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Caloric morphisms between different radial metrics
on semi-euclidean spaces of same dimension

Katsunori Shimomura∗

Dedicated to Professor Yoshihiro Mizuta on the occasion of his sixtieth birthday

Abstract

This paper generalizes and improves the result of [8] to caloric morphisms
between manifolds with different radial semi-euclidean metrics. It is based on
the similar arguments as were used in [7] and [8] (cf. [4], [5], [6]), but it succeed
to remove the technical assumption from the main result of [8].

1. Introduction

In [6], we defined the notion of caloric morphism, the transformation which pre-
serves the solutions of the heat equation, between semi-riemannian manifolds, and
obtained a characterization theorem. The Appell transformation is a typical example
in euclidean spaces.

Let n = 2 and (M, g) be an n-dimensional semi-riemannian manifold. We denote
by ∆g the Laplace-Beltrami operator on (M, g), which is given in a local coordinate
(xi)n

i=1 by

∆gu =
n∑

i,j=1

1√
|det g|

∂

∂xi

(√
|det g|gij ∂u

∂xj

)
,

where det g = det(gij) and (gij) denotes the inverse matrix of (gij).

Definition 1.1. A C2-function u(t, x) defined on an open set D ⊂ R × M is said
to be caloric if u satisfies the heat equation

∂u

∂t
− ∆gu = 0

on D. The operator Hg :=
∂

∂t
− ∆g is called the heat operator on R × M .
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Definition 1.2. Let M and N be semi-riemannian manifolds, f a C2-mapping from
a domain D ⊂ R × M to R × N and ϕ a strictly positive C2-function on D. A pair
(f, ϕ) is said to be a caloric morphism, if f and ϕ satisfy the following conditions:

(1) f(D) is a domain in R × N ;
(2) For any caloric function u defined on an open set E in R × N , the function

ϕ · (u ◦ f) is caloric on f−1(E).

Let n = 2 and γ = (γij) be a non-degenerate real symmetric (n, n)-matrix. As-
sume that γ is not negative definite. Then the set M0 = {x ∈ Rn; γ(x, x) > 0} is not
empty and we consider M0 as an open set of n-dimensional semi-euclidean space with
the inner product

γ(x, y) =
∑
i,j

γijxiyj .

We write 〈x〉 =
√

γ(x, x) for x ∈ M0.
Let ρ be a strictly positive C∞-function defined on an open interval Jρ ⊂ R+ :=

(0,∞) and let M = M0 ∩ {x; 〈x〉 ∈ Jρ}. We consider the semi-riemannian manifold
(M, g) with the metric of form

g(x) = ρ(〈x〉)γ.

We call the metric of this type radial metric.
In our previous paper [8], we considered caloric morphisms with respect to a radial

metric such that f has one of the following forms:

f(t, x) = (f0(t), ν(t)R(t)x) or f(t, x) = (f0(t), 〈x〉−2ν(t)R(t)x),

where ν(t) is a strictly positive C∞-function and R(t) is an Oγ(n)-valued C∞-function,
where Oγ(n) := {R;Rγ−1tR = γ−1}. In [8], we determined all the caloric morphisms
under the assumption that f(D) ∩ D 6= ∅.

The aim of this paper is to generalize the results in [8] to caloric morphisms
between two different radial metrics on semi-riemannian spaces of same dimension.
It is remarkable that this generalization makes it possible to remove the assumption
f(D) ∩ D 6= ∅ from the main result of [8].

Let γ = (γij) and η = (ηij) be two non-degenerate real symmetric (n, n)-matrices
(n = 2), and consider two n-dimensional semi-euclidean spaces with the inner products
γ(x, y) =

∑
i,j γijxiyj and η(x, y) =

∑
i,j ηijxiyj . Assume that neither γ nor η is neg-

ative definite. Then the sets M0 = {x ∈ Rn; γ(x, x) > 0} and N0 = {y ∈ Rn; η(y, y) >
0} are not empty. For x ∈ M0 and y ∈ N0, we can put

〈x〉γ =
√

γ(x, x) and 〈y〉η =
√

η(y, y),

respectively. We define the set Oγ,η(n) as

Oγ,η(n) = {R ∈ GL(n, R); Rγ−1tR = η−1}.

Let ρ and σ are strictly positive C∞-functions defined on open intervals Jρ, Jσ ⊂
R+, respectively and let M := {x ∈ M0; 〈x〉γ ∈ Jρ} and N := {y ∈ N0; 〈y〉η ∈ Jσ}.
We consider two semi-riemannian manifolds (M, g) and (N,h) with metrics of forms

g = ρ(〈x〉γ)γ and h = σ(〈y〉η)η,
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respectively.
Let (f, ϕ) be a caloric morphism from a domain D ⊂ R × M to R × N such that

f(t, x) has one of the following forms:

f(t, x) = (f0(t), A(t)x) (a)

and

f(t, x) = (f0(t), 〈x〉−2
γ A(t)x), (b)

where A(t) ∈ GL(n, R) is a C∞-function defined on the open interval I0 = {t ∈
R; ({t} × Rn) ∩ D 6= ∅}.

Our main result is the following

Theorem 1.1. Let M = {x ∈ M0; 〈x〉γ ∈ Jρ} and N = {y ∈ N0; 〈y〉η ∈ Jσ} are
semi-riemannian manifolds with metrics g = ρ(〈x〉γ)γ and h = σ(〈y〉η)η, respectively.
If (f, ϕ) be a caloric morphism from a domain D ⊂ R × M to R × N such that the
mapping f has the form (a) or (b) in the above, then one of the following cases occurs:

Case 1-a. n = 2, ρ(r) = p1r
−2, σ(r) = p2r

−2,

f(t, x) = (
p2

p1
t + d, ceatR0e

tγ−1
“

0 −b
b 0

”

x),

ϕ(t, r, θ) = Cr
1
2 ap1 exp

p1

2

( b√
|det γ|

θ +
1
2
(a2 +

b2

det γ
)t

)
.

Case 1-b. n = 2, ρ(r) = p1r
−2, σ(r) = p2r

−2,

f(t, x) = (
p2

p1
t + d, ceat〈x〉−2

γ R0e
tγ−1

“

0 −b
b 0

”

x),

ϕ(t, r, θ) = Cr−
1
2 ap1 exp

p1

2

( b√
|det γ|

θ +
1
2
(a2 +

b2

det γ
)t

)
.

In the cases 1-a and 1-b, a, b, d ∈ R, c, C, p1, p2 ∈ R+, R0 ∈ Oγ,η(2), and (r, θ) is the
polar coordinate of R2 with respect to γ (see §4 below).

Case 2-a. n = 2, ρ(r) = p1r
−2, σ(r) = p2r

−2,

f(t, x) = (
p2

p1
t + d, ceatR0x), ϕ(t, x) = C〈x〉

1
2 ap1
γ exp

(p1

4
a2t

)
.

Case 2-b. n = 2, ρ(r) = p1r
−2, σ(r) = p2r

−2,

f(t, x) = (
p2

p1
t + d, ceat〈x〉−2

γ R0x), ϕ(t, x) = C〈x〉−
1
2 ap1

γ exp
(p1

4
a2t

)
.

In the cases 2-a and 2-b, a, d ∈ R, c, C, p1, p2 ∈ R+ and R0 ∈ Oγ,η(n).
Case 3-a. n = 2, ρ(r) = p1r

q, σ(r) = p2r
q,

f(t, x) = (
p2

p1

ct + d

at + b
, |at + b|−2/(q+2)R0x),

ϕ(t, x) =
C

|at + b|n/2
exp

[
−

p1a〈x〉q+2
γ

(q + 2)2(at + b)

]
.
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Case 3-b. n = 2, ρ(r) = p1r
q, σ(r) = p2r

−q−4,

f(t, x) = (
p2

p1

ct + d

at + b
, |at + b|2/(q+2)〈x〉−2

γ R0x),

ϕ(t, x) =
C

|at + b|n/2
exp

[
−

p1a〈x〉q+2
γ

(q + 2)2(at + b)

]
.

In the cases 3-a and 3-b, a, b, c, d, q ∈ R (bc − ad = 1, q 6= −2), C, p1, p2 ∈ R+ and
R0 ∈ Oγ,η(n).

Case 4-a. n = 2, σ(νr) =
λ

ν2
ρ(r) holds for all r with some positive constants ν

and λ,

f(t, x) = (λt + d, νR0x), ϕ(t, x) = C,

where C ∈ R+, d ∈ R and R0 ∈ Oγ,η(n).

Case 4-b. n = 2, σ(
ν

r
) =

λr4

ν2
ρ(r) holds for all r with some positive constants ν

and λ,

f(t, x) = (λt + d, ν〈x〉−2
γ R0x), ϕ(t, x) = C,

where C ∈ R+, d ∈ R and R0 ∈ Oγ,η(n).
Case 5. n = 2, ρ and σ are any strictly positive C∞-functions,

f(t, x) = (t + d,R0x), ϕ(t, x) = C,

where C ∈ R+, d ∈ R and R0 ∈ Oγ,η(n).

