博士学位論文

地震荷重下におけるき裂進展評価に関する研究

平成 25 年 9 月

茨城大学大学院理工学研究科

生産科学専攻

10ND203A 山口 義仁

和文抄録

き裂を有する給水系配管及び再循環系配管である高温配管用炭素鋼管 STPT410 及びオーステ ナイト系ステンレス鋼管 SUS316 から製作した試験片について、地震荷重を模擬した繰返し荷重 によるき裂進展試験を実施し、解析的な評価を加え、地震時のき裂進展評価式を初めて定式化し た。実配管を用いた試験により本論文で提示した方法は、±20%の範囲でき裂進展量の実測値に 一致すること実証した。

第1章では、地震荷重下におけるき裂進展評価に関する研究の背景として、日本国内の軽水炉 プラントは近年いくつかの大きな地震を経験しており、設計時に設定された基準地震動を上回る 大きさの地震動に対応して、高経年化を考慮した耐震安全評価手法の整備が重要な課題であるこ とを示した。次に既往の研究の状況として、地震を模擬した繰返し荷重による配管破損試験や、 小規模降伏条件を超える繰返し荷重によるき裂進展に関する研究、一定振幅でない繰返し荷重に よるき裂進展に関する研究等を紹介し、解明を要する問題点を明らかにした。そして、本研究が 目指す学術的価値の拠り所について述べた。

第2章では、一定振幅の繰返し荷重を用いてき裂進展試験を実施して、小規模降伏条件を超え る荷重下におけるき裂進展を評価した。この条件における裂進展には疲労と延性による力学的効 果が重畳しており、従来のき裂進展評価に用いられるΔK ではなく弾塑性破壊力学パラメータで あるΔJ 及び J_{max} を用いた評価が有効であることを示した。小規模降伏条件を超える荷重下におけ るき裂進展速度を次式で評価することが可能である。過大な繰返し負荷時について、従来はでき なかった延性による効果を疲労き裂進展評価に取り込めるように定式化した。

$$\frac{da}{dN} = \left(\frac{da}{dN}\right)_{fatigue} + \left(\frac{da}{dN}\right)_{ductile}$$

ここで、右辺第一項は疲労の効果、第二項は延性の効果であり次式で定義する。

$$\left(\frac{da}{dN}\right)_{fatigue} = C_{fatigue} (\Delta J)^{m_{fatigue}}$$

$$\left(\frac{da}{dN}\right)_{ductile} = \left(\frac{J_{max,i}}{C_{ductile}}\right)^{m_{ductile}} - \left(\frac{J_{max,i-1}}{C_{ductile}}\right)^{m_{ductile}}$$

第3章は、過大な引張圧縮荷重を含むき裂進展試験とその解析を行った。先ず、過大荷重によ るき裂進展の加速及び遅延効果を実験的に確認した。その力学的原因を、き裂鈍化とき裂前縁応 力に着目して FEM 解析を行い、加速は過大荷重によりき裂前縁応力分布が引張側に大きくなる こと、並びに遅延は過大荷重によってき裂が鈍化することに起因することを突きとめた。過大荷 重によるき裂前縁応力分布の変化をき裂前縁の塑性域寸法(r_p)を用いて表し、さらにβ₄/β_bによる過 大荷重負荷時のき裂の開口荷重の変化を考慮することで、過大荷重による影響の評価式を作成し た。

$$\Delta J_{eff}(a_i) = \frac{\beta_a}{\beta_b} \Delta J(a_i) \left(\frac{r_{pi}'}{r_{pel}' + a_{el} - a_i}\right)^{\gamma' R'}$$
$$a_i + r_{pi}' < a_{el} + r_{pel}'$$

更に、過大荷重によりき裂が鈍化する場合のき裂進展評価式について、力学的検討を加え、過大な引張荷重時のJ積分値(*J*maxel)と過大荷重後のJ積分値(*J*maxel)の関係を用いて作成した。

$$\frac{da}{dN} = C_{fatigue} \left[\Delta J - \Delta J_{i=1} \left(\frac{J_{max,el} - J_{max,i}}{J_{max,el} - J_{max,1}} \right) \right]^{m_{fatigue}}$$

以上を組み合わせることで、過大荷重がき裂進展に及ぼす影響を考慮可能なき裂進展評価式として定式化した。

$$\frac{da}{dN} = C_{fatigue} \left[\frac{\beta_a}{\beta_b} \Delta J_b(a_i) \left(\frac{r_{pi}}{r_{pel}^{'} + a_{el} + a_i} \right)^{\gamma' R'} - \Delta J_{i=1} \left(\frac{J_{max,el} - J_{max,i}}{J_{max,el} - J_{max,1}} \right) \right]^{m_{fatigue}}$$

第4章は、第3章の結論の一般化であり、地震のような不規則波形への適用を念頭においている。不規則波形から引張荷重-圧縮荷重のサイクルを1波ずつ抜き出し、対応する荷重-変位曲線 を予測し、ΔJを算出することが可能な次式を提示した。

$$\Delta J_{i} = \frac{\Delta K^{2}(1 - v^{2})}{E} + \left\{ (J_{\max,i} - MAX(J_{\max,i-1}))(1 - R_{i}) + J_{ABF} \frac{1}{|R_{i}|} \right\}$$

第2章で提示した小規模降伏条件を超える荷重下におけるき裂進展評価式、第3章で提示した過 大荷重がき裂進展及ぼす影響を考慮したき裂進展評価式、及び本章で提示したΔJの算出式を併用 することで、一般化が完結する。

第5章は、一般化した式の証明である。実配管を試験体に模擬地震動を負荷し、き裂進展量を 測定し、第4章で提示した方法によりき裂進展評価を行い、試験結果との比較を行った結果、本 論文で提示した方法は、±20%の範囲でき裂進展量の実測値に一致すること実証した。

第6章では、以上で得られた成果を総括し、本研究の学術的価値、並びにその波及効果につい て述べてある。本研究において提案した巨大地震荷重下におけるき裂進展評価手法を用いること で、軽水炉プラントが設計時に設定された基準地震動を上回る大きさの地震動を受けた際の健全 性に関して、従来用いられている疲労き裂進展評価手法と比較して、より正確に評価可能となっ た。以上要するに本論文は、き裂進展評価手法の提案を通じて、今後のより合理的な設計・保守 に資する有用な知見、基本となるデータを得られ、軽水炉プラントのみならず様々な構造物の安 全・信頼性の向上に寄与するところが大きいと考えられる。 In this study, the evaluation method for a crack growth due to a seismic load has been proposed based on experiments and finite element method analyses. Crack growth experiments were performed by a cyclic load simulating the seismic load applied to materials of the type 316 austenitic stainless steel and the carbon steel STS410 (JIS G 3455: similar to ASTM A106B). Specimens were machined from each pipe. The validity of the proposed method was confirmed by fact that the difference between the evaluation result and test result did not exceed 20%.

In Chapter 1, backgrounds in this study are described. Previous studies of the crack growth due to the seismic loading are introduced. Then, objective of this study is established.

In Chapter 2, an evaluation formula of the crack growth beyond small scale yielding (SSY) condition has been proposed based on fatigue crack growth tests using cyclic loading. The mechanisms of the crack growth due to cyclic loading beyond SSY include the concept of the fatigue crack growth and the ductile crack growth.

The crack growth rate under condition beyond SSY can be evaluated using an elastic-plastic fracture mechanics parameter, J-integral value, instead of ΔK . Then, the new term describing ductile crack growth rate is linearly added to the existing fatigue crack growth evaluation formula, as shown in the following equation.

$$\frac{da}{dN} = \left(\frac{da}{dN}\right)_{fatigue} + \left(\frac{da}{dN}\right)_{ductile}$$

Each component for crack growth rates is defined by the following equations, respectively.

$$\begin{pmatrix} \frac{da}{dN} \end{pmatrix}_{fatigue} = C_{fatigue} (\Delta J)^{m_{fatigue}}$$
$$\begin{pmatrix} \frac{da}{dN} \end{pmatrix}_{ductile} = \left(\frac{J_{max,i}}{C_{ductile}}\right)^{m_{ductile}} - \left(\frac{J_{max,i-1}}{C_{ductile}}\right)^{m_{ductile}}$$

In Chapter 3, crack growth tests using cyclic load including excessive tensile and compressive load were performed in order to confirm effects of excessive load on the crack growth. At the same time, FEM analyses simulating experiments were performed in order to evaluate the stress distribution in front of crack tip. Crack growth tests evaluated acceleration and retardation effects of the excessive load by focusing on the stress distribution and the crack blunting. Experiments and FEM analyses revealed that the acceleration effect on the crack growth is attributed to increase the stress in front of crack tip due to the applied excessive loading.

