Caloric morphisms between different radial metrics on semi-euclidean spaces of same dimension

Katsunori Shimomura*

Dedicated to Professor Yoshihiro Mizuta on the occasion of his sixtieth birthday

Abstract

This paper generalizes and improves the result of [8] to caloric morphisms between manifolds with different radial semi-euclidean metrics. It is based on the similar arguments as were used in [7] and [8] (cf. [4], [5], [6]), but it succeed to remove the technical assumption from the main result of [8].

1. Introduction

In [6], we defined the notion of caloric morphism, the transformation which preserves the solutions of the heat equation, between semi-riemannian manifolds, and obtained a characterization theorem. The Appell transformation is a typical example in euclidean spaces.

Let $n \geq 2$ and (M, g) be an *n*-dimensional semi-riemannian manifold. We denote by Δ_g the Laplace-Beltrami operator on (M, g), which is given in a local coordinate $(x_i)_{i=1}^n$ by

$$\Delta_g u = \sum_{i,j=1}^n \frac{1}{\sqrt{|\det g|}} \frac{\partial}{\partial x_i} \Big(\sqrt{|\det g|} g^{ij} \frac{\partial u}{\partial x_j} \Big),$$

where det $g = \det(g_{ij})$ and (g^{ij}) denotes the inverse matrix of (g_{ij}) .

Definition 1.1. A C^2 -function u(t, x) defined on an open set $D \subset \mathbb{R} \times M$ is said to be *caloric* if u satisfies the heat equation

$$\frac{\partial u}{\partial t} - \Delta_g u = 0$$

on D. The operator $H_g := \frac{\partial}{\partial t} - \Delta_g$ is called the *heat operator* on $\mathbb{R} \times M$.

Received 22 April 2010; revised 7 October 2010

²⁰⁰⁰ Mathematics Subject Classification. 31B99, 35K99, 35A30

Key Words and Phrases. caloric morphism, riemannian manifold, Appell transformation

^{*} Partially supported by Grant-in-aid for Scientific Research (C) No.17540144, No.19540161, Japan Society for the Promotion of Science.

^{*}Ibaraki University, Mito, Ibaraki 310-8512, Japan. (shimomur@mx.ibaraki.ac.jp)

Definition 1.2. Let M and N be semi-riemannian manifolds, $f \in C^2$ -mapping from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ and φ a strictly positive C^2 -function on D. A pair (f, φ) is said to be a *caloric morphism*, if f and φ satisfy the following conditions:

(1) f(D) is a domain in $\mathbb{R} \times N$;

(2) For any caloric function u defined on an open set E in $\mathbb{R} \times N$, the function $\varphi \cdot (u \circ f)$ is caloric on $f^{-1}(E)$.

Let $n \geq 2$ and $\gamma = (\gamma_{ij})$ be a non-degenerate real symmetric (n, n)-matrix. Assume that γ is not negative definite. Then the set $M_0 = \{x \in \mathbb{R}^n; \gamma(x, x) > 0\}$ is not empty and we consider M_0 as an open set of *n*-dimensional semi-euclidean space with the inner product

$$\gamma(x,y) = \sum_{i,j} \gamma_{ij} x_i y_j.$$

We write $\langle x \rangle = \sqrt{\gamma(x,x)}$ for $x \in M_0$.

Let ρ be a strictly positive C^{∞} -function defined on an open interval $J_{\rho} \subset \mathbb{R}_{+} := (0, \infty)$ and let $M = M_0 \cap \{x; \langle x \rangle \in J_{\rho}\}$. We consider the semi-riemannian manifold (M, g) with the metric of form

$$g(x) = \rho(\langle x \rangle)\gamma.$$

We call the metric of this type radial metric.

In our previous paper [8], we considered caloric morphisms with respect to a radial metric such that f has one of the following forms:

$$f(t,x) = (f_0(t), \nu(t)R(t)x)$$
 or $f(t,x) = (f_0(t), \langle x \rangle^{-2}\nu(t)R(t)x)$

where $\nu(t)$ is a strictly positive C^{∞} -function and R(t) is an $O_{\gamma}(n)$ -valued C^{∞} -function, where $O_{\gamma}(n) := \{R; R\gamma^{-1t}R = \gamma^{-1}\}$. In [8], we determined all the caloric morphisms under the assumption that $f(D) \cap D \neq \emptyset$.

The aim of this paper is to generalize the results in [8] to caloric morphisms between two different radial metrics on semi-riemannian spaces of same dimension. It is remarkable that this generalization makes it possible to remove the assumption $f(D) \cap D \neq \emptyset$ from the main result of [8].

Let $\gamma = (\gamma_{ij})$ and $\eta = (\eta_{ij})$ be two non-degenerate real symmetric (n, n)-matrices $(n \geq 2)$, and consider two *n*-dimensional semi-euclidean spaces with the inner products $\gamma(x, y) = \sum_{i,j} \gamma_{ij} x_i y_j$ and $\eta(x, y) = \sum_{i,j} \eta_{ij} x_i y_j$. Assume that neither γ nor η is negative definite. Then the sets $M_0 = \{x \in \mathbb{R}^n; \gamma(x, x) > 0\}$ and $N_0 = \{y \in \mathbb{R}^n; \eta(y, y) > 0\}$ are not empty. For $x \in M_0$ and $y \in N_0$, we can put

$$\langle x \rangle_{\gamma} = \sqrt{\gamma(x,x)} \quad \text{and} \quad \langle y \rangle_{\eta} = \sqrt{\eta(y,y)},$$

respectively. We define the set $O_{\gamma,\eta}(n)$ as

$$O_{\gamma,\eta}(n) = \{ R \in GL(n,\mathbb{R}); R\gamma^{-1t}R = \eta^{-1} \}.$$

Let ρ and σ are strictly positive C^{∞} -functions defined on open intervals $J_{\rho}, J_{\sigma} \subset \mathbb{R}_+$, respectively and let $M := \{x \in M_0; \langle x \rangle_{\gamma} \in J_{\rho}\}$ and $N := \{y \in N_0; \langle y \rangle_{\eta} \in J_{\sigma}\}$. We consider two semi-riemannian manifolds (M, g) and (N, h) with metrics of forms

$$g = \rho(\langle x \rangle_{\gamma})\gamma$$
 and $h = \sigma(\langle y \rangle_{\eta})\eta$,

respectively.

Let (f, φ) be a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that f(t, x) has one of the following forms:

$$f(t,x) = (f_0(t), A(t)x)$$
 (a)

and

$$f(t,x) = (f_0(t), \langle x \rangle_{\gamma}^{-2} A(t)x), \tag{b}$$

where $A(t) \in GL(n,\mathbb{R})$ is a C^{∞} -function defined on the open interval $I_0 = \{t \in \mathbb{R}; (\{t\} \times \mathbb{R}^n) \cap D \neq \emptyset\}.$

Our main result is the following

Theorem 1.1. Let $M = \{x \in M_0; \langle x \rangle_{\gamma} \in J_{\rho}\}$ and $N = \{y \in N_0; \langle y \rangle_{\eta} \in J_{\sigma}\}$ are semi-riemannian manifolds with metrics $g = \rho(\langle x \rangle_{\gamma})\gamma$ and $h = \sigma(\langle y \rangle_{\eta})\eta$, respectively. If (f, φ) be a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that the mapping f has the form (a) or (b) in the above, then one of the following cases occurs: Case 1-a. n = 2, $\rho(r) = p_1 r^{-2}$, $\sigma(r) = p_2 r^{-2}$,

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at}R_0e^{t\gamma^{-1}\begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}}x\right),$$
$$\varphi(t,r,\theta) = Cr^{\frac{1}{2}ap_1}\exp\frac{p_1}{2}\left(\frac{b}{\sqrt{|\det\gamma|}}\theta + \frac{1}{2}(a^2 + \frac{b^2}{\det\gamma})t\right)$$

Case 1-b. $n = 2, \ \rho(r) = p_1 r^{-2}, \ \sigma(r) = p_2 r^{-2},$

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at} \langle x \rangle_{\gamma}^{-2} R_0 e^{t\gamma^{-1} \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}} x\right),$$
$$\varphi(t,r,\theta) = Cr^{-\frac{1}{2}ap_1} \exp\frac{p_1}{2} \left(\frac{b}{\sqrt{|\det\gamma|}}\theta + \frac{1}{2}(a^2 + \frac{b^2}{\det\gamma})t\right).$$

In the cases 1-a and 1-b, $a, b, d \in \mathbb{R}$, $c, C, p_1, p_2 \in \mathbb{R}_+$, $R_0 \in O_{\gamma,\eta}(2)$, and (r, θ) is the polar coordinate of \mathbb{R}^2 with respect to γ (see §4 below).

Case 2-a. $n \ge 2$, $\rho(r) = p_1 r^{-2}$, $\sigma(r) = p_2 r^{-2}$,

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at}R_0x\right), \quad \varphi(t,x) = C\langle x \rangle_{\gamma}^{\frac{1}{2}ap_1} \exp\left(\frac{p_1}{4}a^2t\right).$$

Case 2-b. $n \ge 2$, $\rho(r) = p_1 r^{-2}$, $\sigma(r) = p_2 r^{-2}$,

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at} \langle x \rangle_{\gamma}^{-2} R_0 x\right), \quad \varphi(t,x) = C \langle x \rangle_{\gamma}^{-\frac{1}{2}ap_1} \exp\left(\frac{p_1}{4}a^2 t\right).$$

In the cases 2-a and 2-b, $a, d \in \mathbb{R}$, $c, C, p_1, p_2 \in \mathbb{R}_+$ and $R_0 \in O_{\gamma,\eta}(n)$. Case 3-a. $n \geq 2, \ \rho(r) = p_1 r^q, \ \sigma(r) = p_2 r^q,$

$$f(t,x) = \left(\frac{p_2}{p_1}\frac{ct+d}{at+b}, |at+b|^{-2/(q+2)}R_0x\right),$$
$$\varphi(t,x) = \frac{C}{|at+b|^{n/2}}\exp\left[-\frac{p_1a\langle x\rangle_{\gamma}^{q+2}}{(q+2)^2(at+b)}\right].$$

Case 3-b. $n \ge 2, \ \rho(r) = p_1 r^q, \ \sigma(r) = p_2 r^{-q-4},$

$$f(t,x) = \left(\frac{p_2}{p_1}\frac{ct+d}{at+b}, |at+b|^{2/(q+2)}\langle x \rangle_{\gamma}^{-2}R_0 x\right),$$

$$\varphi(t,x) = \frac{C}{|at+b|^{n/2}} \exp\left[-\frac{p_1a\langle x \rangle_{\gamma}^{q+2}}{(q+2)^2(at+b)}\right].$$

In the cases 3-a and 3-b, $a, b, c, d, q \in \mathbb{R}$ (bc $-ad = 1, q \neq -2$), $C, p_1, p_2 \in \mathbb{R}_+$ and $R_0 \in O_{\gamma,\eta}(n)$.

Case 4-a. $n \ge 2$, $\sigma(\nu r) = \frac{\lambda}{\nu^2} \rho(r)$ holds for all r with some positive constants ν and λ ,

$$f(t,x) = (\lambda t + d, \nu R_0 x), \quad \varphi(t,x) = C,$$

where $C \in \mathbb{R}_+$, $d \in \mathbb{R}$ and $R_0 \in O_{\gamma,\eta}(n)$.

Case 4-b. $n \ge 2$, $\sigma(\frac{\nu}{r}) = \frac{\lambda r^4}{\nu^2} \rho(r)$ holds for all r with some positive constants ν and λ ,

$$f(t,x) = (\lambda t + d, \nu \langle x \rangle_{\gamma}^{-2} R_0 x), \quad \varphi(t,x) = C,$$

where $C \in \mathbb{R}_+$, $d \in \mathbb{R}$ and $R_0 \in O_{\gamma,\eta}(n)$.

Case 5. $n \geq 2$, ρ and σ are any strictly positive C^{∞} -functions,

$$f(t,x) = (t+d, R_0 x), \quad \varphi(t,x) = C,$$

where $C \in \mathbb{R}_+$, $d \in \mathbb{R}$ and $R_0 \in O_{\gamma,\eta}(n)$.

Remark 1. In [8], we treated the case of M = N and proved the same result with the assumption $D \cap f(D) \neq \emptyset$.

2. Preliminaries

In [6], we proved the following characterization theorem.

Theorem A (Characterization). Let (M, g) and (N, h) be two n-dimensional semiriemannian manifolds, $f \ a \ C^2$ -mapping from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that f(D) is a domain, and φ a strictly positive C^2 -function on D. Then the following three statements are equivalent:

(1) (f, φ) is a caloric morphism;

(2) Take a local coordinate (y_1, \dots, y_n) of N and write the mapping f as $f = (f_0, f_1, \dots, f_n)$ by the local coordinate. Then f_0 depends only on t and the functions f_0, f_1, \dots, f_n and φ satisfy the following equations (E-1)- (E-4):

$$H_g \varphi = 0, \tag{E-1}$$

$$H_g f_{\alpha} = 2 g(\nabla_g \log \varphi, \nabla_g f_{\alpha}) + \sum_{\beta, \gamma=1}^n g(\nabla_g f_{\beta}, \nabla_g f_{\gamma}) \cdot {}^h \Gamma^{\alpha}_{\beta \gamma} \circ f \quad (1 \le \alpha \le n), \quad (E-2)$$

$$\nabla_{g} f_0 = 0, \tag{E-3}$$

$$g(\nabla_{g}f_{\alpha}, \nabla_{g}f_{\beta}) = (h^{\alpha\beta} \circ f) \cdot f_{0}'(t) \quad (1 \leq \alpha, \beta \leq n),$$
(E-4)

where ∇_{g} denotes the gradient operator of (M,g) and ${}^{h}\Gamma^{\alpha}_{\beta\gamma}$ denotes the Christoffel symbol of (N,h);

(3) There exists a continuous function λ on D, depending only on t, such that

$$H_a(\varphi \cdot u \circ f)(t, x) = \lambda(t) \cdot \varphi(t, x) \cdot H_h u \circ f(t, x)$$

for any C^2 -function u defined on a subdomain of f(D).

