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Caloric morphisms between different radial metrics
on semi-euclidean spaces of same dimension

Katsunori SHIMOMURA*

Dedicated to Professor Yoshihiro Mizuta on the occasion of his sixtieth birthday

Abstract
This paper generalizes and improves the result of [8] to caloric morphisms
between manifolds with different radial semi-euclidean metrics. It is based on
the similar arguments as were used in [7] and [8] (cf. [4], [5], [6]), but it succeed
to remove the technical assumption from the main result of [8].

1. Introduction

In [6], we defined the notion of caloric morphism, the transformation which pre-
serves the solutions of the heat equation, between semi-riemannian manifolds, and
obtained a characterization theorem. The Appell transformation is a typical example
in euclidean spaces.

Let n = 2 and (M, g) be an n-dimensional semi-riemannian manifold. We denote
by A, the Laplace-Beltrami operator on (M, g), which is given in a local coordinate

(zi)i—y by

A“*Zmax(v 9” )

where det g = det(g;;) and (¢%/) denotes the inverse matrix of (g;;).

Definition 1.1. A C?-function u(t,z) defined on an open set D C R x M is said
to be caloric if u satisfies the heat equation

ou

a*AgUZO

on D. The operator H, := — — A, is called the heat operator on R x M.
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Definition 1.2. Let M and N be semi-riemannian manifolds, f a C?>-mapping from
a domain D C R x M to R x N and ¢ a strictly positive C?-function on D. A pair
(f, ) is said to be a caloric morphism, if f and ¢ satisfy the following conditions:

(1) f(D) is a domain in R x N;

(2) For any caloric function u defined on an open set E in R x N, the function
¢ - (uo f) is caloric on f~1(E).

Let n 2 2 and v = (7;;) be a non-degenerate real symmetric (n,n)-matrix. As-
sume that v is not negative definite. Then the set My = {z € R™;~(x,x) > 0} is not
empty and we consider M, as an open set of n-dimensional semi-euclidean space with
the inner product

Y, y) =D vigriy.
i

We write (z) = \/v(x,z) for x € M.

Let p be a strictly positive C'°*°-function defined on an open interval J, C Ry :=
(0,00) and let M = My N {z;(x) € J,}. We consider the semi-riemannian manifold
(M, g) with the metric of form

g(x) = p((x))y.

We call the metric of this type radial metric.
In our previous paper [8], we considered caloric morphisms with respect to a radial
metric such that f has one of the following forms:

f(t.) = (fot),v(®)R(t)x) or [f(t,x) = (fo(t), (@) *v()R(t)z),

where v(t) is a strictly positive C*°-function and R(t) is an O, (n)-valued C*°-function,
where O, (n) := {R; Ry~ "R = y~1}. In [8], we determined all the caloric morphisms
under the assumption that f(D) N D # (.

The aim of this paper is to generalize the results in [8] to caloric morphisms
between two different radial metrics on semi-riemannian spaces of same dimension.
It is remarkable that this generalization makes it possible to remove the assumption
f(D)N D # () from the main result of [8].

Let v = (yi;) and n = (1;;) be two non-degenerate real symmetric (n, n)-matrices
(n 2 2), and consider two n-dimensional semi-euclidean spaces with the inner products
Y(@,y) =32, ;vijriy; and n(z,y) = 3=, ;1i;x;y;. Assume that neither v nor 7 is neg-
ative definite. Then the sets My = {z € R";y(x,z) > 0} and Ny = {y € R";n(y,y) >
0} are not empty. For x € My and y € Ny, we can put

(@)y = V(w,2) and (y)y = v/n(y,y),
respectively. We define the set O, ,(n) as
O,n(n) ={R € GL(n,R); Ry 'R =n""1}.

Let p and o are strictly positive C*°-functions defined on open intervals J,, J, C
R4, respectively and let M := {x € My;(x)y € J,} and N := {y € No;(y), € J5}.
We consider two semi-riemannian manifolds (M, g) and (N, h) with metrics of forms

g=p(x)y)y and h=a((y)y)n,
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respectively.
Let (f,¢) be a caloric morphism from a domain D C R x M to R x N such that
f(t,x) has one of the following forms:

f(t,z) = (fo(t), A(t)x) (a)

and

ft,2) = (fo(t), ()32 A()2), (b)

where A(t) € GL(n,R) is a C*°-function defined on the open interval Iy = {t €
R; ({t} x R")N D # 0}.
Our main result is the following

Theorem 1.1. Let M = {z € My;(z), € J,} and N = {y € No;(y), € Jo} are
semi-riemannian manifolds with metrics g = p((x)~)y and h = o((y),)n, respectively.
If (f,¢) be a caloric morphism from a domain D C R x M to R x N such that the
mapping [ has the form (a) or (b) in the above, then one of the following cases occurs:

Case 1-a. n =2, p(r) = pir—2, o(r) = par 2,

~1(0 —b
flt,z) = (@t—i—d, ce“tROet’y 1(b 0 )$)7
p1

L 1 2
o(t,r,0) = Cr291 exp h <7b 0+ (a2 + b )t)

2 \/[dety] 2 dety
Case 1-b. n =2, p(r) = prr2, o(r) = par—2,
-1(0 —b
flit,x) = (&t +d, ceat<x>;2ROem (b 0 )3:),

b1

_1 1 b 1, 5
t,r,0) =Cr 29P1 oy —(704—7@ +
o(t,r,0) P\ 5 (
In the cases 1-a and 1-b, a,b,d € R, ¢,C,p1,p2 € Ry, Ry € O4,(2), and (r,0) is the
polar coordinate of R? with respect to v (see §4 below).

