive constants ν and λ,

$$
f(t, x)=\left(\lambda t+d, \nu\langle x\rangle_{\gamma}^{-2} R_{0} x\right), \quad \varphi(t, x)=C
$$

where $C \in \mathbb{R}_{+}, d \in \mathbb{R}$ and $R_{0} \in O_{\gamma, \eta}(n)$.
Case 5. $n \geqq 2, \rho$ and σ are any strictly positive C^{∞}-functions,

$$
f(t, x)=\left(t+d, R_{0} x\right), \quad \varphi(t, x)=C
$$

where $C \in \mathbb{R}_{+}, d \in \mathbb{R}$ and $R_{0} \in O_{\gamma, \eta}(n)$.
Remark 1. In [8], we treated the case of $M=N$ and proved the same result with the assumption $D \cap f(D) \neq \emptyset$.

2. Preliminaries

In [6], we proved the following characterization theorem.
Theorem A (Characterization). $\quad \operatorname{Let}(M, g)$ and (N, h) be two n-dimensional semiriemannian manifolds, f a C^{2}-mapping from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that $f(D)$ is a domain, and φ a strictly positive C^{2}-function on D. Then the following three statements are equivalent:
(1) (f, φ) is a caloric morphism;
(2) Take a local coordinate $\left(y_{1}, \cdots, y_{n}\right)$ of N and write the mapping f as $f=$ $\left(f_{0}, f_{1}, \cdots, f_{n}\right)$ by the local coordinate. Then f_{0} depends only on t and the functions $f_{0}, f_{1}, \ldots, f_{n}$ and φ satisfy the following equations (E-1)-(E-4):

$$
\begin{align*}
& H_{g} \varphi=0 \tag{E-1}\\
& H_{g} f_{\alpha}=2 g\left(\nabla_{g} \log \varphi, \nabla_{g} f_{\alpha}\right)+\sum_{\beta, \gamma=1}^{n} g\left(\nabla_{g} f_{\beta}, \nabla_{g} f_{\gamma}\right) \cdot{ }^{h} \Gamma_{\beta \gamma}^{\alpha} \circ f \quad(1 \leqq \alpha \leqq n), \tag{E-2}\\
& \nabla_{g} f_{0}=0 \tag{E-3}\\
& g\left(\nabla_{g} f_{\alpha}, \nabla_{g} f_{\beta}\right)=\left(h^{\alpha \beta} \circ f\right) \cdot f_{0}^{\prime}(t) \quad(1 \leqq \alpha, \beta \leqq n), \tag{E-4}
\end{align*}
$$

where ∇_{g} denotes the gradient operator of (M, g) and ${ }^{h} \Gamma_{\beta \gamma}^{\alpha}$ denotes the Christoffel symbol of (N, h);
(3) There exists a continuous function λ on D, depending only on t, such that

$$
H_{g}(\varphi \cdot u \circ f)(t, x)=\lambda(t) \cdot \varphi(t, x) \cdot H_{h} u \circ f(t, x)
$$

for any C^{2}-function u defined on a subdomain of $f(D)$.
Proposition 2.1. Let (M, g) and (N, h) be n-dimensional semi-riemannian manifolds. If (f, φ) is a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$, then $f_{0}^{\prime}(t) \neq 0$ holds for all $t \in I_{0}=\left\{t \in \mathbb{R} ;\left(\{t\} \times \mathbb{R}^{n}\right) \cap D \neq \emptyset\right\}$.

Proof. Assume that there exists $a \in I_{0}$ satisfying $f_{0}^{\prime}(a)=0$. Then by (E-4):

$$
g\left(\nabla_{g} f_{\alpha}(a, x), \nabla_{g} f_{\beta}(a, x)\right)=0 \quad(1 \leqq \alpha, \beta \leqq n)
$$

we have

$$
\nabla_{g} f_{1}(a, x)=\cdots=\nabla_{g} f_{n}(a, x)=0
$$

for all $(a, x) \in D$, and hence the mapping $x \mapsto\left(f_{0}(a), f_{1}(a, x), \ldots, f_{n}(a, x)\right)$ is (at least locally) constant. Thus the set $\left(\left\{f_{0}(a)\right\} \times M\right) \cap D$ is not open, which contradicts the condition (1) in the definition of caloric morphism. Therefore $f_{0}^{\prime}(t) \neq 0$ for all $t \in I_{0}$.

The composition of two caloric morphisms is also a caloric morphism. Let M, N and L be semi-riemannian manifolds. Let D, E be domains in $\mathbb{R} \times M, \mathbb{R} \times N$, respectively. If (f, φ) is a caloric morphism from D to $\mathbb{R} \times N$ and (h, ψ) is a caloric morphism from E to $\mathbb{R} \times L$ such that $f(D) \subset E$, then $(F, \Phi):=(h \circ f, \varphi \cdot(\psi \circ f))$ is a caloric morphism from D to $\mathbb{R} \times L$.

From here, we return to the case of semi-riemannian manifolds with radial metrics. Hereafter, we use the following notations: for an (n, n)-matrix $A=\left(A_{i j}\right)$,

$$
A(x, y)=\sum_{i, j=1}^{n} A_{i j} x_{i} y_{j}, \quad(A x)_{i}=\sum_{j=1}^{n} A_{i j} x_{j}, \quad(i=1, \ldots, n) .
$$

In this notation, we have

$$
\frac{\partial\langle x\rangle_{\gamma}}{\partial x_{j}}=\frac{1}{2 \sqrt{\gamma(x, x)}} \frac{\partial \gamma(x, x)}{\partial x_{j}}=\frac{(\gamma x)_{j}}{\langle x\rangle_{\gamma}}, \quad \frac{\partial \rho\left(\langle x\rangle_{\gamma}\right)}{\partial x_{j}}=\rho^{\prime}\left(\langle x\rangle_{\gamma}\right) \frac{(\gamma x)_{j}}{\langle x\rangle_{\gamma}} .
$$

We also have

$$
\operatorname{det} g=\rho\left(\langle x\rangle_{\gamma}\right)^{n} \operatorname{det} \gamma, \quad \sqrt{|\operatorname{det} g|}=\rho\left(\langle x\rangle_{\gamma}\right)^{n / 2} \sqrt{|\operatorname{det} \gamma|} \quad \text { and } \quad g^{i j}=\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \gamma^{i j}
$$

where $\left(\gamma^{i j}\right)$ denotes the inverse matrix of $\left(\gamma_{i j}\right)$. We can choose the usual cartesian coordinate system as a local coordinate of M. Then the Laplacian of a function u is given by

$$
\begin{equation*}
\Delta_{g} u=\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, j=1}^{n} \gamma^{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\frac{n-2}{2} \frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)^{2}} \sum_{j=1}^{n} \frac{x_{j}}{\langle x\rangle_{\gamma}} \frac{\partial u}{\partial x_{j}} . \tag{2.1}
\end{equation*}
$$

The gradient of a function u is given by

$$
\nabla_{g} u=\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, j=1}^{n} \gamma^{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial}{\partial x_{j}}
$$

and hence the inner product of the gradients of two functions u and v is given by

$$
\begin{equation*}
g\left(\nabla_{g} u, \nabla_{g} v\right)=\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, j=1}^{n} \gamma^{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} . \tag{2.2}
\end{equation*}
$$

Let $D \subset M$ be a domain, $f: D \rightarrow N$ a C^{∞}-mapping and (f, φ) a caloric morphism. Then f is expressed as

$$
f(t, x)=\left(f_{0}(t), f_{1}(t, x), \ldots, f_{n}(t, x)\right) .
$$

Because of equation (E-4): $g\left(\nabla_{g} f_{j}, \nabla_{g} f_{k}\right)=f_{0}^{\prime}(t)\left(h^{j k} \circ f\right),(\alpha, \beta=1, \ldots, n)$, the second term of the right hand side of (E-2) equals to $\sum_{j, k=1}^{n} f_{0}^{\prime}(t)\left(h^{j k} \cdot{ }^{h} \Gamma_{j k}^{i}\right) \circ f$. On the other hand,

$$
\begin{aligned}
\sum_{j, k=1}^{n}\left(h^{j k} \cdot{ }^{h} \Gamma_{j k}^{i}\right)(y) & =\sum_{j, k=1}^{n} h^{j k}(y) \sum_{l=1}^{n} \frac{1}{2} h^{i l}(y)\left(\frac{\partial h_{k l}}{\partial y_{j}}(y)+\frac{\partial h_{j l}}{\partial y_{k}}(y)-\frac{\partial h_{j k}}{\partial y_{l}}(y)\right) \\
& =\sum_{j, k, l=1}^{n} \frac{\eta^{j k} \eta^{i l}}{2 \sigma\left(\langle y\rangle_{\eta}\right)^{2}}\left(\eta_{k l} \frac{\partial \sigma\left(\langle y\rangle_{\eta}\right)}{\partial y_{j}}+\eta_{j l} \frac{\partial \sigma\left(\langle y\rangle_{\eta}\right)}{\partial y_{k}}-\eta_{j k} \frac{\partial \sigma\left(\langle y\rangle_{\eta}\right)}{\partial y_{l}}\right) \\
& =\frac{1}{2 \sigma\left(\langle y\rangle_{\eta}\right)^{2}} \sigma^{\prime}\left(\langle y\rangle_{\eta}\right)\left(\sum_{j=1}^{n} \eta^{i j} \frac{(\eta y)_{j}}{\langle y\rangle_{\eta}}+\sum_{k=1}^{n} \eta^{i k} \frac{(\eta y)_{k}}{\langle y\rangle_{\eta}}-\sum_{l=1}^{n} n \eta^{i l} \frac{(\eta y)_{l}}{\langle y\rangle_{\eta}}\right) \\
& =\frac{\sigma^{\prime}\left(\langle y\rangle_{\eta}\right)}{2 \sigma\left(\langle y\rangle_{\eta}\right)^{2}} \frac{y_{i}+y_{i}-n y_{i}}{\langle y\rangle_{\eta}}=\frac{\sigma^{\prime}\left(\langle y\rangle_{\eta}\right)}{2 \sigma\left(\langle y\rangle_{\eta}\right)^{2}} \frac{(2-n) y_{i}}{\langle y\rangle_{\eta}} .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\sum_{j, k=1}^{n} g\left(\nabla_{g} f_{j}, \nabla_{g} f_{k}\right) \cdot{ }^{h} \Gamma_{j k}^{i} \circ f=f_{0}^{\prime} \frac{2-n}{2} \frac{\sigma^{\prime}\left(\langle f\rangle_{\eta}\right)}{\sigma\left(\langle f\rangle_{\eta}\right)^{2}} \frac{f_{i}}{\langle f\rangle_{\eta}} \quad(1 \leqq i \leqq n) \tag{2.3}
\end{equation*}
$$

Now let (f, φ) be a caloric morphism such that f is of form (a) or (b). Recall that

$$
O_{\gamma, \eta}(n)=\left\{R \in G L(n, \mathbb{R}) ; R \gamma^{-1 t} R=\eta^{-1}\right\} .
$$

The equation $R \gamma^{-1 t} R=\eta^{-1}$ is equivalent to ${ }^{t} R \eta R=\gamma$. Therefore, $R \in O_{\gamma, \eta}(n)$ if and only if

$$
\langle R x\rangle_{\eta}=\langle x\rangle_{\gamma}
$$

holds for all $x \in \mathbb{R}^{n}$.

