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FUMIKO OHTSUKA*

ABSTRACT. The object of our research is a piecewise Riemannian 2-polyhedron 
which is a combinatorial 2-polyhedron such that each 2-simplex is isometric to 
a triangle bounded by three smooth curves on some Riemannian 2-manifold. In 
the previous paper [4], which is a joint work with J. Itoh, we have introduced 
the concept of total curvature for piecewise Riemannian 2-polyhedra and proved 
a generalized Gauss-Bonnet theorem and a generalized Cohn-Vossen theorem. 
In this paper, we shall give a definition of flatness of piecewise Riemannian 2-
polyhedra and characterize them.

§1.Introduction.

"Curvature" is one of the most important tools to investigate "Geometry"

of manifolds. For our research object "polyhedra," the concept of "Curvature" 
has been introduced and remarkable results are obtained by Banchoff [3] for any 
dimensional compact piecewise linear polyhedra, and by Ballman-Brin [1] and 
Ballman-Buyalo [2] for 2-dimensional cocompact piecewise Riemannian polyhe-
dra. My interest is based particularly on the study of noncompact case from 
the view point of total curvature. In our previous paper [4] with J. Itoh, we 
have defined two kinds of total curvature for noncompact piecewise Riemannian 
2-polyhedra, total curvature and weak total curvature, which both coincide with 
the usual definitions for Riemannian manifolds or compact 2-polyhedra. It is 
naturally and easily seen that a generalized Gauss-Bonnet theorem holds under 
these total curvatures. Furthermore, in [4], we have shown the difference be-
tween the geometric meanings of these two kinds of total curvature, and under 
the assumption of admitting total curvature (not weak total curvature) we have 
proved a generalized Cohn-Vossen theorem.
  The aim of my research is to clarify the meaning of "Curvature" of polyhedra 

and characterize them in terms of curvature. In this paper, as a first step of 

this research direction, we shall define the flatness of polyhedra and classify
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flat polyhedra. Namely, under this assumption of flatness, we can obtain the 

following theorems.

Theorem 1. If X is a flat 2-polyhedron, then X is a Cat(0)-domain.

Theorem 2. Let X be a complete, simply connected, flat 2-polyhedron without 
boundary. Then X is a product of a tree and a real number R.

  The proofs of Theorem 1 is based only on combinatorial method independent 

of the results in our previous paper [4], and then we have Theorem 2 by applying 
Nagano's characterization theorem in [5].

§2.Preliminaries.

  In this section, we will review the definitions of a piecewise Riemannian 2-

polyhedron and the total curvature of it after [4], because it seems that these 
concepts are not familiar to you. For the definitions of Cat(0)-domain and so 
on, refer to the Nagano's paper [5].
  First we will introduce the definition of a piecewise Riemannian 2-polyhedron. 
Let X be a 2-dimensional locally finite simplicial complex. In what follows, we 
also denote the point-set of union of all the simplices of X, the polyhedron of X, 
by the same symbol X. The metric d on a 2-dimensional polyhedron (simply 
2-polyhedron) X is defined as satisfying the following conditions, which is called 
a piecewise Riemannian metric on X.

For each 2-simplex Δ, we take a metric dΔ on it such that (Δ,dΔ) is isomet-

ric to some triangle bounded by a piecewise smooth simple closed curve on a

Riemannian 2-manifold whose broken points are corresponding to vertices of Δ.

Here we choose a metric such that the induced metric on a 1-simplex adjacent to 
some 2-simplices is independent of the choice of adjacent 2-simplices. For each 
1-simplex which is not a proper face of any 2-simplex, we may choose any metric. 
Now we define the metric d by

d(x,y):=inf{l(γ)｜γ is a piecewise smooth curve from x to y},

where l(γ) is the length of γ, for any x, y ∈X.

Definition 1. We call such a space (X,d) a piecewise Riemannian 2-polyhedron 
(simply PR 2-polyhedron).