Proposition 2.1. Let (M, g) and (N, h) be n-dimensional semi-riemannian manifolds. If (f, φ) is a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$, then $f'_0(t) \neq 0$ holds for all $t \in I_0 = \{t \in \mathbb{R}; (\{t\} \times \mathbb{R}^n) \cap D \neq \emptyset\}.$

Proof. Assume that there exists $a \in I_0$ satisfying $f'_0(a) = 0$. Then by (E-4):

$$g(\nabla_{g} f_{\alpha}(a, x), \nabla_{g} f_{\beta}(a, x)) = 0 \quad (1 \leq \alpha, \beta \leq n),$$

we have

$$\nabla_{q} f_1(a, x) = \cdots = \nabla_{q} f_n(a, x) = 0$$

for all $(a, x) \in D$, and hence the mapping $x \mapsto (f_0(a), f_1(a, x), \ldots, f_n(a, x))$ is (at least locally) constant. Thus the set $(\{f_0(a)\} \times M) \cap D$ is not open, which contradicts the condition (1) in the definition of caloric morphism. Therefore $f'_0(t) \neq 0$ for all $t \in I_0$.

The composition of two caloric morphisms is also a caloric morphism. Let M, N and L be semi-riemannian manifolds. Let D, E be domains in $\mathbb{R} \times M$, $\mathbb{R} \times N$, respectively. If (f, φ) is a caloric morphism from D to $\mathbb{R} \times N$ and (h, ψ) is a caloric morphism from E to $\mathbb{R} \times L$ such that $f(D) \subset E$, then $(F, \Phi) := (h \circ f, \varphi \cdot (\psi \circ f))$ is a caloric morphism from D to $\mathbb{R} \times L$.

From here, we return to the case of semi-riemannian manifolds with radial metrics. Hereafter, we use the following notations: for an (n, n)-matrix $A = (A_{ij})$,

$$A(x,y) = \sum_{i,j=1}^{n} A_{ij} x_i y_j, \quad (Ax)_i = \sum_{j=1}^{n} A_{ij} x_j, \ (i = 1, \dots, n).$$

In this notation, we have

$$\frac{\partial \langle x \rangle_{\gamma}}{\partial x_{j}} = \frac{1}{2\sqrt{\gamma(x,x)}} \frac{\partial \gamma(x,x)}{\partial x_{j}} = \frac{(\gamma x)_{j}}{\langle x \rangle_{\gamma}}, \quad \frac{\partial \rho(\langle x \rangle_{\gamma})}{\partial x_{j}} = \rho'(\langle x \rangle_{\gamma}) \frac{(\gamma x)_{j}}{\langle x \rangle_{\gamma}}.$$

We also have

$$\det g = \rho(\langle x \rangle_{\gamma})^n \det \gamma, \quad \sqrt{|\det g|} = \rho(\langle x \rangle_{\gamma})^{n/2} \sqrt{|\det \gamma|} \quad \text{and} \quad g^{ij} = \frac{1}{\rho(\langle x \rangle_{\gamma})} \gamma^{ij},$$

where (γ^{ij}) denotes the inverse matrix of (γ_{ij}) . We can choose the usual cartesian coordinate system as a local coordinate of M. Then the Laplacian of a function u is given by

$$\Delta_g u = \frac{1}{\rho(\langle x \rangle_{\gamma})} \sum_{i,j=1}^n \gamma^{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \frac{n-2}{2} \frac{\rho'(\langle x \rangle_{\gamma})}{\rho(\langle x \rangle_{\gamma})^2} \sum_{j=1}^n \frac{x_j}{\langle x \rangle_{\gamma}} \frac{\partial u}{\partial x_j}.$$
 (2.1)

The gradient of a function u is given by

$$\nabla_{g} u = \frac{1}{\rho(\langle x \rangle_{\gamma})} \sum_{i,j=1}^{n} \gamma^{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial}{\partial x_{j}},$$

and hence the inner product of the gradients of two functions u and v is given by

$$g(\nabla_{g}u, \nabla_{g}v) = \frac{1}{\rho(\langle x \rangle_{\gamma})} \sum_{i,j=1}^{n} \gamma^{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}.$$
 (2.2)

Let $D\subset M$ be a domain, $f:D\to N$ a $C^\infty\text{-mapping and }(f,\varphi)$ a caloric morphism. Then f is expressed as

$$f(t,x) = (f_0(t), f_1(t,x), \dots, f_n(t,x)).$$

Because of equation (E-4): $g(\nabla_g f_j, \nabla_g f_k) = f'_0(t)(h^{jk} \circ f), (\alpha, \beta = 1, ..., n)$, the second term of the right of (E-2) equals to $\sum_{j,k=1}^n f'_0(t)(h^{jk} \cdot {}^h\Gamma^i_{jk}) \circ f$. On the other hand,

$$\begin{split} \sum_{j,k=1}^{n} (h^{jk} \cdot {}^{h} \Gamma_{jk}^{i})(y) &= \sum_{j,k=1}^{n} h^{jk}(y) \sum_{l=1}^{n} \frac{1}{2} h^{il}(y) \Big(\frac{\partial h_{kl}}{\partial y_{j}}(y) + \frac{\partial h_{jl}}{\partial y_{k}}(y) - \frac{\partial h_{jk}}{\partial y_{l}}(y) \Big) \\ &= \sum_{j,k,l=1}^{n} \frac{\eta^{jk} \eta^{il}}{2\sigma(\langle y \rangle_{\eta})^{2}} \Big(\eta_{kl} \frac{\partial \sigma(\langle y \rangle_{\eta})}{\partial y_{j}} + \eta_{jl} \frac{\partial \sigma(\langle y \rangle_{\eta})}{\partial y_{k}} - \eta_{jk} \frac{\partial \sigma(\langle y \rangle_{\eta})}{\partial y_{l}} \Big) \\ &= \frac{1}{2\sigma(\langle y \rangle_{\eta})^{2}} \sigma'(\langle y \rangle_{\eta}) \Big(\sum_{j=1}^{n} \eta^{ij} \frac{(\eta y)_{j}}{\langle y \rangle_{\eta}} + \sum_{k=1}^{n} \eta^{ik} \frac{(\eta y)_{k}}{\langle y \rangle_{\eta}} - \sum_{l=1}^{n} n \eta^{il} \frac{(\eta y)_{l}}{\langle y \rangle_{\eta}} \Big) \\ &= \frac{\sigma'(\langle y \rangle_{\eta})^{2}}{2\sigma(\langle y \rangle_{\eta})^{2}} \frac{y_{i} + y_{i} - ny_{i}}{\langle y \rangle_{\eta}} = \frac{\sigma'(\langle y \rangle_{\eta})^{2}}{2\sigma(\langle y \rangle_{\eta})^{2}} \frac{(2 - n)y_{i}}{\langle y \rangle_{\eta}}. \end{split}$$

Thus we have

$$\sum_{j,k=1}^{n} g(\nabla_{g} f_{j}, \nabla_{g} f_{k}) \cdot {}^{h} \Gamma^{i}_{jk} \circ f = f_{0}^{\prime} \frac{2-n}{2} \frac{\sigma^{\prime}(\langle f \rangle_{\eta})}{\sigma(\langle f \rangle_{\eta})^{2}} \frac{f_{i}}{\langle f \rangle_{\eta}} \quad (1 \leq i \leq n).$$
(2.3)

Now let (f, φ) be a caloric morphism such that f is of form (a) or (b). Recall that

$$O_{\gamma,\eta}(n) = \{ R \in GL(n,\mathbb{R}); R\gamma^{-1t}R = \eta^{-1} \}.$$

The equation $R\gamma^{-1t}R = \eta^{-1}$ is equivalent to ${}^tR\eta R = \gamma$. Therefore, $R \in O_{\gamma,\eta}(n)$ if and only if

$$\langle Rx\rangle_\eta = \langle x\rangle_\gamma$$

holds for all $x \in \mathbb{R}^n$.

Proposition 2.2. Let $(M, \rho(\langle x \rangle_{\gamma})\gamma)$ and $(N, \sigma(\langle y \rangle_{\eta})\eta)$ be the same as in Theorem 1.1.

(1) Assume that there exists a caloric morphism (f, φ) such that the mapping f has the form (a):

$$f(t,x) = (f_0(t), A(t)x)$$

defined on a domain $D \subset \mathbb{R} \times M$. Then f'(t) > 0 holds for each $t \in I_0$ and there exist a strictly positive C^{∞} -function $\nu(t)$ defined on I_0 and an $O_{\gamma,\eta}(n)$ -valued C^{∞} -function R(t) on I_0 such that $A(t) = \nu(t)R(t)$ holds for each $t \in I_0$. Moreover, the functions ρ , σ , f_0 and ν satisfy the equation

$$\sigma(\nu(t)r) = \frac{f_0'(t)}{\nu(t)^2}\rho(r)$$
(2.4)

for all $(t, r) \in E_0 := \{(t, \langle x \rangle_{\gamma}) \in \mathbb{R} \times \mathbb{R}_+; (t, x) \in D\}.$

(2) Assume that there exists a caloric morphism (f, φ) such that the mapping f has the form (b):

$$f(t,x) = (f_0(t), \langle x \rangle_{\gamma}^{-2} A(t)x)$$

defined on a domain $D \subset \mathbb{R} \times M$. Then f'(t) > 0 holds for each $t \in I_0$ and there exist a strictly positive C^{∞} -function $\nu(t)$ defined on I_0 and an $O_{\gamma,\eta}(n)$ -valued C^{∞} -function R(t) on I_0 such that $A(t) = \nu(t)R(t)$ holds for each $t \in I_0$. Moreover, the functions ρ , σ , f_0 and ν satisfy

$$\sigma(\frac{\nu(t)}{r}) = \frac{f_0'(t)r^4}{\nu(t)^2}\rho(r)$$
(2.5)

for all $(t,r) \in E_0 := \{(t, \langle x \rangle_{\gamma}) \in \mathbb{R} \times \mathbb{R}_+; (t,x) \in D\}.$

Proof. (1) The equations (E-4):

$$g(\nabla_g f_\alpha, \nabla_g f_\beta) = f'_0(t)(h^{\alpha\beta} \circ f), \quad (1 \le \alpha, \beta \le n)$$

yield the matrix equation:

$$A(t)\gamma^{-1t}A(t) = f_0'(t)\frac{\rho(\langle x\rangle_{\gamma})}{\sigma(\langle A(t)x\rangle_{\eta})}\eta^{-1}, \quad (t,x) \in D,$$
(2.6)

which is equivalent to

$${}^{t}A(t)\eta A(t) = f_{0}'(t)\frac{\rho(\langle x\rangle_{\gamma})}{\sigma(\langle A(t)x\rangle_{\eta})}\gamma, \quad (t,x) \in D.$$

Then we have

$$f_0'(t) = \frac{\sigma(\langle A(t)x\rangle_\eta)\eta(A(t)x, A(t)x)}{\rho(\langle x\rangle_\gamma)\gamma(x, x)} > 0 \quad (t, x) \in D,$$

because $\gamma(x,x) > 0$ and $\eta(A(t)x, A(t)x) > 0$ follow from the conditions $(t,x) \in D \subset \mathbb{R} \times M_0$ and $f(t,x) = (f_0(t), A(t)x) \in \mathbb{R} \times N_0$.

Since the left hand side of (2.6) is independent of x, we can define a real variable strictly positive function $\nu(t)$ by

$$\nu(t) = \left(f_0'(t)\frac{\rho(\langle x \rangle_{\gamma})}{\sigma(\langle A(t)x \rangle_{\eta})}\right)^{1/2}, \quad t \in I_0.$$
(2.7)

Then ν is a strictly positive C^{∞} -function on I_0 which satisfies

$$A(t)\gamma^{-1t}A(t) = \nu(t)^2\eta^{-1}, \quad t \in I_0.$$
(2.8)

Hence the matrix $R(t) := \nu(t)^{-1}A(t)$ belongs to $O_{\gamma,\eta}(n) = \{R \in GL(n,\mathbb{R}); R\gamma^{-1t}R = \eta^{-1}\}$ for all $t \in I_0$ and satisfies

$$\langle R(t)x\rangle_{\eta} = \langle x\rangle_{\gamma}, \quad (t,x) \in I_0 \times \mathbb{R}^n.$$

Thus the equality

$$\langle A(t)x\rangle_{\eta} = \nu(t)\langle x\rangle_{\gamma}, \quad (t,x) \in I_0 \times \mathbb{R}^n$$
(2.9)

holds. Substituting (2.7), (2.8) and (2.9) into (2.6), we have

$$\frac{1}{\rho(\langle x\rangle_{\gamma})}\nu(t)^2\eta^{-1}=f_0'(t)\frac{1}{\sigma(\nu(t)\langle x\rangle_{\gamma})}\eta^{-1},$$

and hence

$$\sigma(\nu(t)\langle x\rangle_{\gamma}) = \frac{f'_0(t)}{\nu(t)^2}\rho(\langle x\rangle_{\gamma}), \quad (t,x) \in D.$$

Putting $r = \langle x \rangle_{\gamma}$, we have (2.4).

