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Liouville type theorem associated with the wave
equation

Katsunori Shimomura∗

1. Introduction

The well-known Liouville’s theorem states that every conformal mapping in the
n-dimensional Euclidean space (n = 3) is a similarity or an inversion with respect
to a sphere composed with similarities. The conformal mapping associates with the
Laplace equation in the following sense. Let D,E ⊂ Rn be domains, f : D → E a non-
constant C2-mapping, and ϕ a positive C2-function on D. Then the transformation
u 7→ ϕ · (u ◦ f) for C2-function u on D preserves the solutions of the Laplace equation
on E if only if f is a conformal mapping.

In this note, we consider a Liouville type theorem associated with the wave equa-
tion and determine transformations which preserve the solutions of the wave equation.
We note that Sugimoto considered this problem in [4] and obtained a partial result.

Let Rn+1 be the (n+1)-dimensional Euclidean space (n = 2), and denote its point
by x = (x0, x1, . . . , xn). We introduce Lorentzian scalar product 〈·, ·〉 on Rn+1 defined
by

〈x, y〉 = −x0y0 + x1y1 + · · · + xnyn.

Let D ⊂ Rn+1, E ⊂ Rk be domains and f = (f0, f1, . . . , fn) : D → E a C1-
mapping. The first derivative f ′(x) of f at x ∈ D is a linear mapping Rn+1 → Rk

such that

f ′(x)u = lim
h→0

f(x + hu) − f(x)
h

, u ∈ Rn+1.

Definition 1.1. Let D,E ⊂ Rn+1 be domains. A C1-mapping f : D → E is said
to be Lorentzian conformal if there exists a function λ(x) = λf (x) > 0 defined on D
such that

〈f ′(x)u, f ′(x)v〉 = λ(x)2〈u, v〉 (1.1)

holds for all x ∈ D and all u, v ∈ Rn+1.
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Let

O(1, n) := {R ∈ GL(n + 1, R); 〈Rx,Ry〉 = 〈x, y〉 for all x, y ∈ Rn+1}.

Our Liouville type theorem is the following:

Theorem 1.1. Let n = 2 and f be a Lorentzian conformal C4-mapping defined on
a domain D ⊂ Rn+1. Then f has one of the following forms :

f(x) =
αR(x − a)

〈x − a, x − a〉
+ b, (a)

f(x) = αRB(S(x − a)) + b, (b)
f(x) = αRx + b, (c)

where α > 0, R,S ∈ O(1, n), a, b ∈ Rn+1, and

B(x) = (
〈x, x〉 + 1
2(x0 + x1)

,
〈x, x〉 − 1
2(x0 + x1)

,
x2

x0 + x1
, . . . ,

xn

x0 + x1
).

Next we consider the wave equation

Wu :=
∂2u

∂x2
0

−
n∑

j=1

∂2u

∂x2
j

= 0

on Rn+1 and transformations which preserve the solutions of the wave equation.

Definition 1.2. Let D ⊂ Rn+1 be a domain, f : D → Rn+1 a C2-mapping, and ϕ
a positive C2-function on D. A pair (f, ϕ) is called a transformation which preserves
the wave equation, if f and ϕ satisfy the following conditions:

(1) f ′(x) is non-degenerate for all x ∈ D.
(2) For every solution u of the wave equation on Rn+1, ϕ · (u◦f) satisfies the wave

equation on D.

By Theorem 1.1, we can determine the transformation which preserves the wave
equation.

Theorem 1.2. Let n = 2, f be a C4-mapping, and ϕ a positive function defined on
a domain D ⊂ Rn+1. If (f, ϕ) be a transformation which preserve the wave equation,
then f and ϕ have one of the following forms :

f(x) =
αR(x − a)

〈x − a, x − a〉
+ b, ϕ(x) = C|〈x − a, x − a〉|

1−n
2 , (a)

f(x) = αRB(S(x − a)) + b, ϕ(x) = C|〈v, S(x − a)〉|
1−n

2 , (b)
f(x) = αRx + b, ϕ(x) = C, (c)

where α > 0, R,S ∈ O(1, n), a, b ∈ Rn+1, and

B(x) = (
〈x, x〉 + 1
2(x0 + x1)

,
〈x, x〉 − 1
2(x0 + x1)

,
x2

x0 + x1
, . . . ,

xn

x0 + x1
),

and v = (−1, 1, 0, . . . , 0) ∈ Rn+1.



Liouville type theorem associated with the wave equation 53

2. Lorentzian space and Lorentzian conformal mapping

In the last section, we introduced Lorentzian scalar product. Let J be the (n +
1) × (n + 1) diagonal matrix such that

J = diag(−1, 1, . . . , 1).