Proposition 2.2. Let $\left(M, \rho\left(\langle x\rangle_{\gamma}\right) \gamma\right)$ and $\left(N, \sigma\left(\langle y\rangle_{\eta}\right) \eta\right)$ be the same as in Theorem 1.1.
(1) Assume that there exists a caloric morphism (f, φ) such that the mapping f has the form (a):

$$
f(t, x)=\left(f_{0}(t), A(t) x\right)
$$

defined on a domain $D \subset \mathbb{R} \times M$. Then $f^{\prime}(t)>0$ holds for each $t \in I_{0}$ and there exist a strictly positive C^{∞}-function $\nu(t)$ defined on I_{0} and an $O_{\gamma, \eta}(n)$-valued C^{∞}-function $R(t)$ on I_{0} such that $A(t)=\nu(t) R(t)$ holds for each $t \in I_{0}$. Moreover, the functions ρ, σ, f_{0} and ν satisfy the equation

$$
\begin{equation*}
\sigma(\nu(t) r)=\frac{f_{0}^{\prime}(t)}{\nu(t)^{2}} \rho(r) \tag{2.4}
\end{equation*}
$$

for all $(t, r) \in E_{0}:=\left\{\left(t,\langle x\rangle_{\gamma}\right) \in \mathbb{R} \times \mathbb{R}_{+} ;(t, x) \in D\right\}$.
(2) Assume that there exists a caloric morphism (f, φ) such that the mapping f has the form (b):

$$
f(t, x)=\left(f_{0}(t),\langle x\rangle_{\gamma}^{-2} A(t) x\right)
$$

defined on a domain $D \subset \mathbb{R} \times M$. Then $f^{\prime}(t)>0$ holds for each $t \in I_{0}$ and there exist a strictly positive C^{∞}-function $\nu(t)$ defined on I_{0} and an $O_{\gamma, \eta}(n)$-valued C^{∞}-function $R(t)$ on I_{0} such that $A(t)=\nu(t) R(t)$ holds for each $t \in I_{0}$. Moreover, the functions ρ, σ, f_{0} and ν satisfy

$$
\begin{equation*}
\sigma\left(\frac{\nu(t)}{r}\right)=\frac{f_{0}^{\prime}(t) r^{4}}{\nu(t)^{2}} \rho(r) \tag{2.5}
\end{equation*}
$$

for all $(t, r) \in E_{0}:=\left\{\left(t,\langle x\rangle_{\gamma}\right) \in \mathbb{R} \times \mathbb{R}_{+} ;(t, x) \in D\right\}$.
Proof. (1) The equations (E-4):

$$
g\left(\nabla_{g} f_{\alpha}, \nabla_{g} f_{\beta}\right)=f_{0}^{\prime}(t)\left(h^{\alpha \beta} \circ f\right), \quad(1 \leqq \alpha, \beta \leqq n)
$$

yield the matrix equation:

$$
\begin{equation*}
A(t) \gamma^{-1 t} A(t)=f_{0}^{\prime}(t) \frac{\rho\left(\langle x\rangle_{\gamma}\right)}{\sigma\left(\langle A(t) x\rangle_{\eta}\right)} \eta^{-1}, \quad(t, x) \in D \tag{2.6}
\end{equation*}
$$

which is equivalent to

$$
{ }^{t} A(t) \eta A(t)=f_{0}^{\prime}(t) \frac{\rho\left(\langle x\rangle_{\gamma}\right)}{\sigma\left(\langle A(t) x\rangle_{\eta}\right)} \gamma, \quad(t, x) \in D
$$

Then we have

$$
f_{0}^{\prime}(t)=\frac{\sigma\left(\langle A(t) x\rangle_{\eta}\right) \eta(A(t) x, A(t) x)}{\rho\left(\langle x\rangle_{\gamma}\right) \gamma(x, x)}>0 \quad(t, x) \in D
$$

because $\gamma(x, x)>0$ and $\eta(A(t) x, A(t) x)>0$ follow from the conditions $(t, x) \in D \subset$ $\mathbb{R} \times M_{0}$ and $f(t, x)=\left(f_{0}(t), A(t) x\right) \in \mathbb{R} \times N_{0}$.

Since the left hand side of (2.6) is independent of x, we can define a real variable strictly positive function $\nu(t)$ by

$$
\begin{equation*}
\nu(t)=\left(f_{0}^{\prime}(t) \frac{\rho\left(\langle x\rangle_{\gamma}\right)}{\sigma\left(\langle A(t) x\rangle_{\eta}\right)}\right)^{1 / 2}, \quad t \in I_{0} \tag{2.7}
\end{equation*}
$$

Then ν is a strictly positive C^{∞}-function on I_{0} which satisfies

$$
\begin{equation*}
A(t) \gamma^{-1 t} A(t)=\nu(t)^{2} \eta^{-1}, \quad t \in I_{0} \tag{2.8}
\end{equation*}
$$

Hence the matrix $R(t):=\nu(t)^{-1} A(t)$ belongs to $O_{\gamma, \eta}(n)=\left\{R \in G L(n, \mathbb{R}) ; R \gamma^{-1 t} R=\right.$ $\left.\eta^{-1}\right\}$ for all $t \in I_{0}$ and satisfies

$$
\langle R(t) x\rangle_{\eta}=\langle x\rangle_{\gamma}, \quad(t, x) \in I_{0} \times \mathbb{R}^{n} .
$$

Thus the equality

$$
\begin{equation*}
\langle A(t) x\rangle_{\eta}=\nu(t)\langle x\rangle_{\gamma}, \quad(t, x) \in I_{0} \times \mathbb{R}^{n} \tag{2.9}
\end{equation*}
$$

holds. Substituting (2.7), (2.8) and (2.9) into (2.6), we have

$$
\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \nu(t)^{2} \eta^{-1}=f_{0}^{\prime}(t) \frac{1}{\sigma\left(\nu(t)\langle x\rangle_{\gamma}\right)} \eta^{-1}
$$

and hence

$$
\sigma\left(\nu(t)\langle x\rangle_{\gamma}\right)=\frac{f_{0}^{\prime}(t)}{\nu(t)^{2}} \rho\left(\langle x\rangle_{\gamma}\right), \quad(t, x) \in D
$$

Putting $r=\langle x\rangle_{\gamma}$, we have (2.4).
Next we consider the caloric morphism (f, φ) such that f has the form

$$
f(t, x)=\left(f_{0}(t),\langle x\rangle_{\gamma}^{-2} A(t) x\right),
$$

where $A(t) \in G L(n, \mathbb{R})$. The equations (E-4) yield

$$
\begin{equation*}
\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, j=1}^{n} \gamma^{i j} \frac{\partial f_{\alpha}}{\partial x_{i}} \frac{\partial f_{\beta}}{\partial x_{j}}=f_{0}^{\prime}(t) \frac{1}{\sigma\left(\langle x\rangle_{\gamma}^{-2}\langle A(t) x\rangle_{\eta}\right)} \eta^{\alpha \beta} \quad(1 \leqq \alpha, \beta \leqq n) \tag{2.10}
\end{equation*}
$$

Since

$$
\frac{\partial f_{\alpha}}{\partial x_{i}}=\frac{A_{\alpha i}(t)}{\langle x\rangle_{\gamma}^{2}}-2 \frac{(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{4}}(A(t) x)_{\alpha}=\frac{1}{\langle x\rangle_{\gamma}^{2}}\left(A_{\alpha i}(t)-2 \frac{(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{2}}(A(t) x)_{\alpha}\right),
$$

the left hand side of the equation (2.10) is equal to

$$
\begin{aligned}
& \sum_{i, j=1}^{n} \frac{\gamma^{i j}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}\left(A_{\alpha i}(t)-2 \frac{(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{2}}(A(t) x)_{\alpha}\right)\left(A_{\beta j}(t)-2 \frac{(\gamma x)_{j}}{\langle x\rangle_{\gamma}^{2}}(A(t) x)_{\beta}\right) \\
&= \frac{1}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, j=1}^{n}\left(\gamma^{i j} A_{\alpha i}(t) A_{\beta j}(t)-2 \frac{A_{\alpha i}(t) \gamma^{i j}(\gamma x)_{j}}{\langle x\rangle_{\gamma}^{2}}(A(t) x)_{\beta}\right. \\
&\left.\quad-2 \frac{A_{\beta j}(t) \gamma^{i j}(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{2}}(A(t) x)_{\alpha}+4 \frac{\gamma^{i j}(\gamma x)_{i}(\gamma x)_{j}}{\langle x\rangle_{\gamma}^{4}}(A(t) x)_{\alpha}(A(t) x)_{\beta}\right) \\
&= \frac{1}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}\left(\left({ }^{t} A(t) \gamma^{-1} A(t)\right)_{\alpha \beta}-2 \frac{(A(t) x)_{\alpha}}{\langle x\rangle_{\gamma}^{2}}(A(t) x)_{\beta}\right. \\
&\left.-2 \frac{(A(t) x)_{\beta}}{\langle x\rangle_{\gamma}^{2}}(A(t) x)_{\alpha}+4 \frac{\gamma(x, x)}{\langle x\rangle_{\gamma}^{4}}(A(t) x)_{\alpha}(A(t) x)_{\beta}\right) \\
&= \frac{\left.{ }^{t} A(t) \gamma^{-1} A(t)\right)_{\alpha \beta}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}, \quad(1 \leqq \alpha, \beta \leqq n) .
\end{aligned}
$$

Therefore we have the following matrix equation

$$
\begin{equation*}
A(t) \gamma^{-1 t} A(t)=f_{0}^{\prime}(t) \frac{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}{\sigma\left(\langle x\rangle_{\gamma}^{-2}\langle A(t) x\rangle_{\eta}\right)} \eta^{-1} \quad(t, x) \in D \tag{2.11}
\end{equation*}
$$

which is equivalent to

$$
{ }^{t}\left(\langle x\rangle_{\gamma}^{-2} A(t)\right) \eta\left(\langle x\rangle_{\gamma}^{-2} A(t)\right)=f_{0}^{\prime}(t) \frac{\rho\left(\langle x\rangle_{\gamma}\right)}{\sigma\left(\langle x\rangle_{\gamma}^{-2}\langle A(t) x\rangle_{\eta}\right)} \gamma, \quad(t, x) \in D
$$

Then we have

$$
f_{0}^{\prime}(t)=\frac{\sigma\left(\langle x\rangle_{\gamma}^{-2}\langle A(t) x\rangle_{\eta}\right) \eta\left(\langle x\rangle_{\gamma}^{-2} A(t) x,\langle x\rangle_{\gamma}^{-2} A(t) x\right)}{\rho\left(\langle x\rangle_{\gamma}\right) \gamma(x, x)}>0 \quad(t, x) \in D
$$

because $\gamma(x, x)>0$ and $\eta\left(\langle x\rangle_{\gamma}^{-2} A(t) x,\langle x\rangle_{\gamma}^{-2} A(t) x\right)>0$ follow from the conditions $(t, x) \in D \subset \mathbb{R} \times M_{0}$ and $f(t, x)=\left(f_{0}(t),\langle x\rangle_{\gamma}^{-2} A(t) x\right) \in \mathbb{R} \times N_{0}$.

Since the left hand side is independent of x, we can define the function $\nu(t)$ by

$$
\begin{equation*}
\nu(t)=\left(f_{0}^{\prime}(t) \frac{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}{\sigma\left(\langle x\rangle_{\gamma}^{-2}\langle A(t) x\rangle_{\eta}\right)}\right)^{1 / 2}, \quad t \in I_{0} \tag{2.12}
\end{equation*}
$$

Then ν is a strictly positive C^{∞}-function on I_{0} and satisfies

$$
\begin{equation*}
A(t) \gamma^{-1 t} A(t)=\nu(t)^{2} \eta^{-1} \tag{2.13}
\end{equation*}
$$

Put $R(t)=\nu(t)^{-1} A(t)$. Then $R(t) \in O_{\gamma, \eta}(n)$ for all $t \in I_{0}$ and the equations

$$
\begin{equation*}
\langle R(t) x\rangle_{\eta}=\langle x\rangle_{\gamma}, \quad\langle A(t) x\rangle_{\eta}=\nu(t)\langle x\rangle_{\gamma}, \quad(t, x) \in I_{0} \times \mathbb{R}^{n} \tag{2.14}
\end{equation*}
$$

hold as before. Substituting (2.13) and (2.14) into (2.11), we have

$$
\begin{equation*}
\frac{1}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)} \nu(t)^{2} \eta^{-1}=f_{0}^{\prime}(t) \frac{1}{\sigma\left(\langle x\rangle_{\gamma}^{-2} \nu(t)\langle x\rangle_{\gamma}\right)} \eta^{-1} \tag{2.15}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sigma\left(\frac{\nu(t)}{\langle x\rangle_{\gamma}}\right)=\frac{f_{0}^{\prime}(t)\langle x\rangle_{\gamma}^{4}}{\nu(t)^{2}} \rho\left(\langle x\rangle_{\gamma}\right) \quad(t, x) \in D \tag{2.16}
\end{equation*}
$$

Putting $r=\langle x\rangle_{\gamma}$, we have (2.5).
If (f, φ) be a caloric morphism such that f is of form (a):

$$
f(t, x)=\left(f_{0}(t), A(t) x\right)
$$

Then f is expressed as

$$
\begin{aligned}
f(t, x) & =\left(f_{0}(t), f_{1}(t, x), \ldots, f_{n}(t, x)\right) \\
f_{\alpha}(t, x) & =\sum_{j=1}^{n} \nu(t) R_{\alpha j}(t) x_{j}, \quad \alpha=1,2, \ldots, n
\end{aligned}
$$