Remark 1. In [8], we treated the case of M = N and proved the same result with
the assumption D ∩ f(D) 6= ∅.

2. Preliminaries

In [6], we proved the following characterization theorem.

Theorem A (Characterization). Let (M, g) and (N,h) be two n-dimensional semi-
riemannian manifolds, f a C2-mapping from a domain D ⊂ R × M to R × N such
that f(D) is a domain, and ϕ a strictly positive C2-function on D. Then the following
three statements are equivalent:

(1) (f, ϕ) is a caloric morphism;
(2) Take a local coordinate (y1, · · · , yn) of N and write the mapping f as f =

(f0, f1, · · · , fn) by the local coordinate. Then f0 depends only on t and the functions
f0, f1, . . . , fn and ϕ satisfy the following equations (E-1)– (E-4):

Hg ϕ = 0, (E-1)

Hgfα = 2 g(∇g log ϕ,∇gfα) +
n∑

β,γ=1

g(∇gfβ ,∇gfγ) · hΓα
β γ ◦ f (1 5 α 5 n), (E-2)

∇gf0 = 0, (E-3)

g(∇gfα,∇gfβ) = (hα β ◦ f) · f ′
0(t) (1 5 α, β 5 n), (E-4)
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where ∇g denotes the gradient operator of (M, g) and hΓα
β γ denotes the Christoffel

symbol of (N,h);
(3) There exists a continuous function λ on D, depending only on t, such that

Hg(ϕ · u ◦ f)(t, x) = λ(t) · ϕ(t, x) · Hhu ◦ f(t, x)

for any C2-function u defined on a subdomain of f(D).

Proposition 2.1. Let (M, g) and (N,h) be n-dimensional semi-riemannian mani-
folds. If (f, ϕ) is a caloric morphism from a domain D ⊂ R × M to R × N , then
f ′
0(t) 6= 0 holds for all t ∈ I0 = {t ∈ R; ({t} × Rn) ∩ D 6= ∅}.

Proof. Assume that there exists a ∈ I0 satisfying f ′
0(a) = 0. Then by (E-4):

g(∇gfα(a, x),∇gfβ(a, x)) = 0 (1 5 α, β 5 n),

we have

∇gf1(a, x) = · · · = ∇gfn(a, x) = 0

for all (a, x) ∈ D, and hence the mapping x 7→ (f0(a), f1(a, x), . . . , fn(a, x)) is (at
least locally) constant. Thus the set ({f0(a)}×M)∩D is not open, which contradicts
the condition (1) in the definition of caloric morphism. Therefore f ′

0(t) 6= 0 for all
t ∈ I0.

The composition of two caloric morphisms is also a caloric morphism. Let M ,
N and L be semi-riemannian manifolds. Let D, E be domains in R × M , R × N ,
respectively. If (f, ϕ) is a caloric morphism from D to R × N and (h, ψ) is a caloric
morphism from E to R×L such that f(D) ⊂ E, then (F,Φ) := (h ◦ f, ϕ · (ψ ◦ f)) is a
caloric morphism from D to R × L.

From here, we return to the case of semi-riemannian manifolds with radial metrics.
Hereafter, we use the following notations: for an (n, n)-matrix A = (Aij),

A(x, y) =
n∑

i,j=1

Aijxiyj , (Ax)i =
n∑

j=1

Aijxj , (i = 1, . . . , n).

In this notation, we have

∂〈x〉γ
∂xj

=
1

2
√

γ(x, x)
∂γ(x, x)

∂xj
=

(γx)j

〈x〉γ
,

∂ρ(〈x〉γ)
∂xj

= ρ′(〈x〉γ)
(γx)j

〈x〉γ
.

We also have

det g = ρ(〈x〉γ)n det γ,
√

|det g| = ρ(〈x〉γ)n/2
√

|det γ| and gij =
1

ρ(〈x〉γ)
γij ,

where (γij) denotes the inverse matrix of (γij). We can choose the usual cartesian
coordinate system as a local coordinate of M . Then the Laplacian of a function u is
given by

∆gu =
1

ρ(〈x〉γ)

n∑
i,j=1

γij ∂2u

∂xi∂xj
+

n − 2
2

ρ′(〈x〉γ)
ρ(〈x〉γ)2

n∑
j=1

xj

〈x〉γ
∂u

∂xj
. (2.1)
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The gradient of a function u is given by

∇gu =
1

ρ(〈x〉γ)

n∑
i,j=1

γij ∂u

∂xi

∂

∂xj
,

and hence the inner product of the gradients of two functions u and v is given by

g(∇gu,∇gv) =
1

ρ(〈x〉γ)

n∑
i,j=1

γij ∂u

∂xi

∂v

∂xj
. (2.2)

Let D ⊂ M be a domain, f : D → N a C∞-mapping and (f, ϕ) a caloric mor-
phism. Then f is expressed as

f(t, x) = (f0(t), f1(t, x), . . . , fn(t, x)).

Because of equation (E-4): g(∇gfj ,∇gfk) = f ′
0(t)(hjk ◦f), (α, β = 1, . . . , n), the second

term of the right hand side of (E-2) equals to
n∑

j,k=1

f ′
0(t)(h

jk · hΓ i
jk) ◦ f . On the other

hand,

n∑
j,k=1

(hjk · hΓ i
jk)(y) =

n∑
j,k=1

hjk(y)
n∑

l=1

1
2
hil(y)

(∂hkl

∂yj
(y) +

∂hjl

∂yk
(y) − ∂hjk

∂yl
(y)

)
=

n∑
j,k,l=1

ηjkηil

2σ(〈y〉η)2
(
ηkl

∂σ(〈y〉η)
∂yj

+ ηjl
∂σ(〈y〉η)

∂yk
− ηjk

∂σ(〈y〉η)
∂yl

)
=

1
2σ(〈y〉η)2

σ′(〈y〉η)
( n∑

j=1

ηij (ηy)j

〈y〉η
+

n∑
k=1

ηik (ηy)k

〈y〉η
−

n∑
l=1

nηil (ηy)l

〈y〉η

)
=

σ′(〈y〉η)
2σ(〈y〉η)2

yi + yi − nyi

〈y〉η
=

σ′(〈y〉η)
2σ(〈y〉η)2

(2 − n)yi

〈y〉η
.

Thus we have

n∑
j,k=1

g(∇gfj ,∇gfk) · hΓ i
jk ◦ f = f ′

0

2 − n

2
σ′(〈f〉η)
σ(〈f〉η)2

fi

〈f〉η
(1 5 i 5 n). (2.3)

Now let (f, ϕ) be a caloric morphism such that f is of form (a) or (b). Recall that

Oγ,η(n) = {R ∈ GL(n, R); Rγ−1tR = η−1}.

The equation Rγ−1tR = η−1 is equivalent to tRηR = γ. Therefore, R ∈ Oγ,η(n) if and
only if

〈Rx〉η = 〈x〉γ

holds for all x ∈ Rn.
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Proposition 2.2. Let (M,ρ(〈x〉γ)γ) and (N,σ(〈y〉η)η) be the same as in Theorem
1.1.

(1) Assume that there exists a caloric morphism (f, ϕ) such that the mapping f
has the form (a):

f(t, x) = (f0(t), A(t)x)

defined on a domain D ⊂ R×M . Then f ′(t) > 0 holds for each t ∈ I0 and there exist
a strictly positive C∞-function ν(t) defined on I0 and an Oγ,η(n)-valued C∞-function
R(t) on I0 such that A(t) = ν(t)R(t) holds for each t ∈ I0. Moreover, the functions ρ,
σ, f0 and ν satisfy the equation

σ(ν(t)r) =
f ′
0(t)

ν(t)2
ρ(r) (2.4)

for all (t, r) ∈ E0 := {(t, 〈x〉γ) ∈ R × R+; (t, x) ∈ D}.
(2) Assume that there exists a caloric morphism (f, ϕ) such that the mapping f

has the form (b):

f(t, x) = (f0(t), 〈x〉−2
γ A(t)x)

defined on a domain D ⊂ R×M . Then f ′(t) > 0 holds for each t ∈ I0 and there exist
a strictly positive C∞-function ν(t) defined on I0 and an Oγ,η(n)-valued C∞-function
R(t) on I0 such that A(t) = ν(t)R(t) holds for each t ∈ I0. Moreover, the functions ρ,
σ, f0 and ν satisfy

σ(
ν(t)
r

) =
f ′
0(t)r4

ν(t)2
ρ(r) (2.5)

for all (t, r) ∈ E0 := {(t, 〈x〉γ) ∈ R × R+; (t, x) ∈ D}.

Proof. (1) The equations (E-4):

g(∇gfα,∇gfβ) = f ′
0(t)(h

αβ ◦ f), (1 5 α, β 5 n)

yield the matrix equation:

A(t)γ−1tA(t) = f ′
0(t)

ρ(〈x〉γ)
σ(〈A(t)x〉η)

η−1, (t, x) ∈ D, (2.6)

which is equivalent to

tA(t)ηA(t) = f ′
0(t)

ρ(〈x〉γ)
σ(〈A(t)x〉η)

γ, (t, x) ∈ D.