Next we consider the caloric morphism (f, φ) such that f has the form

$$f(t,x) = (f_0(t), \langle x \rangle_{\gamma}^{-2} A(t)x),$$

where $A(t) \in GL(n, \mathbb{R})$. The equations (E-4) yield

$$\frac{1}{\rho(\langle x \rangle_{\gamma})} \sum_{i,j=1}^{n} \gamma^{ij} \frac{\partial f_{\alpha}}{\partial x_i} \frac{\partial f_{\beta}}{\partial x_j} = f_0'(t) \frac{1}{\sigma(\langle x \rangle_{\gamma}^{-2} \langle A(t)x \rangle_{\eta})} \eta^{\alpha\beta} \quad (1 \le \alpha, \beta \le n).$$
(2.10)

Since

$$\frac{\partial f_{\alpha}}{\partial x_i} = \frac{A_{\alpha i}(t)}{\langle x \rangle_{\gamma}^2} - 2\frac{(\gamma x)_i}{\langle x \rangle_{\gamma}^4} (A(t)x)_{\alpha} = \frac{1}{\langle x \rangle_{\gamma}^2} \Big(A_{\alpha i}(t) - 2\frac{(\gamma x)_i}{\langle x \rangle_{\gamma}^2} (A(t)x)_{\alpha} \Big),$$

the left hand side of the equation (2.10) is equal to

$$\begin{split} \sum_{i,j=1}^{n} \frac{\gamma^{ij}}{\langle x \rangle_{\gamma}^{4} \rho(\langle x \rangle_{\gamma})} \Big(A_{\alpha i}(t) - 2 \frac{(\gamma x)_{i}}{\langle x \rangle_{\gamma}^{2}} (A(t)x)_{\alpha} \Big) \Big(A_{\beta j}(t) - 2 \frac{(\gamma x)_{j}}{\langle x \rangle_{\gamma}^{2}} (A(t)x)_{\beta} \Big) \\ &= \frac{1}{\langle x \rangle_{\gamma}^{4} \rho(\langle x \rangle_{\gamma})} \sum_{i,j=1}^{n} \left(\gamma^{ij} A_{\alpha i}(t) A_{\beta j}(t) - 2 \frac{A_{\alpha i}(t) \gamma^{ij}(\gamma x)_{j}}{\langle x \rangle_{\gamma}^{2}} (A(t)x)_{\beta} \right) \\ &- 2 \frac{A_{\beta j}(t) \gamma^{ij}(\gamma x)_{i}}{\langle x \rangle_{\gamma}^{2}} (A(t)x)_{\alpha} + 4 \frac{\gamma^{ij}(\gamma x)_{i}(\gamma x)_{j}}{\langle x \rangle_{\gamma}^{4}} (A(t)x)_{\alpha} (A(t)x)_{\beta} \Big) \\ &= \frac{1}{\langle x \rangle_{\gamma}^{4} \rho(\langle x \rangle_{\gamma})} \left(({}^{t}A(t) \gamma^{-1} A(t))_{\alpha\beta} - 2 \frac{(A(t)x)_{\alpha}}{\langle x \rangle_{\gamma}^{2}} (A(t)x)_{\beta} \right) \\ &- 2 \frac{(A(t)x)_{\beta}}{\langle x \rangle_{\gamma}^{2}} (A(t)x)_{\alpha} + 4 \frac{\gamma(x,x)}{\langle x \rangle_{\gamma}^{4}} (A(t)x)_{\alpha} (A(t)x)_{\beta} \Big) \\ &= \frac{({}^{t}A(t) \gamma^{-1} A(t))_{\alpha\beta}}{\langle x \rangle_{\gamma}^{4}}, \quad (1 \leq \alpha, \beta \leq n). \end{split}$$

Therefore we have the following matrix equation

$$A(t)\gamma^{-1t}A(t) = f_0'(t)\frac{\langle x\rangle_{\gamma}^4\rho(\langle x\rangle_{\gamma})}{\sigma(\langle x\rangle_{\gamma}^{-2}\langle A(t)x\rangle_{\eta})}\eta^{-1} \quad (t,x) \in D,$$
(2.11)

which is equivalent to

$${}^{t} \big(\langle x \rangle_{\gamma}^{-2} A(t) \big) \eta \big(\langle x \rangle_{\gamma}^{-2} A(t) \big) = f_{0}'(t) \frac{\rho(\langle x \rangle_{\gamma})}{\sigma(\langle x \rangle_{\gamma}^{-2} \langle A(t) x \rangle_{\eta})} \gamma, \quad (t, x) \in D.$$

Then we have

$$f_0'(t) = \frac{\sigma(\langle x \rangle_{\gamma}^{-2} \langle A(t)x \rangle_{\eta}) \eta(\langle x \rangle_{\gamma}^{-2} A(t)x, \langle x \rangle_{\gamma}^{-2} A(t)x)}{\rho(\langle x \rangle_{\gamma}) \gamma(x, x)} > 0 \quad (t, x) \in D,$$

because $\gamma(x,x) > 0$ and $\eta(\langle x \rangle_{\gamma}^{-2} A(t)x, \langle x \rangle_{\gamma}^{-2} A(t)x) > 0$ follow from the conditions $(t,x) \in D \subset \mathbb{R} \times M_0$ and $f(t,x) = (f_0(t), \langle x \rangle_{\gamma}^{-2} A(t)x) \in \mathbb{R} \times N_0$. Since the left hand side is independent of x, we can define the function $\nu(t)$ by

$$\nu(t) = \left(f_0'(t)\frac{\langle x\rangle_{\gamma}^4\rho(\langle x\rangle_{\gamma})}{\sigma(\langle x\rangle_{\gamma}^{-2}\langle A(t)x\rangle_{\eta})}\right)^{1/2}, \quad t \in I_0.$$
(2.12)

Then ν is a strictly positive C^{∞} -function on I_0 and satisfies

$$A(t)\gamma^{-1t}A(t) = \nu(t)^2 \eta^{-1}.$$
(2.13)

Put $R(t) = \nu(t)^{-1}A(t)$. Then $R(t) \in O_{\gamma,\eta}(n)$ for all $t \in I_0$ and the equations

$$\langle R(t)x\rangle_{\eta} = \langle x\rangle_{\gamma}, \quad \langle A(t)x\rangle_{\eta} = \nu(t)\langle x\rangle_{\gamma}, \quad (t,x) \in I_0 \times \mathbb{R}^n$$
 (2.14)

hold as before. Substituting (2.13) and (2.14) into (2.11), we have

$$\frac{1}{\langle x \rangle_{\gamma}^4 \rho(\langle x \rangle_{\gamma})} \nu(t)^2 \eta^{-1} = f_0'(t) \frac{1}{\sigma(\langle x \rangle_{\gamma}^{-2} \nu(t) \langle x \rangle_{\gamma})} \eta^{-1}, \qquad (2.15)$$

and hence

$$\sigma(\frac{\nu(t)}{\langle x \rangle_{\gamma}}) = \frac{f_0'(t) \langle x \rangle_{\gamma}^4}{\nu(t)^2} \rho(\langle x \rangle_{\gamma}) \quad (t, x) \in D.$$
(2.16)

Putting $r = \langle x \rangle_{\gamma}$, we have (2.5).

If (f, φ) be a caloric morphism such that f is of form (a):

$$f(t,x) = (f_0(t), A(t)x).$$

Then f is expressed as

$$f(t,x) = (f_0(t), f_1(t,x), \dots, f_n(t,x)),$$

$$f_\alpha(t,x) = \sum_{j=1}^n \nu(t) R_{\alpha j}(t) x_j, \quad \alpha = 1, 2, \dots, n.$$

Their derivatives are given by

$$\frac{\partial f_{\alpha}}{\partial t} = \sum_{j=1}^{n} (\nu'(t) R_{\alpha j}(t) + \nu(t) R'_{\alpha j}(t)) x_j,$$

$$\frac{\partial f_{\alpha}}{\partial x_j} = \nu(t) R_{\alpha j}(t)$$
(2.17)

for $\alpha, j = 1, 2, ..., n$.

Lemma 2.1. Let ρ and σ be two strictly positive C^1 -functions defined on the intervals J_{ρ} and J_{σ} in \mathbb{R}_+ , respectively. Let μ and ν be two strictly positive C^1 -functions defined on an interval I. Let E be a domain in $J_{\rho} \times \mathbb{R}_+$.

(1) Assume that ρ , σ , μ , ν satisfy the equation

$$\sigma(\nu(t)r) = \mu(t)\rho(r), \quad (t,r) \in E.$$
(2.18)

If $\nu'(t) \neq 0$ on an interval I', then there exist constants $p_1, p_2 \in \mathbb{R}_+$ and $q \in \mathbb{R}$ such that

$$\begin{split} \rho(r) &= p_1 r^q \quad (r \in J'_{\rho}), \qquad \sigma(s) = p_2 s^q \quad (s \in J'_{\sigma}), \\ \mu(t) &= \frac{p_2}{p_1} \nu(t)^q \quad (t \in I'), \end{split}$$

where $J'_{\rho} := \{r; (t,r) \in E, t \in I'\}$ and $J'_{\sigma} := \{\nu(t)r; (t,r) \in E, t \in I'\}.$

(2) Assume that ρ , σ , μ and ν satisfy the equation

$$\sigma(\frac{\nu(t)}{r}) = \mu(t)r^4\rho(r), \quad (t,r) \in E.$$
 (2.19)

If $\nu'(t) \neq 0$ on an interval I', then there exist constants $p_1, p_2 > 0$ and $q \in \mathbb{R}$ such that

$$\begin{split} \rho(r) &= p_1 r^q \quad (r \in J'_{\rho}), \qquad \sigma(s) = p_2 s^{-q-4} \quad (s \in J'_{\sigma}), \\ \mu(t) &= \frac{p_2}{p_1} \nu(t)^{-q-4} \quad (t \in I'), \end{split}$$

where $J'_{\rho} := \{r; (t,r) \in E, t \in I'\}$ and $J'_{\sigma} := \{\frac{\nu(t)}{r}; (t,r) \in E, t \in I'\}.$

Proof. First we show (1). Differentiating (2.18) by r and by t, we have the equations

$$\sigma'(\nu(t)r)\nu(t) = \mu(t)\rho'(r), \quad \sigma'(\nu(t)r)\nu'(t)r = \mu'(t)\rho(r), \quad (t,r) \in E.$$

Since $\nu'(t) \neq 0$ on I', these equations yield

$$\frac{\mu'(t)\rho(r)}{\nu'(t)r}\nu(t) = \mu(t)\rho'(r), \quad (t,r) \in E_1,$$

where $E_1 = \{(t, x) \in E; t \in I'\}$, and hence

$$\frac{\mu'(t)\nu(t)}{\mu(t)\nu'(t)} = \frac{r\rho'(r)}{\rho(r)}, \quad (t,r) \in E_1.$$
(2.20)

Therefore, the both sides of the equation (2.20) are equal to a constant q, so that

$$\frac{r\rho'(r)}{\rho(r)} = q, \qquad r \in J'_{\rho},$$
$$\frac{\mu'(t)}{\mu(t)} = q \frac{\nu'(t)}{\nu(t)}, \quad t \in I',$$

where $J'_{\rho} = \{r; (t, r) \in E_1\}$. The solutions of these equations are

$$\rho(r) = p_1 r^q, \qquad r \in J'_{\rho},
\mu(t) = c\nu(t)^q, \qquad t \in I'$$
(2.21)

with some positive constants p_1 and c. Substituting (2.21) into (2.18), we have

$$\sigma(\nu(t)r) = cp_1\nu(t)^q r^q,$$

and hence

$$\sigma(s) = cp_1 s^q, \quad s \in J'_{\sigma},$$

where $J'_{\sigma} = \{\nu(t)r; (t,r) \in E_1\}$. We have the statement (1) by putting $p_2 = cp_1$.