Their derivatives are given by

$$
\begin{align*}
\frac{\partial f_{\alpha}}{\partial t} & =\sum_{j=1}^{n}\left(\nu^{\prime}(t) R_{\alpha j}(t)+\nu(t) R_{\alpha j}^{\prime}(t)\right) x_{j} \tag{2.17}\\
\frac{\partial f_{\alpha}}{\partial x_{j}} & =\nu(t) R_{\alpha j}(t)
\end{align*}
$$

for $\alpha, j=1,2, \ldots, n$.
Lemma 2.1. Let ρ and σ be two strictly positive C^{1}-functions defined on the intervals J_{ρ} and J_{σ} in \mathbb{R}_{+}, respectively. Let μ and ν be two strictly positive C^{1}-functions defined on an interval I. Let E be a domain in $J_{\rho} \times \mathbb{R}_{+}$.
(1) Assume that ρ, σ, μ, ν satisfy the equation

$$
\begin{equation*}
\sigma(\nu(t) r)=\mu(t) \rho(r), \quad(t, r) \in E \tag{2.18}
\end{equation*}
$$

If $\nu^{\prime}(t) \neq 0$ on an interval I^{\prime}, then there exist constants $p_{1}, p_{2} \in \mathbb{R}_{+}$and $q \in \mathbb{R}$ such that

$$
\begin{aligned}
& \rho(r)=p_{1} r^{q} \quad\left(r \in J_{\rho}^{\prime}\right), \quad \sigma(s)=p_{2} s^{q} \quad\left(s \in J_{\sigma}^{\prime}\right), \\
& \mu(t)=\frac{p_{2}}{p_{1}} \nu(t)^{q} \quad\left(t \in I^{\prime}\right),
\end{aligned}
$$

where $J_{\rho}^{\prime}:=\left\{r ;(t, r) \in E, t \in I^{\prime}\right\}$ and $J_{\sigma}^{\prime}:=\left\{\nu(t) r ;(t, r) \in E, t \in I^{\prime}\right\}$.
(2) Assume that ρ, σ, μ and ν satisfy the equation

$$
\begin{equation*}
\sigma\left(\frac{\nu(t)}{r}\right)=\mu(t) r^{4} \rho(r), \quad(t, r) \in E . \tag{2.19}
\end{equation*}
$$

If $\nu^{\prime}(t) \neq 0$ on an interval I^{\prime}, then there exist constants $p_{1}, p_{2}>0$ and $q \in \mathbb{R}$ such that

$$
\begin{aligned}
& \rho(r)=p_{1} r^{q} \quad\left(r \in J_{\rho}^{\prime}\right), \quad \sigma(s)=p_{2} s^{-q-4} \quad\left(s \in J_{\sigma}^{\prime}\right), \\
& \mu(t)=\frac{p_{2}}{p_{1}} \nu(t)^{-q-4} \quad\left(t \in I^{\prime}\right),
\end{aligned}
$$

where $J_{\rho}^{\prime}:=\left\{r ;(t, r) \in E, t \in I^{\prime}\right\}$ and $J_{\sigma}^{\prime}:=\left\{\frac{\nu(t)}{r} ;(t, r) \in E, t \in I^{\prime}\right\}$.
Proof. First we show (1). Differentiating (2.18) by r and by t, we have the equations

$$
\sigma^{\prime}(\nu(t) r) \nu(t)=\mu(t) \rho^{\prime}(r), \quad \sigma^{\prime}(\nu(t) r) \nu^{\prime}(t) r=\mu^{\prime}(t) \rho(r), \quad(t, r) \in E .
$$

Since $\nu^{\prime}(t) \neq 0$ on I^{\prime}, these equations yield

$$
\frac{\mu^{\prime}(t) \rho(r)}{\nu^{\prime}(t) r} \nu(t)=\mu(t) \rho^{\prime}(r), \quad(t, r) \in E_{1}
$$

where $E_{1}=\left\{(t, x) \in E ; t \in I^{\prime}\right\}$, and hence

$$
\begin{equation*}
\frac{\mu^{\prime}(t) \nu(t)}{\mu(t) \nu^{\prime}(t)}=\frac{r \rho^{\prime}(r)}{\rho(r)}, \quad(t, r) \in E_{1} \tag{2.20}
\end{equation*}
$$

Therefore, the both sides of the equation (2.20) are equal to a constant q, so that

$$
\begin{array}{ll}
\frac{r \rho^{\prime}(r)}{\rho(r)}=q, & r \in J_{\rho}^{\prime}, \\
\frac{\mu^{\prime}(t)}{\mu(t)}=q \frac{\nu^{\prime}(t)}{\nu(t)}, & t \in I^{\prime},
\end{array}
$$

where $J_{\rho}^{\prime}=\left\{r ;(t, r) \in E_{1}\right\}$. The solutions of these equations are

$$
\begin{array}{ll}
\rho(r)=p_{1} r^{q}, & r \in J_{\rho}^{\prime}, \\
\mu(t)=c \nu(t)^{q}, & t \in I^{\prime} \tag{2.21}
\end{array}
$$

with some positive constants p_{1} and c. Substituting (2.21) into (2.18), we have

$$
\sigma(\nu(t) r)=c p_{1} \nu(t)^{q} r^{q},
$$

and hence

$$
\sigma(s)=c p_{1} s^{q}, \quad s \in J_{\sigma}^{\prime},
$$

where $J_{\sigma}^{\prime}=\left\{\nu(t) r ;(t, r) \in E_{1}\right\}$. We have the statement (1) by putting $p_{2}=c p_{1}$.

Next we prove the statement (2). Differentiating (2.19) by r and by t, we have the equations

$$
-\sigma^{\prime}\left(\frac{\nu(t)}{r}\right) \frac{\nu(t)}{r^{2}}=\mu(t)\left(r^{4} \rho^{\prime}(r)+4 r^{3} \rho(r)\right), \quad \sigma^{\prime}\left(\frac{\nu(t)}{r}\right) \frac{\nu^{\prime}(t)}{r}=\mu^{\prime}(t) r^{4} \rho(r), \quad(t, r) \in E .
$$

Since $\nu^{\prime}(t) \neq 0$ on I^{\prime}, these equations yield

$$
\mu(t)\left(r^{4} \rho^{\prime}(r)+4 r^{3} \rho(r)\right)=-\mu^{\prime}(t) r^{4} \rho(r) \frac{\nu(t)}{\nu^{\prime}(t) r}, \quad(t, r) \in E_{1},
$$

where $E_{1}=\left\{(t, x) \in E ; t \in I^{\prime}\right\}$, and hence

$$
\begin{equation*}
\frac{r \rho^{\prime}(r)}{\rho(r)}=-4-\frac{\mu^{\prime}(t) \nu(t)}{\mu(t) \nu^{\prime}(t)}, \quad(t, r) \in E_{1} . \tag{2.22}
\end{equation*}
$$

Therefore, both sides of the equation (2.22) are equal to a constant q, so that

$$
\begin{array}{ll}
\frac{r \rho^{\prime}(r)}{\rho(r)}=q, & r \in J_{\rho}^{\prime}, \\
\frac{\mu^{\prime}(t)}{\mu(t)}=-(q+4) \frac{\nu^{\prime}(t)}{\nu(t)}, & \\
t \in I^{\prime},
\end{array}
$$

where $J_{\rho}^{\prime}=\left\{r ;(t, r) \in E_{1}\right\}$. The solutions of these equations are

$$
\begin{array}{ll}
\rho(r)=p_{1} r^{q}, & r \in J_{\rho}^{\prime}, \\
\mu(t)=c \nu(t)^{-q-4}, & t \in I^{\prime} \tag{2.23}
\end{array}
$$

with some positive constants p_{1} and c. Substituting (2.23) into (2.19), we have

$$
\sigma\left(\frac{\nu(t)}{r}\right)=c p_{1}\left(\frac{\nu(t)}{r}\right)^{-q-4},
$$

and hence

$$
\sigma(s)=c p_{1} s^{-q-4}, \quad s \in J_{\sigma}^{\prime},
$$

where $J_{\sigma}^{\prime}=\left\{\frac{\nu(t)}{r} ;(t, r) \in E_{1}\right\}$. We have the statement (2) by putting $p_{2}=c p_{1}$.

3. Lemmas

The following lemma enables us to reduce the case (b) to the case (a).
Lemma 3.1. (1) Assume that $\sigma\left(\frac{\nu}{r}\right)=\frac{\lambda r^{4}}{\nu^{2}} \rho(r)$ holds for $r \in J_{\rho}$ with some positive constants ν and λ. Then for each $R \in O_{\gamma, \eta}(n)$, the inversion $(j, 1)$ with

$$
j(t, x)=\left(\lambda t, \frac{\nu R x}{\langle x\rangle_{\gamma}^{2}}\right)
$$

is a caloric morphism from $\mathbb{R} \times M$ to $\mathbb{R} \times N$.
(2) If $\rho(r)=p_{1} r^{q}$ and $\sigma(s)=p_{2} s^{-q-4}$, then for each $R \in O_{\gamma, \eta}(n)$, the inversion $(j, 1)$ with

$$
j(t, x)=\left(\frac{p_{2}}{p_{1}} t, \frac{R x}{\langle x\rangle_{\gamma}^{2}}\right)
$$

is a caloric morphism from $\mathbb{R} \times M$ to $\mathbb{R} \times N$.
Proof. (1) Clearly, $(j, 1)$ satisfies the equations (E-1) and (E-3). We shall show the equation (E-2). For simplicity, we put $y=R x$. Since $j_{\alpha}(t, x)=\frac{\nu(R x)_{\alpha}}{\langle x\rangle_{\gamma}^{2}}=\frac{\nu y_{\alpha}}{\langle x\rangle_{\gamma}^{2}}$, we have

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{x_{i}}{\langle x\rangle_{\gamma}} \frac{\partial j_{\alpha}}{\partial x_{i}} & =\nu \sum_{i=1}^{n} \frac{x_{i}}{\langle x\rangle_{\gamma}}\left(\frac{R_{\alpha i}}{\langle x\rangle_{\gamma}^{2}}-2 \frac{y_{\alpha}(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{4}}\right)=\nu\left(\frac{y_{\alpha}}{\langle x\rangle_{\gamma}^{3}}-2 \frac{y_{\alpha} \gamma(x, x)}{\langle x\rangle_{\gamma}^{5}}\right) \\
& =\nu\left(\frac{y_{\alpha}}{\langle x\rangle_{\gamma}^{3}}-2 \frac{y_{\alpha}\langle x\rangle_{\gamma}^{2}}{\langle x\rangle_{\gamma}^{5}}\right)=-\nu \frac{y_{\alpha}}{\langle x\rangle_{\gamma}^{3}}, \\
\sum_{i, l=1}^{n} \gamma^{i l} \frac{\partial^{2} j_{\alpha}}{\partial x_{i} \partial x_{l}} & =\sum_{i, l=1}^{n} \gamma^{i l} \nu\left(-2 \frac{R_{\alpha i}(\gamma x)_{l}}{\langle x\rangle_{\gamma}^{4}}-2 \frac{R_{\alpha l}(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{4}}-2 \frac{y_{\alpha} \gamma_{i l}}{\langle x\rangle_{\gamma}^{4}}+8 \frac{y_{\alpha}(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{5}} \frac{(\gamma x)_{l}}{\langle x\rangle_{\gamma}}\right) \\
& =\frac{2 \nu}{\langle x\rangle_{\gamma}^{4}} \sum_{i, l=1}^{n} \gamma^{i l}\left[-R_{\alpha i}(\gamma x)_{l}-R_{\alpha l}(\gamma x)_{i}-y_{\alpha}\left(\gamma_{i l}-4 \frac{(\gamma x)_{i}(\gamma x)_{l}}{\langle x\rangle_{\gamma}^{2}}\right)\right] \\
& =\frac{2 \nu y_{\alpha}}{\langle x\rangle_{\gamma}^{4}}\left(-2-n+4 \frac{\gamma(x, x)}{\langle x\rangle_{\gamma}^{2}}\right)=2(2-n) \nu \frac{y_{\alpha}}{\langle x\rangle_{\gamma}^{4}}, \\
\Delta_{g} j_{\alpha} & =\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, l=1}^{n} \gamma^{i l} \frac{\partial^{2} j_{\alpha}}{\partial x_{i} \partial x_{l}}+\frac{n-2}{2} \frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)^{2}} \sum_{i=1}^{n} \frac{x_{i}}{\langle x\rangle_{\gamma}} \frac{\partial j_{\alpha}}{\partial x_{i}} \\
& =\frac{2(2-n) \nu}{\rho\left(\langle x\rangle_{\gamma}\right)} \frac{y_{\alpha}}{\langle x\rangle_{\gamma}^{4}}-\frac{n-2}{2} \frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}^{2}\right)^{2}} \nu \frac{y_{\alpha}}{\langle x\rangle_{\gamma}^{3}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{l, k=1}^{n} g\left(\nabla_{g} j_{l}, \nabla_{g} j_{k}\right) \cdot{ }^{h} \Gamma_{l k}^{\alpha} \circ j & =\lambda \frac{2-n}{2} \frac{\sigma^{\prime}\left(\langle\nu y\rangle_{\eta} /\langle x\rangle_{\gamma}^{2}\right)}{\sigma\left(\langle\nu y\rangle_{\eta} /\langle x\rangle_{\gamma}^{2}\right)^{2}} \frac{(\nu y)_{\alpha} /\langle x\rangle_{\gamma}^{2}}{\langle\nu y\rangle_{\eta} /\langle x\rangle_{\gamma}^{2}} \\
& =\lambda \frac{2-n}{2} \frac{\sigma^{\prime}\left(\nu /\langle x\rangle_{\gamma}\right)}{\sigma\left(\nu /\langle x\rangle_{\gamma}\right)^{2}} \frac{y_{\alpha}}{\langle x\rangle_{\gamma}}
\end{aligned}
$$