Then we have

f ′
0(t) =

σ(〈A(t)x〉η)η(A(t)x,A(t)x)
ρ(〈x〉γ)γ(x, x)

> 0 (t, x) ∈ D,

because γ(x, x) > 0 and η(A(t)x,A(t)x) > 0 follow from the conditions (t, x) ∈ D ⊂
R × M0 and f(t, x) = (f0(t), A(t)x) ∈ R × N0.
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Since the left hand side of (2.6) is independent of x, we can define a real variable
strictly positive function ν(t) by

ν(t) =
(
f ′
0(t)

ρ(〈x〉γ)
σ(〈A(t)x〉η)

)1/2

, t ∈ I0. (2.7)

Then ν is a strictly positive C∞-function on I0 which satisfies

A(t)γ−1tA(t) = ν(t)2η−1, t ∈ I0. (2.8)

Hence the matrix R(t) := ν(t)−1A(t) belongs to Oγ,η(n) = {R ∈ GL(n, R);Rγ−1tR =
η−1} for all t ∈ I0 and satisfies

〈R(t)x〉η = 〈x〉γ , (t, x) ∈ I0 × Rn.

Thus the equality

〈A(t)x〉η = ν(t)〈x〉γ , (t, x) ∈ I0 × Rn (2.9)

holds. Substituting (2.7), (2.8) and (2.9) into (2.6), we have

1
ρ(〈x〉γ)

ν(t)2η−1 = f ′
0(t)

1
σ(ν(t)〈x〉γ)

η−1,

and hence

σ(ν(t)〈x〉γ) =
f ′
0(t)

ν(t)2
ρ(〈x〉γ), (t, x) ∈ D.

Putting r = 〈x〉γ , we have (2.4).
Next we consider the caloric morphism (f, ϕ) such that f has the form

f(t, x) = (f0(t), 〈x〉−2
γ A(t)x),

where A(t) ∈ GL(n, R). The equations (E-4) yield

1
ρ(〈x〉γ)

n∑
i,j=1

γij ∂fα

∂xi

∂fβ

∂xj
= f ′

0(t)
1

σ(〈x〉−2
γ 〈A(t)x〉η)

ηαβ (1 5 α, β 5 n). (2.10)

Since

∂fα

∂xi
=

Aαi(t)
〈x〉2γ

− 2
(γx)i

〈x〉4γ
(A(t)x)α =

1
〈x〉2γ

(
Aαi(t) − 2

(γx)i

〈x〉2γ
(A(t)x)α

)
,
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the left hand side of the equation (2.10) is equal to

n∑
i,j=1

γij

〈x〉4γρ(〈x〉γ)

(
Aαi(t) − 2

(γx)i

〈x〉2γ
(A(t)x)α

)(
Aβj(t) − 2

(γx)j

〈x〉2γ
(A(t)x)β

)
=

1
〈x〉4γρ(〈x〉γ)

n∑
i,j=1

(
γijAαi(t)Aβj(t) − 2

Aαi(t)γij(γx)j

〈x〉2γ
(A(t)x)β

− 2
Aβj(t)γij(γx)i

〈x〉2γ
(A(t)x)α + 4

γij(γx)i(γx)j

〈x〉4γ
(A(t)x)α(A(t)x)β

)
=

1
〈x〉4γρ(〈x〉γ)

(
(tA(t)γ−1A(t))αβ − 2

(A(t)x)α

〈x〉2γ
(A(t)x)β

− 2
(A(t)x)β

〈x〉2γ
(A(t)x)α + 4

γ(x, x)
〈x〉4γ

(A(t)x)α(A(t)x)β

)
=

(tA(t)γ−1A(t))αβ

〈x〉4γρ(〈x〉γ)
, (1 5 α, β 5 n).

Therefore we have the following matrix equation

A(t)γ−1tA(t) = f ′
0(t)

〈x〉4γρ(〈x〉γ)

σ(〈x〉−2
γ 〈A(t)x〉η)

η−1 (t, x) ∈ D, (2.11)

which is equivalent to

t
(
〈x〉−2

γ A(t)
)
η
(
〈x〉−2

γ A(t)
)

= f ′
0(t)

ρ(〈x〉γ)
σ(〈x〉−2

γ 〈A(t)x〉η)
γ, (t, x) ∈ D.

Then we have

f ′
0(t) =

σ(〈x〉−2
γ 〈A(t)x〉η)η(〈x〉−2

γ A(t)x, 〈x〉−2
γ A(t)x)

ρ(〈x〉γ)γ(x, x)
> 0 (t, x) ∈ D,

because γ(x, x) > 0 and η(〈x〉−2
γ A(t)x, 〈x〉−2

γ A(t)x) > 0 follow from the conditions
(t, x) ∈ D ⊂ R × M0 and f(t, x) = (f0(t), 〈x〉−2

γ A(t)x) ∈ R × N0.
Since the left hand side is independent of x, we can define the function ν(t) by

ν(t) =
(
f ′
0(t)

〈x〉4γρ(〈x〉γ)

σ(〈x〉−2
γ 〈A(t)x〉η)

)1/2

, t ∈ I0. (2.12)

Then ν is a strictly positive C∞-function on I0 and satisfies

A(t)γ−1tA(t) = ν(t)2η−1. (2.13)

Put R(t) = ν(t)−1A(t). Then R(t) ∈ Oγ,η(n) for all t ∈ I0 and the equations

〈R(t)x〉η = 〈x〉γ , 〈A(t)x〉η = ν(t)〈x〉γ , (t, x) ∈ I0 × Rn (2.14)
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hold as before. Substituting (2.13) and (2.14) into (2.11), we have

1
〈x〉4γρ(〈x〉γ)

ν(t)2η−1 = f ′
0(t)

1
σ(〈x〉−2

γ ν(t)〈x〉γ)
η−1, (2.15)

and hence

σ(
ν(t)
〈x〉γ

) =
f ′
0(t)〈x〉4γ
ν(t)2

ρ(〈x〉γ) (t, x) ∈ D. (2.16)

Putting r = 〈x〉γ , we have (2.5).

If (f, ϕ) be a caloric morphism such that f is of form (a):

f(t, x) = (f0(t), A(t)x).

Then f is expressed as

f(t, x) = (f0(t), f1(t, x), . . . , fn(t, x)),

fα(t, x) =
n∑

j=1

ν(t)Rαj(t)xj , α = 1, 2, . . . , n.

Their derivatives are given by

∂fα

∂t
=

n∑
j=1

(ν′(t)Rαj(t) + ν(t)R′
αj(t))xj ,

∂fα

∂xj
= ν(t)Rαj(t)

(2.17)

for α, j = 1, 2, . . . , n.

Lemma 2.1. Let ρ and σ be two strictly positive C1-functions defined on the inter-
vals Jρ and Jσ in R+, respectively. Let µ and ν be two strictly positive C1-functions
defined on an interval I. Let E be a domain in Jρ × R+.

(1) Assume that ρ, σ, µ, ν satisfy the equation

σ(ν(t)r) = µ(t)ρ(r), (t, r) ∈ E. (2.18)

If ν′(t) 6= 0 on an interval I ′, then there exist constants p1, p2 ∈ R+ and q ∈ R such
that

ρ(r) = p1r
q (r ∈ J ′

ρ), σ(s) = p2s
q (s ∈ J ′

σ),

µ(t) =
p2

p1
ν(t)q (t ∈ I ′),

where J ′
ρ := {r; (t, r) ∈ E, t ∈ I ′} and J ′

σ := {ν(t)r; (t, r) ∈ E, t ∈ I ′}.
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(2) Assume that ρ, σ, µ and ν satisfy the equation

σ(
ν(t)
r

) = µ(t)r4ρ(r), (t, r) ∈ E. (2.19)

If ν′(t) 6= 0 on an interval I ′, then there exist constants p1, p2 > 0 and q ∈ R such that

ρ(r) = p1r
q (r ∈ J ′

ρ), σ(s) = p2s
−q−4 (s ∈ J ′

σ),

µ(t) =
p2

p1
ν(t)−q−4 (t ∈ I ′),

where J ′
ρ := {r; (t, r) ∈ E, t ∈ I ′} and J ′

σ := {ν(t)
r

; (t, r) ∈ E, t ∈ I ′}.

Proof. First we show (1). Differentiating (2.18) by r and by t, we have the equations

σ′(ν(t)r)ν(t) = µ(t)ρ′(r), σ′(ν(t)r)ν′(t)r = µ′(t)ρ(r), (t, r) ∈ E.