Case 2-a. n 2 2, p(r) = p17“_2, 0(7”) = p27"_2;

2

det'y)t)'

flta) = (Rt 4 dee Roa). (@) = Cla) i exp (Ba®t).
P1 4

Case 2-b. 0. = 2, p(r) = p1r=2, o(r) = par~2,

_1
flt,x) = (i—zt +d, ce“t<x>;2Rox), o(t,z) = Clx), > exp (%a%).
1
In the cases 2-a and 2-b, a,d € R, ¢,C,p1,p2 € Ry and Ry € O ,(n).
Case 3-a. n 22, p(r) =pir?, o(r) = pard,
p2ct+d

t+b|"2/ @2 R
D1 at+b’|a +ol oz),

f(t“'L‘) :(

. C prafz)d?
ol @) = g &P [ " g+ 2)2(at + b)} '
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Case 3-b. n =2, p(r) = pir9, o(r) = por— 774,

p2ct+d
ta) = (2
f(t,2) (plat—|—b

Jat + b2/ @) ()22 Rya),

C P1a<$>»qy+2
#t0) = g o |~ G e )
In the cases 3-a and 3-b, a,b,c,d,q € R (bc —ad =1, ¢ # —2), C,p1,p2 € Ry and
Ry € O, ,(n).
Case 4-a. n = 2, o(vr) = %p(r) holds for all v with some positive constants v
and A,
flt,x) = (M +d,vRoz), o(t,z)=C,

where C € Ry, d € R and Ry € O, ,(n).

\ 4
Case 4-b. n 2 2, O'(Z) = %p(r) holds for all v with some positive constants v
T v

and X,
flt,x) = (ANt +d,v(z)*Rox),  @(t,2) = C,

where C € Ry, d € R and Ry € O, »(n).
Case 5. n 2 2, p and o are any strictly positive C>®-functions,

flt,x) = (t+d, Roz), o(t,x) =C,
where C € Ry, d € R and Ry € O, »(n).

Remark 1. In [8], we treated the case of M = N and proved the same result with
the assumption D N f(D) # 0.

2. Preliminaries
In [6], we proved the following characterization theorem.

Theorem A (Characterization).  Let (M, g) and (N, h) be two n-dimensional semi-
riemannian manifolds, f a C%-mapping from a domain D C R x M to R x N such
that f(D) is a domain, and ¢ a strictly positive C%-function on D. Then the following
three statements are equivalent:

(1) (f,¥) is a caloric morphism;

(2) Take a local coordinate (y1, -+ ,yn) of N and write the mapping f as f =
(fo, f1,- -+, fn) by the local coordinate. Then fy depends only on t and the functions
fos f1,--+, fn and @ satisfy the following equations (E-1)— (E-4):

Hyp =0, (E-1)
n

Hyfo =29(Vyloge,Vyfa)+ > 9(Npfs,Vfy) - "T5 0 f (1Sa<n), (E2)
B,y=1

Vofo =0, (E-3)
9(VpfaNofs) = (P o f) - fot) (1= a,B= ), (E-4)
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where V, denotes the gradient operator of (M,g) and hFﬁ denotes the Christoffel
symbol of (N, h);

(8) There exists a continuous function A on D, depending only on t, such that

Hy(p-uo f)(t,x) = A(t) - o(t, x) - Hyuo f(t,x)
for any C%-function u defined on a subdomain of f(D).

Proposition 2.1.  Let (M, g) and (N, h) be n-dimensional semi-riemannian mani-
folds. If (f,p) is a caloric morphism from a domain D C R x M to R x N, then
1) # 0 holds for allt € Iy = {t € R; ({t} x R")N D # 0}.

Proof. Assume that there exists a € I satisfying f{(a) = 0. Then by (E-4):
g(vgfa(a7x)7vgfﬂ(a7x)) =0 (1 g a, B g n)7

we have

ngl(a,x) == ngn(a,x) =0
for all (a,z) € D, and hence the mapping = — (fo(a), fi(a,x),..., fu(a,z)) is (at
least locally) constant. Thus the set ({fo(a)} x M) N D is not open, which contradicts

the condition (1) in the definition of caloric morphism. Therefore f/(t) # 0 for all
telp. ]

The composition of two caloric morphisms is also a caloric morphism. Let M,
N and L be semi-riemannian manifolds. Let D, E be domains in R x M, R x N,
respectively. If (f,¢) is a caloric morphism from D to R x N and (h,%) is a caloric
morphism from E to R x L such that f(D) C E, then (F,®):= (ho f,p-(¢po f))isa
caloric morphism from D to R x L.

From here, we return to the case of semi-riemannian manifolds with radial metrics.
Hereafter, we use the following notations: for an (n,n)-matrix A = (4;;),

y) = Z Aijxiyj, (AI’)Z = ZAijl'j, (Z = 1, e ,n).

i,7=1 j=1

In this notation, we have

Or;  2y/y(w,x) Ox; (o, ox D '

We also have

detg = p((z),)" dety, +/]detg| = p((z),)"/*\/[detr] and g7 = p(<;> )7”}

where (v*) denotes the inverse matrix of (7;;). We can choose the usual cartesian
coordinate system as a local coordinate of M. Then the Laplacian of a function u is
given by

1 0% n—2p'((z),) Z;
Aju=——7— & + i — 2.1
g p((z)~) ”ZZ 7 O0x;0x; p((x)~)? Z 3% (2.1)
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The gradient of a function u is given by

n

1 o Ou 0
Vyu = ———— W_— _—_
= oty 2= o

i,j=1

and hence the inner product of the gradients of two functions u and v is given by

n

1 . OJu Ov
(Vo Vo) = ——— S A 2L Y 2.2
(%) = Sy 227" 2w, o, 22)

Let D C M be a domain, f : D — N a C°-mapping and (f, ) a caloric mor-
phism. Then f is expressed as

f(t,$) = (fO(t)vfl(tvx)v . ’ufn(tvx))'

Because of equation (E-4): g(V, f;, Vi fx) = f(t)(W* o f), (o, B=1,...,n), the second

n

term of the right hand side of (E-2) equals to Z o (h* . hF;k) o f. On the other

j k=1
hand,
~ ; = "1, oh O Ohj
30 = 3 10 3 h ') (G )+ 520 - FE0)
R 9o ((y)y) 9o ((y)y) 9o ((y)n)
kZl_ P ey, gy )
20((y)n)? TN T e o
) vt i—ny_ () 2=y
20((y)y)? (Y)n 20((y)n)? (Y
Thus we have
- i ey 2=nd () fi .
2 9ty i) e S === s Sy, WSism. (29

jk=1
Now let (f, ) be a caloric morphism such that f is of form (a) or (b). Recall that

Oyn(n) ={R € GL(n,R); Ry "R =n""}

1

The equation Ry~ 'R = n~! is equivalent to ‘RnR = 7. Therefore, R € O.,,(n) if and

only if

<Rx>,7 = <x>7
holds for all x € R".
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Proposition 2.2.  Let (M, p({x)~)Y) and (N,o((y),)n) be the same as in Theorem
1.1.