Then the Lorentzian scalar product 〈·, ·〉 is written by the Euclidean scalar product
(·, ·) as

〈x, y〉 = (Jx, y) = (x, Jy), x, y ∈ Rn+1. (2.1)

The vector space Rn+1 with this Lorentzian scalar product is called Lorentzian (n+1)-
space, and is denoted by R1,n.

Recall that O(1, n) := {R ∈ GL(n + 1, R); 〈Rx,Ry〉 = 〈x, y〉 for all x, y ∈ Rn+1}.
O(1, n) is the group of all matrices which preserve the Lorentzian scalar product. It is
clear that R ∈ O(1, n) is equivalent to tRJR = J . We also remark that R ∈ O(1, n) if
and only if J = RJ tR by taking the inverse.

For a subspace X of R1,n, the Lorentzian complement of X is defined by

XL = {x ∈ R1,n; 〈x, y〉 = 0, y ∈ X}.

The following Lemmas will be used in section 3.

Lemma 2.1. For any subspace X of R1,n, XL = (JX)⊥ = J(X⊥) and (XL)L = X
hold, where (·)⊥ denotes the orthogonal complement.

Proof. Since 〈x, y〉 = 0 is equivalent to (x, Jy) = 0, x ∈ XL is equivalent to x ∈
(JX)⊥. Since 〈x, y〉 = 0 is also equivalent to (Jx, y) = 0 and J2 is equal to the unit
matrix, x ∈ XL is equivalent to x ∈ J(X⊥). Therefore XL = (JX)⊥ = J(X⊥) holds.
The latter statement follows from (XL)L = J(((JX)⊥)⊥) = J2X = X.

Lemma 2.2. Let X be a subspace of R1,n, α 6= 0, and R ∈ O(1, n). Then αR(XL) =
(αRX)L holds.

Proof. x ∈ αR(XL) if and only if 〈α−1R−1x, y〉 = 0 for all y ∈ X. Then

〈αα−1RR−1x, αRy〉 = 〈x, αRy〉 = 0

for all y ∈ X. This means x ∈ (αRX)L.

The following proposition follows easily from the chain rule.

Proposition 2.1. (1) If f : D → E and g : E → F are Lorentzian conformal
mappings, then the composition mapping g ◦ f : D → F is also a Lorentzian conformal
mapping, and

λg◦f (x) = λg(f(x))λf (x), x ∈ D (2.2)

holds.
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(2) If f : D → E is a Lorentzian conformal mapping, then f has local inverse f−1

at each point of f(D), f−1 is also Lorentzian conformal, and

λf−1(f(x)) =
1

λf (x)
(2.3)

holds.

In the following, we list fundamental Lorentzian conformal mappings.

Example 2.1 (Lorentzian similarity). The mapping

f(x) = αRx + a (α ∈ R, α > 0, R ∈ O(1, n), a ∈ R1,n)

is a Lorentzian conformal mapping defined on R1,n satisfying λf (x) = α.

Example 2.2 (Lorentzian inversion). The mapping

K(x) =
x

〈x, x〉

is a Lorentzian conformal mapping defined on each connected component of {x ∈
R1,n; 〈x, x〉 6= 0}. We call K inversion (mapping). By simple calculation, we have

K−1 = K

and

λK(x) =
1

|〈x, x〉|
.

Example 2.3 (Bateman mapping). The mapping

B(x) = (
〈x, x〉 + 1
2(x0 + x1)

,
〈x, x〉 − 1
2(x0 + x1)

,
x2

x0 + x1
, . . . ,

xn

x0 + x1
),

is a Lorentzian conformal mapping defined on each connected component half space of
{x ∈ R1,n;x0 + x1 6= 0}. We call B the mapping of the Bateman transformation. By
easy calculation, we have

B−1(x) = (
〈x, x〉 + 1
2(x0 − x1)

,
1 − 〈x, x〉
2(x0 − x1)

,
x2

x0 − x1
, . . . ,

xn

x0 − x1
),

and

λB(x) =
1

|x0 + x1|
, λB−1(x) =

1
|x0 − x1|

.

3. Liouville type theorem for Lorentzian conformal mapping

In this section, we shall prove Theorem 1.1. The former part follows from similar
arguments in the proof of Liouville’s theorem for conformal mapping in [1].
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The second derivative of a C2-mapping f : Rn+1 → Rk is a bilinear mapping
f ′′(x) : Rn+1 × Rn+1 → Rk such that

f ′′(x)[u, v] = lim
h→0

1
h

(
f ′(x + hu)v − f ′(x)v

)
.