  A piecewise Riemannian 2-polyhedron X is said to be piecewise linear (simply 
PL) if each 2-simplex is isometric to a geodesic triangle on the Euclidean plane 
R2.
  An i-simplex ε of a polyhedron X is called a free face if there is just one

(i+1)-simplex of X which contains ε as a face. For a piecewise Riemannian

2-polyhedron X, the closure of the point-set of union of free faces is called the 

boundary of X and denoted by BX. The complement of it, X/BX, is called 

the interior of X and denoted by IX. It is clear that these definitions are 

independent of the choice of divisions of X.

For a point p on a piecewise Riemannian 2-polyhedron X, we denote by Rp

the set of all minimizing geodesics emanating from p. For α,β ∈ Rp we define
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the angle at p as follows: For an arbitrarily constant k, we denote by M(k) the 2-
dimensional space form of constant sectional curvature k. For a geodesic triangle

Δ(α(s)pβ(t)), letΔ(α(s)pβ(t)) be a geodesic triangle sketched in M(k) whose

corresponding edges have same length as Δ(α(s)pβ(t)), and let ∠k(α(s)pβ(t))

be the angle at p of Δ(α(s)pβ(t)). Then it is clear that the limit

∠p(α,β):=lim∠k(α(s)pβ(t))
s,t→0

exists, which is independent of the choice of k. We call it the angle at p sub-

tended by α and β. It is easily seen that the angle ∠p is a pseudo-metric on Rp

and induces an equivalence relation ～ defined as follows: α ～ β if and only if

∠p(α,β)=0. The completion of the metric space (Rp/～,∠p) is called the space

of directions at p, and denoted by (Σp,∠p).

For a subset Y of X, let

RYp:={α ∈Rp｜ α([0,∈])⊂Y for some ∈>0}.

The space of directions with respect to Y, denoted by ΣYp, is the completion of

the metric space RYp/～.

  Next, for a point p on a piecewise Riemannian 2-polyhedron X, we will in-
troduce two curvatures (the regular curvature and the singular curvature) at p. 
The regular curvature K(p) is defined by

K(p):=
the Gaussian curvature at p

if p is on some open 2-simplex of X,

0 otherwise.

  For a compact piecewise Riemannian 2-polyhedron X, the regular total curva-

ture of X is defined as the integral of the regular curvature K on X and denoted

by ereg(X). In other words, it is expressed as follows: Let C(Δ) be the total

curvature of a 2-simplex Δ. Note here that Δ has a Riemannian metric. Then

ereg(X):=ΣC(Δ).

Δ:2-simplex

  Now, fix a subdivision of X in which p is a vertex. Then the singular curvature 
k(p) at p is defined by

k(p)=π(2-χ(LK(p)))-L(Σp),

where χ(LK(p)) is the Euler characteristic of the point-set of the linked complex

LK(p) of p and L is the 1-dimensional Hausdorff measure on Σp. By definition,

LK(p) is the sum of simplices σ on X such that the cone with vertex p and base

σ is also a simplex of X. It is clear that k(p)=0 if p is not a vertex of the

original division of X.
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  Furthermore we will define the singular total curvature of X. For a pair (c, Δ)

of a 2-simplex Δ and its face  c, ∫ckdΔ is defined as the integral of a geodesic

curvature k on c. Then we define the singular total curvature esing (X) of X by

where the summation of the second term is taken over all pairs (c,Δ) of an open

1-simplex c ⊂ IX and a 2-simplex Δ adjacent to c.

Now we define the total curvature as follows.

Definition 2. The total curvature C(X) is defined by

cC(X):=ereg(X)+esing(X).

Then we have the following generalized Gauss-Bonnet theorem.

Theorem A (Theorem 3.1 in [4]). Let X be a compact piecewise Riemannian 
2-polyhedron. Then we have

where χ(X) is the Euler characteristic of X.