(1) Assume that there exists a caloric morphism (f, @) such that the mapping f
has the form (a):

f(t’ m) = (fO(t)7 A(t).’L‘)
defined on a domain D C R x M. Then f'(t) > 0 holds for each t € Iy and there exist
a strictly positive C™ -function v(t) defined on Iy and an O, (n)-valued C™-function
R(t) on Iy such that A(t) = v(t)R(t) holds for each t € Iy. Moreover, the functions p,
o, fo and v satisfy the equation

_ fo®)
o(v(t)r) = V(Zt)gp(r) (2.4)

for all (t,7) € Ey :={(t,(z)y) € R xRy;(¢t,x) € D}.
(2) Assume that there exists a caloric morphism (f,p) such that the mapping f
has the form (b):

f(t2) = (folt), ()72 A(t)z)

defined on a domain D C R x M. Then f'(t) > 0 holds for each t € Iy and there exist
a strictly positive C™ -function v(t) defined on Iy and an O, (n)-valued C™-function
R(t) on Iy such that A(t) = v(t)R(t) holds for each t € Iy. Moreover, the functions p,
o, fo and v satisfy

v(t), _ fo®)rt

() = B ot (25)
for all (t,r) € Eo := {(t, (z),) € R x Ry; (t,z) € D}.
Proof. (1) The equations (E-4):
9 farfs) = SO 0 1), (1S 0,8 <)
yield the matrix equation:
Ay A = (0P (k) € D, (2.0

which is equivalent to

Then we have

o((At)x)y)n(A(t)z, A(t)x)
p((z)y)y(z, 2)

because v(x,x) > 0 and n(A(t)z, A(t)z) > 0 follow from the conditions (¢t,z) € D C
R x My and f(t,x) = (fo(t), A(t)x) € R x Np.

folt) =

>0 (t,xz)€ D,
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Since the left hand side of (2.6) is independent of z, we can define a real variable
strictly positive function v(t) by

oy PU@s) 172
v0) = (RO Gmeg) o te (2.7)

Then v is a strictly positive C*°-function on Iy which satisfies
AWy AR = v, te D, (2.8)

Hence the matrix R(t) := v(t)"*A(t) belongs to O, ,(n) = {R € GL(n,R); Ry~ "R =
n~t} for all t € Iy and satisfies

(R(t)x)y = (z)y, (t,x) € I xR".
Thus the equality
(A(t)x)y, = v(t)(z)y, (t,x)€ IpxR" (2.9)

holds. Substituting (2.7), (2.8) and (2.9) into (2.6), we have

1 v 2 —1: !/
oy W = O Ey T

and hence

0
o((B)a)y) = Sszolia)y), (a) € D.

Putting r = (x),, we have (2.4).
Next we consider the caloric morphism (f, ) such that f has the form

fltz) = (fo(t), <£E>;2A(t)$),

where A(t) € GL(n,R). The equations (E-4) yield

; n ij afa % _ g 1 o < -
p(<f£>7) z;:l’y 8%1 83;] fO(t)U(<$>;2<A(t)x>n)n (1 = aaﬁ = n) (210)
Since
Ofa  Aai(t) 1
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the left hand side of the equation (2.10) is equal to

> <>W (Aastt) = 222 (A1 ) (A5 (1) — 2522 (A1),

A2 fese((z)y) (x)3 ()2

~ g 2 (1040 - 222020 )

-2 2000 (4, + 4 20D a0, (40
(A(t)x)q
()2

(At)z)p

Therefore we have the following matrix equation

(@)5p((2)4) -
o((z)7*(A(t)z)y)

Ay MAR) = f3(1) (t,z) € D, (2.11)

which is equivalent to

(@240 ((@)52A0) = f3(H) —

Then we have

o({x)5 2 (A@®)x)y)n((z)7 2 At), (x); > A(t)z)

folt) = o)) )

>0 (t,z)€e D,

because y(x,z) > 0 and n((x);?A(t)z, (z)5 2A( Jz) > 0 follow from the conditions
(t.w) € D C R x My and f(t,) = (fo(t), ()7 A(t)z) € R x No.
Since the left hand side is independent of x, we can define the function v(t) by

ety
o((@)7 AWa),))

Then v is a strictly positive C*°-function on Iy and satisfies

v(t) = (fé(t) e . (2.12)
A(t)y A1) = v(t)*n (2.13)
Put R(t) = v(t)"*A(t). Then R(t) € O, ,(n) for all t € I; and the equations

(R(t)a)y = (2)y,  (A)2)y = v(t) )y, (t2) € Iy x R” (2.14)
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hold as before. Substituting (2.13) and (2.14) into (2.11), we have

1 v 2 -1 ! 1 1
@ R e 21
and hence
oA - BOEE (a),) o e, (2.16)
Putting r = (x)., we have (2.5). O

If (f,¢) be a caloric morphism such that f is of form (a):

f(t,l‘) = (fO(t)rA(t)x)

Then f is expressed as

f(tvx) = (fO(t)vfl(ta‘T)7 . '7fn(tvx))a

n

falt,z) = v(t)Ra;(t)z;, a=1,2,...,n.

<.
—

Their derivatives are given by

e S W Ry 0) + (O Ry (1)
J=1 (2.17)
G = (0 Ry ()
fora,j=1,2,...,n.
Lemma 2.1.  Let p and o be two strictly positive C*-functions defined on the inter-

vals J, and J, in Ry, respectively. Let p and v be two strictly positive C'-functions
defined on an interval I. Let E be a domain in J, x Ry.
(1) Assume that p, o, p, v satisfy the equation

o(t)r) = W(D)p(r),  (t7) € . (2.18)
If V' (t) # 0 on an interval I', then there exist constants p1,ps € Ry and ¢ € R such
that
pr)=pir? (redy),  o(s)=pas? (s€Jp),

u(t) I;—ju(wq (ter),

where J, .= {r;(t,r) € E,t € I'} and J, :=={v(t)r;(t,r) € E, t € I'}.
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(2) Assume that p, o, p and v satisfy the equation
v(t
o) = payiotr), () € B (219)

If V'(t) # 0 on an interval I', then there exist constants py,ps > 0 and ¢ € R such that

p(r) =pir? (reJd,), o(s) =pas™ 1t (seJ)),
u(t) = Zu =t (ter),
b1
t
where J, = {r;(t,r) € £, t € I'} and J} := {#, (t,rye E,tel'}.