Similarly, it was revealed that the retardation effect on the crack growth is attributed to the crack blunting due to the excessive loading. A following equation using the plastic region size in front of crack tip and the crack closure ratio can quantitatively evaluate the effect of the stress variation on the crack growth rate.

$$\Delta J_{eff}(a_i) = \frac{\beta_a}{\beta_b} \Delta J(a_i) \left(\frac{r_{pi}'}{r_{pel}' + a_{el} - a_i}\right)^{\gamma k}$$
$$a_i + r_{pi}' < a_{el} + r_{pel}'$$

In addition, a crack growth prediction method, considering the excessive loading effect based on the crack blunting, has been proposed using the J_{max} at i-th step ($J_{\text{max},i}$) and the J_{max} at the excessive tensile loading ($J_{\text{max},el}$).

$$\frac{da}{dN} = C_{fatigue} \left[\Delta J - \Delta J_{i=1} \left(\frac{J_{max,el} - J_{max,i}}{J_{max,el} - J_{max,i}} \right) \right]^{m_{fatigue}}$$

An evaluation formula of the excessive loading effect on the crack growth behavior has been proposed based on the presence or absence of the crack blunting and the variation of the stress distribution.

$$\frac{da}{dN} = C_{fatigue} \left[\frac{\beta_a}{\beta_b} \Delta J_b(a_i) \left(\frac{r_{pi}}{r_{pel} + a_{el} + a_i} \right)^{\gamma'R'} - \Delta J_{i=1} \left(\frac{J_{max,el} - J_{max,i}}{J_{max,el} - J_{max,i}} \right) \right]^{m_{fatigue}}$$

In Chapter 4, results of chapter 2 and chapter 3 are generalized in order to deal with the random cyclic loading like the seismic load. A method of calculating the ΔJ in the seismic load has been proposed based on the crack growth test using the random amplitude cyclic load. The ΔJ calculation method has been proposed based on the prediction of the load-displacement curve with each cycle of the random cycle.

$$\Delta J_{i} = \frac{\Delta K^{2}(1 - \nu^{2})}{E} + \left\{ (J_{\max,i} - MAX(J_{\max,i-1}))(1 - R_{i}) + J_{ABF} \frac{1}{|R_{i}|} \right\}$$

In addition, an estimation method of the crack growth in reactor piping subjected to seismic loading has been proposed by combining the evaluation formula of the crack growth, the evaluation formula of the excessive loading effect on the crack growth behavior and the method of calculating the ΔJ .

In Chapter 5, the estimation method of the crack growth in reactor piping subjected to seismic loading beyond SSY condition was validated by the piping crack growth tests, using the simulated seismic load. Comparing crack growth test results with evaluation ones performed a validation. The validity of the proposed method was confirmed by the fact that the difference between the evaluation result and test result did not exceed 20%.

In Chapter 6, conclusions are drawn based on above results. In addition, an academic value of this study and a ripple effect are addressed.

1. 緕	辪論		1
1.1.	背	<u>a</u> R	1
1.2.	既征	主の研究	1
1.	2.1.	地震荷重によるき裂進展	1
1.	2.2.	小規模降伏条件を超える条件下におけるき裂進展評価	5
1.	2.3.	過大荷重がき裂進展に及ぼす影響評価	6
1.3.	本語	倫文の目的	7
1.4.	本語	論文の構成	7
2. /]	い規模	降伏条件を超える荷重下におけるき裂進展評価	8
2.1.	諸		8
2.2.	小疗	見模降伏条件を超える一定振幅繰返し荷重によるき裂進展試験	8
2.	2.1.	供試材及び試験片形状	8
2.	2.2.	試験方法	9
2.3.	試	険結果と小規模降伏条件を超える条件下におけるき裂進展評価手法の検討	10
2.4.	結		15
2.4. 3. 追	結 圖大荷	言 重がき裂進展に及ぼす影響の評価	15 16
2.4. 3. 通 3.1.	結 過大荷 諸	言 重がき裂進展に及ぼす影響の評価 言	15 16
2.4. 3. 3.1. 3.2.	結 過大荷 諸 過	言 重がき裂進展に及ぼす影響の評価 言 大荷重がき裂進展に及ぼす影響の実験的検討 ¹⁹³⁰⁾	15
2.4. 3. 3.1. 3.2. 3.	結 過大荷 諸 過 2.1.	言 重がき裂進展に及ぼす影響の評価 言 大荷重がき裂進展に及ぼす影響の実験的検討 ¹⁹⁾³⁰⁾ 供試材及び試験片形状	15 16 16 16 16
2.4. 3. 1 3.1. 3.2. 3. 3.	結 過大荷 諸 過 2.1. 2.2.	重がき裂進展に及ぼす影響の評価 言 大荷重がき裂進展に及ぼす影響の実験的検討 ¹⁹³⁰⁾ 供試材及び試験片形状 試験方法	
2.4. 3. 3.1. 3.2. 3. 3. 3.	結 過大荷 諸 過 2.1. 2.2. 2.3.	 重がき裂進展に及ぼす影響の評価 転荷重がき裂進展に及ぼす影響の実験的検討¹⁹³⁰⁾ 供試材及び試験片形状 試験方法 過大荷重がき裂進展速度に及ぼす影響 	15 16 16 16 16 18
2.4. 3. 3.1. 3.2. 3. 3. 3. 3. 3. 3.	結 過大荷 諸 過 2.1. 2.2. 2.3. 2.4.	 重がき裂進展に及ぼす影響の評価 大荷重がき裂進展に及ぼす影響の実験的検討¹⁹³⁰⁾ 供試材及び試験片形状 試験方法 過大荷重がき裂進展速度に及ぼす影響 過大荷重によるき裂鈍化 	15 16 16 16 16 18 20 28
2.4. 3. 3.1. 3.2. 3. 3. 3. 3. 3. 3. 3.3.	結 過大荷 諸 2.1. 2.2. 2.3. 2.4. 過	 重がき裂進展に及ぼす影響の評価 大荷重がき裂進展に及ぼす影響の実験的検討¹⁹³⁰⁾ 供試材及び試験片形状 試験方法 過大荷重がき裂進展速度に及ぼす影響 過大荷重によるき裂鈍化 大荷重がき裂進展に及ぼす影響の解析的検討¹⁹⁾ 	15 16 16 16 16 18 20 28 28
2.4. 3. 3.1. 3.2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	結	 重がき裂進展に及ぼす影響の評価	15 16 16 16 16 16 16 12
2.4. 3. 3.1. 3.2. 3. 3. 3. 3. 3.3. 3.3. 3. 3. 3	結	 重がき裂進展に及ぼす影響の評価 重 がき裂進展に及ぼす影響の実験的検討¹⁹³⁰⁾	15 16 16 16 16 18 20 20 28
2.4. 3. 3.1. 3.2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	結	 重がき裂進展に及ぼす影響の評価	15 16 16 16 16 18 20 28 28
2.4. 3. 3.1. 3.2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	結	 重がき裂進展に及ぼす影響の評価	15 16 16 16 16 16 18 20 28 20 28 32 32 32 33 36 36

-	3.5.	結言	53
4.	地	雲荷重下におけるき裂進展評価手法の提案	54
2	4.1.	諸言	54
2	4.2.	不規則波形における弾塑性破壊力学パラメータの算出手法の検討 ²⁸⁾	54
2	4.3.	地震荷重下におけるき裂進展評価手法の提案	56
4	4.4.	結言	58
5.	評	価手法の検証	59
	5.1.	諸言	59
	5.2.	配管試験体を用いたき裂進展試験 ³⁰⁾	59
	5.2.	1. 供試材及び試験体形状	59
	5.2.	2. 試験方法	60
	5.2.	3. 試験結果	61
	5.3.	試験結果と提案手法を用いた評価結果の比較	67
	5.4.	結言	71
6.	結	公 〒	72

謝辞	
参考文献	

表	IJ	ス	Ь
1	/	· ·	

表 1.2-1	き裂進展評価に必要な値	4
表 1.2-2	破壊応力比の比較	4
表 2.2-1	STPT410 鋼管及び SUS316 鋼管の化学成分	8
表 2.2-2	疲労予き裂導入条件	9
表 3.2-1	STPT410 鋼管及び SUS316 鋼管の化学成分	16
表 3.2-2	貫通き裂平板試験片 疲労予き裂の荷重設定条件	18
表 3.2-3	繰返し荷重負荷条件	19
表 3.2-4	過大荷重による CTOD の変化 (STPT410)	31
表 3.2-5	過大荷重による CTOD の変化 (SUS316)	31
表 3.3-1	混合硬化則パラメータの同定結果	35
表 3.3-2]	Ramberg-Osgood 則におけるパラメータ	35
表 3.3-3	解析条件	36
表 5.2-1	配管試験体の化学成分	59