The third derivative of a C3-mapping f : Rn+1 → Rk is a trilinear mapping f ′′′(x) :
Rn+1 × Rn+1 × Rn+1 → Rk such that

f ′′′(x)[u, v, w] = lim
h→0

1
h

(
f ′′(x + hu)[v, w] − f ′′(x)[v, w]

)
.

Lemma 3.1. Let f be a C2-mapping defined on a domain D ⊂ R1,n. If f is a
Lorentzian conformal mapping, then for each u, v, w ∈ R1,n,

〈f ′′(x)[u, v], f ′(x)w〉 + 〈f ′′(x)[u,w], f ′(x)v〉 = 2λ(x)〈v, w〉λ′(x)u (3.1)

holds.

Proof. Taking the derivative in u direction of the Lorentzian conformality condition
(1.1)

〈f ′(x)v, f ′(x)w〉 = λ(x)2〈v, w〉,

we have (3.1).

Lemma 3.2. Let f be a C2-mapping defined on a domain D ⊂ R1,n. If f is a
Lorentzian conformal mapping and 〈u, v〉 = 〈v, w〉 = 〈w, u〉 = 0, then

〈f ′′(x)[u, v], f ′(x)w〉 = 0.

Proof. We put A[u, v, w] = 〈f ′′(x)[u, v], f ′(x)w〉 for u, v, w ∈ R1,n. Then A satisfies

A[v, u, w] = A[u, v, w], (3.2)
A[u, v, w] = −A[u,w, v] if 〈v, w〉 = 0. (3.3)

In fact (3.2) is clear from the symmetry of the bilinear map f ′′(x), and (3.3) follows
from Lemma 3.1 immediately.

Since 〈u, v〉 = 〈v, w〉 = 〈w, u〉 = 0, then we have A[u, v, w] = A[v, u, w] =
−A[v, w, u] = −A[w, v, u] = A[w, u, v] = A[u,w, v] = −A[u, v, w] by (3.2) and (3.3).
Therefore A[u, v, w] = 0. This proves the lemma.

Lemma 3.3. Let f be a Lorentzian conformal C2-mapping defined on a domain
D ⊂ R1,n. If λ is equal to a constant α on D, then f is a similarity of form f(x) =
αRx + a, with some R ∈ O(1, n) and a ∈ R1,n.

Proof. Since λ is constant, 〈f ′′(x)[u, v], f ′(x)w〉 + 〈f ′′(x)[u, w], f ′(x)v〉 = 0 for all
u, v, w ∈ R1,n by Lemma 3.1. Then A[u, v, w] = 〈f ′′(x)[u, v], f ′(x)w〉 satisfies (3.2)
and

A[u, v, w] = −A[u,w, v] (u, v, w ∈ R1,n). (3.4)
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The same argument as in the proof of Lemma 3.2, A[u, v, w] = 0 follows for all u, v, w ∈
R1,n. Since f ′(x) is surjective, f ′′(x)[u, v] = 0 for all u, v ∈ R1,n, and hence f ′′(x) = 0.
Then α−1f ′(x) is a constant matrix R satisfying 〈Ru,Rv〉 = 〈u, v〉. Therefore R ∈
O(1, n) and f(x) = αRx + a, where a ∈ R1,n.

The following lemma is well-known in linear algebra.

Lemma 3.4. Let l(u, v) is a symmetric bilinear form on R1,n. If l(u, v) = 0 for all
u, v ∈ R1,n with 〈u, v〉 = 0, then there exists a constant c ∈ R such that

l(u, v) = c〈u, v〉 (u, v ∈ R1,n).

Lemma 3.5. Let f be a C2-mapping defined on a domain D. If f is a Lorentzian
conformal mapping and 〈u, v〉 = 0, then for each x ∈ D,

f ′′(x)[u, v] = λ(x)−1λ′(x)vf ′(x)u + λ(x)−1λ′(x)uf ′(x)v. (3.5)

Proof. Assume 〈u, u〉 6= 0 and 〈v, v〉 6= 0. If 〈u, v〉 = 0, then Lemma 3.2 implies that
for any w ∈ (Ru + Rv)L,

〈f ′′(x)[u, v], f ′(x)w〉 = 0.

Hence f ′′(x)[u, v] ∈ (f ′(x)((Ru + Rv)L))L. By Lemma 2.1 and 2.2, we obtain

(f ′(x)((Ru+Rv)L))L = f ′(x)(((Ru+Rv)L)L) = f ′(x)(Ru+Rv) = Rf ′(x)u+Rf ′(x)v.

Therefore there exist constants c1, c2 ∈ R such that

f ′′(x)[u, v] = c1f
′(x)u + c2f

′(x)v.