Proof. First we show (1). Differentiating (2.18) by r and by ¢, we have the equations

o (vt)r)v(t) = u(t)p'(r), o' W) (t)r = (t)p(r), (t,r) € E.
Since v/(t) # 0 on I’, these equations yield

wp(r)
Wy(t) = u(t)p'(r), (t,r) € En,

where E; = {(t,z) € E;t € I'}, and hence

p )  rp'(r) .
) - ey ek (2.20)

Therefore, the both sides of the equation (2.20) are equal to a constant ¢, so that

I
ROEZ0 ,
wn o TED

where J, = {r;(t,7) € E1}. The solutions of these equations are

p(r) = p1rd, reJ, (2.21)
wu(t) = cv(t)?, tel
with some positive constants p; and c. Substituting (2.21) into (2.18), we have
o(v(t)r) = eprv(t)'re,
and hence
o(s) =cps?, se€J.,

where J/ = {v(t)r; (¢t,r) € E1}. We have the statement (1) by putting ps = cp;.
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Next we prove the statement (2). Differentiating (2.19) by r and by ¢, we have
the equations
v(t) v(t) v(t) V(1)
T r

= W (t)rtp(r), (t,r) € E.

—o'(= ) = p(t) (' (r) + 4r°p(r)), o' (=)

Since v'(t) # 0 on I’, these equations yield

()1 () + 4 p(r)) =~ (Orte(r) 2 () e B,

v (t)r’
where Ey = {(t,x) € E;t € I'}, and hence
) W
O OrIOL (t,r) € E. (2.22)

Therefore, both sides of the equation (2.22) are equal to a constant ¢, so that

N
SN O
OO N

where J, = {r;(t,r) € E1}. The solutions of these equations are

p(r) = p1rd, r e J;),

p(t) = cv(t)~974, tel (2.23)

with some positive constants p; and c¢. Substituting (2.23) into (2.19), we have
v(t v(t)y—a—4
(A0 = g, (MY,
r r
and hence
o(s)=cps™ T4 selJl,

v(t)

t
where J/ = {T; (t,r) € E1}. We have the statement (2) by putting ps = cpy. O

3. Lemmas

The following lemma enables us to reduce the case (b) to the case (a).

A 4
Lemma 3.1. (1) Assume that a(;) = V—Zp(r) holds for r € J, with some positive
constants v and A. Then for each R € O ,(n), the inversion (j,1) with
i) = 0 7

w2



Caloric morphisms between different radial metrics 25

1s a caloric morphism from R x M to R x N.
(2) If p(r) = p1r? and o(s) = pas™97*, then for each R € O, ,(n), the inversion

(4, 1) with

Rx

P2

j(ta :L‘) -
s a caloric morphism from R x M to R x N.

Proof. (1) Clearly, (j,1) satisfies the equations (E-1) and (E-3). We shall show the

equation (E-2). For simplicity, we put y = Rx. Since j,(t,z) = V(éj;)a = éﬁ’;‘;, we
have ! !
- z; Oja - - Z; R . ya(’}/x)i - Yo ya’Y(fEJ)
S tven 2 e ) =@y )
:V< Yo ya<m>3> _ Y
w3~y E
~ 0 %a = i oRei(@  Rai(Y®)i L Yevi | Ya(y2)i (3):
2w = 27 Y e .
= % > [ — Rai(va)i — Rau(7%)i — Ya (%z - 4%@)}
7 il=1 v
2vYq z,x o
_ <x?>% (_ 2 +47§I>%)) =202 )ué—ﬁ,
1 n n

and

> 9(Vir, Vgin) - " 0§ = A

I,k=1 2 a((uy)n 33>7
2 n /) e
T ol /(@) o)y
2
Differentiating the equation o(v/r)~! = %p(r)*l by r, we have
afr), v 412 v2p/(r)

O’(V/T)Q (_7’72) = /\T5P(T') + )\7“4p(7")2’ re Jp,

and hence

o _ 2n —2vya  n—2 vp ((2)4)Ya
@)y (2)ip((2)y) 2 (@)3p((x)4)*
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Thus we have

Agjo +29(Vylog @, Vyja) + > 9(Nyi, Veix) - "I 0
1,k=1
_2@-mrye  n=2 vp({@))ye | 200 = Drya =2 vp (@), )y
()3 p((z)5) 2 (@)3p((z)1)?  (@)3p((z)y) 2 (z)3p((z)4)?
Dja
Ev <1'>’Y € JP‘

= 0 =
We have (E-2).
To show (E-4), first we remark
1 1
Jo®)(h 0 ) = A 5 N =A™, 1Za,f<n.

o((2)5 " v(t){y)n) o(v(t){x)y")

On the other hand, equations

1 S il 0ja ajﬂ
- ~y JJs
p((z)~) “221 Ox; Ox;

il

e v (vy)a(yz); () s(72)
= 3 o (e~ 2 ) (o 222
I/Q(R’yfltR)QB B VQ(R'Vil"}/I ol

v ya(R’Yil"}/fﬂ)lB

g(vgjom Vg]ﬁ) =

2y (yx, v2)yays

T S@y) T @)
— 2 (ﬁfl)aﬁ _ Yalp _ Yol Yalp
- [<x>§p<<x>7> T8 p((a)y) 2<x>gp<<x>v>+4<x>sp<<x>7>}
—71/2770[5 « n
G

hold. By assumption,
V2 1
= (x)y € J,.

@)ip((z)y)  o(v/(x)y)
Thus we have the equation (E-4):
9(Nyjar Via) = Jo(8) (h* 0 j).