Since ν′(t) 6= 0 on I ′, these equations yield

µ′(t)ρ(r)
ν′(t)r

ν(t) = µ(t)ρ′(r), (t, r) ∈ E1,

where E1 = {(t, x) ∈ E; t ∈ I ′}, and hence

µ′(t)ν(t)
µ(t)ν′(t)

=
rρ′(r)
ρ(r)

, (t, r) ∈ E1. (2.20)

Therefore, the both sides of the equation (2.20) are equal to a constant q, so that

rρ′(r)
ρ(r)

= q, r ∈ J ′
ρ,

µ′(t)
µ(t)

= q
ν′(t)
ν(t)

, t ∈ I ′,

where J ′
ρ = {r; (t, r) ∈ E1}. The solutions of these equations are

ρ(r) = p1r
q, r ∈ J ′

ρ,

µ(t) = cν(t)q, t ∈ I ′
(2.21)

with some positive constants p1 and c. Substituting (2.21) into (2.18), we have

σ(ν(t)r) = cp1ν(t)qrq,

and hence

σ(s) = cp1s
q, s ∈ J ′

σ,

where J ′
σ = {ν(t)r; (t, r) ∈ E1}. We have the statement (1) by putting p2 = cp1.
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Next we prove the statement (2). Differentiating (2.19) by r and by t, we have
the equations

−σ′(
ν(t)
r

)
ν(t)
r2

= µ(t)(r4ρ′(r) + 4r3ρ(r)), σ′(
ν(t)
r

)
ν′(t)

r
= µ′(t)r4ρ(r), (t, r) ∈ E.

Since ν′(t) 6= 0 on I ′, these equations yield

µ(t)(r4ρ′(r) + 4r3ρ(r)) = −µ′(t)r4ρ(r)
ν(t)

ν′(t)r
, (t, r) ∈ E1,

where E1 = {(t, x) ∈ E; t ∈ I ′}, and hence

rρ′(r)
ρ(r)

= −4 − µ′(t)ν(t)
µ(t)ν′(t)

, (t, r) ∈ E1. (2.22)

Therefore, both sides of the equation (2.22) are equal to a constant q, so that

rρ′(r)
ρ(r)

= q, r ∈ J ′
ρ,

µ′(t)
µ(t)

= −(q + 4)
ν′(t)
ν(t)

, t ∈ I ′,

where J ′
ρ = {r; (t, r) ∈ E1}. The solutions of these equations are

ρ(r) = p1r
q, r ∈ J ′

ρ,

µ(t) = cν(t)−q−4, t ∈ I ′
(2.23)

with some positive constants p1 and c. Substituting (2.23) into (2.19), we have

σ(
ν(t)
r

) = cp1

(ν(t)
r

)−q−4

,

and hence

σ(s) = cp1s
−q−4, s ∈ J ′

σ,

where J ′
σ = {ν(t)

r
; (t, r) ∈ E1}. We have the statement (2) by putting p2 = cp1.

3. Lemmas

The following lemma enables us to reduce the case (b) to the case (a).

Lemma 3.1. (1) Assume that σ(
ν

r
) =

λr4

ν2
ρ(r) holds for r ∈ Jρ with some positive

constants ν and λ. Then for each R ∈ Oγ,η(n), the inversion (j, 1) with

j(t, x) = (λt,
νRx

〈x〉2γ
)
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is a caloric morphism from R × M to R × N .
(2) If ρ(r) = p1r

q and σ(s) = p2s
−q−4, then for each R ∈ Oγ,η(n), the inversion

(j, 1) with

j(t, x) = (
p2

p1
t,

Rx

〈x〉2γ
)

is a caloric morphism from R × M to R × N .

Proof. (1) Clearly, (j, 1) satisfies the equations (E-1) and (E-3). We shall show the

equation (E-2). For simplicity, we put y = Rx. Since jα(t, x) =
ν(Rx)α

〈x〉2γ
=

νyα

〈x〉2γ
, we

have
n∑

i=1

xi

〈x〉γ
∂jα

∂xi
= ν

n∑
i=1

xi

〈x〉γ

( Rαi

〈x〉2γ
− 2

yα(γx)i

〈x〉4γ

)
= ν

( yα

〈x〉3γ
− 2

yαγ(x, x)
〈x〉5γ

)
= ν

( yα

〈x〉3γ
− 2

yα〈x〉2γ
〈x〉5γ

)
= −ν

yα

〈x〉3γ
,

n∑
i,l=1

γil ∂2jα

∂xi∂xl
=

n∑
i,l=1

γilν
(
− 2

Rαi(γx)l

〈x〉4γ
− 2

Rαl(γx)i

〈x〉4γ
− 2

yαγil

〈x〉4γ
+ 8

yα(γx)i

〈x〉5γ
(γx)l

〈x〉γ

)
=

2ν

〈x〉4γ

n∑
i,l=1

γil
[
− Rαi(γx)l − Rαl(γx)i − yα

(
γil − 4

(γx)i(γx)l

〈x〉2γ

)]
=

2νyα

〈x〉4γ

(
− 2 − n + 4

γ(x, x)
〈x〉2γ

)
= 2(2 − n)ν

yα

〈x〉4γ
,

∆gjα =
1

ρ(〈x〉γ)

n∑
i,l=1

γil ∂2jα

∂xi∂xl
+

n − 2
2

ρ′(〈x〉γ)
ρ(〈x〉γ)2

n∑
i=1

xi

〈x〉γ
∂jα

∂xi

=
2(2 − n)ν
ρ(〈x〉γ)

yα

〈x〉4γ
− n − 2

2
ρ′(〈x〉γ)
ρ(〈x〉γ)2

ν
yα

〈x〉3γ
and

n∑
l,k=1

g(∇gjl,∇gjk) · hΓα
lk ◦ j = λ

2 − n

2
σ′(〈νy〉η/〈x〉2γ)
σ(〈νy〉η/〈x〉2γ)2

(νy)α/〈x〉2γ
〈νy〉η/〈x〉2γ

= λ
2 − n

2
σ′(ν/〈x〉γ)
σ(ν/〈x〉γ)2

yα

〈x〉γ
.

Differentiating the equation σ(ν/r)−1 =
ν2

λr4
ρ(r)−1 by r, we have

σ′(ν/r)
σ(ν/r)2

(− ν

r2
) =

4ν2

λr5ρ(r)
+

ν2ρ′(r)
λr4ρ(r)2

, r ∈ Jρ,

and hence

λ
2 − n

2
σ′(ν/〈x〉γ)
σ(ν/〈x〉γ)2

yα

〈x〉γ
=

2(n − 2)νyα

〈x〉4γρ(〈x〉γ)
+

n − 2
2

νρ′(〈x〉γ)yα

〈x〉3γρ(〈x〉γ)2
.



26 K. Shimomura

Thus we have

∆gjα + 2g(∇g log ϕ,∇gjα) +
n∑

l,k=1

g(∇gjl,∇gjk) · hΓα
lk ◦ j

=
2(2 − n)νyα

〈x〉4γρ(〈x〉γ)
− n − 2

2
νρ′(〈x〉γ)yα

〈x〉3γρ(〈x〉γ)2
+

2(n − 2)νyα

〈x〉4γρ(〈x〉γ)
+

n − 2
2

νρ′(〈x〉γ)yα

〈x〉3γρ(〈x〉γ)2

= 0 =
∂jα

∂t
, 〈x〉γ ∈ Jρ.

We have (E-2).
To show (E-4), first we remark

j′0(t)(h
αβ ◦ j) = λ

1
σ(〈x〉−2

γ ν(t)〈y〉η)
ηαβ = λ

1
σ(ν(t)〈x〉−1

γ )
ηαβ , 1 5 α, β 5 n.

On the other hand, equations

g(∇gjα,∇gjβ) =
1

ρ(〈x〉γ)

n∑
i,l=1

γil ∂jα

∂xi

∂jβ

∂xl

=
n∑

i,l=1

γil

〈x〉4γρ(〈x〉γ)

(
νRαi − 2

(νy)α(γx)i

〈x〉2γ

)(
νRβl − 2

(νy)β(γx)l

〈x〉2γ

)
=

ν2(Rγ−1tR)αβ

〈x〉4γρ(〈x〉γ)
− 2

ν2(Rγ−1γx)αyβ

〈x〉6γρ(〈x〉γ)

− 2
ν2yα(Rγ−1γx)β

〈x〉6γρ(〈x〉γ)
+ 4

ν2γ−1(γx, γx)yαyβ

〈x〉8γρ(〈x〉γ)

= ν2

[
(η−1)αβ

〈x〉4γρ(〈x〉γ)
− 2

yαyβ

〈x〉6γρ(〈x〉γ)
− 2

yαyβ

〈x〉6γρ(〈x〉γ)
+ 4

yαyβ

〈x〉6γρ(〈x〉γ)

]
=

ν2ηαβ

〈x〉4γρ(〈x〉γ)
, 1 5 α, β 5 n

hold. By assumption,

ν2

〈x〉4γρ(〈x〉γ)
= λ

1
σ(ν/〈x〉γ)

, 〈x〉γ ∈ Jρ.

Thus we have the equation (E-4):

g(∇gjα,∇gjβ) = j′0(t)(h
αβ ◦ j).

Therefore (j, 1) is a caloric morphism.
(2) is a special case of (1).