スト

図 1.2-1	IPIRG-2 試験 1-1 のモーメントと回転の関係	3
図 1.2-2	BINP タスク2 のアクチュエータの変位時刻歴	3
図 1.2-3	BINP タスク2 のき裂断面モーメントとき裂開口変位	4
図 1.2-4	単調及び繰返しJ-R 曲線に基づくフェライト鋼配管のモーメント-回転角の関	系.5
図 1.2-5	き裂進展遅延領域	7
図 2.2-1	配管材からの CT 試験片採取方法 (左図: 配管断面、右図: 配管側面)	9
図 2.2-2	0.4 インチ厚さコンパクトテンション型試験片形状	9
図 2.2-3	き裂進展試験におけるコンプライアンス法適用例	10
図 2.3-1	ΔJ 及び J_{max} を求めるための荷重-変位曲線の面積	13
図 2.3-2	SUS316 材 き裂進展速度線図	14
図 2.3-3	STPT410 材 き裂進展速度線図	14
図 2.3-4	実測されたき裂進展速度、延性き裂進展速度及びその差分	15
図 2.3-5	STPT410 材 疲労き裂進展速度線図	15
図 3.2-1	配管材からの平板試験片採取方法 (左図: 配管断面、右図: 配管側面)	17
図 3.2-2	貫通き裂平板試験片の形状	17
図 3.2-3	貫通き裂平板試験片のA部詳細	17
図 3.2-4	繰返し荷重負荷における荷重振幅の設定	19
図 3.2-5	過大荷重を含む繰返し荷重の模式図	20
図 3.2-6	荷重-開口変位曲線 (STPT410 Case1)	21
図 3.2-7	荷重-開口変位曲線 (STPT410 Case2)	21
送 3.2-8	荷重-開口変位曲線 (STPT410 Case3)	22
図 3.2-9	荷重-開口変位曲線 (SUS316 Case1)	22
図 3.2-10	荷重-開口変位曲線 (SUS316 Case2)	23
図 3.2-11	荷重-開口変位曲線 (SUS316 Case3)	23
図 3.2-12	ΔJ 算出のための変数 S の求め方 (Rice らの簡便法)	24
図 3.2-13	ΔJに対するき裂進展速度 (STPT410 Case1)	24
図 3.2-14	ΔJに対するき裂進展速度 (STPT410 Case2)	25
図 3.2-15	ΔJに対するき裂進展速度 (STPT410 Case3)	25
図 3.2-16	ΔJに対するき裂進展速度 (SUS316 Case1)	26

図 3.2-17	ΔJに対するき裂進展速度 (SUS316 Case2)	
図 3.2-18	ΔJに対するき裂進展速度 (SUS316 Case3)	
図 3.2-19	表面き裂先端 (STPT410 Case1)	
図 3.2-20	表面き裂先端 (STPT410 Case2)	
図 3.2-21	表面き裂先端 (STPT410 Case3)	
図 3.2-22	表面き裂先端 (SUS316 Case1)	
図 3.2-23	表面き裂先端 (SUS316 Case2)	
図 3.2-24	表面き裂先端 (SUS316 Case3)	
図 3.2-25	鈍化したき裂先端からのき裂進展 (SUS316 Case 2)	
図 3.3-1	平板試験片の FEM モデルの外形	
図 3.3-2	平板試験片の FEM モデルの貫通き裂部詳細	
図 3.3-3	丸棒引張試験体の模式図	
図 3.3-4	丸棒引張試験体 ABAQUS パート	
図 3.3-5	STPT410 混合硬化則を考慮した FEM 解析と実験との比較	
図 3.3-6	SUS316 混合硬化則を考慮した FEM 解析と実験との比較	
図 3.3-7	解析における荷重-開口変位曲線 (Case 1)	
図 3.3-8	解析における荷重-開口変位曲線 (Case 2)	
図 3.3-9	解析における荷重-開口変位曲線 (Case 3)	
図 3.3-10	解析における荷重-開口変位曲線 (Case 4)	
図 3.3-11	解析における荷重-開口変位曲線 (Case 5)	
図 3.3-12	解析における荷重-開口変位曲線 (Case 6)	
図 3.3-13	解析における荷重-開口変位曲線 (Case 7)	41
図 3.3-14	解析における荷重-開口変位曲線 (Case 8)	41
図 3.3-15	解析における荷重-開口変位曲線 (Case 9)	
図 3.3-16	解析における荷重-開口変位曲線 (Case 10)	
図 3.3-17	負荷及び除荷時のき裂先端の応力分布	
図 3.3-18	各ケースにおけるき裂先端の応力分布(Case 2, 4, 9, 10)	
図 3.3-19	各ケースにおけるき裂先端の応力分布(Case 3, 5, 6, 7, 8)	
図 3.3-20	過大荷重の組合せとき裂先端前縁応力の変化	
図 3.3-21	過大荷重の組合せ	

図 3.4-1	き裂進展遅延領域	49
図 3.4-2	き裂進展評価例 (STPT410 Case1)	50
図 3.4-3	き裂進展評価例 (STPT410 Case2)	50
図 3.4-4	き裂進展評価例 (STPT410 Case3)	51
図 3.4-5	き裂進展評価例 (SUS316 Case1)	51
図 3.4-6	き裂進展評価例 (SUS316 Case2)	52
図 3.4-7	き裂進展評価例 (SUS316 Case3)	52
図 4.2-1	仮定された荷重-開口変位曲線	55
図 4.2-2	∆J算出のための模式図	56
図 5.2-1	き裂形状の模式図	60
図 5.2-2	模擬地震動	60
図 5.2-3	STPT410 Case1 き裂部写真	62
図 5.2-4	SUS316 Case1 き裂部写真	62
図 5.2-5	STPT410 Case1 試験荷重-時間 (第2ブロック)	63
図 5.2-6	SUS316 Case1 試験荷重-時間 (第1ブロック)	63
図 5.2-7	STPT410 模擬地震動負荷における荷重-荷重線変位 Case1	64
図 5.2-8	SUS316 模擬地震動負荷における荷重-荷重線変位 Case1	64
図 5.2-9	STPT410 模擬地震動負荷における荷重-開口変位曲線 Case1	65
図 5.2-10) SUS316 模擬地震動負荷における荷重-開口変位曲線 Case1	65
図 5.2-11	STPT410 Casel 各ブロック番号におけるき裂進展量	66
図 5.2-12	2 SUS316 Casel 各ブロック番号におけるき裂進展量	66
図 5.3-1	負荷された模擬地震動	69
図 5.3-2	荷重履歴における最大荷重と現在のサイクルにおける最大荷重	69
図 5.3-3	き裂鈍化を考慮した疲労き裂進展評価に必要なパラメータ	70
図 5.3-4	模擬地震動負荷試験に対する従来手法と提案手法との比較(STPT410)	70
図 5.3-5	模擬地震動負荷試験に対する従来手法と提案手法との比較(SUS316)	71

1. 緒論

1.1. 背景

国内軽水炉プラントの約1/3の運転期間が30年を超えている。供用年数の増加に伴い、配 管等においてき裂の存在が報告されている。また、国内軽水炉プラントでは近年、幾つかの大き な地震を経験している。特に東北地方太平洋沖地震・福島第一原子力発電所の事故以降、高経年 化プラントの耐震安全性について国民の関心が益々高まっている。このような背景から、従来の 設計基準地震動を上回る大きさの地震動について、高経年化を考慮した耐震安全評価手法の整備 は最も重要な課題の1つになっている。

大きな地震下での配管系において、材料の降伏応力を超える大きな繰返し負荷を受けることに より、疲労き裂進展のみならず延性き裂進展を起こす可能性がある。また、降伏応力を超えるよ うな大きな荷重振幅の繰返し荷重によるき裂進展を評価するにあたり、従来き裂進展評価に用い られてきた応力拡大係数範囲の適用範囲外であるため、新たなき裂進展評価手法が必要である。 さらに、地震荷重は荷重振幅の変動を伴う繰返し荷重であるため、き裂進展に及ぼす振幅変動の 影響が問題になると考えられる。地震荷重下におけるき裂進展を評価するにあたり、これらの課 題を解決する必要がある。

1.2. 既往の研究

1.2.1. 地震荷重によるき裂進展

原子力プラントの安全で合理的な設計及び維持管理を実現するため、配管系の構造健全性評価 に係る研究が国内外で進められている。特に IPIRG (International Piping Integrity Research Program) 計画では、欧米及びアジアの主要各国が参加し、模擬地震動下における大規模な配管系試験を通 じてその破壊挙動を実験的に明らかにするとともに、構造健全性評価に資する破壊力学評価手法 の開発、検証が行われてきた。また、IPIRG 計画において未解決の課題に取り組むべく BINP (Battelle 原子力配管健全性国際共同研究) 計画 ¹⁾⁻³⁾が進められた。

IPIRG 計画では、表面き裂を有する配管系を用いた試験が行われた。この試験では、繰返し荷 重の影響を十分に確認できなかった。このときのモーメントと回転の関係を図 1.2-1 に示す。初 期の大きなモーメントによって大きく回転が増加しており、以降のモーメントは動的単調載荷時 の履歴と類似している。そのため、BINP 計画では、繰返しの効果の有無を確認できるような新 しい履歴を設計し、破壊挙動に及ぼす繰返し荷重の寄与について実験的に検討された。新たに設 計された変位の時刻歴を図 1.2-2 に示す。この波形を用いて行った試験により得られたき裂断面 モーメントの時刻歴及びモーメントとき裂開口変位の関係をそれぞれ図 1.2-3 に示す。