Therefore (j,1) is a caloric morphism.
(2) is a special case of (1). O

Lemma 3.2.  Let (f,¢) be a caloric morphism on a domain D C R x M such that
f s of form f(t,x) = (fo(t),v(t)R(t)x), where v(t) is a strictly positive C™°-function
and R(t) is an O ,(n)-valued C*-function. We put

S(t) = yR(t) 'R (1).
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Then S(t) is skew-symmetric and the following statements hold.
(1) ¢ satisfies the following equations on D:

V, log o = % t)) —&-% “1S(t)x, Vplogy = p(<926>~,) (l;/((;))v—&- S(t))ac7 (3.1)
Aglogp = Z ( ((ac(><j)>7) + 2) (3.2)
oW logp T loze) = LR (ZEV @2+ @ssion s | 6
where V, = (%,,%)
(2) If n 2 3, then R'(t) = O for all t € Iy and hence the equations in (3.1) are
V,logp = QV,//((?) x, Vglogy = 'O((;CM) ZI((tt)) v, (3.4)
and (3.3) is
4, log 9, Y, log o) — p(<i>w) (1;’((;)))2<x>3. (3.5)

(3) If R'(t) # 0 on an interval I', then n = 2 and p(r) = pr=2 holds for all
r€J,={(x)y;(t,z) € D,t € I'} with some constant p > 0.

Proof. First of all, we remark that the matrix S(t) is skew-symmetric. In fact, S(t) +
'S(t) = YRR () + ‘R ()R (t)y = R()nR () + R (t)nR(t) = (‘R(t)nR(t)" =
7' = O, because v = ‘R(t)nR(t) follows from R(t) € O, ,(n).

First we prove (1). By (2.1), (2.2) and (2.17), we have

Ayfo =t Z ij_0fa ”_zpl(m”li zj 0fa

— p({x)y) i1 Ozidx; 2 p((x)y = (z)y O;
n=2 p({z)y) < 3 Ofa
5 ol )? 2 (o), O, (30
o2 @) e
7 Gella ) & Mol
and
29(Vylog ¢, Vy fo) = P((ih) > vjkagzgngi(:
7 (3.7)

2 dlog ¢ ik
= ) 2, o, VO e
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for « =1,2,...,n. The formula (2.3) implies

n N , 2_
]%::1 95 Ny fi) "5 0 F) (t,x) = fi(t) T o),

for « =1,2,...,n. On the other hand, differentiating (2.4) by r, we have

Substituting (2.17), (3.6), (3.7), (3.8) and (3.9) into (E-2), we have

. Olog
t))z; = V2T Rk (t),
(@) 2= o, T

and hence

Therefore we have

and

which are equations (3.1). We also have

where S(t)(z,z) = szzl Sij(t )xlxj Since S(t) is skew-symmetric and v~
t)(z,x) =0 and Zwil 7% 8;;(t) = 0. Therefore we have the equation (3.2).

—~

metric, S

is sym-
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Substituting (3.1) into (2.2), we have (3.3):

1 ()

9(Vglog p, Vg log ) = p((z)+) 17(

(t
_ p“?”){(i(%

V(1)
v(t)

) (@2 + (@ 5(0r 50 .

r+y1S(t)z, T +y71S(t)x)

Thus we have the statement (1).
Next we proceed to prove the statement (2). Differentiating the latter equation
of (3.1),

dlogp _ p({x)y) V(1) - ,
- 4 St —1,2,....n,
8.’1)j 2 (l/(t> y]+k§1 ]k( )zk)a J ) &y n
by x; (¢ # j), where y = ya and Sji(t) is the (j,k) element of the matrix S(t), we
have

0 dlogp _ p(e)y) V() NS g g 4 28D YO o

or 0r, 20, o0 yzyﬁ;b}k(t)m)ﬁt 3 Gy i+ Silt):
We also have

0 dlogp _ pl{w)) V() S g, plz)y) V() g

or, on . 2(a), <V(t)yjyz+;5m<t>ym>+ 5 Copgy i+ Sua(0)

9 Ology 0 Ologyp

Since Dz, Oz, = bz, O, for each 4,5 =1,2,...,n with i # j,
PU) S Su s + ol )55 = DS s + ot )50
Y k=1 T k=1

holds. Then we have

285(t) = m(yz Z Sik(t)xr — yj Z Sik(t)xk)

(z)y) 7 = =
for each 7,57 =1,2,...,n with i # j, and hence
p'((z)y)
Sii(t) = ————(viz; — 2ziy;), 3.10
TN TER A (310)

where we put 2 = Sz. Let n 2 3. Then for each fixed ¢t € Iy and each triple indices
i,5,k with 1 £ i < j < k < n, the equation (3.10) implies
Sii )y + Sik(t)yi + Ski(t)y; =0

for all (y;,y;,yx) in an open subset of R3. This implies (S;;(t), Sjk(t), Ski(t)) = 0 for
each 1 £ i < j < k < n, because v is non-degenerate. Therefore S(¢) = O, and hence
R/(t) = O for all t € I. Thus we have the statement (2).
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Finally, assume that R'(t) # 0 on an interval I’. Then (2) yields n = 2. Hence
S(t) = ( 0 512“)) and z = (S1a(t)za, —Si2(t)z1). Then the equation (3.10)

implies

/ /

-
S12(t) = ;;7(2) {y1(=S12(t)z1) — Sr2(t)z2y2} = —;;(2)512(75)(33,’733)
_rp(r)
20(r) P21
_ : ,_rp(r) _ o

where we put r = (z),. Since S12(t) # 0fort € I, 291 1 and hence p(r) = pr
holds for all r € J, = {(z),; (t,r) € D,t € I'}, which shows (3). O

4. Some special cases

Before the proof of Theorem 1.1, we deal with the case that p has the form
p(r) = p1r? in this section. The following Proposition 4.1 corresponds to the cases
1-a and 1-b of Theorem 1.1. To state the results, we introduce the two dimensional
polar coordinate with respect to 7. Since y is a real symmetric matrix, there exists

an orthogonal matrix U such that v = U (g g) U (a >0, 8 #0). If we put

B= (\ga (|)5|)Uand§3=Bx, then det B = /| det ],

I
(2)2 = a(Uz) + B(Uz)} = {3:“1 +73, dety >0,

2 — 73, dety <0,

and

—zpdet B —\/|det’y|x2

=2
Ty 1

0 & i(321$1+3229€2)
Biiz + Biaxo

&cl fl o 5‘:U1
0 o 0 <B22$2+3211‘1) z, det B \/|d€t’}/|x
—_— = o = 1

Blg.’EQ +B11$1 l’% Xy

8x2 (fl 8%2

hold. The polar coordinate (r,8) with respect to v is defined by

T
arctan 72, dety > 0,
Ea 1
r = (z),, and 6 =

T
arctanh 72, det v < 0.
T
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x
Note that for each point z = (r,0) € M, the polar coordinate of the inversion — is

A ()3
equal to (r~1,60), because <<a:>2 )y = @ and <;>2 is a scholar multiple of z. Then
¥ g2l ¥
V]dety] /0 —1
= = 4.1
o=Vt (1 9) (4.1)

holds in any case. In fact, if dety > 0,

00 & 0 Iy  \/|detn] 90 @ 9 &y \/|dety]

a3 = = po — = x2 = = po —— = T
Ory I3 413011 I (x)2 T 0wy 33+ 73 0103 ()2 ’

and if dety < 0,

2 7 9 \/|det'y|x a0 Tl 9 &y \/|dety]

A T ~9 <948 =~ - 2 T =~ ~ ~ - xl'
Ory &2 — 33011 1 (x)2 T Oz B2 — 33010 1 ()2

Now we state the proposition.