Lemma 3.2. Let (f, ϕ) be a caloric morphism on a domain D ⊂ R × M such that
f is of form f(t, x) = (f0(t), ν(t)R(t)x), where ν(t) is a strictly positive C∞-function
and R(t) is an Oγ,η(n)-valued C∞-function. We put

S(t) = γR(t)−1R′(t).
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Then S(t) is skew-symmetric and the following statements hold.
(1) ϕ satisfies the following equations on D:

∇g log ϕ =
ν′(t)
2ν(t)

x +
1
2
γ−1S(t)x, ∇x log ϕ =

ρ(〈x〉γ)
2

(ν′(t)
ν(t)

γ + S(t)
)
x, (3.1)

∆g log ϕ =
n

4
ν′(t)
ν(t)

( 〈x〉γρ′(〈x〉γ)
ρ(〈x〉γ)

+ 2
)
, (3.2)

g(∇g log ϕ,∇g log ϕ) =
ρ(〈x〉γ)

4

{(ν′(t)
ν(t)

)2

〈x〉2γ + (x, tS(t)γ−1S(t)x)
}

, (3.3)

where ∇x =
( ∂

∂x1
, . . . ,

∂

∂xn

)
.

(2) If n = 3, then R′(t) = O for all t ∈ I0 and hence the equations in (3.1) are

∇g log ϕ =
ν′(t)
2ν(t)

x, ∇x log ϕ =
ρ(〈x〉γ)

2
ν′(t)
ν(t)

γx, (3.4)

and (3.3) is

g(∇g log ϕ,∇g log ϕ) =
ρ(〈x〉γ)

4

(ν′(t)
ν(t)

)2

〈x〉2γ . (3.5)

(3) If R′(t) 6= 0 on an interval I ′, then n = 2 and ρ(r) = pr−2 holds for all
r ∈ J ′

ρ = {〈x〉γ ; (t, x) ∈ D, t ∈ I ′} with some constant p > 0.

Proof. First of all, we remark that the matrix S(t) is skew-symmetric. In fact, S(t)+
tS(t) = γR−1(t)R′(t) + tR′(t)tR−1(t)γ = tR(t)ηR′(t) + tR′(t)ηR(t) = (tR(t)ηR(t))′ =
γ′ = O, because γ = tR(t)ηR(t) follows from R(t) ∈ Oγ,η(n).

First we prove (1). By (2.1), (2.2) and (2.17), we have

∆gfα =
1

ρ(〈x〉γ)

n∑
i,j=1

γij ∂2fα

∂xi∂xj
+

n − 2
2

ρ′(〈x〉γ)
ρ(〈x〉γ)2

n∑
j=1

xj

〈x〉γ
∂fα

∂xj

=
n − 2

2
ρ′(〈x〉γ)
ρ(〈x〉γ)2

n∑
j=1

xj

〈x〉γ
∂fα

∂xj

=
n − 2

2
ρ′(〈x〉γ)

〈x〉γρ(〈x〉γ)2
ν(t)

n∑
i=1

Rαi(t)xi

(3.6)

and

2g(∇g log ϕ,∇gfα) =
2

ρ(〈x〉γ)

n∑
j,k=1

γjk ∂ log ϕ

∂xj

∂fα

∂xk

=
2

ρ(〈x〉γ)

n∑
j,k=1

∂ log ϕ

∂xj
ν(t)γjkRαk(t)

(3.7)
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for α = 1, 2, . . . , n. The formula (2.3) implies

n∑
j,k=1

(
g(∇gfj ,∇gfk)·hΓα

jk ◦ f
)
(t, x) = f ′

0(t)
2 − n

2
σ′(〈f(t, x)〉η)
σ(〈f(t, x)〉η)2

fα(t, x)
〈f(t, x)〉η

= f ′
0(t)

2 − n

2
σ′(ν(t)〈x〉γ)
σ(ν(t)〈x〉γ)2

∑n
i=1 ν(t)Rαi(t)xi

ν(t)〈x〉γ

= f ′
0(t)

2 − n

2
σ′(ν(t)〈x〉γ)

〈x〉γσ(ν(t)〈x〉γ)2

n∑
i=1

Rαi(t)xi

(3.8)

for α = 1, 2, . . . , n. On the other hand, differentiating (2.4) by r, we have

f ′
0(t)σ

′(ν(t)〈x〉γ)
σ(ν(t)〈x〉γ)2

=
ν(t)ρ′(〈x〉γ)

ρ(〈x〉γ)2
. (3.9)

Substituting (2.17), (3.6), (3.7), (3.8) and (3.9) into (E-2), we have

n∑
j=1

(ν′(t)Rαj(t) + ν(t)R′
αj(t))xj =

2ν(t)
ρ(〈x〉γ)

n∑
j,k=1

γjk ∂ log ϕ

∂xj
Rαk(t),

and hence

ν′(t)
2ν(t)

R(t)x +
1
2
R′(t)x = R(t)∇g log ϕ.

Therefore we have

∇g log ϕ =
ν′(t)
2ν(t)

x +
1
2
γ−1S(t)x

and

∇x log ϕ =
ρ(〈x〉γ)

2

(ν′(t)
ν(t)

γ + S(t)
)
x,

which are equations (3.1). We also have

∆g log ϕ =
n∑

i=1

1
ρ(〈x〉γ)

n
2

∂

∂xi

(
ρ(〈x〉γ)

n
2

1
2

[ν′(t)
ν(t)

xi + (γ−1S(t)x)i

])
=

n∑
i=1

nρ′(〈x〉γ)(γx)i

4ρ(〈x〉γ)〈x〉γ

[ν′(t)
ν(t)

xi + (γ−1S(t)x)i

]
+

1
2

n∑
i=1

[ν′(t)
ν(t)

δii +
n∑

j=1

(γ−1S(t))ijδij

]
=

n

4
ρ′(〈x〉γ)
ρ(〈x〉γ)

(ν′(t)
ν(t)

〈x〉2γ
〈x〉γ

+
S(t)(x, x)

〈x〉γ

)
+

n

2
ν′(t)
ν(t)

+
1
2

n∑
i,j=1

γijSji(t),

where S(t)(x, x) =
∑n

i,j=1 Sij(t)xixj . Since S(t) is skew-symmetric and γ−1 is sym-
metric, S(t)(x, x) = 0 and

∑n
i,j=1 γijSji(t) = 0. Therefore we have the equation (3.2).



Caloric morphisms between different radial metrics 29

Substituting (3.1) into (2.2), we have (3.3):

g(∇g log ϕ,∇g log ϕ) = ρ(〈x〉γ)
1
4
γ(

ν′(t)
ν(t)

x + γ−1S(t)x,
ν′(t)
ν(t)

x + γ−1S(t)x)

=
ρ(〈x〉γ)

4

{(ν′(t)
ν(t)

)2

〈x〉2γ + (x, tS(t)γ−1S(t)x)
}

.

Thus we have the statement (1).
Next we proceed to prove the statement (2). Differentiating the latter equation

of (3.1),

∂ log ϕ

∂xj
=

ρ(〈x〉γ)
2

(
ν′(t)
ν(t)

yj +
n∑

k=1

Sjk(t)xk), j = 1, 2, . . . , n,

by xi (i 6= j), where y = γx and Sjk(t) is the (j, k) element of the matrix S(t), we
have

∂

∂xi

∂ log ϕ

∂xj
=

ρ′(〈x〉γ)
2〈x〉γ

(
ν′(t)
ν(t)

yiyj +
n∑

k=1

Sjk(t)yixk) +
ρ(〈x〉γ)

2
(
ν′(t)
ν(t)

γji + Sji(t)).

We also have

∂

∂xj

∂ log ϕ

∂xi
=

ρ′(〈x〉γ)
2〈x〉γ

(
ν′(t)
ν(t)

yjyi +
n∑

k=1

Sik(t)yjxk) +
ρ(〈x〉γ)

2
(
ν′(t)
ν(t)

γij + Sij(t)).

Since
∂

∂xi

∂ log ϕ

∂xj
=

∂

∂xj

∂ log ϕ

∂xi
for each i, j = 1, 2, . . . , n with i 6= j,

ρ′(〈x〉γ)
〈x〉γ

n∑
k=1

Sjk(t)yixk + ρ(〈x〉γ)Sji(t) =
ρ′(〈x〉γ)
〈x〉γ

n∑
k=1

Sik(t)yjxk + ρ(〈x〉γ)Sij(t)

holds. Then we have

2Sij(t) =
ρ′(〈x〉γ)

2〈x〉γρ(〈x〉γ)
(yi

n∑
k=1

Sjk(t)xk − yj

n∑
k=1

Sik(t)xk)

for each i, j = 1, 2, . . . , n with i 6= j, and hence

Sij(t) =
ρ′(〈x〉γ)

2〈x〉γρ(〈x〉γ)
(yizj − ziyj), (3.10)

where we put z = Sx. Let n = 3. Then for each fixed t ∈ I0 and each triple indices
i, j, k with 1 5 i < j < k 5 n, the equation (3.10) implies

Sij(t)yk + Sjk(t)yi + Ski(t)yj = 0

for all (yi, yj , yk) in an open subset of R3. This implies (Sij(t), Sjk(t), Ski(t)) = 0 for
each 1 5 i < j < k 5 n, because γ is non-degenerate. Therefore S(t) = O, and hence
R′(t) = O for all t ∈ I0. Thus we have the statement (2).
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Finally, assume that R′(t) 6= 0 on an interval I ′. Then (2) yields n = 2. Hence

S(t) =
(

0 S12(t)
−S12(t) 0

)
and z = (S12(t)x2,−S12(t)x1). Then the equation (3.10)

implies

S12(t) =
ρ′(r)
2rρ(r)

{y1(−S12(t)x1) − S12(t)x2y2} = − ρ′(r)
2rρ(r)

S12(t)(x, γx)

= −rρ′(r)
2ρ(r)

S12(t),

where we put r = 〈x〉γ . Since S12(t) 6= 0 for t ∈ I ′, −rρ′(r)
2ρ(r)

= 1 and hence ρ(r) = pr−2

holds for all r ∈ J ′
ρ = {〈x〉γ ; (t, x) ∈ D, t ∈ I ′}, which shows (3).