Applying Lemma 3.1 with w = v, we have

〈f ′′(x)[u, v], f ′(x)v〉 = λ(x)〈v, v〉λ′(x)u

and

c1〈f ′(x)u, f ′(x)v〉 + 〈c2 f ′(x)v, f ′(x)v〉 = λ(x)〈v, v〉λ′(x)u.

Since 〈v, u〉 = 0 and f is Lorentzian conformal, we have

c2λ(x)2〈v, v〉 = λ(x)〈v, v〉λ′(x)u,

and hence c2 = λ(x)−1λ′(x)u, because 〈v, v〉 6= 0. Similarly, we have c1 = λ(x)−1λ′(x)v.
Then we have (3.5) for all u, v with 〈u, v〉 = 0 by continuity.

Proposition 3.1. Let f be Lorentzian conformal and put ρ(x) = 1/λ(x). If f is of
C4, then there exists a constant c such that for every u, v ∈ R1,n,

ρ′′(x)[u, v] = c〈u, v〉.
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Proof. Let u, v ∈ R1,n satisfy 〈u, v〉 = 0, 〈u, u〉 6= 0 and 〈v, v〉 6= 0. Then by Proposi-
tion 3.5,

f ′′(x)[u, v] = λ(x)−1λ′(x)vf ′(x)u + λ(x)−1λ′(x)uf ′(x)v.

Then we have

ρ(x)f ′′(x)[u, v] + ρ′(x)vf ′(x)u + ρ′(x)uf ′(x)v = 0.

Since n = 2, we can take w ∈ R1,n such that 〈w,w〉 6= 0 and 〈u,w〉 = 〈v, w〉 = 0.
Taking the derivative in direction w, we have

ρ′(x)wf ′′(x)[u, v] + ρ(x)f ′′′(x)[u, v, w] + ρ′′(x)[v, w]f ′(x)u (3.6)
+ ρ′(x)vf ′′(x)[u,w] + ρ′′(x)[u,w]f ′(x)v + ρ′(x)uf ′′(x)[v, w] = 0.

Assume 〈v, w〉 = 0 and interchange u and w in the equation. Then

ρ′(x)uf ′′(x)[w, v] + ρ(x)f ′′′(x)[w, v, u] + ρ′′(x)[v, u]f ′(x)w (3.7)
+ ρ′(x)vf ′′(x)[w, u] + ρ′′(x)[w, u]f ′(x)v + ρ′(x)wf ′′(x)[v, u] = 0.

Subtract (3.7) from (3.6). Then we have

ρ′′(x)[v, w]f ′(x)u − ρ′′(x)[v, u]f ′(x)w = 0,

and hence

ρ′′(x)[v, w]λ(x)2〈u,w〉 − ρ′′(x)[v, u]λ(x)2〈w,w〉
= ρ′′(x)[v, w]〈f ′(x)u, f ′(x)w〉 − ρ′′(x)[v, u]〈f ′(x)w, f ′(x)w〉 = 0.

Since 〈u,w〉 = 0 and 〈w,w〉 6= 0, we obtain

ρ′′(x)[u, v] = 0,

for all u, v ∈ R1,n with 〈u, v〉 = 0, 〈u, u〉 6= 0 and 〈v, v〉 6= 0. By continuity, we can
drop 〈u, u〉 6= 0 and 〈v, v〉 6= 0. By Lemma 3.4,

ρ′′(x)[u, v] = c(x)〈u, v〉, (3.8)

holds for all u, v ∈ R1,n with some c(x) ∈ R.
To show c(x) is constant, take the derivative of (3.8) in direction w. We have

ρ′′′(x)[u, v, w] = c′(x)w〈u, v〉,

and then

〈(c′(x)w)u − (c′(x)u)w, v〉 = c′(x)w〈u, v〉 − c′(x)u〈w, v〉
= ρ′′′(x)[u, v, w] − ρ′′′(x)[w, v, u] = 0,

holds for all u, v, w ∈ R1,n. That implies

(c′(x)w)u − (c′(x)u)w = 0,
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and hence

c′(x)u = c′(x)w = 0

for each linearly independent pair of u and w. By continuity, we obtain c′(x) = 0.
Thus we have the proposition.