Proposition 4.1.  Let n =2 and p(r) = pir=2 (p1 € Ry).
(1) If there exists a caloric morphism (f, ) such that f is of form (a), then
o(s) = pas—2 with some ps € Ry and

-1(0 —=b
flt,x) = (@t—kd, ce“tROetV 1(b 0 )$)7
P1

! 1 2
o(t,r,0) = Crz" exp by <7b 0+ §(a2 + b )t)

2 ,/|detfy| det'y

Especially, v(t) = ce® where v is the function defined in (2.7).
(2) If there exists a caloric morphism (f,¢) such that f is of form (b), then
o(s) = pas?2 with some ps € Ry and

flit,x) = (?t +d, ceat<m>;2ROem_l(b 0 )x)7
1

! 1 2
o(t,r,0) = Cr~ 2% exp b (LG + =(a® + b )t)

2 1/|detfy| 2 det’y

Especially, v(t) = ce® where v is the function defined in (2.12).
In both cases, a,b,d € R, ¢,C € Ry, Ry € O,,(2) and (r,0) is the polar coordinate
of R? with respect to .

Proof. Let D be the domain of f. (2.4) implies that for all (¢,7) € E = {(¢t, (z),) €
R x By (t,2) € D),

() = L2
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holds. Put s = v(t)r. Then
s2o(s) = fo(t)p1, (t,s) € B ={(t,v(t)r) e R xRy;(t,r) € E}.

Hence s%0(s) and fj(t)p1 equal to a constant py € Ry. Therefore o(s) = pas™2 and
folt) = 2t + d with d € R.

p1
By Lemma 3.2 (1), log ¢ satisfies the equation
_ p)3® (1) _nV(t) p1
V,;log o = 5 ( 0 yxr + S(t)x) =200 V, log(z) + 2(1’)%5@):&
. . . 0 —s(t)
Since S(t) is skew-symmetric and n = 2, S(t) = s(t) 0 ) where we put s(t) =

So21(t) for simplicity. By (4.1), we have

nst) o o pis(t) (0 1)3;: Pl g,

st T 2wz 10 )T o
and hence
p1 V(1) p1s(t)
V, log o = V, (L 10 () 4 P g,
Therefore, there exists a C*°-function 1(t) such that
P V(1) p15(t)
log p(t,r,0) = — logr + ———2—0 + 9 (t). 4.2
gt 0) =5 Ty losT + 3 e (1) (4.2)
On the other hand, ¢ satisfies the equation (E-1). Since ¢ > 0, (E-1) is equivalent to
0lo
af(p — Aglogy — g(Vylog o, Yy log ) = 0. (4.3)
By (4.2), we have
dlogyp _ p1 V()Y p1s'(t) /
) logr + P2 g4 wh).
ot 2<V(t)) & 2./] det | vi(t)
By Lemma 3.2, we have
nv/(t) ((x),p'({x)5) (1)
Sotoge = 50 (S YY) ST (2= @)
_ [V e 20 1\ _ 1[0 -1
(% low. S loxe) = 1| (50) 2 + @a? (& )7 (7 )]

0 1 0 -1 1
; t -1 _
Since (1 0) ¥ (1 0 ) = detfy% we have

9(Vylog ¢,V log ) = 4<pxl>2 { (I;,((f)) ) 2<96>3 + th),j (, 793)}

v 2 g(t)2
_Z{(y((f))) +dgt)'y}'
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Substitute these equations into (4.3). Then we have

v (t)\’ 18’ / L[ (V)2 s®)?
?(y((;))) 1ogr+2\p/%0+w(t)—i{(y((:))) +d(ett)7}=0. (4.6)

Therefore we obtain a system of differential equations
() -0
v(t) ’
s'(t) =0,
PV (N2 s(t)?
v =3Cw) ~aq)

4 \v@)/)  dety

because the coefficients of logr and 6 in (4.6) must be equal to 0. The solution of this
system is

s(t) = b, (4.7)

s =P — v
4 det vy 0

where a,b,Cp € R and ¢ € R;. Note that a = 0 if and only if /(¢t) = 0 for all ¢.
Substituting (4.7) into (4.2), we have

2

log p(t,r,0) = %am logr + Q\/%be n %(az n detv)t ‘e
and
o= (2 _Ob) ' (4.8)
Therefore
= 5 B s ),
2y/] det 4 det ~y

Now choose a number to € R such that {t = ¢y} N D # (0 . Since S(t) = vR(t) 'R/ (t),
R(t) satisfies the differential equation

e (0 =D
LORIOR (i
by (4.8). The solution of this equation is
1 (0 —b
R(t) = R(to) exp(t — to)y™* (b 0 )

1 (0 =b
:ROeXpt’)/ l(b O)a



34 K. Shimomura

where Ro = Rlto)exp(—to)y " (3 ). Thus we have
—-1(0 —=b
flt,z) = (p—Qter, ce™ Roe’” 1(b 0 )1;)’
P
1 D1 b 1,5 b2
t,7,0) = Cr2P exp & (———=0 + = (a® + t
A0 p2<m 5@+ 2e7))

for all (t,x) € D. This shows (1).
The assertion (2) is reduced to (1) by the composition with an inversion. In fact,
Lemma 3.1 implies that the inversion (7, 1), where

T

j(t’x) = (tv T)v

is a caloric morphism from (R x M, p;r~25) to itself. Then the composition (f o j,1 -

(poj))=(foj,poj)of (4,1) and (f, ), is a caloric morphism. The mapping f o j
is of form (a), because

(f o)t x) = (fo(t), v(t) (@) R(t) 7~7) = (fo(t), V() R(t)x).
By (1), we have

(fo(t,x) = (@t +d, ce“tROetfl(b 0 )@7
D1

1 b 1 b2
(poj)(t,r,0) =Cr2"texp &<79 + - (a® + )t>

2 \\/|det~] 2 det ~y

for all (t,z) € 771(D). Since ;7! = j and j(t,r,0) = (t,7~1,0),

—-1(0 —=b
ft,x) = (foh)(i(t,x)) = (zﬁt +d, ce® ()7 Roe” ("),
1
NS 11 P1 b 1 9 b2
t,r,0) = t,r,0)) =C(-)21 — | —0+ = t).
P(L1.0) = (¢ 0 )i(0r.0)) = OO exp G (st 50 + 3it)
This completes the proof. O

The next proposition corresponds to the cases 2-a and 2-b of Theorem 1.1.