BINP 計画における試験と IPIRG 計画で行われたステンレス鋼配管系試験との条件及び結果の 比較、また破壊応力比の比較を表 1.2-1、表 1.2-2 に示す。表中の IPIRG-1 計画の試験 (1.3-3)、 IPIRG-2 計画の試験(1-1)、及び BINP 計画のタスク2 試験の試験条件の違いは負荷波形にあって、 それぞれ正弦波、模擬地震荷重、及び IPIRG 計画から改良された模擬地震荷重が負荷されたもの である。表 1.2-2 の破壊応力比は、実断面応力で正規化した実験における最大応力である。

IPIRG-2 計画の試験1-1 の破壊応力比は、BINP 計画と比較して25%程度大きい。これら IPIRG-2 計画の試験1-1、及び BINP タスク2 のモーメントはそれぞれ図 1.2-1、図 1.2-3 に示したように 異なっており、この差異から IPIRG 計画と比較して BINP 計画では繰返しの影響により破壊応力 比が低下したものと考えられた。ただしこれはステンレス鋼の靭性が高く、塑性崩壊基準に支配 されるような破壊において導かれたものであり、靭性の低いフェライト鋼配管やステンレス鋼配 管の溶接部において、このような耐荷能力の低下はより重要な問題となる可能性がある。

この影響を確かめるため、主蒸気系に使用される大口径フェライト鋼配管を対象として、弾塑 性破壊力学パラメータJ積分を用いた破壊靭性評価が行われた。単調負荷から得られるJ積分値-き裂進展抵抗 (J-R) 曲線及び繰返し荷重から得られる J-R 曲線に基づいて、モーメント-回転角 関係を評価した。結果得られた最大モーメントに及ぼす繰返し荷重の影響を図 1.2-4 に示す。繰 返しJ-R 曲線を用いた場合の最大モーメントは、単調J-R 曲線を用いた場合の約 66%となってお り、繰返しによる影響が明らかに見られた。

これらの計画では模擬地震荷重を負荷した試験を行っている。しかし、破壊の評価はき裂断面 における実断面応力による塑性崩壊基準が用いられており、き裂の進展及び破壊に関しては特に 検討されていない。また、過大荷重に着目した評価も行われていない。

 $\mathbf{2}$

図 1.2-1 IPIRG-2 試験 1-1 のモーメントと回転の関係

図 1.2-2 BINP タスク2 のアクチュエータの変位時刻歴

図 1.2-3 BINP タスク2 のき裂断面モーメントとき裂開口変位

Expt. Number	Mat'l Heat	OD, mm (inch)	Wall thickness, mm (inch)	Pressure, MPa (psi)	Test Temp., C (F)	a/t	2c/• Đ	Max. Moment, kN-m (in-kips)
BINP2	A8ii	415.3	25.8	15.5	288	0.508	0.534	590
	(high S)	(16.35)	(1.016)	(2,250)	(550)			(5,220)
1.3-3	A8ii	415.8	26.2	15.5	288	0.647	0.552	426
	(high S)	(16.37)	(1.031)	(2,250)	(550)			(3,770)
1-1	A8i	417.1	25.5	15.5	288	0.632	0.527	598
	(low S)	(16.42)	(1.005)	(2,250)	(550)			(5,290)

表 1.2-1 き裂進展評価に必要な値

BINP2: BINP 試験、1.3-3: IPIRG-1 の試験、1-1: IPIRG-2 の試験

表 1.2-2 破壊応力比の比較

Expt. Number	Fracture Ratio
BINP2	0.906
1.3-3	0.936
1-1	1.158

図 1.2-4 単調及び繰返し J-R 曲線に基づくフェライト鋼配管のモーメント-回転角の関係

1.2.2. 小規模降伏条件を超える条件下におけるき裂進展評価

小規模降伏条件を超える条件下における疲労き裂進展に関しては多くの研究がなされており、 き裂進展評価手法として応力拡大係数範囲(ΔK)を用いた手法に代わり、弾塑性破壊力学パラメー タJ積分値やき裂先端開口変位 CTOD を用いたき裂進展評価手法が提案されている。

J積分値を用いたき裂進展評価に関して、三浦⁴⁾は周方向貫通き裂を有する配管における低サイ クル疲労き裂進展を対象として、き裂進展評価手法を提案している。小規模降伏条件を超える繰 返し荷重によるき裂進展に関して、三浦らは下記の式のようにき裂進展がJ積分値の1サイクル あたりの変化量(ΔJ)に基づく疲労き裂進展((da/dN)_{fatigue})とJ積分値の最大値(J_{max})に基づく延性き 裂進展((da/dN)_{ductile})の和で表されるものと考えた。

$$\left(\frac{da}{dN}\right)_{total} = \left(\frac{da}{dN}\right)_{fatigue} + \left(\frac{da}{dN}\right)_{ductile}$$
 1.2-1

$$\left(\frac{da}{dN}\right)_{fatigue} = C_{cyc} (\Delta J)^{m_{cyc}}$$
 1.2-2

$$\left(\frac{da}{dN}\right)_{ductile} = \left(\frac{J_{max,i}}{C_{mono}}\right)^{1/m_{mono}} - \left(\frac{J_{max,i-1}}{C_{mono}}\right)^{1/m_{mono}}$$
 1.2-3

ここで、係数 C_{cyc}, m_{cyc}は一定振幅両振り繰返し荷重の試験結果を受け設定される値。係数 C_{mono}, m_{mono}は単調荷重負荷試験の結果を受け設定される値である。本文献では、一定振幅におけるき裂 進展に関しては評価しているが、地震動においては評価していない。

1.2.3. 過大荷重がき裂進展に及ぼす影響評価

Meggiolaro ら⁵は、疲労き裂進展における荷重の相互作用の影響に関する様々なモデルの比較 を行い、各々のモデルにより疲労寿命の評価を行っている。ここでは、 ΔK モデルについて詳細 に紹介する。 ΔK モデルとは、遅延関数(retardation function)を用いて、応力拡大係数範囲を減少さ せることで過大荷重によるき裂進展遅延効果を表すモデルである。Meggiolaro は、修正 Wheeler モデルとしてき裂前縁に形成される塑性域寸法(Z_{ol} 及び Z_{i})とき裂長さ(a_{ol} 及び a_{i})の関係を用いた Wheeler 型⁶のパラメータを da/dN ではなく、次式のように ΔK に乗じることで遅延効果を表せる とした。

$$\Delta K_{ret}(a_i) = \Delta K(a_i) \cdot \left(\frac{Z_i}{Z_{ol} + a_{ol} - a_i}\right)^{\gamma}, \quad a_i + Z_i < a_{ol} + Z_{ol}$$
 1.2-4

上式で、 $\Delta K_{ret}(a_i)$ 及び $\Delta K(a_i)$ は、それぞれき裂寸法が a_i のときの過大荷重による遅延を考慮する場合及び考慮しない場合の応力拡大係数範囲である。添え字のolは過大荷重時を意味し、添え字iは過大荷重後iサイクル目を意味する。 γ は実験で求められる材料定数である。

Chang ら⁷は、圧縮荷重の影響を考慮するため、有効塑性域の概念を提案した。圧縮の荷重を 受けた場合に、過大荷重による塑性域 Z_{ol} は(Z_{ol})_{ul}に減少するものであり、き裂進展の遅延量を減 少させるものである。元々は Willenborg モデル⁸⁾に導入された概念であるが、Wheeler モデル及び 修正 Wheeler モデルに適用することが可能である。

$$\left(Z_{ol}\right)_{ul} = \left(1 + \overline{R}_{ul}\right) \cdot Z_{ol}, \quad \overline{R}_{ul} = \max\left(R_{ul}, R^{-}\right)$$
1.2-5

 $R_{ul} < 0$ は過小応力比 σ_{ul}/σ_{ol} であり、 σ_{ul} は直近の過大荷重 σ_{ol} の直後の最小荷重である。R⁻は過小応力比の閾値であり-1 < R⁻ < 0 の範囲の値をとる。一般的には R⁻ = -0.5 とされる。

これを基に一般化 Wheeler モデルは次のように表される。

$$\Delta K_{red} = \Delta K \cdot \left(\frac{Z_i}{\left(1 + \alpha' \overline{R}_{ul} \right) Z_{ol} + a_{ol} - a_i} \right)^{\gamma}, \quad a_i + Z_i < a_{ol} + Z_{ol}$$
 1.2-6

ここで、 α 'は過小応力の影響を考慮するために $\overline{R}_{\mu\nu}$ に乗ずる正の係数である。

一般化 Wheeler モデルを用いることで過大荷重によるき裂進展の遅延を表現することが可能で

ある。しかし、一般化 Wheeler モデルはΔK を用いたモデルであり、小規模降伏を超える条件下で は用いることができない。また、Wheeler モデルではき裂進展加速を評価することができない。