Proposition 3.2. Let f be a C4-mapping defined on a domain D. If f is a Lorentzian
conformal mapping, then λf (x) has one of the following forms :

λf (x) =
α

〈x − a, x − a〉
, with α ∈ R, α 6= 0, a ∈ R1,n, (3.9)

λf (x) =
α

〈d, x − a〉
, with α ∈ R, α 6= 0, a, d ∈ R1,n, d0 = 1, 〈d, d〉 = 0, (3.10)

λf (x) = α, with α ∈ R, α > 0. (3.11)

Proof. We may assume that ρ(x) is not constant. Since ρ′′(x)[u, v] = c〈u, v〉 with
some constant c ∈ R by Proposition 3.1,

ρ(x) =
c

2
〈x, x〉 + c0x0 + · · · + cnxn + cn+1,

where c0, . . . , cn+1 ∈ R. If c 6= 0, then

λf (x) =
α

〈x − a, x − a〉 + β
,

where α, β ∈ R, a ∈ R1,n, with α 6= 0. If c = 0, then

λf (x) =
α

〈d, x − a〉
,

where α ∈ R, a, d ∈ R1,n, with α 6= 0 and d0 = 1. We have only to show β = 0 and
〈d, d〉 = 0.

Since the local inverse f−1 is also a Lorentzian conformal mapping, λf−1 has the
form

λf−1(y) =
α̃

〈y − ã, y − ã〉 + β̃
or λf−1(y) =

α̃

〈d̃, y − ã〉
,

where α̃, β̃ ∈ R, ã, d̃ ∈ R1,n, with α̃ 6= 0 and d̃0 = 1 by the same argument. Then(
λf−1(f(x))

)−1 = λf (x) implies that f satisfies one of the following :

〈f(x) − ã, f(x) − ã〉 + β̃ =
α0

〈x − a, x − a〉 + β
, λf (x) =

α

〈x − a, x − a〉 + β
, (3.12)

〈d̃, f(x) − ã〉 =
α0

〈x − a, x − a〉 + β
, λf (x) =

α

〈x − a, x − a〉 + β
, (3.13)

〈f(x) − ã, f(x) − ã〉 + β̃ =
α0

〈d, x − a〉
, λf (x) =

α

〈d, x − a〉
, (3.14)

〈d̃, f(x) − ã〉 =
α0

〈d, x − a〉
, λf (x) =

α

〈d, x − a〉
, (3.15)
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where α0, β, β̃ ∈ R, a, ã, d, d̃ ∈ R1,n with α0 6= 0, d0 = d̃0 = 1.
First we shall prove that the cases of (3.13) and (3.14) does not occur. In fact,

equation (3.13) shows that for each r ∈ R, f maps hypersurfaces Sr = {x; 〈x − a, x −
a〉 + β = r} intersecting D into hyperplanes Pr = {y; 〈d̃, y − ã〉 = α0/r}. Choose
v ∈ Rn+1 with 〈v, v〉 6= 0 such that the line x(t) = tv + a (t ∈ R) intersects D. In
general, x(t) is Lorentz orthogonal to all Sr (r ∈ R). Since f is Lorentzian conformal,
the image curve f(x(t)) of the line x(t) is Lorentz orthogonal to all Pr (r ∈ R) and
hence f(x(t)) lies in the line sd̃ + ṽ (s ∈ R) with some ṽ ∈ R1,n. So there exists a
C4-function s(t) such that f(x(t)) = s(t)d̃ + ṽ. Differentiating the both sides of the
equation by t, we have

f ′(x(t))v = s′(t)d̃.

Then Lorentzian conformality of f implies

s′(t)2〈d̃, d̃〉 = 〈f ′(x(t))v, f ′(x(t))v〉 = λf (x(t))2〈v, v〉 =
α2〈v, v〉

(〈v, v〉t2 + β)2

and hence

s′(t) =
α1

t2 + β1

with some α1, β1 ∈ R, α1 6= 0. On the other hand, substituting f(x(t)) = s(t)d̃ + ṽ
and x(t) = tv + a into (3.13), we have

s(t)〈d̃, d̃〉 + 〈d̃, ṽ − ã〉 =
α0

〈v, v〉t2 + β
,

and hence

s′(t) =
α2t

t2 + β1

with some α2 ∈ R, α2 6= 0. This leads to a contradiction because α2 6= 0. Therefore,
the case (3.13) does not occur. Interchanging the role of f and f−1, the same argument
shows that the case (3.14) does not occur.

Next we shall show β = 0 in (3.12). Assume that β 6= 0. The equation (3.12)
shows that for each r ∈ R, f maps the intersection of D and hypersurfaces Sr =
{x; 〈x − a, x − a〉 + β = r} into hypersurfaces S̃r = {y; 〈y − ã, y − ã〉 + β̃ = α0/r}.
Choose v ∈ Rn+1 with 〈v, v〉 6= 0 such that the line x(t) = tv + a (t ∈ R) intersects D.
In general, x(t) is Lorentz orthogonal to all Sr (r ∈ R) and f is Lorentzian conformal,
the image curve f(x(t)) of the line x(t) is Lorentz orthogonal to all S̃r (r ∈ R) and
hence f(x(t)) lies in the line sṽ + ã (s ∈ R) with some ṽ ∈ R1,n. So there exists a C4-
function s(t) such that f(x(t)) = s(t)ṽ + ã. Differentiating both sides of the equation
by t, we have

f ′(x(t))v = s′(t)ṽ.

