A Remark on Interpolation on Finite Open Riemann Surfaces

Morisuke HASUMI*

Let Ω be a region on a Riemann surface R whose boundary $\partial \Omega$ consists of finitely many analytic simple closed curves $\gamma_1, \ldots, \gamma_m$, with $\Omega \cap \partial \Omega$ compact. Such an Ω is usually known as a finite open Riemann surface. Let $\{z_k\}$ be a sequence of distinct points on Ω . Then it is called an interpolating sequence if, for any bounded sequence $\{c_k\}$ of complex numbers, there exists a bounded holomorphic function h on Ω such that $h(z_k) = c_k$ for all k. The following theorem has been proved by Stout [2; 3].

THEOREM. For $j=1, \ldots, m$, let γ'_{j} be a simple closed curve in Ω which, together with γ_{j} , bounds an annular region A_{j} in Ω , such that the A_{j} have disjoint closures. Then a discrete sequence $E=\{z_{k}\}$ in Ω is an interpolating sequence if and only if $E_{j}=A_{j}\cap E$ is an interpolation set for A_{j} for each j.

The purpose of this note is to derive this theorem from some recent results of Hoffman [1]. The proof is short but it is not satisfactory because of the quite heavy machinary on which it is based.

Let $H^{\infty}(\Omega)$ be the usual Banach algebra of bounded holomorphic functions on Ω and $M(H^{\infty}(\Omega))$ the maximal ideal space of $H^{\infty}(\Omega)$. It is shown in [1] the following: (1) A discrete sequence S in Ω is interpolating if and only if its closure in $M(H^{\infty}(\Omega))$ contains only those points p in $M(H^{\infty}(\Omega))$ which belong to non-trivial Gleason parts for $H^{\infty}(\Omega)$. (2) A point p in $M(H^{\infty}(\Omega))$ belongs to a trivial Gleason part if and only if, for any $f \in H^{\infty}(\Omega)$ with $\hat{f}(p)=0$, there exist $g, h \in H^{\infty}(\Omega)$ such that $\hat{g}(p)=\hat{h}(p)$ =0 and f=gh.

In order to prove the theorem, suppose first that E is an interpolating sequence in Ω . Then $E_j = E \cap A_j$ for each j is also interpolating in A_j .

Suppose conversely that each E_j is interpolating in A_j . By taking smaller A_j if necessary, we may assume all γ'_j to be analytic, and this means that the closure of each E_j in $M(H^{\infty}(A_j))$ contains only those points which belong to non-trivial Gleason parts for $H^{\infty}(A_j)$. Now we suppose, on the contrary, that E is not interpolating in Ω . Then its closure in $M(H^{\infty}(\Omega))$ contains at least one p_0 belonging to some trivial Gleason part of $M(H^{\infty}(\Omega))$. It is easy to see that p_0 is already contained in the closure in $M(H^{\infty}(\Omega))$ of some E_j , because p_0 lies off Ω and thus deletion of any finite number of points from E does not affect the situation. So we may assume that E_1 contains a

^{*}Department of Mathematics, Ibaraki University, Mito, Japan

Cauchy net N in $M(H^{\infty}(\mathcal{Q}))$ converging to p_0 and that N converges in R to a point $\lambda_0 \in \partial \mathcal{Q}$ and is contained in a coordinate disk U in R around λ_0 with $U \cap \mathcal{Q} \subset A_1$. On the other hand, the net N has an accumulation point q_0 in the space $M(H^{\infty}(U \cap \mathcal{Q}))$. Let f be any function in $H^{\infty}(U \cap \mathcal{Q})$ that satisfies $\widehat{f}(q_0)=0$. As Hoffman [1] remarks, there is a factorization $f=f_1f_2$ where $f_1 \in H^{\infty}(\mathcal{Q})$ and $f_2 \in H^{\infty}(U \cap \mathcal{Q})$ is analytic on $U \cap \mathcal{Q}$ with $f_2(\lambda_0)=1$. Then we have $\widehat{f}(q_0)=0=\widehat{f_1}(q_0)\widehat{f_2}(q_0)=\widehat{f_1}(q_0)f_2(\lambda_0)=\widehat{f_1}(q_0)$. So $\widehat{f_1}(p_0)=\lim_{\omega \in N} f_1(\omega)=\widehat{f_1}(q_0)=0$. As p_0 belongs to a trivial Gleason part for $H^{\infty}(\mathcal{Q})$, there exist $g_1, h_1 \in H^{\infty}(\mathcal{Q})$ such that $\widehat{g_1}(p_0)=\widehat{h_1}(p_0)=0$ and $f_1=g_1h_1$ on \mathcal{Q} . As we have also $\widehat{g_1}(q_0)$ =lim $_{\omega \in N}g_1(\omega)=\widehat{g_1}(p_0)=0$ and similarly $\widehat{h_1}(q_0)=0$, we see that the point q_0 belongs to a trivial Gleason part for $H^{\infty}(\mathcal{Q})$. So $E_1 \cap U$ cannot be an interpolating sequence in $U \cap \mathcal{Q}$. Hence E_1 cannot be interpolating in the larger domain A_1 , contradicting our original assumption.

References

- [1] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
- [2] E. L. Stout, Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255-285.
- [3] E. L. Stout, Interpolation on finite open Riemann surfaces, Proc. Amer. Math. Soc. 18 (1967), 274-278.