Differentiating the equation $\sigma(\nu / r)^{-1}=\frac{\nu^{2}}{\lambda r^{4}} \rho(r)^{-1}$ by r, we have

$$
\frac{\sigma^{\prime}(\nu / r)}{\sigma(\nu / r)^{2}}\left(-\frac{\nu}{r^{2}}\right)=\frac{4 \nu^{2}}{\lambda r^{5} \rho(r)}+\frac{\nu^{2} \rho^{\prime}(r)}{\lambda r^{4} \rho(r)^{2}}, \quad r \in J_{\rho}
$$

and hence

$$
\lambda \frac{2-n}{2} \frac{\sigma^{\prime}\left(\nu /\langle x\rangle_{\gamma}\right)}{\sigma\left(\nu /\langle x\rangle_{\gamma}\right)^{2}} \frac{y_{\alpha}}{\langle x\rangle_{\gamma}}=\frac{2(n-2) \nu y_{\alpha}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}+\frac{n-2}{2} \frac{\nu \rho^{\prime}\left(\langle x\rangle_{\gamma}\right) y_{\alpha}}{\langle x\rangle_{\gamma}^{3} \rho\left(\langle x\rangle_{\gamma}\right)^{2}} .
$$

Thus we have

$$
\begin{aligned}
\Delta_{g} j_{\alpha} & +2 g\left(\nabla_{g} \log \varphi, \nabla_{g} j_{\alpha}\right)+\sum_{l, k=1}^{n} g\left(\nabla_{g} j_{l}, \nabla_{g} j_{k}\right) \cdot{ }^{h} \Gamma_{l k}^{\alpha} \circ j \\
& =\frac{2(2-n) \nu y_{\alpha}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}-\frac{n-2}{2} \frac{\nu \rho^{\prime}\left(\langle x\rangle_{\gamma}\right) y_{\alpha}}{\langle x\rangle_{\gamma}^{3} \rho\left(\langle x\rangle_{\gamma}\right)^{2}}+\frac{2(n-2) \nu y_{\alpha}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}+\frac{n-2}{2} \frac{\nu \rho^{\prime}\left(\langle x\rangle_{\gamma}\right) y_{\alpha}}{\langle x\rangle_{\gamma}^{3} \rho\left(\langle x\rangle_{\gamma}\right)^{2}} \\
& =0=\frac{\partial j_{\alpha}}{\partial t}, \quad\langle x\rangle_{\gamma} \in J_{\rho} .
\end{aligned}
$$

We have (E-2).
To show (E-4), first we remark

$$
j_{0}^{\prime}(t)\left(h^{\alpha \beta} \circ j\right)=\lambda \frac{1}{\sigma\left(\langle x\rangle_{\gamma}^{-2} \nu(t)\langle y\rangle_{\eta}\right)} \eta^{\alpha \beta}=\lambda \frac{1}{\sigma\left(\nu(t)\langle x\rangle_{\gamma}^{-1}\right)} \eta^{\alpha \beta}, \quad 1 \leqq \alpha, \beta \leqq n .
$$

On the other hand, equations

$$
\begin{aligned}
g\left(\nabla_{g} j_{\alpha}, \nabla_{g} j_{\beta}\right)= & \frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, l=1}^{n} \gamma^{i l} \frac{\partial j_{\alpha}}{\partial x_{i}} \frac{\partial j_{\beta}}{\partial x_{l}} \\
= & \sum_{i, l=1}^{n} \frac{\gamma^{i l}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}\left(\nu R_{\alpha i}-2 \frac{(\nu y)_{\alpha}(\gamma x)_{i}}{\langle x\rangle_{\gamma}^{2}}\right)\left(\nu R_{\beta l}-2 \frac{(\nu y)_{\beta}(\gamma x)_{l}}{\langle x\rangle_{\gamma}^{2}}\right) \\
= & \frac{\nu^{2}\left(R \gamma^{-1 t} R\right)_{\alpha \beta}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}-2 \frac{\nu^{2}\left(R \gamma^{-1} \gamma x\right)_{\alpha} y_{\beta}}{\langle x\rangle_{\gamma}^{6} \rho\left(\langle x\rangle_{\gamma}\right)} \\
& -2 \frac{\nu^{2} y_{\alpha}\left(R \gamma^{-1} \gamma x\right)_{\beta}}{\langle x\rangle_{\gamma}^{6} \rho\left(\langle x\rangle_{\gamma}\right)}+4 \frac{\nu^{2} \gamma^{-1}(\gamma x, \gamma x) y_{\alpha} y_{\beta}}{\langle x\rangle_{\gamma}^{8} \rho\left(\langle x\rangle_{\gamma}\right)} \\
= & \nu^{2}\left[\frac{\left(\eta^{-1}\right)_{\alpha \beta}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}-2 \frac{y_{\alpha} y_{\beta}}{\langle x\rangle_{\gamma}^{6} \rho\left(\langle x\rangle_{\gamma}\right)}-2 \frac{y_{\alpha} y_{\beta}}{\langle x\rangle_{\gamma}^{6} \rho\left(\langle x\rangle_{\gamma}\right)}+4 \frac{y_{\alpha} y_{\beta}}{\langle x\rangle_{\gamma}^{6} \rho\left(\langle x\rangle_{\gamma}\right)}\right] \\
= & \frac{\nu^{2} \eta^{\alpha \beta}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}, \quad 1 \leqq \alpha, \beta \leqq n
\end{aligned}
$$

hold. By assumption,

$$
\frac{\nu^{2}}{\langle x\rangle_{\gamma}^{4} \rho\left(\langle x\rangle_{\gamma}\right)}=\lambda \frac{1}{\sigma\left(\nu /\langle x\rangle_{\gamma}\right)}, \quad\langle x\rangle_{\gamma} \in J_{\rho}
$$

Thus we have the equation (E-4):

$$
g\left(\nabla_{g} j_{\alpha}, \nabla_{g} j_{\beta}\right)=j_{0}^{\prime}(t)\left(h^{\alpha \beta} \circ j\right)
$$

Therefore $(j, 1)$ is a caloric morphism.
(2) is a special case of (1).

Lemma 3.2. Let (f, φ) be a caloric morphism on a domain $D \subset \mathbb{R} \times M$ such that f is of form $f(t, x)=\left(f_{0}(t), \nu(t) R(t) x\right)$, where $\nu(t)$ is a strictly positive C^{∞}-function and $R(t)$ is an $O_{\gamma, \eta}(n)$-valued C^{∞}-function. We put

$$
S(t)=\gamma R(t)^{-1} R^{\prime}(t)
$$

Then $S(t)$ is skew-symmetric and the following statements hold.
(1) φ satisfies the following equations on D :

$$
\begin{align*}
& \nabla_{g} \log \varphi=\frac{\nu^{\prime}(t)}{2 \nu(t)} x+\frac{1}{2} \gamma^{-1} S(t) x, \quad \nabla_{x} \log \varphi=\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)} \gamma+S(t)\right) x, \tag{3.1}\\
& \Delta_{g} \log \varphi=\frac{n}{4} \frac{\nu^{\prime}(t)}{\nu(t)}\left(\frac{\langle x\rangle_{\gamma} \rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)}+2\right), \tag{3.2}\\
& g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right)=\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{4}\left\{\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}\langle x\rangle_{\gamma}^{2}+\left(x,{ }^{t} S(t) \gamma^{-1} S(t) x\right)\right\}, \tag{3.3}
\end{align*}
$$

where $\nabla_{x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$.
(2) If $n \geqq 3$, then $R^{\prime}(t)=O$ for all $t \in I_{0}$ and hence the equations in (3.1) are

$$
\begin{equation*}
\nabla_{g} \log \varphi=\frac{\nu^{\prime}(t)}{2 \nu(t)} x, \quad \nabla_{x} \log \varphi=\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{2} \frac{\nu^{\prime}(t)}{\nu(t)} \gamma x \tag{3.4}
\end{equation*}
$$

and (3.3) is

$$
\begin{equation*}
g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right)=\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{4}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}\langle x\rangle_{\gamma}^{2} . \tag{3.5}
\end{equation*}
$$

(3) If $R^{\prime}(t) \neq 0$ on an interval I^{\prime}, then $n=2$ and $\rho(r)=p r^{-2}$ holds for all $r \in J_{\rho}^{\prime}=\left\{\langle x\rangle_{\gamma} ;(t, x) \in D, t \in I^{\prime}\right\}$ with some constant $p>0$.

Proof. First of all, we remark that the matrix $S(t)$ is skew-symmetric. In fact, $S(t)+$ ${ }^{t} S(t)=\gamma R^{-1}(t) R^{\prime}(t)+{ }^{t} R^{\prime}(t)^{t} R^{-1}(t) \gamma={ }^{t} R(t) \eta R^{\prime}(t)+{ }^{t} R^{\prime}(t) \eta R(t)=\left({ }^{t} R(t) \eta R(t)\right)^{\prime}=$ $\gamma^{\prime}=O$, because $\gamma={ }^{t} R(t) \eta R(t)$ follows from $R(t) \in O_{\gamma, \eta}(n)$.

First we prove (1). By (2.1), (2.2) and (2.17), we have

$$
\begin{align*}
\Delta_{g} f_{\alpha} & =\frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{i, j=1}^{n} \gamma^{i j} \frac{\partial^{2} f_{\alpha}}{\partial x_{i} \partial x_{j}}+\frac{n-2}{2} \frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)^{2}} \sum_{j=1}^{n} \frac{x_{j}}{\langle x\rangle_{\gamma}} \frac{\partial f_{\alpha}}{\partial x_{j}} \\
& =\frac{n-2}{2} \frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)^{2}} \sum_{j=1}^{n} \frac{x_{j}}{\langle x\rangle_{\gamma}} \frac{\partial f_{\alpha}}{\partial x_{j}} \tag{3.6}\\
& =\frac{n-2}{2} \frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\langle x\rangle_{\gamma} \rho\left(\langle x\rangle_{\gamma}\right)^{2}} \nu(t) \sum_{i=1}^{n} R_{\alpha i}(t) x_{i}
\end{align*}
$$

and

$$
\begin{align*}
2 g\left(\nabla_{g} \log \varphi, \nabla_{g} f_{\alpha}\right) & =\frac{2}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{j, k=1}^{n} \gamma^{j k} \frac{\partial \log \varphi}{\partial x_{j}} \frac{\partial f_{\alpha}}{\partial x_{k}} \\
& =\frac{2}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{j, k=1}^{n} \frac{\partial \log \varphi}{\partial x_{j}} \nu(t) \gamma^{j k} R_{\alpha k}(t) \tag{3.7}
\end{align*}
$$

for $\alpha=1,2, \ldots, n$. The formula (2.3) implies

$$
\begin{align*}
& \sum_{j, k=1}^{n}\left(g\left(\nabla_{g} f_{j}, \nabla_{g} f_{k}\right) \cdot{ }^{h} \Gamma_{j k}^{\alpha} \circ f\right)(t, x)=f_{0}^{\prime}(t) \frac{2-n}{2} \frac{\sigma^{\prime}\left(\langle f(t, x)\rangle_{\eta}\right)}{\sigma\left(\langle f(t, x)\rangle_{\eta}\right)^{2}} \frac{f_{\alpha}(t, x)}{\langle f(t, x)\rangle_{\eta}} \\
&=f_{0}^{\prime}(t) \frac{2-n}{2} \frac{\sigma^{\prime}\left(\nu(t)\langle x\rangle_{\gamma}\right)}{\sigma\left(\nu(t)\langle x\rangle_{\gamma}\right)^{2}} \frac{\sum_{i=1}^{n} \nu(t) R_{\alpha i}(t) x_{i}}{\nu(t)\langle x\rangle_{\gamma}} \tag{3.8}\\
&=f_{0}^{\prime}(t) \frac{2-n}{2} \frac{\sigma^{\prime}\left(\nu(t)\langle x\rangle_{\gamma}\right)}{\langle x\rangle_{\gamma} \sigma\left(\nu(t)\langle x\rangle_{\gamma}\right)^{2}} \sum_{i=1}^{n} R_{\alpha i}(t) x_{i}
\end{align*}
$$

for $\alpha=1,2, \ldots, n$. On the other hand, differentiating (2.4) by r, we have

$$
\begin{equation*}
\frac{f_{0}^{\prime}(t) \sigma^{\prime}\left(\nu(t)\langle x\rangle_{\gamma}\right)}{\sigma\left(\nu(t)\langle x\rangle_{\gamma}\right)^{2}}=\frac{\nu(t) \rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)^{2}} \tag{3.9}
\end{equation*}
$$