Then Lorentzian conformality of f implies

s′(t)2〈ṽ, ṽ〉 = λf (x(t))2〈v, v〉 =
α2〈v, v〉

(〈v, v〉t2 + β)2



60 Katsunori SHIMOMURA

and hence

s′(t) =
α1

t2 + β1
,

where β1 = β/〈v, v〉 6= 0 and α1 is a non-zero constant. Therefore s(t) is inverse tangent
function or logarithmic function. In any case, s(t) is a transcendental function. On
the other hand, substituting f(x(t)) = s(t)ṽ + ã and x(t) = tv + a into (3.12), we have

s(t)2〈ṽ, ṽ〉 + β̃ =
α0

〈v, v〉t2 + β
,

which shows that s(t) is an algebraic function. This is a contradiction. Therefore
β = 0 in (3.12).

Finally we shall show 〈d, d〉 = 0 in (3.15). Assume that 〈d, d〉 6= 0. The equation
(3.15) shows that for each r ∈ R, f maps the intersection of D and hyperplanes
Pr = {x; 〈d, x − a〉 = r} into hyperplanes P̃r = {y; 〈d̃, y − ã〉 = α0/r}. Choose
v ∈ Rn+1 such that the line x(t) = td + v (t ∈ R) intersects D. In general, x(t) is
Lorentz orthogonal to all Pr (r ∈ R) and f is Lorentzian conformal, the image f(x(t))
of the line x(t) is Lorentz orthogonal to all P̃r (r ∈ R) and hence f(x(t)) lies in the
line sd̃ + ṽ (s ∈ R) with some ṽ ∈ R1,n. So there exists a C4-function s(t) such that
f(x(t)) = s(t)d̃ + ṽ. Differentiating the both sides of the equation by t, we have

f ′(x(t))d = s′(t)d̃.

Since f is Lorentzian conformal,

s′(t)2〈d̃, d̃〉 = 〈f ′(x(t))d, f ′(x(t))d〉 = λf (x(t))2〈d, d〉 =
〈d, d〉

(〈d, d〉t + b)2
.

If 〈d, d〉 6= 0, this equation implies that 〈d̃, d̃〉 6= 0 and that s(t) is a logarithm function.
On the other hand, (3.15) implies that s(t) is a rational function

s(t)〈d̃, d̃〉 + β̃ =
α0

〈v, v〉t + β
,

where β = 〈d, v−a〉 and β̃ = 〈d̃, ṽ−ã〉. This is a contradiction. Therefore 〈d, d〉 = 0.

Proof of Theorem 1.1. In the following, we shall show that the above cases (3.9),
(3.10) and (3.11) corresponds to the cases (a), (b) and (c) of Theorem 1.1.

First we study the case (3.11):

λf (x) = α, α ∈ R, α > 0.

By Lemma 3.3, f is equal to a similarity

f(x) = αRx + b, (R ∈ O(1, n), b ∈ R1,n).

This is the case (c) of Theorem 1.1.
Next we study the case (3.9):

λf (x) =
α

〈x − a, x − a〉
, α ∈ R, α 6= 0, a ∈ R1,n.
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If we put g(x) = x − a, then g−1(K(x)) = K(x) + a and

λf◦g−1◦K = λf (K(x) + a)λg−1(K(x))λK(x) =
α

〈K(x),K(x)〉
· 1 · 1

|〈x, x〉|
= |α|

which implies that (f ◦ g−1 ◦ K)(x) is equal to a similarity

h(x) = αRx + b, (R ∈ O(1, n), b ∈ R1,n).

Thus we have (f ◦ g−1 ◦ K)(y) = h(y) and

f(x) = (h ◦ K ◦ g)(x), x ∈ D,

because K−1(x) = K(x). This is the case (a) of Theorem 1.1.
Finally we study the case (3.10):

λf (x) =
α

〈d, x − a〉
, α ∈ R, a, d ∈ R1,n, α 6= 0, d0 = 1, 〈d, d〉 = 0.

Since 〈d, d〉 = 0 and d0 = 1, |(d1, . . . , dn)| = |d0| = 1. There exists a matrix R1 ∈
O(1, n) such that d = R1v, where v = (−1, 1, 0, . . . , 0). Then 〈d, x−a〉 = 〈R1v, x−a〉 =
〈v,R−1

1 (x− a)〉 holds. Put S = R−1
1 and define the similarity g as g(x) = R−1

1 (x− a),
so that 〈d, x − a〉 = 〈v, g(x)〉. Then

λf (g−1(x)) =
α

〈d, g−1(x) − a〉
=

α

〈v, g(g−1(x))〉
=

α

〈v, x〉
=

α

x0 + x1
.