Next we prove the statement (2). Differentiating (2.19) by r and by t, we have the equations

$$-\sigma'(\frac{\nu(t)}{r})\frac{\nu(t)}{r^2} = \mu(t)(r^4\rho'(r) + 4r^3\rho(r)), \quad \sigma'(\frac{\nu(t)}{r})\frac{\nu'(t)}{r} = \mu'(t)r^4\rho(r), \quad (t,r) \in E.$$

Since $\nu'(t) \neq 0$ on I', these equations yield

$$\mu(t)(r^4\rho'(r) + 4r^3\rho(r)) = -\mu'(t)r^4\rho(r)\frac{\nu(t)}{\nu'(t)r}, \quad (t,r) \in E_1,$$

where $E_1 = \{(t, x) \in E; t \in I'\}$, and hence

$$\frac{r\rho'(r)}{\rho(r)} = -4 - \frac{\mu'(t)\nu(t)}{\mu(t)\nu'(t)}, \quad (t,r) \in E_1.$$
(2.22)

Therefore, both sides of the equation (2.22) are equal to a constant q, so that

$$\begin{aligned} \frac{r\rho'(r)}{\rho(r)} &= q, & r \in J'_{\rho}, \\ \frac{\mu'(t)}{\mu(t)} &= -(q+4)\frac{\nu'(t)}{\nu(t)}, & t \in I', \end{aligned}$$

where $J'_{\rho} = \{r; (t, r) \in E_1\}$. The solutions of these equations are

$$\rho(r) = p_1 r^q, \qquad r \in J'_{\rho},
\mu(t) = c\nu(t)^{-q-4}, \qquad t \in I'$$
(2.23)

with some positive constants p_1 and c. Substituting (2.23) into (2.19), we have

$$\sigma(\frac{\nu(t)}{r}) = cp_1\left(\frac{\nu(t)}{r}\right)^{-q-4},$$

and hence

$$\sigma(s) = cp_1 s^{-q-4}, \quad s \in J'_{\sigma},$$

where $J'_{\sigma} = \{\frac{\nu(t)}{r}; (t,r) \in E_1\}$. We have the statement (2) by putting $p_2 = cp_1$. \Box

3. Lemmas

The following lemma enables us to reduce the case (b) to the case (a).

Lemma 3.1. (1) Assume that $\sigma(\frac{\nu}{r}) = \frac{\lambda r^4}{\nu^2} \rho(r)$ holds for $r \in J_{\rho}$ with some positive constants ν and λ . Then for each $R \in O_{\gamma,\eta}(n)$, the inversion (j,1) with

$$j(t,x) = (\lambda t, \frac{\nu R x}{\langle x \rangle_{\gamma}^2})$$

is a caloric morphism from $\mathbb{R} \times M$ to $\mathbb{R} \times N$.

(2) If $\rho(r) = p_1 r^{q}$ and $\sigma(s) = p_2 s^{-q-4}$, then for each $R \in O_{\gamma,\eta}(n)$, the inversion (j,1) with

$$j(t,x) = \left(\frac{p_2}{p_1}t, \frac{Rx}{\langle x \rangle_{\gamma}^2}\right)$$

is a caloric morphism from $\mathbb{R} \times M$ to $\mathbb{R} \times N$.

Proof. (1) Clearly, (j, 1) satisfies the equations (E-1) and (E-3). We shall show the equation (E-2). For simplicity, we put y = Rx. Since $j_{\alpha}(t, x) = \frac{\nu(Rx)_{\alpha}}{\langle x \rangle_{\gamma}^2} = \frac{\nu y_{\alpha}}{\langle x \rangle_{\gamma}^2}$, we have

$$\begin{split} \sum_{i=1}^{n} \frac{x_{i}}{\langle x \rangle_{\gamma}} \frac{\partial j_{\alpha}}{\partial x_{i}} &= \nu \sum_{i=1}^{n} \frac{x_{i}}{\langle x \rangle_{\gamma}} \left(\frac{R_{\alpha i}}{\langle x \rangle_{\gamma}^{2}} - 2 \frac{y_{\alpha}(\gamma x)_{i}}{\langle x \rangle_{\gamma}^{4}} \right) = \nu \left(\frac{y_{\alpha}}{\langle x \rangle_{\gamma}^{3}} - 2 \frac{y_{\alpha}\gamma(x,x)}{\langle x \rangle_{\gamma}^{5}} \right) \\ &= \nu \left(\frac{y_{\alpha}}{\langle x \rangle_{\gamma}^{3}} - 2 \frac{y_{\alpha}\langle x \rangle_{\gamma}^{2}}{\langle x \rangle_{\gamma}^{5}} \right) = -\nu \frac{y_{\alpha}}{\langle x \rangle_{\gamma}^{3}}, \\ \sum_{i,l=1}^{n} \gamma^{il} \frac{\partial^{2} j_{\alpha}}{\partial x_{i} \partial x_{l}} &= \sum_{i,l=1}^{n} \gamma^{il} \nu \left(-2 \frac{R_{\alpha i}(\gamma x)_{l}}{\langle x \rangle_{\gamma}^{4}} - 2 \frac{R_{\alpha l}(\gamma x)_{i}}{\langle x \rangle_{\gamma}^{4}} - 2 \frac{y_{\alpha}\gamma_{il}}{\langle x \rangle_{\gamma}^{4}} + 8 \frac{y_{\alpha}(\gamma x)_{i}}{\langle x \rangle_{\gamma}^{2}} \frac{(\gamma x)_{l}}{\langle x \rangle_{\gamma}} \right) \\ &= \frac{2\nu}{\langle x \rangle_{\gamma}^{4}} \sum_{i,l=1}^{n} \gamma^{il} \left[-R_{\alpha i}(\gamma x)_{l} - R_{\alpha l}(\gamma x)_{i} - y_{\alpha} \left(\gamma_{il} - 4 \frac{(\gamma x)_{i}(\gamma x)_{l}}{\langle x \rangle_{\gamma}^{2}} \right) \right] \\ &= \frac{2\nu y_{\alpha}}{\langle x \rangle_{\gamma}^{4}} \left(-2 - n + 4 \frac{\gamma(x,x)}{\langle x \rangle_{\gamma}^{2}} \right) = 2(2 - n)\nu \frac{y_{\alpha}}{\langle x \rangle_{\gamma}^{4}}, \\ \Delta_{g} j_{\alpha} &= \frac{1}{\rho(\langle x \rangle_{\gamma})} \sum_{i,l=1}^{n} \gamma^{il} \frac{\partial^{2} j_{\alpha}}{\partial x_{i} \partial x_{l}} + \frac{n - 2}{2} \frac{\rho'(\langle x \rangle_{\gamma})}{\rho(\langle x \rangle_{\gamma})^{2}} \sum_{i=1}^{n} \frac{x_{i}}{\langle x \rangle_{\gamma}} \frac{\partial j_{\alpha}}{\partial x_{i}} \\ &= \frac{2(2 - n)\nu}{\rho(\langle x \rangle_{\gamma})} \frac{y_{\alpha}}{\langle x \rangle_{\gamma}^{4}} - \frac{n - 2}{2} \frac{\rho'(\langle x \rangle_{\gamma})}{\rho(\langle x \rangle_{\gamma})^{2}} \nu \frac{y_{\alpha}}{\langle x \rangle_{\gamma}^{3}} \end{split}$$

and

$$\sum_{l,k=1}^{n} g(\nabla_{g}j_{l},\nabla_{g}j_{k}) \cdot {}^{h}\Gamma_{lk}^{\alpha} \circ j = \lambda \frac{2-n}{2} \frac{\sigma'(\langle \nu y \rangle_{\eta} / \langle x \rangle_{\gamma}^{2})}{\sigma(\langle \nu y \rangle_{\eta} / \langle x \rangle_{\gamma}^{2})^{2}} \frac{(\nu y)_{\alpha} / \langle x \rangle_{\gamma}^{2}}{\langle \nu y \rangle_{\eta} / \langle x \rangle_{\gamma}^{2}} = \lambda \frac{2-n}{2} \frac{\sigma'(\nu / \langle x \rangle_{\gamma})}{\sigma(\nu / \langle x \rangle_{\gamma})^{2}} \frac{y_{\alpha}}{\langle x \rangle_{\gamma}}.$$

Differentiating the equation $\sigma(\nu/r)^{-1} = \frac{\nu^2}{\lambda r^4} \rho(r)^{-1}$ by r, we have

$$\frac{\sigma'(\nu/r)}{\sigma(\nu/r)^2}(-\frac{\nu}{r^2}) = \frac{4\nu^2}{\lambda r^5\rho(r)} + \frac{\nu^2\rho'(r)}{\lambda r^4\rho(r)^2}, \quad r \in J_\rho,$$

and hence

$$\lambda \frac{2-n}{2} \frac{\sigma'(\nu/\langle x \rangle_{\gamma})}{\sigma(\nu/\langle x \rangle_{\gamma})^2} \frac{y_{\alpha}}{\langle x \rangle_{\gamma}} = \frac{2(n-2)\nu y_{\alpha}}{\langle x \rangle_{\gamma}^4 \rho(\langle x \rangle_{\gamma})} + \frac{n-2}{2} \frac{\nu \rho'(\langle x \rangle_{\gamma}) y_{\alpha}}{\langle x \rangle_{\gamma}^3 \rho(\langle x \rangle_{\gamma})^2}.$$

Thus we have

$$\begin{split} \Delta_g j_{\alpha} + 2g(\nabla_g \log \varphi, \nabla_g j_{\alpha}) + \sum_{l,k=1}^n g(\nabla_g j_l, \nabla_g j_k) \cdot {}^h \Gamma_{lk}^{\alpha} \circ j \\ &= \frac{2(2-n)\nu y_{\alpha}}{\langle x \rangle_{\gamma}^4 \rho(\langle x \rangle_{\gamma})} - \frac{n-2}{2} \frac{\nu \rho'(\langle x \rangle_{\gamma}) y_{\alpha}}{\langle x \rangle_{\gamma}^3 \rho(\langle x \rangle_{\gamma})^2} + \frac{2(n-2)\nu y_{\alpha}}{\langle x \rangle_{\gamma}^4 \rho(\langle x \rangle_{\gamma})} + \frac{n-2}{2} \frac{\nu \rho'(\langle x \rangle_{\gamma}) y_{\alpha}}{\langle x \rangle_{\gamma}^3 \rho(\langle x \rangle_{\gamma})^2} \\ &= 0 = \frac{\partial j_{\alpha}}{\partial t}, \quad \langle x \rangle_{\gamma} \in J_{\rho}. \end{split}$$

We have (E-2).

To show (E-4), first we remark

$$j_0'(t)(h^{\alpha\beta} \circ j) = \lambda \frac{1}{\sigma(\langle x \rangle_{\gamma}^{-2} \nu(t) \langle y \rangle_{\eta})} \eta^{\alpha\beta} = \lambda \frac{1}{\sigma(\nu(t) \langle x \rangle_{\gamma}^{-1})} \eta^{\alpha\beta}, \quad 1 \leq \alpha, \beta \leq n.$$

On the other hand, equations

$$\begin{split} g(\nabla_{g}j_{\alpha},\nabla_{g}j_{\beta}) &= \frac{1}{\rho(\langle x \rangle_{\gamma})} \sum_{i,l=1}^{n} \gamma^{il} \frac{\partial j_{\alpha}}{\partial x_{i}} \frac{\partial j_{\beta}}{\partial x_{l}} \\ &= \sum_{i,l=1}^{n} \frac{\gamma^{il}}{\langle x \rangle_{\gamma}^{4} \rho(\langle x \rangle_{\gamma})} \Big(\nu R_{\alpha i} - 2 \frac{(\nu y)_{\alpha}(\gamma x)_{i}}{\langle x \rangle_{\gamma}^{2}} \Big) \Big(\nu R_{\beta l} - 2 \frac{(\nu y)_{\beta}(\gamma x)_{l}}{\langle x \rangle_{\gamma}^{2}} \Big) \\ &= \frac{\nu^{2} (R\gamma^{-1t}R)_{\alpha\beta}}{\langle x \rangle_{\gamma}^{4} \rho(\langle x \rangle_{\gamma})} - 2 \frac{\nu^{2} (R\gamma^{-1}\gamma x)_{\alpha} y_{\beta}}{\langle x \rangle_{\gamma}^{6} \rho(\langle x \rangle_{\gamma})} \\ &- 2 \frac{\nu^{2} y_{\alpha}(R\gamma^{-1}\gamma x)_{\beta}}{\langle x \rangle_{\gamma}^{6} \rho(\langle x \rangle_{\gamma})} + 4 \frac{\nu^{2} \gamma^{-1}(\gamma x, \gamma x) y_{\alpha} y_{\beta}}{\langle x \rangle_{\gamma}^{8} \rho(\langle x \rangle_{\gamma})} \\ &= \nu^{2} \Big[\frac{(\eta^{-1})_{\alpha\beta}}{\langle x \rangle_{\gamma}^{4} \rho(\langle x \rangle_{\gamma})} - 2 \frac{y_{\alpha} y_{\beta}}{\langle x \rangle_{\gamma}^{6} \rho(\langle x \rangle_{\gamma})} - 2 \frac{y_{\alpha} y_{\beta}}{\langle x \rangle_{\gamma}^{6} \rho(\langle x \rangle_{\gamma})} + 4 \frac{y_{\alpha} y_{\beta}}{\langle x \rangle_{\gamma}^{6} \rho(\langle x \rangle_{\gamma})} \Big] \\ &= \frac{\nu^{2} \eta^{\alpha\beta}}{\langle x \rangle_{\gamma}^{4} \rho(\langle x \rangle_{\gamma})}, \qquad 1 \leq \alpha, \beta \leq n \end{split}$$

hold. By assumption,

$$\frac{\nu^2}{\langle x \rangle_{\gamma}^4 \rho(\langle x \rangle_{\gamma})} = \lambda \frac{1}{\sigma(\nu/\langle x \rangle_{\gamma})}, \quad \langle x \rangle_{\gamma} \in J_{\rho}.$$

Thus we have the equation (E-4):

$$g(\nabla_g j_\alpha, \nabla_g j_\beta) = j'_0(t)(h^{\alpha\beta} \circ j).$$

Therefore (j, 1) is a caloric morphism.