Substituting (2.17), (3.6), (3.7), (3.8) and (3.9) into (E-2), we have

$$
\sum_{j=1}^{n}\left(\nu^{\prime}(t) R_{\alpha j}(t)+\nu(t) R_{\alpha j}^{\prime}(t)\right) x_{j}=\frac{2 \nu(t)}{\rho\left(\langle x\rangle_{\gamma}\right)} \sum_{j, k=1}^{n} \gamma^{j k} \frac{\partial \log \varphi}{\partial x_{j}} R_{\alpha k}(t)
$$

and hence

$$
\frac{\nu^{\prime}(t)}{2 \nu(t)} R(t) x+\frac{1}{2} R^{\prime}(t) x=R(t) \nabla_{g} \log \varphi
$$

Therefore we have

$$
\nabla_{g} \log \varphi=\frac{\nu^{\prime}(t)}{2 \nu(t)} x+\frac{1}{2} \gamma^{-1} S(t) x
$$

and

$$
\nabla_{x} \log \varphi=\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)} \gamma+S(t)\right) x
$$

which are equations (3.1). We also have

$$
\begin{aligned}
& \Delta_{g} \log \varphi=\sum_{i=1}^{n} \frac{1}{\rho\left(\langle x\rangle_{\gamma}\right)^{\frac{n}{2}}} \frac{\partial}{\partial x_{i}}\left(\rho\left(\langle x\rangle_{\gamma}\right)^{\frac{n}{2}} \frac{1}{2}\left[\frac{\nu^{\prime}(t)}{\nu(t)} x_{i}+\left(\gamma^{-1} S(t) x\right)_{i}\right]\right) \\
& =\sum_{i=1}^{n} \frac{n \rho^{\prime}\left(\langle x\rangle_{\gamma}\right)(\gamma x)_{i}}{4 \rho\left(\langle x\rangle_{\gamma}\right)\langle x\rangle_{\gamma}}\left[\frac{\nu^{\prime}(t)}{\nu(t)} x_{i}+\left(\gamma^{-1} S(t) x\right)_{i}\right]+\frac{1}{2} \sum_{i=1}^{n}\left[\frac{\nu^{\prime}(t)}{\nu(t)} \delta_{i i}+\sum_{j=1}^{n}\left(\gamma^{-1} S(t)\right)_{i j} \delta_{i j}\right] \\
& =\frac{n}{4} \frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)}\left(\frac{\nu^{\prime}(t)}{\nu(t)} \frac{\langle x\rangle_{\gamma}^{2}}{\langle x\rangle_{\gamma}}+\frac{S(t)(x, x)}{\langle x\rangle_{\gamma}}\right)+\frac{n}{2} \frac{\nu^{\prime}(t)}{\nu(t)}+\frac{1}{2} \sum_{i, j=1}^{n} \gamma^{i j} S_{j i}(t),
\end{aligned}
$$

where $S(t)(x, x)=\sum_{i, j=1}^{n} S_{i j}(t) x_{i} x_{j}$. Since $S(t)$ is skew-symmetric and γ^{-1} is symmetric, $S(t)(x, x)=0$ and $\sum_{i, j=1}^{n} \gamma^{i j} S_{j i}(t)=0$. Therefore we have the equation (3.2).

Substituting (3.1) into (2.2), we have (3.3):

$$
\begin{aligned}
g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right) & =\rho\left(\langle x\rangle_{\gamma}\right) \frac{1}{4} \gamma\left(\frac{\nu^{\prime}(t)}{\nu(t)} x+\gamma^{-1} S(t) x, \frac{\nu^{\prime}(t)}{\nu(t)} x+\gamma^{-1} S(t) x\right) \\
& =\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{4}\left\{\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}\langle x\rangle_{\gamma}^{2}+\left(x,{ }^{t} S(t) \gamma^{-1} S(t) x\right)\right\}
\end{aligned}
$$

Thus we have the statement (1).
Next we proceed to prove the statement (2). Differentiating the latter equation of (3.1),

$$
\frac{\partial \log \varphi}{\partial x_{j}}=\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)} y_{j}+\sum_{k=1}^{n} S_{j k}(t) x_{k}\right), \quad j=1,2, \ldots, n
$$

by $x_{i}(i \neq j)$, where $y=\gamma x$ and $S_{j k}(t)$ is the (j, k) element of the matrix $S(t)$, we have

$$
\frac{\partial}{\partial x_{i}} \frac{\partial \log \varphi}{\partial x_{j}}=\frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{2\langle x\rangle_{\gamma}}\left(\frac{\nu^{\prime}(t)}{\nu(t)} y_{i} y_{j}+\sum_{k=1}^{n} S_{j k}(t) y_{i} x_{k}\right)+\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)} \gamma_{j i}+S_{j i}(t)\right) .
$$

We also have

$$
\frac{\partial}{\partial x_{j}} \frac{\partial \log \varphi}{\partial x_{i}}=\frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{2\langle x\rangle_{\gamma}}\left(\frac{\nu^{\prime}(t)}{\nu(t)} y_{j} y_{i}+\sum_{k=1}^{n} S_{i k}(t) y_{j} x_{k}\right)+\frac{\rho\left(\langle x\rangle_{\gamma}\right)}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)} \gamma_{i j}+S_{i j}(t)\right) .
$$

Since $\frac{\partial}{\partial x_{i}} \frac{\partial \log \varphi}{\partial x_{j}}=\frac{\partial}{\partial x_{j}} \frac{\partial \log \varphi}{\partial x_{i}}$ for each $i, j=1,2, \ldots, n$ with $i \neq j$,

$$
\frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\langle x\rangle_{\gamma}} \sum_{k=1}^{n} S_{j k}(t) y_{i} x_{k}+\rho\left(\langle x\rangle_{\gamma}\right) S_{j i}(t)=\frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\langle x\rangle_{\gamma}} \sum_{k=1}^{n} S_{i k}(t) y_{j} x_{k}+\rho\left(\langle x\rangle_{\gamma}\right) S_{i j}(t)
$$

holds. Then we have

$$
2 S_{i j}(t)=\frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{2\langle x\rangle_{\gamma} \rho\left(\langle x\rangle_{\gamma}\right)}\left(y_{i} \sum_{k=1}^{n} S_{j k}(t) x_{k}-y_{j} \sum_{k=1}^{n} S_{i k}(t) x_{k}\right)
$$

for each $i, j=1,2, \ldots, n$ with $i \neq j$, and hence

$$
\begin{equation*}
S_{i j}(t)=\frac{\rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{2\langle x\rangle_{\gamma} \rho\left(\langle x\rangle_{\gamma}\right)}\left(y_{i} z_{j}-z_{i} y_{j}\right) \tag{3.10}
\end{equation*}
$$

where we put $z=S x$. Let $n \geqq 3$. Then for each fixed $t \in I_{0}$ and each triple indices i, j, k with $1 \leqq i<j<k \leqq n$, the equation (3.10) implies

$$
S_{i j}(t) y_{k}+S_{j k}(t) y_{i}+S_{k i}(t) y_{j}=0
$$

for all $\left(y_{i}, y_{j}, y_{k}\right)$ in an open subset of \mathbb{R}^{3}. This implies $\left(S_{i j}(t), S_{j k}(t), S_{k i}(t)\right)=0$ for each $1 \leqq i<j<k \leqq n$, because γ is non-degenerate. Therefore $S(t)=O$, and hence $R^{\prime}(t)=O$ for all $t \in I_{0}$. Thus we have the statement (2).

Finally, assume that $R^{\prime}(t) \neq 0$ on an interval I^{\prime}. Then (2) yields $n=2$. Hence $S(t)=\left(\begin{array}{cc}0 & S_{12}(t) \\ -S_{12}(t) & 0\end{array}\right)$ and $z=\left(S_{12}(t) x_{2},-S_{12}(t) x_{1}\right)$. Then the equation (3.10) implies

$$
\begin{aligned}
S_{12}(t) & =\frac{\rho^{\prime}(r)}{2 r \rho(r)}\left\{y_{1}\left(-S_{12}(t) x_{1}\right)-S_{12}(t) x_{2} y_{2}\right\}=-\frac{\rho^{\prime}(r)}{2 r \rho(r)} S_{12}(t)(x, \gamma x) \\
& =-\frac{r \rho^{\prime}(r)}{2 \rho(r)} S_{12}(t)
\end{aligned}
$$

where we put $r=\langle x\rangle_{\gamma}$. Since $S_{12}(t) \neq 0$ for $t \in I^{\prime},-\frac{r \rho^{\prime}(r)}{2 \rho(r)}=1$ and hence $\rho(r)=p r^{-2}$ holds for all $r \in J_{\rho}^{\prime}=\left\{\langle x\rangle_{\gamma} ;(t, x) \in D, t \in I^{\prime}\right\}$, which shows (3).

4. Some special cases

Before the proof of Theorem 1.1, we deal with the case that ρ has the form $\rho(r)=p_{1} r^{q}$ in this section. The following Proposition 4.1 corresponds to the cases 1-a and 1-b of Theorem 1.1. To state the results, we introduce the two dimensional polar coordinate with respect to γ. Since γ is a real symmetric matrix, there exists an orthogonal matrix U such that $\gamma={ }^{t} U\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right) U(\alpha>0, \beta \neq 0)$. If we put $B=\left(\begin{array}{cc}\sqrt{\alpha} & 0 \\ 0 & \sqrt{|\beta|}\end{array}\right) U$ and $\tilde{x}=B x$, then $\operatorname{det} B=\sqrt{|\operatorname{det} \gamma|}$,

$$
\langle x\rangle_{\gamma}^{2}=\alpha(U x)_{1}^{2}+\beta(U x)_{2}^{2}= \begin{cases}\tilde{x}_{1}^{2}+\tilde{x}_{2}^{2}, & \operatorname{det} \gamma>0 \\ \tilde{x}_{1}^{2}-\tilde{x}_{2}^{2}, & \operatorname{det} \gamma<0\end{cases}
$$

and

$$
\begin{aligned}
& \frac{\partial}{\partial x_{1}} \frac{\tilde{x}_{2}}{\tilde{x}_{1}}=\frac{\partial}{\partial x_{1}}\left(\frac{B_{21} x_{1}+B_{22} x_{2}}{B_{11} x_{1}+B_{12} x_{2}}\right)=\frac{-x_{2} \operatorname{det} B}{\tilde{x}_{1}^{2}}=\frac{-\sqrt{|\operatorname{det} \gamma|}}{\tilde{x}_{1}^{2}} x_{2}, \\
& \frac{\partial}{\partial x_{2}} \frac{\tilde{x}_{2}}{\tilde{x}_{1}}=\frac{\partial}{\partial x_{2}}\left(\frac{B_{22} x_{2}+B_{21} x_{1}}{B_{12} x_{2}+B_{11} x_{1}}\right)=\frac{x_{1} \operatorname{det} B}{\tilde{x}_{1}^{2}}=\frac{\sqrt{|\operatorname{det} \gamma|}}{\tilde{x}_{1}^{2}} x_{1}
\end{aligned}
$$

hold. The polar coordinate (r, θ) with respect to γ is defined by

$$
r=\langle x\rangle_{\gamma}, \text { and } \theta= \begin{cases}\arctan \frac{\tilde{x}_{2}}{\tilde{x}_{1}}, & \operatorname{det} \gamma>0, \\ \operatorname{arctanh} \frac{\tilde{x}_{2}}{\tilde{x}_{1}}, & \operatorname{det} \gamma<0 .\end{cases}
$$