1.3. 本論文の目的

弾塑性破壊力学パラメータJ積分値を用いることで小規模降伏条件をこえる繰返し荷重による き裂進展を評価できる可能性が考えられる。さらに、過大荷重によりき裂先端の鈍化、き裂前縁 応力の変化及びき裂閉口荷重の変化が生じることでき裂進展速度が変化する可能性が考えられる。 これらは、地震などの荷重振幅が変動する繰返し荷重によるき裂進展を評価するため、考慮すべ き項目であるといえる。本研究では、小規模降伏条件を超える一定振幅の繰返し荷重によるき裂 進展を実施し、J積分値を用いたき裂進展評価手法の適用性を確認する。また、一定振幅繰返し 荷重中に過大な引張圧縮荷重を負荷するき裂進展試験を実施するとともに、実験を模擬した有限 要素法解析を実施し、過大荷重の影響を実験的・解析的に検討を行う。これらを受け、き裂を有 する原子力配管を対象として、巨大な地震荷重下における配管に対するき裂進展評価手法を構築 する。

1.4. 本論文の構成

- 1章:本事業の背景、既往の研究、目的を記す。
- 2章: 小規模降伏条件を超える荷重下におけるき裂進展評価を記す。
- 3章: 過大荷重がき裂進展に及ぼす影響の評価を記す。
- 4章: 地震荷重下におけるき裂進展評価手法を提案する。
- 5章: 提案したき裂進展評価手法の検証作業を記す。
- 6章:研究内容の結論を記す。

2. 小規模降伏条件を超える荷重下におけるき裂進展評価

2.1. 諸言

従来の設計基準地震動を上回る大きさの地震動を受けた場合、従来き裂進展評価に 用いられるΔKの適用範囲である小規模降伏条件を超える条件下におけるき裂進展が 生じることが考えられる。本章では、小規模降伏条件を超える荷重下におけるき裂進 展評価手法を構築するために、コンパクトテンション試験片を用いて、塑性変形を伴 うき裂進展試験を実施した。

2.2. 小規模降伏条件を超える一定振幅繰返し荷重によるき裂進展試験

2.2.1. 供試材及び試験片形状

本試験では、給水系配管及び再循環系配管を対象に、それぞれ高温配管用炭素鋼管 STPT410 (JIS G3455) 及びオーステナイト系ステンレス鋼管 SUS316TP から試験片を 製作する。試験片製作に供する STPT410 鋼管及び SUS316 鋼管の化学成分を表 3.2-1 に示す。また、試験片を製作した配管のサイズは両配管共に 150A Sch160 (外径: 165.2 mm、肉厚: 18.2 mm) である。

鋼管から、10mm厚さコンパクトテンション(0.4T-CT)試験片を製作した。試験片は、 図 3.2-1 のように、鋼管の周方向にき裂が進展する向きに採取した。0.4T-CT 試験片 の形状寸法を図 2.2-2 に示す。製作した 0.4T-CT 試験片には、ASTM E1921 規格¹⁹⁾に 従い、疲労予き裂を導入した。予き裂の導入に当たっては、応力比 R が 0.01 から 0.1 の範囲の正弦波とし、大気中で行った。予き裂導入時の荷重設定条件を表 2.2-2 に示 す。ここで、き裂長さ a は、荷重線からき裂先端までの距離を意味する。疲労予き裂 導入の際には、両表面のき裂長さが不揃いにならないよう、こまめに試験片の向きを 変えた。荷重線からの最終的な予き裂長さ a₀は、荷重線から試験片背面までの試験片 幅 W との比 (a₀/W) が 0.49 から 0.51 の範囲に入るようにした。疲労予き裂を導入し た後に、図 2.2-2 に示したサイドグルーブを加工した。

(a) S1P1410					
	С	Si	Mn	Р	S
Spec. MIN.	-	0.10	0.30	-	-
Spec. MAX.	0.30	0.35	1.00	0.035	0.035
Meas.	0.20	0.22	0.68	0.011	0.007

表 2.2-1 STPT410 鋼管及び SUS316 鋼管の化学成分

(b) SUS316TP

(wt. %)

	С	Si	Mn	Р	S	Cr	Ni	Mo
Spec. MIN.	-	-	-	-	-	16.00	10.00	2.00
Spec. MAX.	0.08	1.00	2.00	0.045	0.030	18.00	14.00	3.00
Meas.	0.05	0.38	1.49	0.028	0.005	16.38	10.22	2.4

図 2.2-1 配管材からの CT 試験片採取方法(左図: 配管断面、右図: 配管側面)

図 2.2-2 0.4 インチ厚さコンパクトテンション型試験片形状

		き裂長さ	a ₀	許容荷重	内部き裂長さ(推定)より算出した	
ステップ	開始	ł	終了		ステップ終了時の応力拡大係数	
	表面, mm	表面, mm	内部(推定), mm	荷重, N	K, MPa∙m^0.5	
1	8.5	8.7 ⁺⁰	9.2 ⁺⁰	3297	20.0	
2	8.7	8.9 ⁺⁰	9.4 ⁺⁰	2843	17.8	
3	8.9	9.2 ⁺⁰	9.7 ⁺⁰	2375	15.5	
4	9.2	9.5 ₋₀ +0.3	10.0 ₋₀ +0.3	2096	15.0	

表 2.2-2 疲労予き裂導入条件

2.2.2. 試験方法

本試験における負荷は、一定振幅の繰返し荷重とし、正弦波で与えた。荷重の負荷 方法は荷重制御とし、試験周波数は 0.1 Hz とした。1 サイクルにおける極大荷重と極 小荷重の比である応力比は *R*= 0.1 で一定とした。試験温度は、沸騰水型原子炉(BWR) の水温を想定し、290℃とした。繰返し荷重における極大荷重は、小規模降伏条件を 超える大きさで、かつ初期の静的な負荷で破壊が生じないよう流動応力(引張強さと 降伏応力の平均値)相当の荷重以下となるように設定した。

き裂進展速度を算出するためには各サイクルにおけるき裂長さを推定する必要が あるため、ASTM E647¹⁰)に基づき除荷時の荷重-変位曲線の傾きからき裂長さを推定 する方法である除荷弾性コンプライアンス法を用いて、各サイクルにおけるき裂長さ を算出した。図 2.2-3 にき裂進展試験において除荷弾性コンプライアンス法を適用し た例を示す。左図は、0.01 kN から4 kN まで荷重を正弦波で与えた際の荷重と変位の 時刻歴を示している。本き裂進展試験では、除荷課程の荷重-変位曲線における荷重 が最大荷重の10%から60%の範囲のデータを用いて、変位と荷重との比であるコンプ ライアンスを右図のように求めた。除荷弾性コンプライアンス法によるき裂長さの計 測の精度は、試験後の破面観察によるき裂長さの実測と比較し、十分な精度で測定可 能であることを確認している。

図 2.2-3 き裂進展試験におけるコンプライアンス法適用例

2.3. 試験結果と小規模降伏条件を超える条件下におけるき裂進展評価手法の検討

試験において得られたサイクル数とき裂長さとの関係から、1 サイクル当たりのき 裂進展量(き裂進展速度 da/dN)を算出した。負荷が小さく、き裂先端近傍が小規模 降伏条件下にあるとき、き裂進展速度 da/dN と応力拡大係数範囲ΔK との間には Paris 則と呼ばれる以下の式の関係が成り立つことが良く知られている¹¹⁾。

 $da/dN = C\Delta K^n$

2.3-1

ここでΔK は応力拡大係数範囲であり、負荷される応力範囲とき裂長さから算出され る値である。応力拡大係数は小規模降伏条件下で成り立つ係数であるが、本研究で対 象としている荷重条件は小規模降伏条件を超えているため、応力拡大係数を適用する ことはできない。したがって、応力拡大係数によるき裂進展速度の評価は適当ではな いと考えられる。小規模降伏条件を超えるような荷重振幅におけるき裂進展を評価す る場合には、 ΔK の代りに、J積分範囲(ΔJ)に基づく手法が有効であるとの報告がある⁴)。そこで、 ΔJ を用いた裂進展評価を試みた。CT試験片における ΔJ は、以下に示す Merkle-Cortenの式¹²⁾を修正した式を用いることで、簡易的に求めることが出来る。

$$\Delta J = \eta_r U^* / B(W - a)$$

$$\eta_r = 2(1 + \beta) / (1 + \beta^2)$$

$$\beta = \left[(2 + 2\alpha^2)^{1/2} - (1 + \alpha) \right] / (1 - \alpha)$$

2.3-2

ここで、U*は図 2.3-1 に示す荷重-開口変位曲線において赤色で示される 1 サイクル 当たりの荷重-変位曲線で包絡される領域の面積に相当する。また、B は試験片厚さ、 W は試験片幅、a はき裂長さ、αは a/w である。なお図 2.3-1 中の青色部は、後述す る J 積分の最大値(J_{max})の算出に用いるもので、荷重-変位曲線の履歴を包絡する曲線 により囲まれた面積である。