(2) is a special case of (1).

Lemma 3.2. Let (f, φ) be a caloric morphism on a domain $D \subset \mathbb{R} \times M$ such that f is of form $f(t, x) = (f_0(t), \nu(t)R(t)x)$, where $\nu(t)$ is a strictly positive C^{∞} -function and R(t) is an $O_{\gamma,\eta}(n)$ -valued C^{∞} -function. We put

$$S(t) = \gamma R(t)^{-1} R'(t).$$

Then S(t) is skew-symmetric and the following statements hold. (1) φ satisfies the following equations on D:

$$\nabla_g \log \varphi = \frac{\nu'(t)}{2\nu(t)} x + \frac{1}{2} \gamma^{-1} S(t) x, \quad \nabla_x \log \varphi = \frac{\rho(\langle x \rangle_{\gamma})}{2} \Big(\frac{\nu'(t)}{\nu(t)} \gamma + S(t) \Big) x, \quad (3.1)$$

$$\Delta_g \log \varphi = \frac{n}{4} \frac{\nu'(t)}{\nu(t)} \Big(\frac{\langle x \rangle_\gamma \rho'(\langle x \rangle_\gamma)}{\rho(\langle x \rangle_\gamma)} + 2 \Big), \tag{3.2}$$

$$g(\nabla_g \log \varphi, \nabla_g \log \varphi) = \frac{\rho(\langle x \rangle_{\gamma})}{4} \left\{ \left(\frac{\nu'(t)}{\nu(t)}\right)^2 \langle x \rangle_{\gamma}^2 + (x, {}^tS(t)\gamma^{-1}S(t)x) \right\},\tag{3.3}$$

where $\nabla_{x} = \left(\frac{\partial}{\partial x_{1}}, \dots, \frac{\partial}{\partial x_{n}}\right)$. (2) If $n \geq 3$, then R'(t) = O for all $t \in I_{0}$ and hence the equations in (3.1) are

$$\nabla_{g} \log \varphi = \frac{\nu'(t)}{2\nu(t)} x, \quad \nabla_{x} \log \varphi = \frac{\rho(\langle x \rangle_{\gamma})}{2} \frac{\nu'(t)}{\nu(t)} \gamma x, \tag{3.4}$$

and (3.3) is

$$g(\nabla_g \log \varphi, \nabla_g \log \varphi) = \frac{\rho(\langle x \rangle_{\gamma})}{4} \left(\frac{\nu'(t)}{\nu(t)}\right)^2 \langle x \rangle_{\gamma}^2.$$
(3.5)

(3) If $R'(t) \neq 0$ on an interval I', then n = 2 and $\rho(r) = pr^{-2}$ holds for all $r \in J'_{\rho} = \{\langle x \rangle_{\gamma}; (t, x) \in D, t \in I'\}$ with some constant p > 0.

Proof. First of all, we remark that the matrix S(t) is skew-symmetric. In fact, S(t) + ${}^{t}S(t) = \gamma R^{-1}(t)R'(t) + {}^{t}R'(t){}^{t}R^{-1}(t)\gamma = {}^{t}R(t)\eta R'(t) + {}^{t}R'(t)\eta R(t) = ({}^{t}R(t)\eta R(t))' = ({}^{t}R(t)\eta R(t)' = ({}^{t}R(t)\eta R(t))' = ({}^{t}R(t)\eta R(t)' = ({}^{$ $\gamma' = O$, because $\gamma = {}^{t}R(t)\eta R(t)$ follows from $R(t) \in O_{\gamma,\eta}(n)$. First we prove (1). By (2.1), (2.2) and (2.17), we have

$$\Delta_{g}f_{\alpha} = \frac{1}{\rho(\langle x \rangle_{\gamma})} \sum_{i,j=1}^{n} \gamma^{ij} \frac{\partial^{2} f_{\alpha}}{\partial x_{i} \partial x_{j}} + \frac{n-2}{2} \frac{\rho'(\langle x \rangle_{\gamma})}{\rho(\langle x \rangle_{\gamma})^{2}} \sum_{j=1}^{n} \frac{x_{j}}{\langle x \rangle_{\gamma}} \frac{\partial f_{\alpha}}{\partial x_{j}}$$

$$= \frac{n-2}{2} \frac{\rho'(\langle x \rangle_{\gamma})}{\rho(\langle x \rangle_{\gamma})^{2}} \sum_{j=1}^{n} \frac{x_{j}}{\langle x \rangle_{\gamma}} \frac{\partial f_{\alpha}}{\partial x_{j}}$$

$$= \frac{n-2}{2} \frac{\rho'(\langle x \rangle_{\gamma})}{\langle x \rangle_{\gamma} \rho(\langle x \rangle_{\gamma})^{2}} \nu(t) \sum_{i=1}^{n} R_{\alpha i}(t) x_{i}$$
(3.6)

and

$$2g(\nabla_{g}\log\varphi,\nabla_{g}f_{\alpha}) = \frac{2}{\rho(\langle x \rangle_{\gamma})} \sum_{j,k=1}^{n} \gamma^{jk} \frac{\partial \log\varphi}{\partial x_{j}} \frac{\partial f_{\alpha}}{\partial x_{k}}$$

$$= \frac{2}{\rho(\langle x \rangle_{\gamma})} \sum_{j,k=1}^{n} \frac{\partial \log\varphi}{\partial x_{j}} \nu(t) \gamma^{jk} R_{\alpha k}(t)$$
(3.7)

for $\alpha = 1, 2, \ldots, n$. The formula (2.3) implies

$$\sum_{j,k=1}^{n} \left(g(\nabla_{g}f_{j},\nabla_{g}f_{k}) \cdot {}^{h}\Gamma_{jk}^{\alpha} \circ f \right)(t,x) = f_{0}'(t) \frac{2-n}{2} \frac{\sigma'(\langle f(t,x) \rangle_{\eta})}{\sigma(\langle f(t,x) \rangle_{\eta})^{2}} \frac{f_{\alpha}(t,x)}{\langle f(t,x) \rangle_{\eta}}$$

$$= f_{0}'(t) \frac{2-n}{2} \frac{\sigma'(\nu(t)\langle x \rangle_{\gamma})}{\sigma(\nu(t)\langle x \rangle_{\gamma})^{2}} \frac{\sum_{i=1}^{n} \nu(t)R_{\alpha i}(t)x_{i}}{\nu(t)\langle x \rangle_{\gamma}}$$

$$= f_{0}'(t) \frac{2-n}{2} \frac{\sigma'(\nu(t)\langle x \rangle_{\gamma})}{\langle x \rangle_{\gamma} \sigma(\nu(t)\langle x \rangle_{\gamma})^{2}} \sum_{i=1}^{n} R_{\alpha i}(t)x_{i}$$

$$(3.8)$$

for $\alpha = 1, 2, ..., n$. On the other hand, differentiating (2.4) by r, we have

$$\frac{f_0'(t)\sigma'(\nu(t)\langle x\rangle_{\gamma})}{\sigma(\nu(t)\langle x\rangle_{\gamma})^2} = \frac{\nu(t)\rho'(\langle x\rangle_{\gamma})}{\rho(\langle x\rangle_{\gamma})^2}.$$
(3.9)

Substituting (2.17), (3.6), (3.7), (3.8) and (3.9) into (E-2), we have

$$\sum_{j=1}^{n} (\nu'(t)R_{\alpha j}(t) + \nu(t)R'_{\alpha j}(t))x_{j} = \frac{2\nu(t)}{\rho(\langle x \rangle_{\gamma})} \sum_{j,k=1}^{n} \gamma^{jk} \frac{\partial \log \varphi}{\partial x_{j}} R_{\alpha k}(t),$$

and hence

$$\frac{\nu'(t)}{2\nu(t)}R(t)x + \frac{1}{2}R'(t)x = R(t)\nabla_g \log \varphi.$$

Therefore we have

$$\nabla_g \log \varphi = \frac{\nu'(t)}{2\nu(t)}x + \frac{1}{2}\gamma^{-1}S(t)x$$

and

$$\nabla_x \log \varphi = \frac{\rho(\langle x \rangle_{\gamma})}{2} \Big(\frac{\nu'(t)}{\nu(t)} \gamma + S(t) \Big) x_z$$

which are equations (3.1). We also have

$$\begin{split} \Delta_g \log \varphi &= \sum_{i=1}^n \frac{1}{\rho(\langle x \rangle_{\gamma})^{\frac{n}{2}}} \frac{\partial}{\partial x_i} \Big(\rho(\langle x \rangle_{\gamma})^{\frac{n}{2}} \frac{1}{2} \Big[\frac{\nu'(t)}{\nu(t)} x_i + (\gamma^{-1}S(t)x)_i \Big] \Big) \\ &= \sum_{i=1}^n \frac{n\rho'(\langle x \rangle_{\gamma})(\gamma x)_i}{4\rho(\langle x \rangle_{\gamma})\langle x \rangle_{\gamma}} \Big[\frac{\nu'(t)}{\nu(t)} x_i + (\gamma^{-1}S(t)x)_i \Big] + \frac{1}{2} \sum_{i=1}^n \Big[\frac{\nu'(t)}{\nu(t)} \delta_{ii} + \sum_{j=1}^n (\gamma^{-1}S(t))_{ij} \delta_{ij} \Big] \\ &= \frac{n}{4} \frac{\rho'(\langle x \rangle_{\gamma})}{\rho(\langle x \rangle_{\gamma})} \Big(\frac{\nu'(t)}{\nu(t)} \frac{\langle x \rangle_{\gamma}^2}{\langle x \rangle_{\gamma}} + \frac{S(t)(x,x)}{\langle x \rangle_{\gamma}} \Big) + \frac{n}{2} \frac{\nu'(t)}{\nu(t)} + \frac{1}{2} \sum_{i,j=1}^n \gamma^{ij} S_{ji}(t), \end{split}$$

where $S(t)(x,x) = \sum_{i,j=1}^{n} S_{ij}(t) x_i x_j$. Since S(t) is skew-symmetric and γ^{-1} is symmetric, S(t)(x,x) = 0 and $\sum_{i,j=1}^{n} \gamma^{ij} S_{ji}(t) = 0$. Therefore we have the equation (3.2).

Substituting (3.1) into (2.2), we have (3.3):

$$g(\nabla_g \log \varphi, \nabla_g \log \varphi) = \rho(\langle x \rangle_{\gamma}) \frac{1}{4} \gamma(\frac{\nu'(t)}{\nu(t)} x + \gamma^{-1} S(t) x, \frac{\nu'(t)}{\nu(t)} x + \gamma^{-1} S(t) x)$$
$$= \frac{\rho(\langle x \rangle_{\gamma})}{4} \bigg\{ \Big(\frac{\nu'(t)}{\nu(t)}\Big)^2 \langle x \rangle_{\gamma}^2 + (x, {}^t S(t) \gamma^{-1} S(t) x) \bigg\}.$$

Thus we have the statement (1).

Next we proceed to prove the statement (2). Differentiating the latter equation of (3.1),

$$\frac{\partial \log \varphi}{\partial x_j} = \frac{\rho(\langle x \rangle_{\gamma})}{2} (\frac{\nu'(t)}{\nu(t)} y_j + \sum_{k=1}^n S_{jk}(t) x_k), \quad j = 1, 2, \dots, n,$$

by x_i $(i \neq j)$, where $y = \gamma x$ and $S_{jk}(t)$ is the (j,k) element of the matrix S(t), we have

$$\frac{\partial}{\partial x_i}\frac{\partial\log\varphi}{\partial x_j} = \frac{\rho'(\langle x\rangle_{\gamma})}{2\langle x\rangle_{\gamma}}(\frac{\nu'(t)}{\nu(t)}y_iy_j + \sum_{k=1}^n S_{jk}(t)y_ix_k) + \frac{\rho(\langle x\rangle_{\gamma})}{2}(\frac{\nu'(t)}{\nu(t)}\gamma_{ji} + S_{ji}(t)).$$

We also have

$$\frac{\partial}{\partial x_j}\frac{\partial\log\varphi}{\partial x_i} = \frac{\rho'(\langle x\rangle_{\gamma})}{2\langle x\rangle_{\gamma}}(\frac{\nu'(t)}{\nu(t)}y_jy_i + \sum_{k=1}^n S_{ik}(t)y_jx_k) + \frac{\rho(\langle x\rangle_{\gamma})}{2}(\frac{\nu'(t)}{\nu(t)}\gamma_{ij} + S_{ij}(t)).$$

Since $\frac{\partial}{\partial x_i} \frac{\partial \log \varphi}{\partial x_j} = \frac{\partial}{\partial x_j} \frac{\partial \log \varphi}{\partial x_i}$ for each $i, j = 1, 2, \dots, n$ with $i \neq j$,

$$\frac{\rho'(\langle x \rangle_{\gamma})}{\langle x \rangle_{\gamma}} \sum_{k=1}^{n} S_{jk}(t) y_{i} x_{k} + \rho(\langle x \rangle_{\gamma}) S_{ji}(t) = \frac{\rho'(\langle x \rangle_{\gamma})}{\langle x \rangle_{\gamma}} \sum_{k=1}^{n} S_{ik}(t) y_{j} x_{k} + \rho(\langle x \rangle_{\gamma}) S_{ij}(t)$$

holds. Then we have

$$2S_{ij}(t) = \frac{\rho'(\langle x \rangle_{\gamma})}{2\langle x \rangle_{\gamma}\rho(\langle x \rangle_{\gamma})} (y_i \sum_{k=1}^n S_{jk}(t)x_k - y_j \sum_{k=1}^n S_{ik}(t)x_k)$$

for each i, j = 1, 2, ..., n with $i \neq j$, and hence

$$S_{ij}(t) = \frac{\rho'(\langle x \rangle_{\gamma})}{2\langle x \rangle_{\gamma} \rho(\langle x \rangle_{\gamma})} (y_i z_j - z_i y_j), \qquad (3.10)$$

where we put z = Sx. Let $n \ge 3$. Then for each fixed $t \in I_0$ and each triple indices i, j, k with $1 \le i < j < k \le n$, the equation (3.10) implies

$$S_{ij}(t)y_k + S_{jk}(t)y_i + S_{ki}(t)y_j = 0$$

for all (y_i, y_j, y_k) in an open subset of \mathbb{R}^3 . This implies $(S_{ij}(t), S_{jk}(t), S_{ki}(t)) = 0$ for each $1 \leq i < j < k \leq n$, because γ is non-degenerate. Therefore S(t) = O, and hence R'(t) = O for all $t \in I_0$. Thus we have the statement (2).