Note that for each point $x=(r, \theta) \in M$, the polar coordinate of the inversion $\frac{x}{\langle x\rangle_{\gamma}^{2}}$ is equal to $\left(r^{-1}, \theta\right)$, because $\left\langle\frac{x}{\langle x\rangle_{\gamma}^{2}}\right\rangle_{\gamma}=\frac{1}{\langle x\rangle_{\gamma}}$ and $\frac{x}{\langle x\rangle_{\gamma}^{2}}$ is a scholar multiple of x. Then

$$
\nabla_{x} \theta=\frac{\sqrt{|\operatorname{det} \gamma|}}{\langle x\rangle_{\gamma}^{2}}\left(\begin{array}{cc}
0 & -1 \tag{4.1}\\
1 & 0
\end{array}\right) x
$$

holds in any case. In fact, if $\operatorname{det} \gamma>0$,

$$
\frac{\partial \theta}{\partial x_{1}}=\frac{\tilde{x}_{1}^{2}}{\tilde{x}_{1}^{2}+\tilde{x}_{2}^{2}} \frac{\partial}{\partial x_{1}} \frac{\tilde{x}_{2}}{\tilde{x}_{1}}=-\frac{\sqrt{|\operatorname{det} \gamma|}}{\langle x\rangle_{\gamma}^{2}} x_{2}, \quad \frac{\partial \theta}{\partial x_{2}}=\frac{\tilde{x}_{1}^{2}}{\tilde{x}_{1}^{2}+\tilde{x}_{2}^{2}} \frac{\partial}{\partial x_{2}} \frac{\tilde{x}_{2}}{\tilde{x}_{1}}=\frac{\sqrt{|\operatorname{det} \gamma|}}{\langle x\rangle_{\gamma}^{2}} x_{1},
$$

and if $\operatorname{det} \gamma<0$,

$$
\frac{\partial \theta}{\partial x_{1}}=\frac{\tilde{x}_{1}^{2}}{\tilde{x}_{1}^{2}-\tilde{x}_{2}^{2}} \frac{\partial}{\partial x_{1}} \frac{\tilde{x}_{2}}{\tilde{x}_{1}}=-\frac{\sqrt{|\operatorname{det} \gamma|}}{\langle x\rangle_{\gamma}^{2}} x_{2}, \quad \frac{\partial \theta}{\partial x_{2}}=\frac{\tilde{x}_{1}^{2}}{\tilde{x}_{1}^{2}-\tilde{x}_{2}^{2}} \frac{\partial}{\partial x_{2}} \frac{\tilde{x}_{2}}{\tilde{x}_{1}}=\frac{\sqrt{|\operatorname{det} \gamma|}}{\langle x\rangle_{\gamma}^{2}} x_{1} .
$$

Now we state the proposition.
Proposition 4.1. Let $n=2$ and $\rho(r)=p_{1} r^{-2}\left(p_{1} \in \mathbb{R}_{+}\right)$.
(1) If there exists a caloric morphism (f, φ) such that f is of form (a), then $\sigma(s)=p_{2} s^{-2}$ with some $p_{2} \in \mathbb{R}_{+}$and

$$
\begin{aligned}
f(t, x) & =\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t} R_{0} e^{t \gamma^{-1}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right)} \text {) },\right. \\
\varphi(t, r, \theta) & =C r^{\frac{1}{2} a p_{1}} \exp \frac{p_{1}}{2}\left(\frac{b}{\sqrt{|\operatorname{det} \gamma|}} \theta+\frac{1}{2}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right) .
\end{aligned}
$$

Especially, $\nu(t)=c e^{a t}$ where ν is the function defined in (2.7).
(2) If there exists a caloric morphism (f, φ) such that f is of form (b), then $\sigma(s)=p_{2} s^{-2}$ with some $p_{2} \in \mathbb{R}_{+}$and

$$
\begin{aligned}
f(t, x) & =\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t}\langle x\rangle_{\gamma}^{-2} R_{0} e^{t \gamma^{-1}}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right) x\right), \\
\varphi(t, r, \theta) & =C r^{-\frac{1}{2} a p_{1}} \exp \frac{p_{1}}{2}\left(\frac{b}{\sqrt{|\operatorname{det} \gamma|}} \theta+\frac{1}{2}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right) .
\end{aligned}
$$

Especially, $\nu(t)=c e^{a t}$ where ν is the function defined in (2.12).
In both cases, a, $b, d \in \mathbb{R}, c, C \in \mathbb{R}_{+}, R_{0} \in O_{\gamma, \eta}(2)$ and (r, θ) is the polar coordinate of \mathbb{R}^{2} with respect to γ.

Proof. Let D be the domain of f. (2.4) implies that for all $(t, r) \in E=\left\{\left(t,\langle x\rangle_{\gamma}\right) \in\right.$ $\left.\mathbb{R} \times \mathbb{R}_{+} ;(t, x) \in D\right\}$,

$$
\sigma(\nu(t) r)=\frac{f_{0}^{\prime}(t)}{\nu(t)^{2}} p_{1} r^{-2}
$$

holds. Put $s=\nu(t) r$. Then

$$
s^{2} \sigma(s)=f_{0}^{\prime}(t) p_{1}, \quad(t, s) \in E^{\prime}=\left\{(t, \nu(t) r) \in \mathbb{R} \times \mathbb{R}_{+} ;(t, r) \in E\right\}
$$

Hence $s^{2} \sigma(s)$ and $f_{0}^{\prime}(t) p_{1}$ equal to a constant $p_{2} \in \mathbb{R}_{+}$. Therefore $\sigma(s)=p_{2} s^{-2}$ and $f_{0}(t)=\frac{p_{2}}{p_{1}} t+d$ with $d \in \mathbb{R}$.

By Lemma 3.2 (1), $\log \varphi$ satisfies the equation

$$
\nabla_{x} \log \varphi=\frac{p_{1}\langle x\rangle_{\gamma}^{-2}}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)} \gamma x+S(t) x\right)=\frac{p_{1}}{2} \frac{\nu^{\prime}(t)}{\nu(t)} \nabla_{x} \log \langle x\rangle_{\gamma}+\frac{p_{1}}{2\langle x\rangle_{\gamma}^{2}} S(t) x .
$$

Since $S(t)$ is skew-symmetric and $n=2, S(t)=\left(\begin{array}{cc}0 & -s(t) \\ s(t) & 0\end{array}\right)$, where we put $s(t)=$ $S_{21}(t)$ for simplicity. By (4.1), we have

$$
\frac{p_{1} s(t)}{2 \sqrt{|\operatorname{det} \gamma|}} \nabla_{x} \theta=\frac{p_{1} s(t)}{2\langle x\rangle_{\gamma}^{2}}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) x=\frac{p_{1}}{2\langle x\rangle_{\gamma}^{2}} S(t) x
$$

and hence

$$
\nabla_{x} \log \varphi=\nabla_{x}\left(\frac{p_{1}}{2} \frac{\nu^{\prime}(t)}{\nu(t)} \log \langle x\rangle_{\gamma}+\frac{p_{1} s(t)}{2 \sqrt{|\operatorname{det} \gamma|}} \theta\right) .
$$

Therefore, there exists a C^{∞}-function $\psi(t)$ such that

$$
\begin{equation*}
\log \varphi(t, r, \theta)=\frac{p_{1}}{2} \frac{\nu^{\prime}(t)}{\nu(t)} \log r+\frac{p_{1} s(t)}{2 \sqrt{|\operatorname{det} \gamma|}} \theta+\psi(t) \tag{4.2}
\end{equation*}
$$

On the other hand, φ satisfies the equation (E-1). Since $\varphi>0$, (E-1) is equivalent to

$$
\begin{equation*}
\frac{\partial \log \varphi}{\partial t}-\Delta_{g} \log \varphi-g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right)=0 \tag{4.3}
\end{equation*}
$$

By (4.2), we have

$$
\frac{\partial \log \varphi}{\partial t}=\frac{p_{1}}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime} \log r+\frac{p_{1} s^{\prime}(t)}{2 \sqrt{|\operatorname{det} \gamma|}} \theta+\psi^{\prime}(t) .
$$

By Lemma 3.2, we have

$$
\begin{align*}
\Delta_{g} \log \varphi & =\frac{n}{4} \frac{\nu^{\prime}(t)}{\nu(t)}\left(\frac{\langle x\rangle_{\gamma} \rho^{\prime}\left(\langle x\rangle_{\gamma}\right)}{\rho\left(\langle x\rangle_{\gamma}\right)}+2\right)=\frac{n}{4} \frac{\nu^{\prime}(t)}{\nu(t)}(-2+2)=0 \tag{4.4}\\
g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right) & =\frac{p_{1}}{4\langle x\rangle_{\gamma}^{2}}\left[\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}\langle x\rangle_{\gamma}^{2}+\left(x, s(t)^{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \gamma^{-1}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) x\right)\right] . \tag{4.5}
\end{align*}
$$

Since ${ }^{t}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \gamma^{-1}\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\frac{1}{\operatorname{det} \gamma} \gamma$, we have

$$
\begin{aligned}
g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right) & =\frac{p_{1}}{4\langle x\rangle_{\gamma}^{2}}\left\{\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}\langle x\rangle_{\gamma}^{2}+\frac{s(t)^{2}}{\operatorname{det} \gamma}(x, \gamma x)\right\} \\
& =\frac{p_{1}}{4}\left\{\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}+\frac{s(t)^{2}}{\operatorname{det} \gamma}\right\} .
\end{aligned}
$$

Substitute these equations into (4.3). Then we have

$$
\begin{equation*}
\frac{p_{1}}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime} \log r+\frac{p_{1} s^{\prime}(t)}{2 \sqrt{|\operatorname{det} \gamma|}} \theta+\psi^{\prime}(t)-\frac{p_{1}}{4}\left\{\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}+\frac{s(t)^{2}}{\operatorname{det} \gamma}\right\}=0 . \tag{4.6}
\end{equation*}
$$

Therefore we obtain a system of differential equations

$$
\left\{\begin{array}{l}
\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime}=0 \\
s^{\prime}(t)=0 \\
\psi^{\prime}(t)=\frac{p_{1}}{4}\left[\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}-\frac{s(t)^{2}}{\operatorname{det} \gamma}\right]
\end{array}\right.
$$

because the coefficients of $\log r$ and θ in (4.6) must be equal to 0 . The solution of this system is

$$
\left\{\begin{array}{l}
\nu(t)=c e^{a t} \tag{4.7}\\
s(t)=b \\
\psi(t)=\frac{p_{1}}{4}\left(a^{2}-\frac{b^{2}}{\operatorname{det} \gamma}\right) t+C_{0}
\end{array}\right.
$$

where $a, b, C_{0} \in \mathbb{R}$ and $c \in \mathbb{R}_{+}$. Note that $a=0$ if and only if $\nu^{\prime}(t)=0$ for all t. Substituting (4.7) into (4.2), we have

$$
\log \varphi(t, r, \theta)=\frac{1}{2} a p_{1} \log r+\frac{p_{1}}{2 \sqrt{|\operatorname{det} \gamma|}} b \theta+\frac{p_{1}}{4}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t+C
$$

and

$$
S(t)=\left(\begin{array}{cc}
0 & -b \tag{4.8}\\
b & 0
\end{array}\right)
$$

Therefore

$$
\varphi(t, r, \theta)=C r^{\frac{1}{2} a p_{1}} \exp \left(\frac{p_{1}}{2 \sqrt{|\operatorname{det} \gamma|}} b \theta+\frac{p_{1}}{4}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right)
$$

Now choose a number $t_{0} \in \mathbb{R}$ such that $\left\{t=t_{0}\right\} \cap D \neq \emptyset$. Since $S(t)=\gamma R(t)^{-1} R^{\prime}(t)$, $R(t)$ satisfies the differential equation

$$
\gamma R(t)^{-1} R^{\prime}(t)=\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right)
$$

by (4.8). The solution of this equation is

$$
\begin{aligned}
R(t) & =R\left(t_{0}\right) \exp \left(t-t_{0}\right) \gamma^{-1}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right) \\
& =R_{0} \exp t \gamma^{-1}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right)
\end{aligned}
$$

where $R_{0}=R\left(t_{0}\right) \exp \left(-t_{0}\right) \gamma^{-1}\left(\begin{array}{cc}0 & -b \\ b & 0\end{array}\right)$. Thus we have

$$
\begin{aligned}
f(t, x) & =\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t} R_{0} e^{t \gamma^{-1}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right)} x\right), \\
\varphi(t, r, \theta) & =C r^{\frac{1}{2} a p_{1}} \exp \frac{p_{1}}{2}\left(\frac{b}{\sqrt{|\operatorname{det} \gamma|}} \theta+\frac{1}{2}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right)
\end{aligned}
$$

for all $(t, x) \in D$. This shows (1).
The assertion (2) is reduced to (1) by the composition with an inversion. In fact, Lemma 3.1 implies that the inversion $(j, 1)$, where

$$
j(t, x)=\left(t, \frac{x}{\langle x\rangle_{\gamma}^{2}}\right),
$$

is a caloric morphism from $\left(\mathbb{R} \times M, p_{1} r^{-2} \gamma\right)$ to itself. Then the composition $(f \circ j, 1$. $(\varphi \circ j))=(f \circ j, \varphi \circ j)$ of $(j, 1)$ and (f, φ), is a caloric morphism. The mapping $f \circ j$ is of form (a), because

$$
(f \circ j)(t, x)=\left(f_{0}(t), \nu(t)\langle x\rangle_{\gamma}^{2} R(t) \frac{x}{\langle x\rangle_{\gamma}^{2}}\right)=\left(f_{0}(t), \nu(t) R(t) x\right) .
$$