Proposition 4.2.  Letn = 3 and p(r) = p17=2 (p1 € Ry).
(1) If there exists a caloric morphism (f,) such that f is of form (a), then
o(s) = pas™?2 with some ps € Ry and

Ft,2) = (Pt + d, ce™ Roz),
D1

plt,2) = Cla) 3 exp (o)
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FEspecially, v(t) = ce™, where v is the function defined in (2.7).
(2) If there exists a caloric morphism (f,¢) such that f is of form (b), then
o(s) = pas™?2 with some py € Ry and

ft,z) = (@t +d, ce‘“(acﬁQJ%O:U)7
p1
elt,) = Clo)y " exp (Bat).

FEspecially, v(t) = ce™, where v is the function defined in (2.12).
In both cases, a,d € R, ¢,C € Ry and Ry € O, (n).
Proof. By the same argument as in the proof of the above proposition, fo(t) = &t—kd
p1
and o(s) = pas~2 hold with some py € R, and d € R.
By Lemma 3.2 (2), R(t) is a constant Ry and log ¢ satisfies the equation

dlogy — p V(t),
or;  2(x)2 v(t) (v2)s,

because n = 3. Therefore ¢ is a function of (x), i.e.

@(ta x) = QD(t, <(E>7)7

and

dloge  pi/'(t)1

ar  2w(t) 7
and hence
V' (t
log (t,7) = p;y(i)) log r + (). (4.9)
By (E-1) and (4.3),
Olo
afw — Aglogy — g(Vylog ¢, Yy log ) = 0.

From Lemma 3.2 and (4.9), it follows that

a1 '
;f@ p1( ) logr 4+ /(¢
+2 '(t)
Aylogp = (qg y((t) =0
/ t 2 ! t 2
(% log . Gy log o) = 22 (L) =2 (L)

Hence, we have the equation

B ) v -5 (55) o
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Therefore we obtain a system of differential equations

N2
v=1)
The solution is
v(t) = ce™,
bt = plT(ft—l—Co, (4.10)

where a,Cy € R and ¢ € Ry. Note that a = 0 if and only if v/(¢) = 0 for some ¢.
Substituting (4.10) into (4.9), we have

2
a a
log p(t,r) = % logr + p14

t+ Cp.

Thus we have
1
ft,x) = (t +d,ce™Rox), o(t,z) = Clx)2"" exp (‘%a%)

for all (¢,x) € D. We have shown the first statement (1). By composing the inversion
(4, 1) as in the proof of Proposition 4.1, we have (2). This completes the proof. O

The next proposition corresponds to the cases 3-a and 3-b of Theorem 1.1.

Proposition 4.3.  Let p(r) =pir? (p1 € R4, g €R, g # —2).
(1) If there exists a caloric morphism (f,) such that f is of form (a), then
o(s) =p2s? (p2 € Ry ) and

e = (2212

t+ b2/ @2 R
p1 at+b’|a +l 07),

pafz)4? } ’

(t x)*Lex [f—
P = Qe o2 P LT (g1 2)2(at + b)

where a,b,c,d,€ R (bc —ad = 1), C € Ry and Ry € O(n). Especially, v(t) =
lat + b|~2/(@+2) where v is the function defined in (2.7).

(2) If there exists a caloric morphism (f,p) such that f is of form (b), then
o(s) =p2s™ 7% (py € Ry ) and

@ct—kd

pLat+ b jat + b2/ 12 (2) 72 Roa),

fltz) = (

_ C prafz)4?
ot e) = oy &P [ " (g +2)2(at + b)} ’

where a,b,c,d € R (bc —ad = 1), C € Ry and Ry € Oy(n). Especially, v(t) =
lat + b|2/(@+2) where v is the function defined in (2.12).
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Proof.  Since q # —2, R(t) is a constant Ry and equations

dlogy  pi{x)d /(1) o
oz, = z/(t)(vx)” j=1,...,n

hold by Lemma 3.2 (3). As in the proof of Proposition 4.2, ¢ is a function of (z),, i.e.,
o(t,x) = ¢(t, (x)y), and hence there exists a C*°-function ¢ (¢) such that

oo V() 40

log ¢(t,7) = R P2 4 (), (411)
and then

810g<p . p1 I//(t) / ) )

ot 72@+m(um>rﬁ‘+¢@)
By (3.2) and (3.5) we have
(t
Ag logp = ZZ((t)) (q + 2)7
! 2
9(V log ¢, Y, log @) = pi(”y((;)) a2,

respectively. Substituting these into (E-1), we have

2<qpi %) Kyy,(%))/ -1 : (Vy<(7:t)) ﬂrq“ Y- qu 2 (Vy,g)))/ =0

Therefore we obtain a system of differential equations

() a2y,

(t) 2 \u(t)
, nlg+2) V(b)Y
o)

The solution is
t) = |lat + b|—2/(a+2)
{u() Jat 4 b|=2/a2), )

P (t) = log |at + b|’"/2 + Co,

where a,b, Cy € R. Note that, a = 0 if and only if 2/(¢t) = 0 for some ¢. Substituting
(4.12) into (4.11), we have

log p(t,r) = T pia r12 4 log |at + b|7"/? + C.

q+2)%(at +b)
On the other hand, (2.4):

fo(t)
v(t)?

o(v(t)r) = prd,  (t,r) € E={(t,(x),); (t,z) € D},
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where D is the domain of f, implies
s~ 90(s) = prfo(Hv(t) 172 = pi(at + b)* fo ().