Finally, assume that $R'(t) \neq 0$ on an interval I'. Then (2) yields n = 2. Hence $S(t) = \begin{pmatrix} 0 & S_{12}(t) \\ -S_{12}(t) & 0 \end{pmatrix}$ and $z = (S_{12}(t)x_2, -S_{12}(t)x_1)$. Then the equation (3.10) implies

$$S_{12}(t) = \frac{\rho'(r)}{2r\rho(r)} \{y_1(-S_{12}(t)x_1) - S_{12}(t)x_2y_2\} = -\frac{\rho'(r)}{2r\rho(r)}S_{12}(t)(x,\gamma x)$$
$$= -\frac{r\rho'(r)}{2\rho(r)}S_{12}(t),$$

where we put $r = \langle x \rangle_{\gamma}$. Since $S_{12}(t) \neq 0$ for $t \in I'$, $-\frac{r\rho'(r)}{2\rho(r)} = 1$ and hence $\rho(r) = pr^{-2}$ holds for all $r \in J'_{\rho} = \{\langle x \rangle_{\gamma}; (t, x) \in D, t \in I'\}$, which shows (3). \Box

4. Some special cases

Before the proof of Theorem 1.1, we deal with the case that ρ has the form $\rho(r) = p_1 r^q$ in this section. The following Proposition 4.1 corresponds to the cases 1-a and 1-b of Theorem 1.1. To state the results, we introduce the two dimensional polar coordinate with respect to γ . Since γ is a real symmetric matrix, there exists an orthogonal matrix U such that $\gamma = {}^t U \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} U \quad (\alpha > 0, \ \beta \neq 0)$. If we put $B = \begin{pmatrix} \sqrt{\alpha} & 0 \\ 0 & \sqrt{|\beta|} \end{pmatrix} U$ and $\tilde{x} = Bx$, then $\det B = \sqrt{|\det \gamma|}$,

$$\langle x \rangle_{\gamma}^2 = \alpha (Ux)_1^2 + \beta (Ux)_2^2 = \begin{cases} \tilde{x}_1^2 + \tilde{x}_2^2, & \det \gamma > 0, \\ \tilde{x}_1^2 - \tilde{x}_2^2, & \det \gamma < 0, \end{cases}$$

and

$$\frac{\partial}{\partial x_1} \frac{\tilde{x}_2}{\tilde{x}_1} = \frac{\partial}{\partial x_1} \left(\frac{B_{21}x_1 + B_{22}x_2}{B_{11}x_1 + B_{12}x_2} \right) = \frac{-x_2 \det B}{\tilde{x}_1^2} = \frac{-\sqrt{|\det\gamma|}}{\tilde{x}_1^2} x_2$$
$$\frac{\partial}{\partial x_2} \frac{\tilde{x}_2}{\tilde{x}_1} = \frac{\partial}{\partial x_2} \left(\frac{B_{22}x_2 + B_{21}x_1}{B_{12}x_2 + B_{11}x_1} \right) = \frac{x_1 \det B}{\tilde{x}_1^2} = \frac{\sqrt{|\det\gamma|}}{\tilde{x}_1^2} x_1$$

hold. The polar coordinate (r, θ) with respect to γ is defined by

$$r = \langle x \rangle_{\gamma}, \text{ and } \theta = \begin{cases} \arctan \frac{\tilde{x}_2}{\tilde{x}_1}, & \det \gamma > 0, \\\\ \arctan \frac{\tilde{x}_2}{\tilde{x}_1}, & \det \gamma < 0. \end{cases}$$

Note that for each point $x = (r, \theta) \in M$, the polar coordinate of the inversion $\frac{x}{\langle x \rangle_{\gamma}^2}$ is equal to (r^{-1}, θ) , because $\langle \frac{x}{\langle x \rangle_{\gamma}^2} \rangle_{\gamma} = \frac{1}{\langle x \rangle_{\gamma}}$ and $\frac{x}{\langle x \rangle_{\gamma}^2}$ is a scholar multiple of x. Then

$$\nabla_x \theta = \frac{\sqrt{|\det \gamma|}}{\langle x \rangle_{\gamma}^2} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} x \tag{4.1}$$

holds in any case. In fact, if $\det \gamma > 0$,

 $\frac{\partial \theta}{\partial x_1} = \frac{\tilde{x}_1^2}{\tilde{x}_1^2 + \tilde{x}_2^2} \frac{\partial}{\partial x_1} \frac{\tilde{x}_2}{\tilde{x}_1} = -\frac{\sqrt{|\det \gamma|}}{\langle x \rangle_\gamma^2} x_2, \quad \frac{\partial \theta}{\partial x_2} = \frac{\tilde{x}_1^2}{\tilde{x}_1^2 + \tilde{x}_2^2} \frac{\partial}{\partial x_2} \frac{\tilde{x}_2}{\tilde{x}_1} = \frac{\sqrt{|\det \gamma|}}{\langle x \rangle_\gamma^2} x_1,$

and if $\det \gamma < 0$,

$$\frac{\partial \theta}{\partial x_1} = \frac{\tilde{x}_1^2}{\tilde{x}_1^2 - \tilde{x}_2^2} \frac{\partial}{\partial x_1} \frac{\tilde{x}_2}{\tilde{x}_1} = -\frac{\sqrt{|\det \gamma|}}{\langle x \rangle_\gamma^2} x_2, \quad \frac{\partial \theta}{\partial x_2} = \frac{\tilde{x}_1^2}{\tilde{x}_1^2 - \tilde{x}_2^2} \frac{\partial}{\partial x_2} \frac{\tilde{x}_2}{\tilde{x}_1} = \frac{\sqrt{|\det \gamma|}}{\langle x \rangle_\gamma^2} x_1.$$

Now we state the proposition.

Proposition 4.1. Let n = 2 and $\rho(r) = p_1 r^{-2}$ $(p_1 \in \mathbb{R}_+)$. (1) If there exists a caloric morphism (f, φ) such that f is of form (a), then $\sigma(s) = p_2 s^{-2}$ with some $p_2 \in \mathbb{R}_+$ and

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at}R_0e^{t\gamma^{-1}\begin{pmatrix} 0 & -b\\ b & 0 \end{pmatrix}}x\right),$$
$$\varphi(t,r,\theta) = Cr^{\frac{1}{2}ap_1}\exp\frac{p_1}{2}\left(\frac{b}{\sqrt{|\det\gamma|}}\theta + \frac{1}{2}(a^2 + \frac{b^2}{\det\gamma})t\right)$$

Especially, $\nu(t) = ce^{at}$ where ν is the function defined in (2.7).

(2) If there exists a caloric morphism (f, φ) such that f is of form (b), then $\sigma(s) = p_2 s^{-2}$ with some $p_2 \in \mathbb{R}_+$ and

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at} \langle x \rangle_{\gamma}^{-2} R_0 e^{t\gamma^{-1} \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}} x\right),$$
$$\varphi(t,r,\theta) = Cr^{-\frac{1}{2}ap_1} \exp \frac{p_1}{2} \left(\frac{b}{\sqrt{|\det\gamma|}}\theta + \frac{1}{2}(a^2 + \frac{b^2}{\det\gamma})t\right).$$

Especially, $\nu(t) = ce^{at}$ where ν is the function defined in (2.12).

In both cases, $a, b, d \in \mathbb{R}$, $c, C \in \mathbb{R}_+$, $R_0 \in O_{\gamma,\eta}(2)$ and (r, θ) is the polar coordinate of \mathbb{R}^2 with respect to γ .

Proof. Let D be the domain of f. (2.4) implies that for all $(t,r) \in E = \{(t, \langle x \rangle_{\gamma}) \in \mathbb{R} \times \mathbb{R}_+; (t,x) \in D\},\$

$$\sigma(\nu(t)r) = \frac{f_0'(t)}{\nu(t)^2} p_1 r^{-2}$$

holds. Put $s = \nu(t)r$. Then

$$s^{2}\sigma(s) = f'_{0}(t)p_{1}, \quad (t,s) \in E' = \{(t,\nu(t)r) \in \mathbb{R} \times \mathbb{R}_{+}; (t,r) \in E\}.$$

Hence $s_{p_2}^2 \sigma(s)$ and $f'_0(t)p_1$ equal to a constant $p_2 \in \mathbb{R}_+$. Therefore $\sigma(s) = p_2 s^{-2}$ and function for the formula $f_0(t) = \frac{p_2}{p_1}t + d$ with $d \in \mathbb{R}$. By Lemma 3.2 (1), $\log \varphi$ satisfies the equation

$$\nabla_x \log \varphi = \frac{p_1 \langle x \rangle_{\gamma}^{-2}}{2} \left(\frac{\nu'(t)}{\nu(t)} \gamma x + S(t) x \right) = \frac{p_1}{2} \frac{\nu'(t)}{\nu(t)} \nabla_x \log \langle x \rangle_{\gamma} + \frac{p_1}{2 \langle x \rangle_{\gamma}^2} S(t) x.$$

Since S(t) is skew-symmetric and n = 2, $S(t) = \begin{pmatrix} 0 & -s(t) \\ s(t) & 0 \end{pmatrix}$, where we put s(t) = $S_{21}(t)$ for simplicity. By (4.1), we have

$$\frac{p_1 s(t)}{2\sqrt{|\det \gamma|}} \nabla_x \theta = \frac{p_1 s(t)}{2\langle x \rangle_{\gamma}^2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} x = \frac{p_1}{2\langle x \rangle_{\gamma}^2} S(t) x,$$

and hence

$$\nabla_x \log \varphi = \nabla_x \Big(\frac{p_1}{2} \frac{\nu'(t)}{\nu(t)} \log \langle x \rangle_{\gamma} + \frac{p_1 s(t)}{2\sqrt{|\det \gamma|}} \theta \Big).$$

Therefore, there exists a C^{∞} -function $\psi(t)$ such that

$$\log \varphi(t, r, \theta) = \frac{p_1}{2} \frac{\nu'(t)}{\nu(t)} \log r + \frac{p_1 s(t)}{2\sqrt{|\det \gamma|}} \theta + \psi(t).$$

$$(4.2)$$

On the other hand, φ satisfies the equation (E-1). Since $\varphi > 0$, (E-1) is equivalent to

$$\frac{\partial \log \varphi}{\partial t} - \Delta_g \log \varphi - g(\nabla_g \log \varphi, \nabla_g \log \varphi) = 0.$$
(4.3)

By (4.2), we have

$$\frac{\partial \log \varphi}{\partial t} = \frac{p_1}{2} \left(\frac{\nu'(t)}{\nu(t)} \right)' \log r + \frac{p_1 s'(t)}{2\sqrt{|\det \gamma|}} \theta + \psi'(t).$$

By Lemma 3.2, we have

$$\Delta_g \log \varphi = \frac{n}{4} \frac{\nu'(t)}{\nu(t)} \left(\frac{\langle x \rangle_\gamma \rho'(\langle x \rangle_\gamma)}{\rho(\langle x \rangle_\gamma)} + 2 \right) = \frac{n}{4} \frac{\nu'(t)}{\nu(t)} (-2+2) = 0, \quad (4.4)$$

$$g(\nabla_g \log \varphi, \nabla_g \log \varphi) = \frac{p_1}{4 \langle x \rangle_\gamma^2} \left[\left(\frac{\nu'(t)}{\nu(t)} \right)^2 \langle x \rangle_\gamma^2 + (x, s(t)^2 \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \gamma^{-1} \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} x) \right]. \quad (4.5)$$

Since
$${}^{t} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \gamma^{-1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \frac{1}{\det \gamma} \gamma$$
, we have

$$g(\nabla_{g} \log \varphi, \nabla_{g} \log \varphi) = \frac{p_{1}}{4 \langle x \rangle_{\gamma}^{2}} \left\{ \left(\frac{\nu'(t)}{\nu(t)} \right)^{2} \langle x \rangle_{\gamma}^{2} + \frac{s(t)^{2}}{\det \gamma} (x, \gamma x) \right\}$$

$$= \frac{p_{1}}{4} \left\{ \left(\frac{\nu'(t)}{\nu(t)} \right)^{2} + \frac{s(t)^{2}}{\det \gamma} \right\}.$$