4. Some special cases

Before the proof of Theorem 1.1, we deal with the case that ρ has the form
ρ(r) = p1r

q in this section. The following Proposition 4.1 corresponds to the cases
1-a and 1-b of Theorem 1.1. To state the results, we introduce the two dimensional
polar coordinate with respect to γ. Since γ is a real symmetric matrix, there exists

an orthogonal matrix U such that γ = tU

(
α 0
0 β

)
U (α > 0, β 6= 0). If we put

B =
(√

α 0
0

√
|β|

)
U and x̃ = Bx, then detB =

√
|det γ|,

〈x〉2γ = α(Ux)21 + β(Ux)22 =

{
x̃2

1 + x̃2
2, det γ > 0,

x̃2
1 − x̃2

2, det γ < 0,

and

∂

∂x1

x̃2

x̃1
=

∂

∂x1

(B21x1 + B22x2

B11x1 + B12x2

)
=

−x2 det B

x̃2
1

=
−

√
|det γ|
x̃2

1

x2,

∂

∂x2

x̃2

x̃1
=

∂

∂x2

(B22x2 + B21x1

B12x2 + B11x1

)
=

x1 det B

x̃2
1

=

√
|det γ|
x̃2

1

x1

hold. The polar coordinate (r, θ) with respect to γ is defined by

r = 〈x〉γ , and θ =


arctan

x̃2

x̃1
, det γ > 0,

arctanh
x̃2

x̃1
, det γ < 0.
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Note that for each point x = (r, θ) ∈ M , the polar coordinate of the inversion
x

〈x〉2γ
is

equal to (r−1, θ), because 〈 x

〈x〉2γ
〉γ =

1
〈x〉γ

and
x

〈x〉2γ
is a scholar multiple of x. Then

∇xθ =

√
|det γ|
〈x〉2γ

(
0 −1
1 0

)
x (4.1)

holds in any case. In fact, if det γ > 0,

∂θ

∂x1
=

x̃2
1

x̃2
1 + x̃2

2

∂

∂x1

x̃2

x̃1
= −

√
|det γ|
〈x〉2γ

x2,
∂θ

∂x2
=

x̃2
1

x̃2
1 + x̃2

2

∂

∂x2

x̃2

x̃1
=

√
|det γ|
〈x〉2γ

x1,

and if det γ < 0,

∂θ

∂x1
=

x̃2
1

x̃2
1 − x̃2

2

∂

∂x1

x̃2

x̃1
= −

√
|det γ|
〈x〉2γ

x2,
∂θ

∂x2
=

x̃2
1

x̃2
1 − x̃2

2

∂

∂x2

x̃2

x̃1
=

√
|det γ|
〈x〉2γ

x1.

Now we state the proposition.

Proposition 4.1. Let n = 2 and ρ(r) = p1r
−2 (p1 ∈ R+).

(1) If there exists a caloric morphism (f, ϕ) such that f is of form (a), then
σ(s) = p2s

−2 with some p2 ∈ R+ and

f(t, x) = (
p2

p1
t + d, ceatR0e

tγ−1
“

0 −b
b 0

”

x),

ϕ(t, r, θ) = Cr
1
2 ap1 exp

p1

2

( b√
|det γ|

θ +
1
2
(a2 +

b2

det γ
)t

)
.

Especially, ν(t) = ceat where ν is the function defined in (2.7).
(2) If there exists a caloric morphism (f, ϕ) such that f is of form (b), then

σ(s) = p2s
−2 with some p2 ∈ R+ and

f(t, x) = (
p2

p1
t + d, ceat〈x〉−2

γ R0e
tγ−1

“

0 −b
b 0

”

x),

ϕ(t, r, θ) = Cr−
1
2 ap1 exp

p1

2

( b√
|det γ|

θ +
1
2
(a2 +

b2

det γ
)t

)
.

Especially, ν(t) = ceat where ν is the function defined in (2.12).
In both cases, a, b, d ∈ R, c, C ∈ R+, R0 ∈ Oγ,η(2) and (r, θ) is the polar coordinate

of R2 with respect to γ.

Proof. Let D be the domain of f . (2.4) implies that for all (t, r) ∈ E = {(t, 〈x〉γ) ∈
R × R+; (t, x) ∈ D},

σ(ν(t)r) =
f ′
0(t)

ν(t)2
p1r

−2
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holds. Put s = ν(t)r. Then

s2σ(s) = f ′
0(t)p1, (t, s) ∈ E′ = {(t, ν(t)r) ∈ R × R+; (t, r) ∈ E}.

Hence s2σ(s) and f ′
0(t)p1 equal to a constant p2 ∈ R+. Therefore σ(s) = p2s

−2 and
f0(t) =

p2

p1
t + d with d ∈ R.

By Lemma 3.2 (1), log ϕ satisfies the equation

∇x log ϕ =
p1〈x〉−2

γ

2

(ν′(t)
ν(t)

γx + S(t)x
)

=
p1

2
ν′(t)
ν(t)

∇x log〈x〉γ +
p1

2〈x〉2γ
S(t)x.

Since S(t) is skew-symmetric and n = 2, S(t) =
(

0 −s(t)
s(t) 0

)
, where we put s(t) =

S21(t) for simplicity. By (4.1), we have

p1s(t)
2
√
|det γ|

∇xθ =
p1s(t)
2〈x〉2γ

(
0 −1
1 0

)
x =

p1

2〈x〉2γ
S(t)x,

and hence

∇x log ϕ = ∇x

(p1

2
ν′(t)
ν(t)

log〈x〉γ +
p1s(t)

2
√
|det γ|

θ
)
.

Therefore, there exists a C∞-function ψ(t) such that

log ϕ(t, r, θ) =
p1

2
ν′(t)
ν(t)

log r +
p1s(t)

2
√
|det γ|

θ + ψ(t). (4.2)

On the other hand, ϕ satisfies the equation (E-1). Since ϕ > 0, (E-1) is equivalent to

∂ log ϕ

∂t
− ∆g log ϕ − g(∇g log ϕ,∇g log ϕ) = 0. (4.3)

By (4.2), we have

∂ log ϕ

∂t
=

p1

2

(ν′(t)
ν(t)

)′
log r +

p1s
′(t)

2
√
|det γ|

θ + ψ′(t).

By Lemma 3.2, we have

∆g log ϕ =
n

4
ν′(t)
ν(t)

( 〈x〉γρ′(〈x〉γ)
ρ(〈x〉γ)

+ 2
)

=
n

4
ν′(t)
ν(t)

(−2 + 2) = 0, (4.4)

g(∇g log ϕ,∇g log ϕ) =
p1

4〈x〉2γ

[(ν′(t)
ν(t)

)2

〈x〉2γ + (x, s(t)2
(

0 1
−1 0

)
γ−1

(
0 −1
1 0

)
x)

]
.

(4.5)

Since t

(
0 1
−1 0

)
γ−1

(
0 −1
1 0

)
=

1
det γ

γ, we have

g(∇g log ϕ,∇g log ϕ) =
p1

4〈x〉2γ

{(ν′(t)
ν(t)

)2

〈x〉2γ +
s(t)2

det γ
(x, γx)

}
=

p1

4

{(ν′(t)
ν(t)

)2

+
s(t)2

det γ

}
.
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Substitute these equations into (4.3). Then we have

p1

2

(ν′(t)
ν(t)

)′
log r +

p1s
′(t)

2
√

|det γ|
θ + ψ′(t) − p1

4

{(ν′(t)
ν(t)

)2

+
s(t)2

det γ

}
= 0. (4.6)

Therefore we obtain a system of differential equations

(ν′(t)
ν(t)

)′
= 0,

s′(t) = 0,

ψ′(t) =
p1

4

[(ν′(t)
ν(t)

)2

− s(t)2

det γ

]
,

because the coefficients of log r and θ in (4.6) must be equal to 0. The solution of this
system is 

ν(t) = ceat,

s(t) = b,

ψ(t) =
p1

4
(a2 − b2

det γ
)t + C0,

(4.7)

where a, b, C0 ∈ R and c ∈ R+. Note that a = 0 if and only if ν′(t) = 0 for all t.
Substituting (4.7) into (4.2), we have

log ϕ(t, r, θ) =
1
2
ap1 log r +

p1

2
√
|det γ|

bθ +
p1

4
(a2 +

b2

det γ
)t + C,

and

S(t) =
(

0 −b
b 0

)
. (4.8)

Therefore

ϕ(t, r, θ) = Cr
1
2 ap1 exp

( p1

2
√
|det γ|

bθ +
p1

4
(a2 +

b2

det γ
)t

)
.