Now considering the mapping f ◦ g−1 ◦ B−1 defined on B(g(D)), we have

λf◦g−1◦B−1(y) = λf (g−1(B−1(y)))λg−1(B−1(y))λB−1(y)
= |α|,

which implies that (f ◦ g−1 ◦ B−1)(y) is equal to a similarity

h(y) = αRy + b, (R ∈ O(1, n), b ∈ R1,n).

Thus we have (f ◦ g−1 ◦ B−1)(y) = h(y) and

f(x) = (h ◦ B ◦ g)(x), x ∈ D.

This is the case (b) of Theorem 1.1.

4. Transformation which preserves the wave equation

In this section, we shall give the proof of Theorem 1.2.
By definition, it is easy to see that if (f, ϕf ) and (g, ϕg) are transformations which

preserve the wave equation such that the image of f is contained in the domain of g,
then (g ◦ f, ϕf · (ϕg ◦ f)) is also a transformation which preserves the wave equation.
We call this transformation (g ◦ f, ϕf · (ϕg ◦ f)) the composition of (f, ϕf ) and (g, ϕg).
First, we remark that all the transformations in Theorem 1.2 are the composition of
the following fundamental transformations:
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Example 4.1 (similarity). The pair of a mapping f and a positive constant func-
tion ϕ

f(x) = αRx + a, ϕ(x) = C,

where α ∈ R, α > 0, R ∈ O(1, n), a ∈ Rn+1, is a transformation which preserve the
wave equation.

Example 4.2 (inversion). The pair of the mapping K and the function ϕ

K(x) =
x

〈x, x〉
, ϕK(x) = |〈x, x〉|

1−n
2 ,

is a transformation which preserve the wave equation defined on each connected com-
ponent of {x ∈ Rn+1; 〈x, x〉 6= 0}.

Example 4.3 (Bateman transformation). The pair of the mapping B and ϕ

B(x) = (
〈x, x〉 + 1
2(x0 + x1)

,
〈x, x〉 − 1
2(x0 + x1)

,
x2

x0 + x1
, . . . ,

xn

x0 + x1
),

ϕB(x) = |x0 + x1|
1−n

2 ,

is a transformation which preserve the wave equation defined on each connected com-
ponent half space of {x ∈ Rn+1;x0 + x1 6= 0}. We call this transformation Bateman
transformation.

The following theorem gives a characterization of the transformations which pre-
serve the wave equation.

Theorem 4.1. ([4]) The pair (f, ϕ) is a transformation which preserves the wave
equation, if and only if f = (f0, f1, . . . , fn) and ϕ satisfy the following equations on D:

Wϕ = 0, (4.1)
ϕ Wfj − 2〈∇ϕ,∇fj〉 = 0, (j = 0, 1, . . . , n) (4.2)
〈∇fj ,∇fk〉 = 0, (j, k = 0, 1, . . . , n, j 6= k) (4.3)
〈∇fj ,∇fj〉 = −〈∇f0,∇f0〉, (j = 1, . . . , n) (4.4)

where ∇fj = (
∂fj

∂x0
,
∂fj

∂x1
, . . . ,

∂fj

∂xn
), j = 0, 1, . . . , n.

Proof. Since [4] is written in Japanese, we write the proof here. For any C2-function
u,

W (ϕ · (u ◦ f)) = (Wϕ) · (u ◦ f) (4.5)

+
n∑

j=0

(ϕ · Wfj − 2〈∇ϕ,∇fj〉) ·
( ∂u

∂yj
◦ f

)
−

n∑
j,k=0

ϕ · 〈∇fj ,∇fk〉 ·
( ∂2u

∂yj∂yk
◦ f

)
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holds by the chain rule. Assume that (f, ϕ) is a transformation which preserves the

wave equation. First we take the solution u = 1. Since
∂u

∂yj
=

∂2u

∂yj∂yk
= 0 (0 5 j, k 5

n), we have (4.1):

Wϕ = 0. (4.6)

Next take the solution u(y) = yl (0 5 l 5 n). Since
∂u

∂yj
= δjl,

∂2u

∂yj∂yk
= 0 (0 5 j, k 5

n), we have (4.2):

ϕWfj − 2〈∇ϕ,∇fj〉 = 0. (4.7)