  Finally we will introduce the total curvature of a noncompact complete piece-

wise Riemannian 2-polyhedron X.

Definition 3. Let {Di} be an increasing sequence of compact subpolyhedra
of X such that ∪Di=X. If a limit limi→ ∞ C(Di) exists on [-∞,∞] and is

independent of the choice of {Di}, then it is called the total curvature of X and 
is denoted by C(X). If C(X) exists, then X is said to admit total curvature.

Definition 4. A noncompact piecewise Riemannian 2-polyhedron X is said to 
be finitely connected, if it is homeomorphic to a compact piecewise Riemannian
2-polyhedron X with finitely many points {p1,…,pn} removed.

For a finitely connected 2-polyhedron X as above, let Li be the point-set of

the linked complex LK(pi) of a removed point pi on X. We may assume that
Li∩Lj=0 for i≠j by taking a subdivision if necessary. Let X∞ be the

disjoint union of {Li}. Then there is a large compact set D on X such that
X＼D is homeomorphic to X∞ × R. Since X is homotopic to D, we define the

Euler characteristic χ(X) as χ(D)=χ(X)-n+χ(X∞). Note that X is a finite

polyhedron but X is not so, that is, the structure of X as a polyhedron is quite
different from that of X. Now, we have the following theorem of a Cohn-Vossen

type.
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Theorem B (Theorem 4.1 in [4]). Let X be a finitely connected noncompact 
complete piecewise Riemannian 2-polyhedron without free faces admitting total 
curvature. Then we have

C(X)≦2πχ(X)-πχ(X∞).

§3.Characterization of flat 2-polyhedra.

It is clear that the total curvature C(X) of a non-compact piecewise Riemann-
ian 2-polyhedron X is finite if and only if for any ∈>0, there exists a compact

subpolyhedron K of X such that ｜C(X)-C(Y)｜<∈ for any compact subpoly-

hedron Y⊃K. That is the regular curvature K(p) and the singular curvature

kE(p) at any point p∈X＼K and subpolyhedron E of X with p∈IE are nearly

zero, and the geodesic curvatures on essential edges are also nearly zero, where 
an essential edge means a 1-simplex adjacent to more than three 2-simplices. It 
is so complicated to characterize the structure of finite total curvature. Now, in 
a Riemannian case, this condition means asymptotically flatness. Motivated this 
observation, we shall define a flatness as follows and as a first approach we will 
characterize in the following simple case.

Definition 5. Let X be a PR 2-polyhedron. If X is a piecewise linear 2-

polyhedron, and if, for any point x ∈ IX and any subpolyhedron E of X with

x∈IE, the singular curvature kE(x) of E at x is equal to 0, then X is said to

be flat.

  We shall note that a flat 2-polyhedron is not necessarily finitely connected. For

example, let X be a PR 2-polyhedron consisting of a flat planes {(x1,x2,x3)∈

R3｜x3=0} and {x1,x2,x3)∈R3｜x2∈N}. Then X is an infinitely connected

flat 2-polyhedron. In this section, we will give a classification of flat 2-polyhedra. 

To begin with, as a local structure, we have the following

Lemma 1. Let X be a PR 2-polyhedron and x ∈IX. If for any subpolyhedron

E of X with x ∈ IE, the singular curvature kE(x) of E at equals to 0, then

each connected component of the space of directions Σx contains an embedded

circle S, and the length of any embedded circle is equal to π.

Proof. Fix a subdivision of X on which x is a vertex. Since x ∈ IX, each

connected component of the linked complex LK(x) contains an embedded circle
So. Let E = S0 * x be a cone with vertex x and base S0, and S be the space of

directions of E at x. It is clear that S is either homeomorphic to a circle or one 
point set. Then the singular curvature kE(x) of E at x is satisfies

kE(x)=(2-χ(S0))π-L(S)=0,

and hence, since χ(S0)=0, we have L(S)=2π. That is, S is isometric to a

standard circle. □

Furthermore, from this property, we can make the shape of the space of direc-

tions clear. For any natural number n, let θn be the bipartite graph consisting of

two vertices and n edges of length π which connect the two vertices. Naturally

θ2 is a standard circle.
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Proposition 1. If X is a flat PR 2-Polyhedron, for any point x ∈ IX there is

a natural number n≧2 such that the space of directions Σx of X at x is θn.