Now choose a number t0 ∈ R such that {t = t0} ∩D 6= ∅ . Since S(t) = γR(t)−1R′(t),
R(t) satisfies the differential equation

γR(t)−1R′(t) =
(

0 −b
b 0

)
by (4.8). The solution of this equation is

R(t) = R(t0) exp(t − t0)γ−1

(
0 −b
b 0

)
= R0 exp tγ−1

(
0 −b
b 0

)
,



34 K. Shimomura

where R0 = R(t0) exp(−t0)γ−1

(
0 −b
b 0

)
. Thus we have

f(t, x) = (
p2

p1
t + d, ceatR0e

tγ−1
“

0 −b
b 0

”

x),

ϕ(t, r, θ) = Cr
1
2 ap1 exp

p1

2

( b√
|det γ|

θ +
1
2
(a2 +

b2

det γ
)t

)
for all (t, x) ∈ D. This shows (1).

The assertion (2) is reduced to (1) by the composition with an inversion. In fact,
Lemma 3.1 implies that the inversion (j, 1), where

j(t, x) = (t,
x

〈x〉2γ
),

is a caloric morphism from (R × M,p1r
−2γ) to itself. Then the composition (f ◦ j, 1 ·

(ϕ ◦ j)) = (f ◦ j, ϕ ◦ j) of (j, 1) and (f, ϕ), is a caloric morphism. The mapping f ◦ j
is of form (a), because

(f ◦ j)(t, x) = (f0(t), ν(t)〈x〉2γR(t)
x

〈x〉2γ
) = (f0(t), ν(t)R(t)x).

By (1), we have

(f ◦ j)(t, x) = (
p2

p1
t + d, ceatR0e

tγ−1
“

0 −b
b 0

”

x),

(ϕ ◦ j)(t, r, θ) = Cr
1
2 ap1 exp

p1

2

( b√
|det γ|

θ +
1
2
(a2 +

b2

det γ
)t

)
for all (t, x) ∈ j−1(D). Since j−1 = j and j(t, r, θ) = (t, r−1, θ),

f(t, x) = (f ◦ j)(j(t, x)) = (
p2

p1
t + d, ceat〈x〉−2

γ R0e
tγ−1

“

0 −b
b 0

”

x),

ϕ(t, r, θ) = (ϕ ◦ j)(j(t, r, θ)) = C(
1
r
)

1
2 ap1 exp

p1

2

( b√
|det γ|

θ +
1
2
(a2 +

b2

det γ
)t

)
.

This completes the proof.

The next proposition corresponds to the cases 2-a and 2-b of Theorem 1.1.

Proposition 4.2. Let n = 3 and ρ(r) = p1r
−2 (p1 ∈ R+).

(1) If there exists a caloric morphism (f, ϕ) such that f is of form (a), then
σ(s) = p2s

−2 with some p2 ∈ R+ and

f(t, x) = (
p2

p1
t + d, ceatR0x),

ϕ(t, x) = C〈x〉
1
2 ap1
γ exp

(p1

4
a2t

)
.
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Especially, ν(t) = ceat, where ν is the function defined in (2.7).
(2) If there exists a caloric morphism (f, ϕ) such that f is of form (b), then

σ(s) = p2s
−2 with some p2 ∈ R+ and

f(t, x) = (
p2

p1
t + d, ceat〈x〉−2

γ R0x),

ϕ(t, x) = C〈x〉−
1
2 ap1

γ exp
(p1

4
a2t

)
.

Especially, ν(t) = ceat, where ν is the function defined in (2.12).
In both cases, a, d ∈ R, c, C ∈ R+ and R0 ∈ Oγ,η(n).

Proof. By the same argument as in the proof of the above proposition, f0(t) =
p2

p1
t+d

and σ(s) = p2s
−2 hold with some p2 ∈ R+ and d ∈ R.

By Lemma 3.2 (2), R(t) is a constant R0 and log ϕ satisfies the equation

∂ log ϕ

∂xj
=

p1

2〈x〉2γ
ν′(t)
ν(t)

(γx)j , j = 1, . . . , n,

because n = 3. Therefore ϕ is a function of 〈x〉γ , i.e.

ϕ(t, x) = ϕ(t, 〈x〉γ),

and
∂ log ϕ

∂r
=

p1ν
′(t)

2ν(t)
1
r
,

and hence

log ϕ(t, r) =
p1ν

′(t)
2ν(t)

log r + ψ(t). (4.9)

By (E-1) and (4.3),

∂ log ϕ

∂t
− ∆g log ϕ − g(∇g log ϕ,∇g log ϕ) = 0.

From Lemma 3.2 and (4.9), it follows that

∂ log ϕ

∂t
=

p1

2

(ν′(t)
ν(t)

)′
log r + ψ′(t),

∆g log ϕ =
n(q + 2)

2
ν′(t)
ν(t)

= 0,

g(∇g log ϕ,∇g log ϕ) =
p1

4
〈x〉q+2

γ

(ν′(t)
ν(t)

)2

=
p

4

(ν′(t)
ν(t)

)2

.

Hence, we have the equation

p1

2

(ν′(t)
ν(t)

)′
log r + ψ′(t) − p1

4

(ν′(t)
ν(t)

)2

= 0.
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Therefore we obtain a system of differential equations
(ν′

ν

)′
= 0,

ψ′ =
p1

4

(ν′

ν

)2

.

The solution is ν(t) = ceat,

ψ(t) =
p1a

2

4
t + C0,

(4.10)

where a,C0 ∈ R and c ∈ R+. Note that a = 0 if and only if ν′(t) = 0 for some t.
Substituting (4.10) into (4.9), we have

log ϕ(t, r) =
ap1

2
log r +

p1a
2

4
t + C0.

Thus we have

f(t, x) = (t + d, ceatR0x), ϕ(t, x) = C〈x〉
1
2 ap1
γ exp

(p1

4
a2t

)
for all (t, x) ∈ D. We have shown the first statement (1). By composing the inversion
(j, 1) as in the proof of Proposition 4.1, we have (2). This completes the proof.

The next proposition corresponds to the cases 3-a and 3-b of Theorem 1.1.

Proposition 4.3. Let ρ(r) = p1r
q (p1 ∈ R+, q ∈ R, q 6= −2).

(1) If there exists a caloric morphism (f, ϕ) such that f is of form (a), then
σ(s) = p2s

q (p2 ∈ R+) and

f(t, x) = (
p2

p1

ct + d

at + b
, |at + b|−2/(q+2)R0x),

ϕ(t, x) =
C

|at + b|n/2
exp

[
−

pa〈x〉q+2
γ

(q + 2)2(at + b)

]
,

where a, b, c, d,∈ R (bc − ad = 1), C ∈ R+ and R0 ∈ Oγ(n). Especially, ν(t) =
|at + b|−2/(q+2) where ν is the function defined in (2.7).

(2) If there exists a caloric morphism (f, ϕ) such that f is of form (b), then
σ(s) = p2s

−q−4 (p2 ∈ R+) and

f(t, x) = (
p2

p1

ct + d

at + b
, |at + b|2/(q+2)〈x〉−2

γ R0x),

ϕ(t, x) =
C

|at + b|n/2
exp

[
−

p1a〈x〉q+2
γ

(q + 2)2(at + b)

]
,

where a, b, c, d ∈ R (bc − ad = 1), C ∈ R+ and R0 ∈ Oγ(n). Especially, ν(t) =
|at + b|2/(q+2) where ν is the function defined in (2.12).
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Proof. Since q 6= −2, R(t) is a constant R0 and equations

∂ log ϕ

∂xj
=

p1〈x〉qγ
2

ν′(t)
ν(t)

(γx)j , j = 1, . . . , n

hold by Lemma 3.2 (3). As in the proof of Proposition 4.2, ϕ is a function of 〈x〉γ , i.e.,
ϕ(t, x) = ϕ(t, 〈x〉γ), and hence there exists a C∞-function ψ(t) such that

log ϕ(t, r) =
p1

2(q + 2)
ν′(t)
ν(t)

rq+2 + ψ(t), (4.11)

and then
∂ log ϕ

∂t
=

p1

2(q + 2)

(ν′(t)
ν(t)

)′
rq+2 + ψ′(t).

By (3.2) and (3.5) we have

∆g log ϕ =
n

4
ν′(t)
ν(t)

(q + 2),

g(∇g log ϕ,∇g log ϕ) =
p1

4

(ν′(t)
ν(t)

)2

rq+2,

respectively. Substituting these into (E-1), we have

p1

2(q + 2)

[(ν′(t)
ν(t)

)′
− q + 2

2

(ν′(t)
ν(t)

)2]
rq+2 + ψ′ − n(q + 2)

4

(ν′(t)
ν(t)

)′
= 0.