き裂進展速度を上記の方法で算出した ΔJ に対してプロットしたグラフを、STPT410 材及び SUS316 材に対して、それぞれ図 2.3-2 及び図 2.3-3 に示す。き裂進展速度の グラフにおける横軸は J 積分範囲 (ΔJ (kJ/m²))、縦軸はき裂進展速度 (da/dN (m/cycle)) である。これらの図中の一点鎖点は、0.4T-CT 試験片における R = 0.1 の場合の応力拡 大係数の適用範囲の上限(ΔK =15.3 MPa \sqrt{m})を表し、J 積分値に換算すると ΔJ = 0.92 kJ/m² となる。図中の実線及び破線は Paris 則における ΔK を ΔJ に拡張し、試験結果を フィッティングしたものである。ここで図中の実線の傾きに当たる Paris 則の累乗の 指数 n は、発電用原子力設備規格 維持規格 ¹³⁾にて示されている n の値を用いた。*K* 値とJ 積分値は小規模降伏条件下において $\Delta K = \sqrt{\Delta J E}/(1-\nu^2)$ (ここで、 ν はポアソン比 (0.3)を用いた)で換算でき、Paris 則における ΔK を ΔJ に換算すると、累乗の指数は n/2 となる。維持規格における n の値は、オーステナイト系ステンレス鋼で n = 3.3、フェ ライト鋼で n = 3.07 であるため、本試験で使用する ΔJ に拡張した Paris 則における累 乗指数はそれぞれ、SUS316 材で 1.65、STPT410 材で 1.535 とした。

これらのき裂進展試験結果から、SUS316 材におけるき裂進展速度については、少なくとも $\Delta J \approx 100 (kJ/m^2)$ 程度までの範囲において、 ΔK の Paris 則から推定した実線と良い相関が見られる。一方、STPT410 材では、 ΔJ が約 10 (kJ/m²)以上の範囲で、 ΔK の Paris 則から推定した実線からの逸脱が認められる。三浦⁴⁾によると、小規模降 伏条件を超える条件下で、平均応力と一定振幅繰返し荷重の重畳にようるき裂進展は、 ΔJ に基づく疲労き裂進展と J_{max} に基づく延性き裂進展の和で表されることが示され ている。試験片レベルの試験であっても同様の現象が起きると仮定すると、STPT410 材においてき裂進展が予測(実線)より速い現象は、延性き裂進展が重畳しているこ とが原因であると予想される。そこで、延性き裂進展の影響を定量的に評価するため に、本試験により得られたき裂進展速度からの疲労き裂進展速度の分離を試みた。延 性き裂進展量は、静的な引張荷重における最大の J 積分値(J_{max})と繰返し荷重における J_{max} が等価であると仮定すると、破壊靱性試験により得られる J 積分値と延性き裂進 展量の関係(*J-R* 曲線)の累乗近似式で推定可能である¹⁴⁾¹⁵⁾。このことから、各サイク ルにおける繰返しの J_{max} を以下の式 2.3-3¹⁶⁾により求め、*J-R* 曲線の累乗近似式 (2.3-4) に代入することで、各サイクルにおける延性き裂進展量 Δa を推定し、延性き裂進展 速度を求めた。

$$J_{\max,i} = J_{\max,i-1} \frac{W - a_i}{W - a_{i-1}} + (J'_i - J'_{i-1}) \frac{W - a_0}{W - a_{i-1}}$$

$$J' = \frac{2U'}{B(W - a_0)}$$

2.3-3

ここで Uは、図 2.3-1 中に青色と赤色で示したように、荷重-変位曲線から求められ る面積に相当する。Jは Uから求められる見かけのJ積分値である。次式は STPT410 材および SUS316 材における破壊靭性試験¹⁴⁾から得られた J-R カーブを累乗近似した 式である。

$$J_{\max} = 406(\Delta a)^{0.619} : for \ STPT410$$

$$J_{\max} = 1720(\Delta a)^{0.388} : for \ Type \ 316$$

2.3-4

ここで、 J_{max} の単位は kJ/m^2 , Δa の単位は mm である。これらより、延性き裂進展速度 はそれぞれ以下の式で求められる

$$\left(\frac{da}{dN}\right)_{ductile} = \Delta a_i - \Delta a_{i-1} = \left(\frac{J_{\max,i}}{406}\right)^{\frac{1}{0.619}} - \left(\frac{J_{\max,i-1}}{406}\right)^{\frac{1}{0.619}} : for \ STPT410$$

$$\left(\frac{da}{dN}\right)_{ductile} = \Delta a_i - \Delta a_{i-1} = \left(\frac{J_{\max,i}}{1720}\right)^{\frac{1}{0.388}} - \left(\frac{J_{\max,i-1}}{1720}\right)^{\frac{1}{0.388}} : for \ Type \ 316$$

き裂進展速度の見かけ上の加速が見られた STPT410 材について、試験により得ら れたき裂進展速度 (図 2.3-3) と、式 2.3-5 により推定した延性き裂進展速度、及びそ れら両者の差分の例を図 2.3-4 に示す。延性き裂進展速度は、J_{max} に対してプロット するべきであるが、図 2.3-4 では比較のために、同一サイクルにおけるΔJ に対してプ ロットしている。同様に STPT410 材の全てのデータについて延性き裂進展成分を引 いた結果を図 2.3-5 に示す。ここで、図中の一点鎖点は 0.4T-CT 試験片に対する R = 0.1 の場合の応力拡大係数の適用範囲の上限である。図 2.3-4 に示すように、試験により 求められたき裂進展速度から延性き裂進展速度を引くことで、疲労き裂進展速度のみ が導出されていると考えられ、実際に図 2.3-5 において疲労き裂進展速度線図である 実線によってき裂進展速度をよく表すことが出来ている。なお、SUS316 材については、STPT410 材と比較して破壊靭性値が5倍程度高く延性き裂進展に対する抵抗が大きいため、延性き裂進展による影響はほとんど見られなかったものと考えられる。

これらより疲労によるき裂進展速度は、試験により得られたき裂進展速度から *J-R* 曲線により推定した延性き裂進展成分を引くことにより、*ΔJ*を用いた Paris 則によっ てよく示すことが出来ることが示された。逆に言えば、従来のき裂進展評価は疲労に よるき裂進展しか考慮していないが、小規模降伏条件を超え、塑性変形挙動を含むよ うなき裂進展の場合、延性き裂進展分を考慮しないとき裂進展量を過小に評価する可 能性が示唆された。

(U*: 1 サイクルあたりの荷重-変位曲線から求められる面積)

(U': i番目のサイクルまでのすべての荷重-変位曲線を包絡する曲線に囲まれた面積)

図 2.3-3 STPT410 材 き裂進展速度線図

図 2.3-4 実測されたき裂進展速度、延性き裂進展速度及びその差分

2.4. 結言

小規模降伏条件を超える繰返し荷重の負荷によるき裂進展には、疲労き裂進展と延性き裂進展が重畳しており、き裂進展評価の際には、ΔK に代わって弾塑性破壊力学 パラメータであるΔJ 及び Jmax を用いた評価が有効であることを確認した。

3. 過大荷重がき裂進展に及ぼす影響の評価

3.1. 諸言

本章では、過大荷重がき裂進展に及ぼす影響を評価するために、過大な引張圧縮荷 重を含むき裂進展試験及び試験を模擬した FEM 解析を実施した。また、試験結果及 び解析結果について、き裂鈍化とき裂前縁応力に着目して評価を行い、それらを受け 過大荷重の影響を考慮したき裂進展評価手法を提案した。

3.2. 過大荷重がき裂進展に及ぼす影響の実験的検討¹⁹⁾³⁰⁾

3.2.1. 供試材及び試験片形状

本試験では、給水系配管及び再循環系配管を対象に、それぞれ高温配管用炭素鋼管 STPT410及びオーステナイト系ステンレス鋼管 SUS316TP から試験片を製作した。試 験片製作に供する STPT410 鋼管及び SUS316 鋼管の化学成分を表 3.2-1 に示す。また、 試験片を製作した配管のサイズは両配管共に 150A Sch160 (外径: 165.2 mm、肉厚: 18.2 mm) である。鋼管からの試験片採取は、図 3.2-1 のように、鋼管の周方向にき裂 が進展する向きになるように行う。貫通き裂平板試験片の形状寸法を図 3.2-2 に、き 裂部詳細を図 3.2-3 に示す。試験片には ASTM E647¹⁰⁾規格を参考に疲労予き裂を導入 した。予き裂の導入に当たっては、応力比 R が 0.01 から 0.1 の範囲の片振り正弦波と し、大気中で実施した。貫通き裂平板試験片への予き裂導入に関して荷重設定条件を 表 3.2-2 に示す。ここで、半き裂長さ(a)は、き裂中心からき裂先端までの距離を意味 する。

表 3.2-1 STPT410 鋼管及び SUS316 鋼管の化学成分

(a) STPT410

(wt. %)

	С	Si	Mn	Р	S
Spec. MIN.	-	0.10	0.30	-	-
Spec. MAX.	0.30	0.35	1.00	0.035	0.035
Meas.	0.20	0.22	0.68	0.011	0.007

(b) SUS316TP

(wt. %)

(*) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						(
	С	Si	Mn	Р	S	Cr	Ni	Мо
Spec. MIN.	-	-	-	-	-	16.00	10.00	2.00
Spec. MAX.	0.08	1.00	2.00	0.045	0.030	18.00	14.00	3.00
Meas.	0.05	0.38	1.49	0.028	0.005	16.38	10.22	2.4