Proof. Let Sing(X) be the set of all points x ∈ X such that any neighborhood

of x is not homeomorphic to an open disk. Note that Sing(X) ⊃ BX. If

x ∈ X＼Sing(X), then the space of direction Σx is isometric to a standard circle

S1. So we assume that x ∈ Sing(X) ∩ IX. In this case we will divide our

observation in three steps. First step is to show the following

claim 1. Σx is connected.

In fact, we assume that there are two distinct connected components on Σx.

Then we can take disjoint circles S1 and S2 such that S1 is on one component
and S2 is on the other. Note that L(S1)=L(S2)=2π by Lemma 1. Let E1, E2

be subpolyhedra of X such that ΣEix=Si. Naturally we may assume that Ei

is homeomorphic to a closed disk, and then a subpolyhedron E:=E1∪E2 is

homeomorphic to a suspension of S1∪S2. Hence we have

kE(x)=(2-χ(LKE(x)))π-L(ΣEx)=-2π ≠0,

which is a contradiction.

Next we shall consider two distinct circles S1, S2 on Σx.

  claim 2. S1∩S2 is either two antipodal points or a closed segment with

length π. That is, S1∪S2 is either θ3 or θ4.

  In fact, if S1∩S2=0, then a contradiction is led in the same way as claim

1. If S1∩S2 is connected, then we can show that it is not one point set but a

segment of length π as follows.

  Let E be a subpolyhedron such that ΣEx=S1∪S2, and then, we may assume

E is homeomorphic to a cone of S1∪S2. If S1∩S2 is one point set, then

kE(x)=-π ≠0, a contradiction. Hence it is a segment. Let e:=S1∩S2, and ei

be the closure of Si＼e(i=1,2). Then L(Si=L(e)+L(ei)=2π. Furthermore,

since e1∪e2 is also an embedded circle on Σx, L(e1)+L(e2)=2π. Therefore

we have L(e)=L(e1)=L(e2)=π.

  If S1∩S2 has more than one components, then it is two points set. In fact, for

any two components e1 and e2, Si＼(e1∪e2) also consists of just two connected

components, whose closures are denoted by fi, gi (i=1,2). First we will assume

that either ∂f1=∂f2 or ∂ f1=∂g2. It is sufficient to consider the former case.

Then f1∪f2 and g1∪g2 are also isometric to a standard circle. Hence we have

L(f1)=L(g1)=L(f2)=L(g2)=π and L(e1)=L(e2)=0. This means e1 and

e2 are the antipodal points of S1 and of S2. Otherwise, there are four embedded

standard circles except S1 and S2. Namely we have

(1) L(S1)=L(f1)+L(g1)+L(e1)+L(e2)=2π,

(2) L(S2)=L(f2)+L(g2)+L(e1)+L(e2)=2π,

(3) L(f1)+L(f2)+L(ei)=2π,

(4) L(f1)+L(g2)+L(ej)=2π,

(5) L(g1)+L(f2)+L(ej)=2π,

(6) L(g1)+L(g2)+L(ei)=2π,
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for some {i,j}={1,2}. We may assume that i=1 and j=2. Then adding 
up (3)+(6)-{(1)+(2)}, we have L(e2)=0. In the same way, L(e1)=0
and L(f1)=L(g1)=L(f2)=L(g2)=π. Therefore in any case, the number of

connected components is just two, and they are the antipodal points of S1 and 
of S2.