Substitute these equations into (4.3). Then we have

$$\frac{p_1}{2} \left(\frac{\nu'(t)}{\nu(t)}\right)' \log r + \frac{p_1 s'(t)}{2\sqrt{|\det \gamma|}} \theta + \psi'(t) - \frac{p_1}{4} \left\{ \left(\frac{\nu'(t)}{\nu(t)}\right)^2 + \frac{s(t)^2}{\det \gamma} \right\} = 0.$$
(4.6)

Therefore we obtain a system of differential equations

$$\begin{cases} \left(\frac{\nu'(t)}{\nu(t)}\right)' = 0,\\ s'(t) = 0,\\ \psi'(t) = \frac{p_1}{4} \left[\left(\frac{\nu'(t)}{\nu(t)}\right)^2 - \frac{s(t)^2}{\det \gamma} \right], \end{cases}$$

because the coefficients of $\log r$ and θ in (4.6) must be equal to 0. The solution of this system is

$$\begin{cases}
\nu(t) = ce^{at}, \\
s(t) = b, \\
\psi(t) = \frac{p_1}{4}(a^2 - \frac{b^2}{\det \gamma})t + C_0,
\end{cases}$$
(4.7)

where $a, b, C_0 \in \mathbb{R}$ and $c \in \mathbb{R}_+$. Note that a = 0 if and only if $\nu'(t) = 0$ for all t. Substituting (4.7) into (4.2), we have

$$\log \varphi(t, r, \theta) = \frac{1}{2}ap_1 \log r + \frac{p_1}{2\sqrt{|\det \gamma|}}b\theta + \frac{p_1}{4}(a^2 + \frac{b^2}{\det \gamma})t + C,$$

and

$$S(t) = \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}.$$
 (4.8)

Therefore

$$\varphi(t,r,\theta) = Cr^{\frac{1}{2}ap_1} \exp\Big(\frac{p_1}{2\sqrt{|\det\gamma|}}b\theta + \frac{p_1}{4}(a^2 + \frac{b^2}{\det\gamma})t\Big).$$

Now choose a number $t_0 \in \mathbb{R}$ such that $\{t = t_0\} \cap D \neq \emptyset$. Since $S(t) = \gamma R(t)^{-1} R'(t)$, R(t) satisfies the differential equation

$$\gamma R(t)^{-1} R'(t) = \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$$

by (4.8). The solution of this equation is

$$R(t) = R(t_0) \exp(t - t_0) \gamma^{-1} \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$$

= $R_0 \exp t \gamma^{-1} \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$,

where $R_0 = R(t_0) \exp(-t_0) \gamma^{-1} \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$. Thus we have

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at}R_0e^{t\gamma^{-1}\begin{pmatrix} 0 & -b\\ b & 0 \end{pmatrix}}x\right),$$
$$\varphi(t,r,\theta) = Cr^{\frac{1}{2}ap_1}\exp\frac{p_1}{2}\left(\frac{b}{\sqrt{|\det\gamma|}}\theta + \frac{1}{2}(a^2 + \frac{b^2}{\det\gamma})t\right)$$

for all $(t, x) \in D$. This shows (1).

The assertion (2) is reduced to (1) by the composition with an inversion. In fact, Lemma 3.1 implies that the inversion (j, 1), where

$$j(t,x)=(t,\frac{x}{\langle x\rangle_{\gamma}^{2}}),$$

is a caloric morphism from $(\mathbb{R} \times M, p_1 r^{-2} \gamma)$ to itself. Then the composition $(f \circ j, 1 \cdot (\varphi \circ j)) = (f \circ j, \varphi \circ j)$ of (j, 1) and (f, φ) , is a caloric morphism. The mapping $f \circ j$ is of form (a), because

$$(f \circ j)(t, x) = (f_0(t), \nu(t) \langle x \rangle_{\gamma}^2 R(t) \frac{x}{\langle x \rangle_{\gamma}^2}) = (f_0(t), \nu(t) R(t) x).$$

By (1), we have

$$(f \circ j)(t, x) = \left(\frac{p_2}{p_1}t + d, ce^{at}R_0e^{t\gamma^{-1}\begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}}x\right),$$
$$(\varphi \circ j)(t, r, \theta) = Cr^{\frac{1}{2}ap_1}\exp\frac{p_1}{2}\left(\frac{b}{\sqrt{|\det\gamma|}}\theta + \frac{1}{2}(a^2 + \frac{b^2}{\det\gamma})t\right)$$

for all $(t,x) \in j^{-1}(D)$. Since $j^{-1} = j$ and $j(t,r,\theta) = (t,r^{-1},\theta)$,

$$f(t,x) = (f \circ j)(j(t,x)) = \left(\frac{p_2}{p_1}t + d, ce^{at} \langle x \rangle_{\gamma}^{-2} R_0 e^{t\gamma^{-1} \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}} x\right),$$

$$\varphi(t,r,\theta) = (\varphi \circ j)(j(t,r,\theta)) = C\left(\frac{1}{r}\right)^{\frac{1}{2}ap_1} \exp\frac{p_1}{2} \left(\frac{b}{\sqrt{|\det\gamma|}}\theta + \frac{1}{2}(a^2 + \frac{b^2}{\det\gamma})t\right).$$

This completes the proof.

The next proposition corresponds to the cases 2-a and 2-b of Theorem 1.1.

Proposition 4.2. Let $n \ge 3$ and $\rho(r) = p_1 r^{-2}$ $(p_1 \in \mathbb{R}_+)$.

(1) If there exists a caloric morphism (f, φ) such that f is of form (a), then $\sigma(s) = p_2 s^{-2}$ with some $p_2 \in \mathbb{R}_+$ and

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at}R_0x\right),$$

$$\varphi(t,x) = C\langle x \rangle_{\gamma}^{\frac{1}{2}ap_1} \exp\left(\frac{p_1}{4}a^2t\right).$$

Especially, $\nu(t) = ce^{at}$, where ν is the function defined in (2.7).

(2) If there exists a caloric morphism (f, φ) such that f is of form (b), then $\sigma(s) = p_2 s^{-2}$ with some $p_2 \in \mathbb{R}_+$ and

$$f(t,x) = \left(\frac{p_2}{p_1}t + d, ce^{at} \langle x \rangle_{\gamma}^{-2} R_0 x\right),$$

$$\varphi(t,x) = C \langle x \rangle_{\gamma}^{-\frac{1}{2}ap_1} \exp\left(\frac{p_1}{4}a^2 t\right).$$

Especially, $\nu(t) = ce^{at}$, where ν is the function defined in (2.12). In both cases, $a, d \in \mathbb{R}$, $c, C \in \mathbb{R}_+$ and $R_0 \in O_{\gamma,\eta}(n)$.

Proof. By the same argument as in the proof of the above proposition, $f_0(t) = \frac{p_2}{p_1}t + d$ and $\sigma(s) = p_2 s^{-2}$ hold with some $p_2 \in \mathbb{R}_+$ and $d \in \mathbb{R}$.

By Lemma 3.2 (2), R(t) is a constant R_0 and $\log \varphi$ satisfies the equation

$$\frac{\partial \log \varphi}{\partial x_j} = \frac{p_1}{2\langle x \rangle_{\gamma}^2} \frac{\nu'(t)}{\nu(t)} (\gamma x)_j, \quad j = 1, \dots, n,$$

because $n \geq 3$. Therefore φ is a function of $\langle x \rangle_{\gamma}$, i.e.

$$\varphi(t,x) = \varphi(t,\langle x \rangle_{\gamma}),$$

and

$$\frac{\partial \log \varphi}{\partial r} = \frac{p_1 \nu'(t)}{2\nu(t)} \frac{1}{r},$$

and hence

$$\log \varphi(t, r) = \frac{p_1 \nu'(t)}{2\nu(t)} \log r + \psi(t).$$
(4.9)

By (E-1) and (4.3),

$$\frac{\partial \log \varphi}{\partial t} - \Delta_g \log \varphi - g(\nabla_g \log \varphi, \nabla_g \log \varphi) = 0.$$

From Lemma 3.2 and (4.9), it follows that

$$\frac{\partial \log \varphi}{\partial t} = \frac{p_1}{2} \left(\frac{\nu'(t)}{\nu(t)}\right)' \log r + \psi'(t),$$
$$\Delta_g \log \varphi = \frac{n(q+2)}{2} \frac{\nu'(t)}{\nu(t)} = 0,$$
$$g(\nabla_g \log \varphi, \nabla_g \log \varphi) = \frac{p_1}{4} \langle x \rangle_{\gamma}^{q+2} \left(\frac{\nu'(t)}{\nu(t)}\right)^2 = \frac{p}{4} \left(\frac{\nu'(t)}{\nu(t)}\right)^2.$$

Hence, we have the equation

$$\frac{p_1}{2} \left(\frac{\nu'(t)}{\nu(t)}\right)' \log r + \psi'(t) - \frac{p_1}{4} \left(\frac{\nu'(t)}{\nu(t)}\right)^2 = 0.$$

Therefore we obtain a system of differential equations

$$\begin{cases} \left(\frac{\nu'}{\nu}\right)' = 0, \\ \psi' = \frac{p_1}{4} \left(\frac{\nu'}{\nu}\right)^2. \end{cases}$$

The solution is

$$\begin{cases} \nu(t) = ce^{at}, \\ \psi(t) = \frac{p_1 a^2}{4} t + C_0, \end{cases}$$
(4.10)

where $a, C_0 \in \mathbb{R}$ and $c \in \mathbb{R}_+$. Note that a = 0 if and only if $\nu'(t) = 0$ for some t. Substituting (4.10) into (4.9), we have

$$\log \varphi(t, r) = \frac{ap_1}{2} \log r + \frac{p_1 a^2}{4} t + C_0.$$

Thus we have

$$f(t,x) = (t+d, ce^{at}R_0x), \quad \varphi(t,x) = C\langle x \rangle_{\gamma}^{\frac{1}{2}ap_1} \exp\left(\frac{p_1}{4}a^2t\right)$$

for all $(t, x) \in D$. We have shown the first statement (1). By composing the inversion (j, 1) as in the proof of Proposition 4.1, we have (2). This completes the proof. \Box

The next proposition corresponds to the cases 3-a and 3-b of Theorem 1.1.

Proposition 4.3. Let $\rho(r) = p_1 r^q \ (p_1 \in \mathbb{R}_+, q \in \mathbb{R}, q \neq -2).$

(1) If there exists a caloric morphism (f, φ) such that f is of form (a), then $\sigma(s) = p_2 s^q \ (p_2 \in \mathbb{R}_+)$ and

$$f(t,x) = \left(\frac{p_2}{p_1}\frac{ct+d}{at+b}, |at+b|^{-2/(q+2)}R_0x\right),$$

$$\varphi(t,x) = \frac{C}{|at+b|^{n/2}}\exp\left[-\frac{pa\langle x\rangle_{\gamma}^{q+2}}{(q+2)^2(at+b)}\right],$$

where $a, b, c, d, \in \mathbb{R}$ (bc -ad = 1), $C \in \mathbb{R}_+$ and $R_0 \in O_{\gamma}(n)$. Especially, $\nu(t) = |at+b|^{-2/(q+2)}$ where ν is the function defined in (2.7).

(2) If there exists a caloric morphism (f, φ) such that f is of form (b), then $\sigma(s) = p_2 s^{-q-4}$ $(p_2 \in \mathbb{R}_+)$ and

$$f(t,x) = \left(\frac{p_2}{p_1}\frac{ct+d}{at+b}, |at+b|^{2/(q+2)}\langle x \rangle_{\gamma}^{-2}R_0x\right),$$

$$\varphi(t,x) = \frac{C}{|at+b|^{n/2}} \exp\left[-\frac{p_1a\langle x \rangle_{\gamma}^{q+2}}{(q+2)^2(at+b)}\right],$$

where $a, b, c, d \in \mathbb{R}$ (bc - ad = 1), $C \in \mathbb{R}_+$ and $R_0 \in O_{\gamma}(n)$. Especially, $\nu(t) = |at + b|^{2/(q+2)}$ where ν is the function defined in (2.12).