Hence s~ %0 (s) and p(at + b)?f(t) equal to a constant p, € R,. Therefore fo(t) =
pact+d

prat+0b’

where ¢,d € R with bc — ad = 1. Consequently,

@ct—l—d
prat+b

flt,z) = ( |t + b7+ Ry

and

pra(z)

__c _—%”}
T Jat+ o2 TP LT (g 2)2(at + )

o(t, z)

for all (t,x) € D, where C' = e“© € R,. This shows (1).
The assertion (2) is reduced to (1) by the composition with an inversion. By (2.5):

v(t), _ fo®)rt
U(T) = S(t)Q pir

for (t,r) € E = {(t,(x),); (t,x) € D}, where D is the domain of f, we have
s (s) = prfo(t)w(t) T+

Hence s?t40(s) and py f(t)v(t)972 equal to a constant py € Ry. Therefore o(s) =

pas~ 9% and fi(t) = 221/(15)"1’2. We put ¢ = —q — 4. Then ¢ = —¢ — 4 and
P

p(r) = p1r—9 . Fix ty € Iy. Apply Lemma 3.1 (2) for o(r) = par?’, p(s) = p1s~7 4

and R(tg)~! € O, ,(n). Then the inversion (j,1) with

. R(to) '€
j(Ta g) = (7—7 7)
(&3
is a caloric morphism from R x N to R x M. Then the composition (jo f,o-(lo f)) =
(jof,p) of (4,1) and (f,¢), is a caloric morphism from D to R x M. The mapping
jo fisof form (a), because
1 T

j t,z) = (fo(t), —(x)2R(to) 'R(t) —
(Jof)( ,.’1?) (fO( )71/(t)<x>’y (0) ()<1,>’2Y

Note that R(to) ' R(t) € O, . Hence (1) implies

1 -1
) = (fo(t), @R(to) R(t)x).

poct+d
prat+b’

(o Nt z) = ( jat +b| 7D Ryz)

and

p1a<x>;(q+2)

(o) —C o [- B
PO = o2 CP LT (g 2)2(at + b)
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for all (t,z) € D, where a,b,c,d € R (bc —ad = 1), C € R} and R; € O, . Since

Mt @) = (t, R((;j;)gg)’ we obtain
Y
f(t.a) = (7o (o f)(ta) = (2 525 at + 0204 ) 2 R,

where Ry := R(to)R1 € O,,,. Thus we have (2). This completes the proof. O

5. Proof of the main result

Proof of Theorem 1.1. Let (f,¢) be a caloric morphism from a domain D C R x M
to R x N such that the mapping f has the form (a) or (b). By Proposition 2.2, we
have

f(t7$) = (fO(t)7V(t)R(t)x)v (t,:,E) €D,

o(w(tyr) = ‘Egg o), (t.7) € B = {(t, (2),) € R% (t,2) € D}

in the case (a) or
ft.x) = (fol®), () ?v(t)R(t)z), (t.x) € D,

o(v(t)r) = V(t)gp(T% (t,r) € B ={(t (z),) € R (t,z) € D}

St
o=

o~
=

in the case (b), where v(t) is a strictly positive C*°-function and R(t) is an O ,(n)-
valued C'"*°-function.

Assume that the function v(t) is not constant. We shall prove that (f, ) is one
of the cases 1-a, 1-b, 2-a, 2-b, 3-a or 3-b. Let I’ be a connected component of the open
set {t € lo;V/'(t) # 0} and let J), = {(z); (t,x) € D,t € I'}. Then by Proposition 2.2
and Lemma 2.1, p(r) = p17? on J},. By Propositions 4.1, 4.2 and 4.3, v/(t) has one of
the following forms

V' (t) = cae™,

—2a
Z/It = at+b_2/(Q+2)_1’
()= gl +b
2a
v (t) = at+b2/(q+2)_1,
()= gyl + )

with a # 0 on I’, since we assumed that v is not constant. Then the above expression
of V//(t) shows that v/(¢) # 0 on the closure of I’ in Ij in all of the above cases. Hence,
I' = Iy, because Iy is connected. Therefore (t,(x),) € I’ x Jj, for all (t,z) € D and
p(r) = pyr? for all r. Again by Propositions 4.1, 4.2 and 4.3, (f, @) is one of the cases
1-a, 1-b, 2-a, 2-b, 3-a or 3-b.

Next, we deal with the case that v is constant. Because of the preceding argument,
we may exclude the case that p(r) has the form p(r) = pr?. We first consider the case
(a). By Lemma 3.2 (3), R'(t) = 0. Moreover, by (3.1), we have V, log ¢ = 0 because
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V/(t) = 0. Therefore R(t) is a constant matrix Ry and ¢ depends only on ¢. Since ¢
satisfies (E-1), ¢ is a positive constant C. On the other hand, (2.4) in Proposition 2.2

implies o (ur) = fo(t) p(r). Therefore fj(t) = yi;i((ru)r)

2
A
we have o(vr) = ﬁp(r) and fo(t) = Mt + d with some d € R. Therefore

is a positive constant A\. Thus

flt,x) = (Mt +d,vRox), o(t,z)=C. (5.1)

This is the case 4-a.
Finally, we consider the case (b). Since v is constant, f{ is equal to a constant A
4
and U(K) = /\T—zp(r) holds by the same argument as above. Then we have fo(t) = A\t+d
T v
with some d € R and
v 1r
P(;) = Xﬁa(r).

Fix to € Iy. Apply Lemma 3.1 (1) for o(r), p(s) and R(to)~* € O, ~(n). Then the
inversion (7, 1) with

ir.9) = Gr o),

is a caloric morphism from R x N to R x M. Then (jo f, ), the composition of (j,1)
and (f,¢), is a caloric morphism from D to R x M. The mapping j o f is of form (a):

. d _
(o f)ta) = (t+ & RBito) " R(D)
Note that R(to) ' R(t) € O, . Hence by (5.1), we have

(Gofta)=(t+5 Rix), ¢ta)=C,  (hx)eD,

where C' € Ry and Ry € O, . Since j~1(t,z) = (AL, V]?(I;g)xL we obtain
x
2
) =™ o o N)(ta) = e+, 70,
v

where Ry := R(tg)R1 € O ,(n). This is the case 4-b.
Thus we have completed the proof of Theorem 1.1. O
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