図 3.2-1 配管材からの平板試験片採取方法(左図: 配管断面、右図: 配管側面)

図 3.2-2 貫通き裂平板試験片の形状

ステップ	半き裂長さ		許容荷重	ステップ終了時の最大応力拡大
	(mm)		(kN)	係数 (MPa√m)
	開始	終了		
1	5	5.4	46.9	20.0
2	5.4	5.6	40.8	17.8
3	5.6	5.8	34.8	15.5
4	5.8	6	33.0	15.0

表 3.2-2 貫通き裂平板試験片 疲労予き裂の荷重設定条件

3.2.2. 試験方法

試験装置には、容量が動的 100 kN である機械式万能試験機を用いた。試験温度は 290℃とし、大気中で試験を行った。過大荷重は、一定振幅の繰り返し荷重中に過大 な引張荷重及び圧縮荷重を負荷するものである。一定振幅の繰り返し荷重は正弦波で 応力比 R= -1 の両振り荷重とし、周波数は 0.1Hz とした。き裂長さは ASTM E647¹⁰ に従い除荷弾性コンプライアンス法を用いて計測した。

繰返し荷重の大きさは、一方向変位負荷試験から得られた荷重-開口変位曲線を用 いて図 3.2-4 のように設定した。図中の目標荷重は、一定荷重振幅の最大値(Pmax)が降 伏応力相当の荷重(P₀)となるように設定した。ここで P₀は、一方向変位負荷試験にお ける荷重-開口変位曲線と、弾性直線を 0.001 mm オフセットした直線との交点におけ る荷重とした。また、一定振幅の最小値(Pmin)は Pmax と絶対値が等しくなるように設 定した。過大な引張荷重の目標荷重は、平板試験片の一次応力レベル(仮想弾性応力) が JEAG4601¹⁷⁾に定義される許容応力状態 IV_AS の一次応力の許容応力 3Sm 相当の荷 重の2倍の6Sm相当の荷重となるように設定した。過大な圧縮荷重の目標荷重は、 3Sm相当の荷重、6Sm相当荷重及び9Sm相当の荷重となるようにそれぞれ設定した。 ここで 1Sm は JEAG4601 において降伏応力の 2/3 か、引張強さの 1/3 のうち小さい方 と定義されている。平板試験においては、1Sm に相当する荷重として、降伏応力相当 の荷重 Poの 2/3 の値として算出した。ここでの目標荷重は仮想弾性荷重であるので、 図 3.2-4 のように目標荷重から実際に負荷する荷重を算出する必要がある。具体的に は、仮想弾性変形における荷重と変位の直線関係における目標荷重に対する変位と等 しくなるように、一方向変位負荷試験における荷重と変位の関係から実際に負荷する 荷重を算出した。繰返し荷重の入力条件を表 3.2-3 に示す。

図 3.2-4 繰返し荷重負荷における荷重振幅の設定

STPT410	過大引張	過大圧縮	荷重振幅
Case 1	41.0 kN	- 41.0 kN	± 27.5 kN
Case 2	41.0 kN	- 35.5 kN	±27.5 kN
Case 3	41.0 kN	- 45.0 kN	± 27.5 kN

表 3.2-3 繰返し荷重負荷条件

SUS316	過大引張	過大圧縮	荷重振幅
Case 1	30.0 kN	- 30.0 kN	± 20.0 kN
Case 2	30.0 kN	- 23.0 kN	± 20.0 kN
Case 3	30.0 kN	- 33.0 kN	± 20.0 kN

図 3.2-5 過大荷重を含む繰返し荷重の模式図

3.2.3. 過大荷重がき裂進展速度に及ぼす影響

STPT410 及び SUS316 に対して、表 3.2-3 の Case 1~Case 3 における荷重-開口変位 の関係を図 3.2-6~図 3.2-11 に示す。荷重-開口変位曲線は過大荷重の前後ともにヒス テリシスループをなしており、弾塑性領域における繰返し荷重が負荷されていること が明らかである。過大荷重を受けることによりヒステリシスループが、過大荷重を受 ける前と比較して、大きくなる傾向が SUS316 において顕著に見られる。この傾向は、 過大荷重によるき裂先端の変形によって、過大荷重負荷前と比較してき裂閉口が起き にくくなっていることに起因していると考えられる。

中央貫通き裂を有する平板試験片の ΔJ 算出には、1 サイクルあたりの荷重-開口変位曲線で囲まれた面積を用いて ΔJ を次式で算出する Rice¹⁸⁾らの簡便法を用いた。

$$\Delta J = \frac{\Delta K^2}{E'} + \frac{S}{B(W-a)}$$

$$E' = E/(1-\nu^2)$$
3.2-1

ここで S は 1 サイクル当たりの荷重-変位曲線で囲まれる面積から図 3.2-12 のように 求められる値、2*a* はき裂長さ、*B* は試験片の厚さ、*W* は試験片幅である。E はヤング 率である。 ΔK は応力拡大係数範囲である。

本手法を用いて算出した AJ に対する過大荷重後のき裂進展速度を図 3.2-13~図 3.2-18 に示す。ここでのき裂進展速度は、除荷弾性コンプライアンス法によって算出 されたサイクル-き裂長さ曲線の各サイクルにおける傾きとして求めた。また、図中 の実線で表される過大荷重を考慮しない予測は、2章と同様に維持規格において定め られているフェライト鋼及びオーステナイト系ステンレス鋼に対する疲労き裂進展 則に対して、応力拡大係数をJ積分値に置換することで与えた。STPT410の Case1 で は過大荷重の後にき裂進展の遅延が若干見られるが、Case2 ではあまり影響は見られ なかった、Case3 では過大荷重後にき裂進展の加速が見られる。SUS316 についてはど のケースにおいてもき裂進展は遅延した。

図 3.2-7 荷重-開口変位曲線 (STPT410 Case2)

き裂開口変位 (mm)

図 3.2-8 荷重-開口変位曲線 (STPT410 Case3)

図 3.2-9 荷重-開口変位曲線 (SUS316 Case1)

き裂開口変位 (mm)

図 3.2-10 荷重-開口変位曲線 (SUS316 Case2)

図 3.2-11 荷重-開口変位曲線 (SUS316 Case3)

図 3.2-12 ΔJ算出のための変数 S の求め方 (Rice らの簡便法)

図 3.2-13 ΔJに対するき裂進展速度 (STPT410 Case1)

図 3.2-14 ΔJに対するき裂進展速度 (STPT410 Case2)

図 3.2-15 ΔJに対するき裂進展速度 (STPT410 Case3)

図 3.2-16 ΔJに対するき裂進展速度 (SUS316 Case1)

図 3.2-17 △Jに対するき裂進展速度 (SUS316 Case2)

3.2.4. 過大荷重によるき裂鈍化

図 3.2-19~図 3.2-24 は、それぞれの材料及び表 3.2-3 の試験条件における、過大荷 重直前及び直後の表面き裂先端の形状を観察した結果である。図に示すように、き裂 先端は過大荷重の負荷によって鈍化していることが分かる。試験条件ごとのき裂鈍化 を定量的に評価するために、き裂表面におけるき裂先端開口変位(CTOD)を測定した。 ここでの CTOD は、無負荷状態において次のように計測した。まずき裂進展方向を求 め、次にき裂進展方向に対して最深点から±45°方向に補助線を引き、補助線とき裂 の輪郭線の交点をそれぞれ結んだ長さを CTOD と定義した。各試験条件における CTOD 及び過大荷重後のき裂進展挙動の関連性をを表 3.2-4 及び表 3.2-5 に示す。過 大荷重による CTOD の変化とき裂進展挙動の変化の比較より、CTOD の変化が非常に 小さい STPT410 Case 3 においてのみき裂進展の加速が見られている。一方、過大荷重 による CTOD の増加が顕著な SUS316 においては、すべての試験条件においてき裂進 展が遅延している。

これらの過大荷重によるき裂鈍化とき裂進展速度の変化の傾向について比較した 結果、過大荷重によりき裂が鈍化することで、き裂進展速度が遅延していることを示 唆した。特にこの傾向は SUS316 において顕著であった。鈍化したき裂先端からどの ようにき裂が進展したかを SUS316 の Case 2 について観察した結果を図 3.2-25 に示 す。図 3.2-25 からは、鈍化したき裂先端の角の部分より新たにき裂が発生し、進展 している様子が伺える。その他の試験条件においても同様な傾向が見られている。過 大荷重によって鈍化したき裂先端の形状は機械加工ノッチの先端と類似しており、鈍 化き裂からのき裂進展は機械加工ノッチからのき裂進展と同様に扱うことが可能で ある可能性がある。そこで、鈍化したき裂からのき裂進展評価を、機械加工ノッチか らのき裂の発生やき裂進展初期にあたるΔK の閾値領域におけるき裂進展評価を参考 に 3.4 章にて考察を行う。

(i) 過大荷重直前(ii)過大荷重直後図 3.2-19 表面き裂先端 (STPT410 Case1)

(i) 過大荷重直前(ii)過大荷重直後図 3.2-20 表面き裂先端 (STPT410 Case2)