By (1), we have

$$
\begin{aligned}
(f \circ j)(t, x) & =\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t} R_{0} e^{\left.t \gamma^{-1}\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right) x\right),}\right. \\
(\varphi \circ j)(t, r, \theta) & =C r^{\frac{1}{2} a p_{1}} \exp \frac{p_{1}}{2}\left(\frac{b}{\sqrt{|\operatorname{det} \gamma|}} \theta+\frac{1}{2}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right)
\end{aligned}
$$

for all $(t, x) \in j^{-1}(D)$. Since $j^{-1}=j$ and $j(t, r, \theta)=\left(t, r^{-1}, \theta\right)$,

$$
\begin{aligned}
& \varphi(t, r, \theta)=(\varphi \circ j)(j(t, r, \theta))=C\left(\frac{1}{r}\right)^{\frac{1}{2} a p_{1}} \exp \frac{p_{1}}{2}\left(\frac{b}{\sqrt{|\operatorname{det} \gamma|}} \theta+\frac{1}{2}\left(a^{2}+\frac{b^{2}}{\operatorname{det} \gamma}\right) t\right) .
\end{aligned}
$$

This completes the proof.
The next proposition corresponds to the cases 2-a and 2-b of Theorem 1.1.
Proposition 4.2. Let $n \geqq 3$ and $\rho(r)=p_{1} r^{-2} \quad\left(p_{1} \in \mathbb{R}_{+}\right)$.
(1) If there exists a caloric morphism (f, φ) such that f is of form (a), then $\sigma(s)=p_{2} s^{-2}$ with some $p_{2} \in \mathbb{R}_{+}$and

$$
\begin{aligned}
& f(t, x)=\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t} R_{0} x\right), \\
& \varphi(t, x)=C\langle x\rangle_{\gamma}^{\frac{1}{2} a p_{1}} \exp \left(\frac{p_{1}}{4} a^{2} t\right) .
\end{aligned}
$$

Especially, $\nu(t)=c e^{a t}$, where ν is the function defined in (2.7).
(2) If there exists a caloric morphism (f, φ) such that f is of form (b), then $\sigma(s)=p_{2} s^{-2}$ with some $p_{2} \in \mathbb{R}_{+}$and

$$
\begin{aligned}
& f(t, x)=\left(\frac{p_{2}}{p_{1}} t+d, c e^{a t}\langle x\rangle_{\gamma}^{-2} R_{0} x\right) \\
& \varphi(t, x)=C\langle x\rangle_{\gamma}^{-\frac{1}{2} a p_{1}} \exp \left(\frac{p_{1}}{4} a^{2} t\right)
\end{aligned}
$$

Especially, $\nu(t)=c e^{a t}$, where ν is the function defined in (2.12).
In both cases, a, $d \in \mathbb{R}, c, C \in \mathbb{R}_{+}$and $R_{0} \in O_{\gamma, \eta}(n)$.
Proof. By the same argument as in the proof of the above proposition, $f_{0}(t)=\frac{p_{2}}{p_{1}} t+d$ and $\sigma(s)=p_{2} s^{-2}$ hold with some $p_{2} \in \mathbb{R}_{+}$and $d \in \mathbb{R}$.

By Lemma $3.2(2), R(t)$ is a constant R_{0} and $\log \varphi$ satisfies the equation

$$
\frac{\partial \log \varphi}{\partial x_{j}}=\frac{p_{1}}{2\langle x\rangle_{\gamma}^{2}} \frac{\nu^{\prime}(t)}{\nu(t)}(\gamma x)_{j}, \quad j=1, \ldots, n
$$

because $n \geqq 3$. Therefore φ is a function of $\langle x\rangle_{\gamma}$, i.e.

$$
\varphi(t, x)=\varphi\left(t,\langle x\rangle_{\gamma}\right)
$$

and

$$
\frac{\partial \log \varphi}{\partial r}=\frac{p_{1} \nu^{\prime}(t)}{2 \nu(t)} \frac{1}{r},
$$

and hence

$$
\begin{equation*}
\log \varphi(t, r)=\frac{p_{1} \nu^{\prime}(t)}{2 \nu(t)} \log r+\psi(t) \tag{4.9}
\end{equation*}
$$

By (E-1) and (4.3),

$$
\frac{\partial \log \varphi}{\partial t}-\Delta_{g} \log \varphi-g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right)=0
$$

From Lemma 3.2 and (4.9), it follows that

$$
\begin{aligned}
\frac{\partial \log \varphi}{\partial t} & =\frac{p_{1}}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime} \log r+\psi^{\prime}(t) \\
\Delta_{g} \log \varphi & =\frac{n(q+2)}{2} \frac{\nu^{\prime}(t)}{\nu(t)}=0 \\
g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right) & =\frac{p_{1}}{4}\langle x\rangle_{\gamma}^{q+2}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}=\frac{p}{4}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2} .
\end{aligned}
$$

Hence, we have the equation

$$
\frac{p_{1}}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime} \log r+\psi^{\prime}(t)-\frac{p_{1}}{4}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}=0
$$

Therefore we obtain a system of differential equations

$$
\left\{\begin{array}{l}
\left(\frac{\nu^{\prime}}{\nu}\right)^{\prime}=0 \\
\psi^{\prime}=\frac{p_{1}}{4}\left(\frac{\nu^{\prime}}{\nu}\right)^{2}
\end{array}\right.
$$

The solution is

$$
\left\{\begin{array}{l}
\nu(t)=c e^{a t} \tag{4.10}\\
\psi(t)=\frac{p_{1} a^{2}}{4} t+C_{0}
\end{array}\right.
$$

where $a, C_{0} \in \mathbb{R}$ and $c \in \mathbb{R}_{+}$. Note that $a=0$ if and only if $\nu^{\prime}(t)=0$ for some t. Substituting (4.10) into (4.9), we have

$$
\log \varphi(t, r)=\frac{a p_{1}}{2} \log r+\frac{p_{1} a^{2}}{4} t+C_{0}
$$

Thus we have

$$
f(t, x)=\left(t+d, c e^{a t} R_{0} x\right), \quad \varphi(t, x)=C\langle x\rangle_{\gamma}^{\frac{1}{2} a p_{1}} \exp \left(\frac{p_{1}}{4} a^{2} t\right)
$$

for all $(t, x) \in D$. We have shown the first statement (1). By composing the inversion $(j, 1)$ as in the proof of Proposition 4.1, we have (2). This completes the proof.

The next proposition corresponds to the cases $3-\mathrm{a}$ and 3 -b of Theorem 1.1.
Proposition 4.3. Let $\rho(r)=p_{1} r^{q}\left(p_{1} \in \mathbb{R}_{+}, q \in \mathbb{R}, q \neq-2\right)$.
(1) If there exists a caloric morphism (f, φ) such that f is of form (a), then $\sigma(s)=p_{2} s^{q}\left(p_{2} \in \mathbb{R}_{+}\right)$and

$$
\begin{aligned}
& f(t, x)=\left(\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b},|a t+b|^{-2 /(q+2)} R_{0} x\right) \\
& \varphi(t, x)=\frac{C}{|a t+b|^{n / 2}} \exp \left[-\frac{p a\langle x\rangle_{\gamma}^{q+2}}{(q+2)^{2}(a t+b)}\right]
\end{aligned}
$$

where $a, b, c, d, \in \mathbb{R}(b c-a d=1), C \in \mathbb{R}_{+}$and $R_{0} \in O_{\gamma}(n)$. Especially, $\nu(t)=$ $|a t+b|^{-2 /(q+2)}$ where ν is the function defined in (2.7).
(2) If there exists a caloric morphism (f, φ) such that f is of form (b), then $\sigma(s)=p_{2} s^{-q-4}\left(p_{2} \in \mathbb{R}_{+}\right)$and

$$
\begin{aligned}
& f(t, x)=\left(\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b},|a t+b|^{2 /(q+2)}\langle x\rangle_{\gamma}^{-2} R_{0} x\right) \\
& \varphi(t, x)=\frac{C}{|a t+b|^{n / 2}} \exp \left[-\frac{p_{1} a\langle x\rangle_{\gamma}^{q+2}}{(q+2)^{2}(a t+b)}\right]
\end{aligned}
$$

where $a, b, c, d \in \mathbb{R}(b c-a d=1), C \in \mathbb{R}_{+}$and $R_{0} \in O_{\gamma}(n)$. Especially, $\nu(t)=$ $|a t+b|^{2 /(q+2)}$ where ν is the function defined in (2.12).

Proof. Since $q \neq-2, R(t)$ is a constant R_{0} and equations

$$
\frac{\partial \log \varphi}{\partial x_{j}}=\frac{p_{1}\langle x\rangle_{\gamma}^{q}}{2} \frac{\nu^{\prime}(t)}{\nu(t)}(\gamma x)_{j}, \quad j=1, \ldots, n
$$

hold by Lemma 3.2 (3). As in the proof of Proposition 4.2, φ is a function of $\langle x\rangle_{\gamma}$, i.e., $\varphi(t, x)=\varphi\left(t,\langle x\rangle_{\gamma}\right)$, and hence there exists a C^{∞}-function $\psi(t)$ such that

$$
\begin{equation*}
\log \varphi(t, r)=\frac{p_{1}}{2(q+2)} \frac{\nu^{\prime}(t)}{\nu(t)} r^{q+2}+\psi(t) \tag{4.11}
\end{equation*}
$$

and then

$$
\frac{\partial \log \varphi}{\partial t}=\frac{p_{1}}{2(q+2)}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime} r^{q+2}+\psi^{\prime}(t)
$$

By (3.2) and (3.5) we have

$$
\begin{gathered}
\Delta_{g} \log \varphi=\frac{n}{4} \frac{\nu^{\prime}(t)}{\nu(t)}(q+2) \\
g\left(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi\right)=\frac{p_{1}}{4}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2} r^{q+2}
\end{gathered}
$$

respectively. Substituting these into (E-1), we have

$$
\frac{p_{1}}{2(q+2)}\left[\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime}-\frac{q+2}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}\right] r^{q+2}+\psi^{\prime}-\frac{n(q+2)}{4}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime}=0 .
$$

Therefore we obtain a system of differential equations

$$
\left\{\begin{array}{l}
\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime}-\frac{q+2}{2}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{2}=0 \\
\psi^{\prime}-\frac{n(q+2)}{4}\left(\frac{\nu^{\prime}(t)}{\nu(t)}\right)^{\prime}=0
\end{array}\right.
$$

The solution is

$$
\left\{\begin{array}{l}
\nu(t)=|a t+b|^{-2 /(q+2)} \tag{4.12}\\
\psi(t)=\log |a t+b|^{-n / 2}+C_{0}
\end{array}\right.
$$

where $a, b, C_{0} \in \mathbb{R}$. Note that, $a=0$ if and only if $\nu^{\prime}(t)=0$ for some t. Substituting (4.12) into (4.11), we have

$$
\log \varphi(t, r)=-\frac{p_{1} a}{(q+2)^{2}(a t+b)} r^{q+2}+\log |a t+b|^{-n / 2}+C_{0}
$$

On the other hand, (2.4):

$$
\sigma(\nu(t) r)=\frac{f_{0}^{\prime}(t)}{\nu(t)^{2}} p_{1} r^{q}, \quad(t, r) \in E=\left\{\left(t,\langle x\rangle_{\gamma}\right) ;(t, x) \in D\right\}
$$

where D is the domain of f, implies

$$
s^{-q} \sigma(s)=p_{1} f_{0}^{\prime}(t) \nu(t)^{-q-2}=p_{1}(a t+b)^{2} f_{0}^{\prime}(t)
$$