Proof. Since $q \neq -2$, R(t) is a constant R_0 and equations

$$\frac{\partial \log \varphi}{\partial x_j} = \frac{p_1 \langle x \rangle_{\gamma}^q}{2} \frac{\nu'(t)}{\nu(t)} (\gamma x)_j, \quad j = 1, \dots, n$$

hold by Lemma 3.2 (3). As in the proof of Proposition 4.2, φ is a function of $\langle x \rangle_{\gamma}$, i.e., $\varphi(t, x) = \varphi(t, \langle x \rangle_{\gamma})$, and hence there exists a C^{∞} -function $\psi(t)$ such that

$$\log \varphi(t,r) = \frac{p_1}{2(q+2)} \frac{\nu'(t)}{\nu(t)} r^{q+2} + \psi(t), \qquad (4.11)$$

and then

$$\frac{\partial \log \varphi}{\partial t} = \frac{p_1}{2(q+2)} \left(\frac{\nu'(t)}{\nu(t)}\right)' r^{q+2} + \psi'(t).$$

By (3.2) and (3.5) we have

$$\begin{split} \Delta_g \log \varphi &= \frac{n}{4} \frac{\nu'(t)}{\nu(t)} (q+2), \\ g(\nabla_g \log \varphi, \nabla_g \log \varphi) &= \frac{p_1}{4} \left(\frac{\nu'(t)}{\nu(t)}\right)^2 r^{q+2}, \end{split}$$

respectively. Substituting these into (E-1), we have

$$\frac{p_1}{2(q+2)} \Big[\Big(\frac{\nu'(t)}{\nu(t)}\Big)' - \frac{q+2}{2} \Big(\frac{\nu'(t)}{\nu(t)}\Big)^2 \Big] r^{q+2} + \psi' - \frac{n(q+2)}{4} \Big(\frac{\nu'(t)}{\nu(t)}\Big)' = 0.$$

Therefore we obtain a system of differential equations

$$\begin{cases} \left(\frac{\nu'(t)}{\nu(t)}\right)' - \frac{q+2}{2} \left(\frac{\nu'(t)}{\nu(t)}\right)^2 = 0, \\ \psi' - \frac{n(q+2)}{4} \left(\frac{\nu'(t)}{\nu(t)}\right)' = 0. \end{cases}$$

The solution is

$$\begin{cases} \nu(t) = |at+b|^{-2/(q+2)}, \\ \psi(t) = \log |at+b|^{-n/2} + C_0, \end{cases}$$
(4.12)

where $a, b, C_0 \in \mathbb{R}$. Note that, a = 0 if and only if $\nu'(t) = 0$ for some t. Substituting (4.12) into (4.11), we have

$$\log \varphi(t,r) = -\frac{p_1 a}{(q+2)^2 (at+b)} r^{q+2} + \log |at+b|^{-n/2} + C_0.$$

On the other hand, (2.4):

$$\sigma(\nu(t)r) = \frac{f'_0(t)}{\nu(t)^2} p_1 r^q, \quad (t,r) \in E = \{(t, \langle x \rangle_\gamma); (t,x) \in D\},\$$

where D is the domain of f, implies

$$s^{-q}\sigma(s) = p_1 f'_0(t)\nu(t)^{-q-2} = p_1(at+b)^2 f'_0(t).$$

Hence $s^{-q}\sigma(s)$ and $p_1(at+b)^2 f'_0(t)$ equal to a constant $p_2 \in \mathbb{R}_+$. Therefore $f_0(t) = \frac{p_2}{p_1}\frac{ct+d}{at+b}$, where $c, d \in \mathbb{R}$ with bc - ad = 1. Consequently,

$$f(t,x) = \left(\frac{p_2}{p_1}\frac{ct+d}{at+b}, |at+b|^{-2/(q+2)}R_0x\right)$$

and

$$\varphi(t,x) = \frac{C}{|at+b|^{n/2}} \exp\left[-\frac{p_1 a \langle x \rangle_{\gamma}^{q+2}}{(q+2)^2 (at+b)}\right]$$

for all $(t, x) \in D$, where $C = e^{C_0} \in \mathbb{R}_+$. This shows (1).

The assertion (2) is reduced to (1) by the composition with an inversion. By (2.5):

$$\sigma(\frac{\nu(t)}{r}) = \frac{f_0'(t)r^4}{\nu(t)^2} p_1 r^q$$

for $(t,r) \in E = \{(t, \langle x \rangle_{\gamma}); (t,x) \in D\}$, where D is the domain of f, we have

$$s^{q+4}\sigma(s) = p_1 f_0'(t)\nu(t)^{q+2}.$$

Hence $s^{q+4}\sigma(s)$ and $p_1f'_0(t)\nu(t)^{q+2}$ equal to a constant $p_2 \in \mathbb{R}_+$. Therefore $\sigma(s) = p_2s^{-q-4}$ and $f'_0(t) = \frac{p_2}{p_1}\nu(t)^{-q-2}$. We put q' = -q - 4. Then q = -q' - 4 and $\rho(r) = p_1r^{-q'-4}$. Fix $t_0 \in I_0$. Apply Lemma 3.1 (2) for $\sigma(r) = p_2r^{q'}$, $\rho(s) = p_1s^{-q'-4}$ and $R(t_0)^{-1} \in O_{\eta,\gamma}(n)$. Then the inversion (j, 1) with

$$j(\tau,\xi) = (\tau, \frac{R(t_0)^{-1}\xi}{\langle \xi \rangle_\eta^2})$$

is a caloric morphism from $\mathbb{R} \times N$ to $\mathbb{R} \times M$. Then the composition $(j \circ f, \varphi \cdot (1 \circ f)) = (j \circ f, \varphi)$ of (j, 1) and (f, φ) , is a caloric morphism from D to $\mathbb{R} \times M$. The mapping $j \circ f$ is of form (a), because

$$(j \circ f)(t, x) = (f_0(t), \frac{1}{\nu(t)} \langle x \rangle_{\gamma}^2 R(t_0)^{-1} R(t) \frac{x}{\langle x \rangle_{\gamma}^2}) = (f_0(t), \frac{1}{\nu(t)} R(t_0)^{-1} R(t) x)$$

Note that $R(t_0)^{-1}R(t) \in O_{\gamma,\gamma}$. Hence (1) implies

$$(j \circ f)(t, x) = \left(\frac{p_2}{p_1}\frac{ct+d}{at+b}, |at+b|^{-2/(q+2)}R_1x\right)$$

and

$$\varphi(t,x) = \frac{C}{|at+b|^{n/2}} \exp\left[-\frac{p_1 a \langle x \rangle_{\gamma}^{-(q+2)}}{(q+2)^2 (at+b)}\right]$$

39

for all $(t,x) \in D$, where $a, b, c, d \in \mathbb{R}$ (bc - ad = 1), $C \in \mathbb{R}_+$ and $R_1 \in O_{\gamma,\gamma}$. Since $j^{-1}(t,x) = (t, \frac{R(t_0)x}{\langle x \rangle_{\infty}^2})$, we obtain

$$f(t,x) = (j^{-1} \circ (j \circ f))(t,x) = (\frac{p_2}{p_1} \frac{ct+d}{at+b}, |at+b|^{2/(q+2)} \langle x \rangle_{\gamma}^{-2} R_0 x),$$

where $R_0 := R(t_0)R_1 \in O_{\gamma,\eta}$. Thus we have (2). This completes the proof.

5. Proof of the main result

Proof of Theorem 1.1. Let (f, φ) be a caloric morphism from a domain $D \subset \mathbb{R} \times M$ to $\mathbb{R} \times N$ such that the mapping f has the form (a) or (b). By Proposition 2.2, we have

$$f(t,x) = (f_0(t), \nu(t)R(t)x), \quad (t,x) \in D, \sigma(\nu(t)r) = \frac{f'_0(t)}{\nu(t)^2}\rho(r), \qquad (t,r) \in E = \{(t, \langle x \rangle_{\gamma}) \in \mathbb{R}^2; (t,x) \in D\}$$

in the case (a) or

(

$$f(t,x) = (f_0(t), \langle x \rangle_{\gamma}^{-2} \nu(t) R(t) x), \quad (t,x) \in D,$$

$$\sigma(\nu(t)r) = \frac{f'_0(t)}{\nu(t)^2} \rho(r), \qquad (t,r) \in E = \{(t, \langle x \rangle_{\gamma}) \in \mathbb{R}^2; (t,x) \in D\}$$

in the case (b), where $\nu(t)$ is a strictly positive C^{∞} -function and R(t) is an $O_{\gamma,\eta}(n)$ -valued C^{∞} -function.

Assume that the function $\nu(t)$ is not constant. We shall prove that (f, φ) is one of the cases 1-a, 1-b, 2-a, 2-b, 3-a or 3-b. Let I' be a connected component of the open set $\{t \in I_0; \nu'(t) \neq 0\}$ and let $J'_{\rho} = \{\langle x \rangle_{\gamma}; (t, x) \in D, t \in I'\}$. Then by Proposition 2.2 and Lemma 2.1, $\rho(r) = p_1 r^q$ on J'_{ρ} . By Propositions 4.1, 4.2 and 4.3, $\nu'(t)$ has one of the following forms

$$\begin{split} \nu'(t) &= cae^{at}, \\ \nu'(t) &= \frac{-2a}{(q+2)} |at+b|^{-2/(q+2)-1}, \\ \nu'(t) &= \frac{2a}{(q+2)} |at+b|^{2/(q+2)-1}, \end{split}$$

with $a \neq 0$ on I', since we assumed that ν is not constant. Then the above expression of $\nu'(t)$ shows that $\nu'(t) \neq 0$ on the closure of I' in I_0 in all of the above cases. Hence, $I' = I_0$, because I_0 is connected. Therefore $(t, \langle x \rangle_{\gamma}) \in I' \times J'_{\rho}$ for all $(t, x) \in D$ and $\rho(r) = p_1 r^q$ for all r. Again by Propositions 4.1, 4.2 and 4.3, (f, φ) is one of the cases 1-a, 1-b, 2-a, 2-b, 3-a or 3-b.

Next, we deal with the case that ν is constant. Because of the preceding argument, we may exclude the case that $\rho(r)$ has the form $\rho(r) = pr^q$. We first consider the case (a). By Lemma 3.2 (3), R'(t) = 0. Moreover, by (3.1), we have $\nabla_x \log \varphi = 0$ because

 $\nu'(t) = 0$. Therefore R(t) is a constant matrix R_0 and φ depends only on t. Since φ satisfies (E-1), φ is a positive constant C. On the other hand, (2.4) in Proposition 2.2 implies $\sigma(\nu r) = \frac{f'_0(t)}{\nu^2}\rho(r)$. Therefore $f'_0(t) = \frac{\nu^2 \sigma(\nu r)}{\rho(r)}$ is a positive constant λ . Thus we have $\sigma(\nu r) = \frac{\lambda}{\nu^2}\rho(r)$ and $f_0(t) = \lambda t + d$ with some $d \in \mathbb{R}$. Therefore

$$f(t,x) = (\lambda t + d, \nu R_0 x), \quad \varphi(t,x) = C.$$
(5.1)

This is the case 4-a.

Finally, we consider the case (b). Since ν is constant, f'_0 is equal to a constant λ and $\sigma(\frac{\nu}{r}) = \lambda \frac{r^4}{\nu^2} \rho(r)$ holds by the same argument as above. Then we have $f_0(t) = \lambda t + d$ with some $d \in \mathbb{R}$ and

$$\rho(\frac{\nu}{r}) = \frac{1}{\lambda} \frac{r^4}{\nu^2} \sigma(r).$$

Fix $t_0 \in I_0$. Apply Lemma 3.1 (1) for $\sigma(r)$, $\rho(s)$ and $R(t_0)^{-1} \in O_{\eta,\gamma}(n)$. Then the inversion (j, 1) with

$$j(\tau,\xi) = \left(\frac{1}{\lambda}\tau, \frac{\nu R(t_0)^{-1}\xi}{\langle\xi\rangle_\eta^2}\right),$$

is a caloric morphism from $\mathbb{R} \times N$ to $\mathbb{R} \times M$. Then $(j \circ f, \varphi)$, the composition of (j, 1)and (f, φ) , is a caloric morphism from D to $\mathbb{R} \times M$. The mapping $j \circ f$ is of form (a):

$$(j \circ f)(t, x) = (t + \frac{d}{\lambda}, R(t_0)^{-1}R(t)x).$$

Note that $R(t_0)^{-1}R(t) \in O_{\gamma,\gamma}$. Hence by (5.1), we have

$$(j \circ f)(t, x) = (t + \frac{d}{\lambda}, R_1 x), \quad \varphi(t, x) = C, \qquad (t, x) \in D,$$

where $C \in \mathbb{R}_+$ and $R_1 \in O_{\gamma,\gamma}$. Since $j^{-1}(t,x) = (\lambda t, \frac{\nu R(t_0)x}{\langle x \rangle_{\gamma}^2})$, we obtain

$$f(t,x) = (j^{-1} \circ (j \circ f))(t,x) = (\lambda t + d, \frac{\nu R_0 x}{\langle x \rangle_{\gamma}^2}),$$

where $R_0 := R(t_0)R_1 \in O_{\gamma,\eta}(n)$. This is the case 4-b.

Thus we have completed the proof of Theorem 1.1.

Acknowledgements: The author would like to express his gratitude to the referee for his valuable comments.

References

 B. Fuglede, Harmonic morphisms between semi-riemannian manifolds, Ann. Acad. Sci. Fenn. Math., 21 (1996), 31–50.

- [2] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), no. 2, 215–229.
- [3] H. Leutwiler, On Appell transformation, Potential theory, J. Král, J. Lukeš, I. Netuka, J. Veselý eds., Plenum, New York, 1988, 215–222.
- [4] K. Shimomura, The determination of caloric morphisms on Euclidean domains, Nagoya Math J., 158 (2000), 133–166.
- [5] M. Nishio and K. Shimomura, *Caloric morphisms on semi-euclidean space*, Rev. Roumaine. Math. Pures Appl. 47 (2002), 727–736.
- [6] M. Nishio and K. Shimomura, A characterization of caloric morphisms between manifolds, Ann. Acad. Sci. Fenn. Math., 28 (2003), 111–122.
- [7] K. Shimomura, Caloric morphisms with respect to radial metrics on ℝⁿ \ {0}, Math. J. Ibaraki Univ., **35** (2003), 35–53.
- [8] K. Shimomura, Caloric morphisms with respect to radial metrics on semieuclidean spaces, Math. J. Ibaraki Univ., 37 (2005), 81–103.