Now we will assume that there are three different embedded circles S1, S2
and S3. By Claim 2, there is the unique pair of points {vi,wi}⊂Si∩S3

with ∠x(υi,wi)=π(i=1,2). Let υiwi be the half segment on Si satisfying

υiwi∩S3={υi,wi}. If {υ1,w1}≠{υ2,w2}, then we can take a embedded circle

containing half segments υ1w1 and υ2w2, whose length is greater than 2π. This

is a contradiction, and hence {υ1,w1}={υ2,w2}. By induction, this completes

the proof. □

This proposition immediately leads us the following theorems.

Theorem 1. If X is flat, then X is a Cat(0)-domain.

Proof. For any point x ∈ IX, by Proposition 1, there is a number n such that

Σx=θn. Since X is a PL-polyhedron, this means that a sufficiently small

neighborhood U of x is isometric to an n flat open half disks Dn identified the 
boundaries. Naturally D2 is a standard open disk. It is clear that Dn is of 
nonpositive curvature (in the meaning of a comparison theorem), and hence X
is a Cat(0)-domain. □

Theorem 2. Let X be a complete, simply connected, flat 2-polyhedron without 
boundary. Then X is a product of a tree and a real number R.

Proof. Since X is a complete and simply connected Cat(0)-domain, then X is 
a Hadamard space. Furthermore the diameter of the space of directions at any
point x ∈ X is π by Proposition 1. This implies that the diameter of the

ideal boundary X(∞) of X is also π. In fact, if not, there are two rays γ1

and γ2 such that Td(γ1(∞),γ2(∞))>π, where Td is a Tits metric on X(∞).

Then we can take a point p ∈ X such that ∠p(γ'1(0),γ'2(0))>π, where γi is

an asymptotic ray to γi emanating from p. This is a contradiction. Applying

Nagano's characterization theorem (Theorem A in [5]) of Hadamard space X

with diam (X(∞))=π and noting Proposition 1, we have X is a product of a

tree and R. □

Remark 1. Nagano's characterization theorem (Theorem A in [5]) is stated as 
follows: Let X be a locally compact, geodesically complete Hadamard 2-space
such that the diameter of (X(∞)),Td) is equal to π. Then X is isometric to

either the product of two trees, the Euclidean cone over (X(∞)),Td), or a thick

Euclidean building of dimension 2 of type A2, B2, or G2.

Remark 2. It is notable that if X is a Hadamard manifold with diam (X(∞),

Td)=π, it is not necessarily flat in our sense and we might have a point with

positive singular curvature. We shall illustrate such an example. Let Tn be a
tree consisting of n edges, n free vertices and one essential vertex. Since each

edge is adjacent to the essential vertex, we call it a central vertex of Tn. Let X

be a product Tn×Tm and υ:=(υn,υm)∈X, where υn is a central vertex of Tn.
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Then X is a PL 2-polyhedron and the singular curvature k(υ) at v is equal to

(n-2)(m-2)π/2. Therefore if n, m>2, then k(υ) is positive.

  So I wonder that the concept of singular curvature at a point is not compatible 

with the concept of curvature from the point of view of comparison theorem, 

but it seems natural as a concept of curvature to take the information of the 

topological structure in consideration.

§4.Appendix.

  I am wondering that the definition of flatness in Section 2 was too strong. In 

our definition, as seen in Lemma 1, any embedded circle of a space of directions

at any point has a length of 2π and is not allowed taking a side way. Even

if the diameter of a space of directions of Hadamard space is equal to π
, the

length of an embedded circle is not necessarily 2π and there may exist some

longer embedded circles. From this observation, it may be more suitable that 

polyhedra is defined to be flat if the diameter and the injective radius of the
space of directions at any point is equal to π, instead of the condition concerning

a singular curvature. Under such a definition of flatness, it is easily seen that 

a flat PR 2-polyhedron is a Hadamard space such that the diameter of its ideal

boundary is equal to π, and hence the classification of flat polyhedra is the same

as Nagano's classification of Hadamard 2-spaces.
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