Hence $s^{-q} \sigma(s)$ and $p_{1}(a t+b)^{2} f_{0}^{\prime}(t)$ equal to a constant $p_{2} \in \mathbb{R}_{+}$. Therefore $f_{0}(t)=$ $\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b}$, where $c, d \in \mathbb{R}$ with $b c-a d=1$. Consequently,

$$
f(t, x)=\left(\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b},|a t+b|^{-2 /(q+2)} R_{0} x\right)
$$

and

$$
\varphi(t, x)=\frac{C}{|a t+b|^{n / 2}} \exp \left[-\frac{p_{1} a\langle x\rangle_{\gamma}^{q+2}}{(q+2)^{2}(a t+b)}\right]
$$

for all $(t, x) \in D$, where $C=e^{C_{0}} \in \mathbb{R}_{+}$. This shows (1).
The assertion (2) is reduced to (1) by the composition with an inversion. By (2.5):

$$
\sigma\left(\frac{\nu(t)}{r}\right)=\frac{f_{0}^{\prime}(t) r^{4}}{\nu(t)^{2}} p_{1} r^{q}
$$

for $(t, r) \in E=\left\{\left(t,\langle x\rangle_{\gamma}\right) ;(t, x) \in D\right\}$, where D is the domain of f, we have

$$
s^{q+4} \sigma(s)=p_{1} f_{0}^{\prime}(t) \nu(t)^{q+2} .
$$

Hence $s^{q+4} \sigma(s)$ and $p_{1} f_{0}^{\prime}(t) \nu(t)^{q+2}$ equal to a constant $p_{2} \in \mathbb{R}_{+}$. Therefore $\sigma(s)=$ $p_{2} s^{-q-4}$ and $f_{0}^{\prime}(t)=\frac{p_{2}}{p_{1}} \nu(t)^{-q-2}$. We put $q^{\prime}=-q-4$. Then $q=-q^{\prime}-4$ and $\rho(r)=p_{1} r^{-q^{\prime}-4}$. Fix $t_{0} \in I_{0}$. Apply Lemma 3.1 (2) for $\sigma(r)=p_{2} r^{q^{\prime}}, \rho(s)=p_{1} s^{-q^{\prime}-4}$ and $R\left(t_{0}\right)^{-1} \in O_{\eta, \gamma}(n)$. Then the inversion $(j, 1)$ with

$$
j(\tau, \xi)=\left(\tau, \frac{R\left(t_{0}\right)^{-1} \xi}{\langle\xi\rangle_{\eta}^{2}}\right)
$$

is a caloric morphism from $\mathbb{R} \times N$ to $\mathbb{R} \times M$. Then the composition $(j \circ f, \varphi \cdot(1 \circ f))=$ $(j \circ f, \varphi)$ of $(j, 1)$ and (f, φ), is a caloric morphism from D to $\mathbb{R} \times M$. The mapping $j \circ f$ is of form (a), because

$$
(j \circ f)(t, x)=\left(f_{0}(t), \frac{1}{\nu(t)}\langle x\rangle_{\gamma}^{2} R\left(t_{0}\right)^{-1} R(t) \frac{x}{\langle x\rangle_{\gamma}^{2}}\right)=\left(f_{0}(t), \frac{1}{\nu(t)} R\left(t_{0}\right)^{-1} R(t) x\right) .
$$

Note that $R\left(t_{0}\right)^{-1} R(t) \in O_{\gamma, \gamma}$. Hence (1) implies

$$
(j \circ f)(t, x)=\left(\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b},|a t+b|^{-2 /(q+2)} R_{1} x\right)
$$

and

$$
\varphi(t, x)=\frac{C}{|a t+b|^{n / 2}} \exp \left[-\frac{p_{1} a\langle x\rangle_{\gamma}^{-(q+2)}}{(q+2)^{2}(a t+b)}\right]
$$

for all $(t, x) \in D$, where $a, b, c, d \in \mathbb{R}(b c-a d=1), C \in \mathbb{R}_{+}$and $R_{1} \in O_{\gamma, \gamma}$. Since $j^{-1}(t, x)=\left(t, \frac{R\left(t_{0}\right) x}{\langle x\rangle_{\gamma}^{2}}\right)$, we obtain

$$
f(t, x)=\left(j^{-1} \circ(j \circ f)\right)(t, x)=\left(\frac{p_{2}}{p_{1}} \frac{c t+d}{a t+b},|a t+b|^{2 /(q+2)}\langle x\rangle_{\gamma}^{-2} R_{0} x\right)
$$

where $R_{0}:=R\left(t_{0}\right) R_{1} \in O_{\gamma, \eta}$. Thus we have (2). This completes the proof.

5. Proof of the main result

Proof of Theorem 1.1. Let (f, φ) be a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that the mapping f has the form (a) or (b). By Proposition 2.2, we have

$$
\begin{aligned}
f(t, x) & =\left(f_{0}(t), \nu(t) R(t) x\right), & & (t, x) \in D \\
\sigma(\nu(t) r) & =\frac{f_{0}^{\prime}(t)}{\nu(t)^{2}} \rho(r), & & (t, r) \in E=\left\{\left(t,\langle x\rangle_{\gamma}\right) \in \mathbb{R}^{2} ;(t, x) \in D\right\}
\end{aligned}
$$

in the case (a) or

$$
\begin{aligned}
f(t, x) & =\left(f_{0}(t),\langle x\rangle_{\gamma}^{-2} \nu(t) R(t) x\right), & & (t, x) \in D \\
\sigma(\nu(t) r) & =\frac{f_{0}^{\prime}(t)}{\nu(t)^{2}} \rho(r), & & (t, r) \in E=\left\{\left(t,\langle x\rangle_{\gamma}\right) \in \mathbb{R}^{2} ;(t, x) \in D\right\}
\end{aligned}
$$

in the case (b), where $\nu(t)$ is a strictly positive C^{∞}-function and $R(t)$ is an $O_{\gamma, \eta}(n)$ valued C^{∞}-function.

Assume that the function $\nu(t)$ is not constant. We shall prove that (f, φ) is one of the cases 1-a, 1-b, 2-a, 2-b, 3-a or 3-b. Let I^{\prime} be a connected component of the open set $\left\{t \in I_{0} ; \nu^{\prime}(t) \neq 0\right\}$ and let $J_{\rho}^{\prime}=\left\{\langle x\rangle_{\gamma} ;(t, x) \in D, t \in I^{\prime}\right\}$. Then by Proposition 2.2 and Lemma 2.1, $\rho(r)=p_{1} r^{q}$ on J_{ρ}^{\prime}. By Propositions 4.1, 4.2 and 4.3, $\nu^{\prime}(t)$ has one of the following forms

$$
\begin{aligned}
\nu^{\prime}(t) & =c a e^{a t} \\
\nu^{\prime}(t) & =\frac{-2 a}{(q+2)}|a t+b|^{-2 /(q+2)-1} \\
\nu^{\prime}(t) & =\frac{2 a}{(q+2)}|a t+b|^{2 /(q+2)-1}
\end{aligned}
$$

with $a \neq 0$ on I^{\prime}, since we assumed that ν is not constant. Then the above expression of $\nu^{\prime}(t)$ shows that $\nu^{\prime}(t) \neq 0$ on the closure of I^{\prime} in I_{0} in all of the above cases. Hence, $I^{\prime}=I_{0}$, because I_{0} is connected. Therefore $\left(t,\langle x\rangle_{\gamma}\right) \in I^{\prime} \times J_{\rho}^{\prime}$ for all $(t, x) \in D$ and $\rho(r)=p_{1} r^{q}$ for all r. Again by Propositions 4.1, 4.2 and $4.3,(f, \varphi)$ is one of the cases 1-a, 1-b, 2-a, 2-b, 3-a or 3-b.

Next, we deal with the case that ν is constant. Because of the preceding argument, we may exclude the case that $\rho(r)$ has the form $\rho(r)=p r^{q}$. We first consider the case (a). By Lemma $3.2(3), R^{\prime}(t)=0$. Moreover, by (3.1), we have $\nabla_{x} \log \varphi=0$ because
$\nu^{\prime}(t)=0$. Therefore $R(t)$ is a constant matrix R_{0} and φ depends only on t. Since φ satisfies (E-1), φ is a positive constant C. On the other hand, (2.4) in Proposition 2.2 implies $\sigma(\nu r)=\frac{f_{0}^{\prime}(t)}{\nu^{2}} \rho(r)$. Therefore $f_{0}^{\prime}(t)=\frac{\nu^{2} \sigma(\nu r)}{\rho(r)}$ is a positive constant λ. Thus we have $\sigma(\nu r)=\frac{\lambda}{\nu^{2}} \rho(r)$ and $f_{0}(t)=\lambda t+d$ with some $d \in \mathbb{R}$. Therefore

$$
\begin{equation*}
f(t, x)=\left(\lambda t+d, \nu R_{0} x\right), \quad \varphi(t, x)=C \tag{5.1}
\end{equation*}
$$

This is the case 4-a.
Finally, we consider the case (b). Since ν is constant, f_{0}^{\prime} is equal to a constant λ and $\sigma\left(\frac{\nu}{r}\right)=\lambda \frac{r^{4}}{\nu^{2}} \rho(r)$ holds by the same argument as above. Then we have $f_{0}(t)=\lambda t+d$ with some $d \in \mathbb{R}$ and

$$
\rho\left(\frac{\nu}{r}\right)=\frac{1}{\lambda} \frac{r^{4}}{\nu^{2}} \sigma(r)
$$

Fix $t_{0} \in I_{0}$. Apply Lemma 3.1 (1) for $\sigma(r), \rho(s)$ and $R\left(t_{0}\right)^{-1} \in O_{\eta, \gamma}(n)$. Then the inversion $(j, 1)$ with

$$
j(\tau, \xi)=\left(\frac{1}{\lambda} \tau, \frac{\nu R\left(t_{0}\right)^{-1} \xi}{\langle\xi\rangle_{\eta}^{2}}\right)
$$

is a caloric morphism from $\mathbb{R} \times N$ to $\mathbb{R} \times M$. Then $(j \circ f, \varphi)$, the composition of $(j, 1)$ and (f, φ), is a caloric morphism from D to $\mathbb{R} \times M$. The mapping $j \circ f$ is of form (a):

$$
(j \circ f)(t, x)=\left(t+\frac{d}{\lambda}, R\left(t_{0}\right)^{-1} R(t) x\right)
$$

Note that $R\left(t_{0}\right)^{-1} R(t) \in O_{\gamma, \gamma}$. Hence by (5.1), we have

$$
(j \circ f)(t, x)=\left(t+\frac{d}{\lambda}, R_{1} x\right), \quad \varphi(t, x)=C, \quad(t, x) \in D
$$

where $C \in \mathbb{R}_{+}$and $R_{1} \in O_{\gamma, \gamma}$. Since $j^{-1}(t, x)=\left(\lambda t, \frac{\nu R\left(t_{0}\right) x}{\langle x\rangle_{\gamma}^{2}}\right)$, we obtain

$$
f(t, x)=\left(j^{-1} \circ(j \circ f)\right)(t, x)=\left(\lambda t+d, \frac{\nu R_{0} x}{\langle x\rangle_{\gamma}^{2}}\right),
$$

where $R_{0}:=R\left(t_{0}\right) R_{1} \in O_{\gamma, \eta}(n)$. This is the case 4 -b.
Thus we have completed the proof of Theorem 1.1.
Acknowledgements: The author would like to express his gratitude to the referee for his valuable comments.

References

[1] B. Fuglede, Harmonic morphisms between semi-riemannian manifolds, Ann. Acad. Sci. Fenn. Math., 21 (1996), 31-50.
[2] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), no. 2, 215-229.
[3] H. Leutwiler, On Appell transformation, Potential theory, J. Král, J. Lukes̆, I. Netuka, J. Veselý eds., Plenum, New York, 1988, 215-222.
[4] K. Shimomura, The determination of caloric morphisms on Euclidean domains, Nagoya Math J., 158 (2000), 133-166.
[5] M. Nishio and K. Shimomura, Caloric morphisms on semi-euclidean space, Rev. Roumaine. Math. Pures Appl. 47 (2002), 727-736.
[6] M. Nishio and K. Shimomura, A characterization of caloric morphisms between manifolds, Ann. Acad. Sci. Fenn. Math., 28 (2003), 111-122.
[7] K. Shimomura, Caloric morphisms with respect to radial metrics on $\mathbb{R}^{n} \backslash\{0\}$, Math. J. Ibaraki Univ., 35 (2003), 35-53.
[8] K. Shimomura, Caloric morphisms with respect to radial metrics on semieuclidean spaces, Math. J. Ibaraki Univ., 37 (2005), 81-103.

[^0]: Received 22 April 2010; revised 7 October 2010
 2000 Mathematics Subject Classification. 31B99, 35K99, 35A30
 Key Words and Phrases. caloric morphism, riemannian manifold, Appell transformation
 ${ }^{*}$ Partially supported by Grant-in-aid for Scientific Research (C) No.17540144, No.19540161, Japan Society for the Promotion of Science.
 *Ibaraki University, Mito, Ibaraki 310-8512, Japan. (shimomur@mx.ibaraki.ac.jp)