Therefore we obtain a system of differential equations
(ν′(t)

ν(t)

)′
− q + 2

2

(ν′(t)
ν(t)

)2

= 0,

ψ′ − n(q + 2)
4

(ν′(t)
ν(t)

)′
= 0.

The solution is {
ν(t) = |at + b|−2/(q+2),

ψ(t) = log |at + b|−n/2 + C0,
(4.12)

where a, b, C0 ∈ R. Note that, a = 0 if and only if ν′(t) = 0 for some t. Substituting
(4.12) into (4.11), we have

log ϕ(t, r) = − p1a

(q + 2)2(at + b)
rq+2 + log |at + b|−n/2 + C0.

On the other hand, (2.4):

σ(ν(t)r) =
f ′
0(t)

ν(t)2
p1r

q, (t, r) ∈ E = {(t, 〈x〉γ); (t, x) ∈ D},
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where D is the domain of f , implies

s−qσ(s) = p1f
′
0(t)ν(t)−q−2 = p1(at + b)2f ′

0(t).

Hence s−qσ(s) and p1(at + b)2f ′
0(t) equal to a constant p2 ∈ R+. Therefore f0(t) =

p2

p1

ct + d

at + b
, where c, d ∈ R with bc − ad = 1. Consequently,

f(t, x) = (
p2

p1

ct + d

at + b
, |at + b|−2/(q+2)R0x)

and

ϕ(t, x) =
C

|at + b|n/2
exp

[
−

p1a〈x〉q+2
γ

(q + 2)2(at + b)

]
for all (t, x) ∈ D, where C = eC0 ∈ R+. This shows (1).

The assertion (2) is reduced to (1) by the composition with an inversion. By (2.5):

σ(
ν(t)
r

) =
f ′
0(t)r

4

ν(t)2
p1r

q

for (t, r) ∈ E = {(t, 〈x〉γ); (t, x) ∈ D}, where D is the domain of f , we have

sq+4σ(s) = p1f
′
0(t)ν(t)q+2.

Hence sq+4σ(s) and p1f
′
0(t)ν(t)q+2 equal to a constant p2 ∈ R+. Therefore σ(s) =

p2s
−q−4 and f ′

0(t) =
p2

p1
ν(t)−q−2. We put q′ = −q − 4. Then q = −q′ − 4 and

ρ(r) = p1r
−q′−4. Fix t0 ∈ I0. Apply Lemma 3.1 (2) for σ(r) = p2r

q′
, ρ(s) = p1s

−q′−4

and R(t0)−1 ∈ Oη,γ(n). Then the inversion (j, 1) with

j(τ, ξ) = (τ,
R(t0)−1ξ

〈ξ〉2η
)

is a caloric morphism from R×N to R×M . Then the composition (j ◦f, ϕ · (1◦f)) =
(j ◦ f, ϕ) of (j, 1) and (f, ϕ), is a caloric morphism from D to R × M . The mapping
j ◦ f is of form (a), because

(j ◦ f)(t, x) = (f0(t),
1

ν(t)
〈x〉2γR(t0)−1R(t)

x

〈x〉2γ
) = (f0(t),

1
ν(t)

R(t0)−1R(t)x).

Note that R(t0)−1R(t) ∈ Oγ,γ . Hence (1) implies

(j ◦ f)(t, x) = (
p2

p1

ct + d

at + b
, |at + b|−2/(q+2)R1x)

and

ϕ(t, x) =
C

|at + b|n/2
exp

[
− p1a〈x〉−(q+2)

γ

(q + 2)2(at + b)

]
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for all (t, x) ∈ D, where a, b, c, d ∈ R (bc − ad = 1), C ∈ R+ and R1 ∈ Oγ,γ . Since

j−1(t, x) = (t,
R(t0)x
〈x〉2γ

), we obtain

f(t, x) = (j−1 ◦ (j ◦ f))(t, x) = (
p2

p1

ct + d

at + b
, |at + b|2/(q+2)〈x〉−2

γ R0x),

where R0 := R(t0)R1 ∈ Oγ,η. Thus we have (2). This completes the proof.

5. Proof of the main result

Proof of Theorem 1.1. Let (f, ϕ) be a caloric morphism from a domain D ⊂ R × M
to R × N such that the mapping f has the form (a) or (b). By Proposition 2.2, we
have

f(t, x) = (f0(t), ν(t)R(t)x), (t, x) ∈ D,

σ(ν(t)r) =
f ′
0(t)

ν(t)2
ρ(r), (t, r) ∈ E = {(t, 〈x〉γ) ∈ R2; (t, x) ∈ D}

in the case (a) or

f(t, x) = (f0(t), 〈x〉−2
γ ν(t)R(t)x), (t, x) ∈ D,

σ(ν(t)r) =
f ′
0(t)

ν(t)2
ρ(r), (t, r) ∈ E = {(t, 〈x〉γ) ∈ R2; (t, x) ∈ D}

in the case (b), where ν(t) is a strictly positive C∞-function and R(t) is an Oγ,η(n)-
valued C∞-function.

Assume that the function ν(t) is not constant. We shall prove that (f, ϕ) is one
of the cases 1-a, 1-b, 2-a, 2-b, 3-a or 3-b. Let I ′ be a connected component of the open
set {t ∈ I0; ν′(t) 6= 0} and let J ′

ρ = {〈x〉γ ; (t, x) ∈ D, t ∈ I ′}. Then by Proposition 2.2
and Lemma 2.1, ρ(r) = p1r

q on J ′
ρ. By Propositions 4.1, 4.2 and 4.3, ν′(t) has one of

the following forms

ν′(t) = caeat,

ν′(t) =
−2a

(q + 2)
|at + b|−2/(q+2)−1,

ν′(t) =
2a

(q + 2)
|at + b|2/(q+2)−1,

with a 6= 0 on I ′, since we assumed that ν is not constant. Then the above expression
of ν′(t) shows that ν′(t) 6= 0 on the closure of I ′ in I0 in all of the above cases. Hence,
I ′ = I0, because I0 is connected. Therefore (t, 〈x〉γ) ∈ I ′ × J ′

ρ for all (t, x) ∈ D and
ρ(r) = p1r

q for all r. Again by Propositions 4.1, 4.2 and 4.3, (f, ϕ) is one of the cases
1-a, 1-b, 2-a, 2-b, 3-a or 3-b.

Next, we deal with the case that ν is constant. Because of the preceding argument,
we may exclude the case that ρ(r) has the form ρ(r) = prq. We first consider the case
(a). By Lemma 3.2 (3), R′(t) = 0. Moreover, by (3.1), we have ∇x log ϕ = 0 because
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ν′(t) = 0. Therefore R(t) is a constant matrix R0 and ϕ depends only on t. Since ϕ
satisfies (E-1), ϕ is a positive constant C. On the other hand, (2.4) in Proposition 2.2

implies σ(νr) =
f ′
0(t)
ν2

ρ(r). Therefore f ′
0(t) =

ν2σ(νr)
ρ(r)

is a positive constant λ. Thus

we have σ(νr) =
λ

ν2
ρ(r) and f0(t) = λt + d with some d ∈ R. Therefore

f(t, x) = (λt + d, νR0x), ϕ(t, x) = C. (5.1)

This is the case 4-a.
Finally, we consider the case (b). Since ν is constant, f ′

0 is equal to a constant λ

and σ(
ν

r
) = λ

r4

ν2
ρ(r) holds by the same argument as above. Then we have f0(t) = λt+d

with some d ∈ R and

ρ(
ν

r
) =

1
λ

r4

ν2
σ(r).

Fix t0 ∈ I0. Apply Lemma 3.1 (1) for σ(r), ρ(s) and R(t0)−1 ∈ Oη,γ(n). Then the
inversion (j, 1) with

j(τ, ξ) = (
1
λ

τ,
νR(t0)−1ξ

〈ξ〉2η
),

is a caloric morphism from R×N to R×M . Then (j ◦ f, ϕ), the composition of (j, 1)
and (f, ϕ), is a caloric morphism from D to R×M . The mapping j ◦ f is of form (a):

(j ◦ f)(t, x) = (t +
d

λ
,R(t0)−1R(t)x).

Note that R(t0)−1R(t) ∈ Oγ,γ . Hence by (5.1), we have

(j ◦ f)(t, x) = (t +
d

λ
, R1x), ϕ(t, x) = C, (t, x) ∈ D,

where C ∈ R+ and R1 ∈ Oγ,γ . Since j−1(t, x) = (λt,
νR(t0)x
〈x〉2γ

), we obtain

f(t, x) = (j−1 ◦ (j ◦ f))(t, x) = (λt + d,
νR0x

〈x〉2γ
),

where R0 := R(t0)R1 ∈ Oγ,η(n). This is the case 4-b.
Thus we have completed the proof of Theorem 1.1.

Acknowledgements: The author would like to express his gratitude to the ref-
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