Take the solution u(y) = yiyl (0 5 i, l 5 n, i 6= l). Since
∂2u

∂yj∂yk
= δijδkl (0 5 j, k 5

n), we have (4.3):

〈∇fi,∇fl〉 = 0 (0 5 i, l 5 n, i 6= l). (4.8)

Finally take the solution u(y) = y2
0 + y2

j (0 5 j 5 n). Since
∂2u

∂y2
0

=
∂2u

∂y2
j

= 2,
∂2u

∂y2
i

= 0

(1 5 i 5 n, i 6= j), we have (4.4):

〈∇f0,∇f0〉 + 〈∇fj ,∇fj〉 = 0. (4.9)

Conversely assume that f and ϕ satisfy (4.1),...,(4.4). Substituting (4.1), (4.2)
and (4.3) into (4.5), we have

W (ϕ · (u ◦ f)) = −ϕ
n∑

j=0

〈∇fj ,∇fj〉 ·
(∂2u

∂y2
j

◦ f
)
.

Putting Λ = 〈∇f0,∇f0〉, (4.4) gives

W (ϕ · (u ◦ f))(x) = −ϕ(x)Λ(x)((Wu) ◦ f)(x).

This shows that Wu = 0 implies W (ϕ·(u◦f)) = 0. Therefore (ϕ, f) is a transformation
which preserve the wave equation.

Corollary 4.1. Let n = 2. If (f, ϕ) is a transformation which preserves the wave
equation defined on D, then f is Lorentzian conformal on D such that λ(x)2 =
〈∇f0,∇f0〉.

Proof. Putting Λ = 〈∇f0,∇f0〉, (4.3) and (4.4) is equivalent to

f ′(x)J tf ′(x) = Λ(x)J.

Since f is non-degenerate, Λ 6= 0. Then tf ′(x)−1Jf ′(x)−1 = Λ(x)−1J and hence
tf ′(x)Jf ′(x) = Λ(x)J , which is equivalent to 〈f ′(x)u, f ′(x)v〉 = Λ(x)〈u, v〉 for all
u, v ∈ R1,n. Since f ′(x) is invertible, the quadratic form 〈f ′(x)u, f ′(x)u〉 has the same
signature as 〈u, u〉. Therefore Λ(x) > 0 for all x ∈ D, because n = 2 > 1. Thus f is
Lorentzian conformal on D.

Next lemma shows that ϕ is uniquely determined by f except a constant multiple.
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Lemma 4.1. If (f, ϕ1) and (f, ϕ2) are two transformation which preserve the wave
equation with same mapping f on a domain. Then ϕ2 is a constant multiple of ϕ1.

Proof. By (4.2), we have

Wfj = 2〈∇ log ϕ1,∇fj〉, Wfj = 2〈∇ log ϕ2,∇fj〉, (j = 0, 1, . . . , n).

and then

〈∇fj ,∇ log
ϕ2

ϕ1
〉 = 〈∇fj ,∇ log ϕ2 −∇ log ϕ1〉 = 0, (j = 0, 1, . . . , n).

Hence f ′(x) maps the vector ∇ log
ϕ2

ϕ1
(x) to 0. Since the matrix f ′(x) is non-degenerate,

∇ log
ϕ2

ϕ1
(x) = 0 for all x ∈ D. Therefore, ϕ2 is a constant multiple of ϕ1.

Proof of Theorem 1.2. By Corollary 4.1, f is Lorentzian conformal on D. Then by
Theorem 1.1, f has the form (a), (b), or (c).

First, we treat the case (a):f(x) =
αR(x − a)

〈x − a, x − a〉
+ b. Put h(x) = αRx + b and

g(x) = x − a. Then f(x) = (h ◦ K ◦ g)(x). Since (h, 1) and (g, 1) are transformations
which preserve the wave equation, Lemma 4.1 yields that ϕ is a constant multiple of

1 · (ϕK ◦ g) · (1 ◦ K ◦ g) = |〈x − a, x − a〉|
1−n

2 .

Therefore ϕ(x) = C|〈x − a, x − a〉| 1−n
2 with C > 0.

Next we treat the case (b):f(x) = αRB(S(x − a)) + b. Put h(x) = αRx + b and
g(x) = S(x−a). Then f(x) = (h◦B ◦g)(x). Since (h, 1) and (g, 1) are transformations
which preserve the wave equation, ϕ is a constant multiple of

1 · (ϕB ◦ g) · (1 ◦ B ◦ g) = |〈v, S(x − a)〉|
1−n

2

by Lemma 4.1. Therefore ϕ(x) = C|〈v, S(x − a)〉| 1−n
2 with C > 0.

Finally, f(x) = αRx + b is the similarity. So ϕ is a positive constant.
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