(i) 過大荷重直前(ii)過大荷重直後図 3.2-21 表面き裂先端 (STPT410 Case3)

図 3.2-24 表面き裂先端 (SUS316 Case3)

		表面 CT	COD(μm)	き裂進展の挙動
材料	試験ケース	過大荷重前過大荷重後		
	Case 1	0.13	1.3	遅延
STPT410	Case 2	0.20	2.9	変化なし
	Case 3	0.10	0.13	加速

表 3.2-4 過大荷重による CTOD の変化 (STPT410)

表 3.2-5 過大荷重による CTOD の変化 (SUS316)

		表面 CT	TOD(µm)	き裂進展の挙動
材料	試験ケース	過大荷重前 過大荷重後		
	Case 1	0.45	16	遅延
SUS316	Case 2	0.15	30	遅延
	Case 3	0.22	4.2	遅延

(i) 過大荷重直後
 (ii)過大荷重後 10000 サイクル
 図 3.2-25 鈍化したき裂先端からのき裂進展 (SUS316 Case 2)

3.3. 過大荷重がき裂進展に及ぼす影響の解析的検討¹⁹⁾

過大荷重によってき裂先端前縁の応力が変化することが予想されるが、実験的にそれを把握することは困難であるため、有限要素法(FEM)解析を用いて実験を模擬した 解析を実施し、き裂前縁応力の評価を行う。その結果を受け、過大荷重がき裂前縁応 力に及ぼす影響を定量的に評価する式を提案する。

3.3.1. 解析モデル

過大荷重がき裂先端前縁の応力分布に及ぼす影響を評価するために、実験で用いた 平板試験片を模擬した FEM 解析を実施した。モデルは対称性を考慮し、試験片の 1/8 をモデル化した。用いた FEM モデルの外形を図 3.3-1に、き裂形状を図 3.3-2に示す。

図 3.3-1 平板試験片の FEM モデルの外形

図 3.3-2 平板試験片の FEM モデルの貫通き裂部詳細

3.3.2. 材料物性の最適化

FEM 解析で用いる応力-ひずみ曲線は、繰返し荷重負荷を考慮して等方硬化と移動 硬化を組合せた混合硬化則を用いて与えた。この応力-ひずみ曲線は、丸棒試験片を 用いた繰返し荷重負荷試験と丸棒試験片を模擬した FEM 解析の比較によって最適化 した。丸棒引張試験体の模式図を図 3.3-3 に示す。解析モデルを図 3.3-4 に示す。モ デル化は試験体の平行部のみを対象に行った。このパートは二次元軸対称であり、対 称軸は図中の一点鎖線である。対称性を考慮して、1/4 モデルとした。また、境界条 件は、解析対象の対称性を考慮して、1/4 モデルとした。

繰返し荷重負荷試験と混合硬化則を考慮した FEM 解析との合わせこみを実施した 結果を STPT410 及び SUS316 についてそれぞれ図 3.3-5 及び図 3.3-6 に示す。ここで の等方硬化は、降伏曲面の大きさ (降伏応力) σ^0 の変化と相当塑性ひずみ ϵ_{pl} の関数と して定義される。この関数は次式に示す単純な指数関数則により表される²⁰⁾。

$$\sigma^{0} = \sigma|_{0} + Q_{\infty} \left(1 - e^{-b\varepsilon^{pl}} \right)$$
3. 3-1

ここで σ_0 は塑性ひずみ ϵ_{pl} が0のときの降伏応力、 Q_∞ とbは材料パラメータである。 Q_∞ は降伏曲面の大きさの最大変化量であり、bは塑性変形の増加に伴う降伏曲面の大きさの変化率を定める。本項において、これらのパラメータは表 3.3-1のように決定した。

次に、移動硬化は Plastic, Hardening = COMBINED, DATA TYPE = STABILIZED のオ プションを用いて与えている²⁰⁾。このモデルの発展則は、背応力αを通じて、降伏曲 面の移動を記述する線形の移動硬化則からなる。温度依存と非線形性を考慮しない場 合には、この発展則は、線形の Ziegler 硬化則²¹⁾になる。

$$\dot{\alpha} = C \frac{1}{\sigma^0} (\sigma - \alpha) \dot{\varepsilon}^{pl} - \gamma \alpha \dot{\varepsilon}^{pl} \qquad 3.3-2$$

ここで、 $\dot{\epsilon}^{pl}$ は相当塑性ひずみ速度であり、Cは移動硬化係数、 γ は非線形性を導入する緩和項の係数である。本オプションは各試験データ点 (σ_i , ϵ^{pl}_i)を与えることで、移動硬化成分を定義している。材料物性の最適化を行った結果を表 3.3-1 に示す。

図 3.3-3 丸棒引張試験体の模式図

図 3.3-4 丸棒引張試験体 ABAQUS パート

Nominal strain (-)

図 3.3-6 SUS316 混合硬化則を考慮した FEM 解析と実験との比較

	Q_{∞}	b
SUS316 材	50	20
STPT410 材	50	50

表 3.3-1 混合硬化則パラメータの同定結果

• •	0 0	
項目	SUS316	STPT410
E	176400 MPa	185800 MPa
$\sigma_{\rm vs}$	186.7 MPa	284.2 MPa
п	3	5
n	7	2

表 3.3-2 Ramberg-Osgood 則におけるパラメータ

3.3.3. 解析条件

解析は表 3.3-3 に示す条件で実施した。試験条件は大きくわけて、一定振幅、一定 振幅中に引張の過大荷重、一定振幅中に圧縮の過大荷重及び一定振幅中に引張と圧縮 の過大荷重の五つに分けられる。ここで一定振幅の大きさ(P₁)は、降伏応力相当の荷 重であり応力比 R = -1 で与えられる。過大荷重の絶対値 P₂及び P₃ は P₁の 1.5 倍の大 きさとした。

P ₀	Case 1	$P_0 = 32.6 \text{ kN}$
	Case 2	$P_0 = 32.6 \text{ kN}, P_1 = 49.0 \text{ kN}$
$\overline{\Lambda} P_{0\Lambda} \Lambda \Lambda$	Case 3	$P_0 = 32.6 \text{ kN}, P_2 = -39.0 \text{ kN}$
	Case 4	$P_0 = 32.6 \text{ kN}, P_2 = -49.0 \text{ kN}$
	Case 5	$P_0 = 32.6 \text{ kN}, P_1 = 36.0 \text{ kN}, P_2 = -39.0 \text{ kN}$
$-P_0 \overline{\Lambda}^{P_1}$	Case 6	P ₀ = 32.6 kN, P ₁ = 39.0 kN, P ₂ = -39.0 kN
$ \land \land \land \land \land \land$	Case 7	P ₀ = 32.6 kN, P ₁ = 44.0 kN, P ₂ = -39.0 kN
	Case 8	P ₀ = 32.6 kN, P ₁ = 49.0 kN, P ₂ = -39.0 kN
<u> </u>	Case 9	$P_0 = 32.6 \text{ kN}, P_1 = 49.0 \text{ kN}, P_2 = -49.0 \text{ kN}$
P_0 P_2 P_3	Case 10	$P_0 = 32.6 \text{ kN}, P_1 = 49.0 \text{ kN}, P_2 = -49.0 \text{ kN}$

表 3.3-3 解析条件

3.3.4. 過大荷重によるき裂先端応力分布の変化

FEM 解析により得られた荷重-開口変位の関係を図 3.3-7~図 3.3-16 に示す。この 結果から、過大荷重の組合せによって過大荷重後の荷重-開口変位曲線は異なること が分かる。この傾向は実験においても確認しており、過大荷重による試験片の塑性変 形によりき裂開閉口挙動が変化したことに起因していると考えた。次に、き裂先端前 縁におけるき裂面に対して垂直な方向の応力(σ₂₂)の分布を算出した結果を示す。 Case1 における引張荷重時、除荷時(0 kN)及び圧縮荷重時のき裂先端応力分布を図 3.3-17に示す。ここでの応力はσ₂₂を参照応力(σ₀)で規格化した値である。この図では、 引張荷重後のき裂先端前縁に圧縮の応力が見られ、つづく圧縮荷重が除荷された後の き裂先端近傍には引張の応力が見られる。き裂の進展は引張の負荷過程において起き ると考えられるので、き裂前縁応力のき裂進展への影響を評価に関しては、図 3.3-17 中の(4)に示す引張荷重が負荷される直前の応力分布で比較するべきである。各解析条 件における過大荷重後のき裂先端の応力分布について、引張荷重負荷前の荷重が 0 kN の時における結果を図 3.3-18 及び図 3.3-19 に示す。この図からは、過大な引張荷重 と過大な圧縮荷重の組合せを問わず、過大な荷重が負荷されることによりき裂前縁の 応力は引張側に大きくなることがわかる。Case2 と Case10 は同様の傾向を示している ことから、過大な引張荷重の直前の圧縮荷重の大きさは、過大荷重後の応力に影響を 及ぼさないと考えられる。Case9 のように過大な引張荷重の後に同じ大きさの過大な 圧縮荷重が負荷された場合には、過大な圧縮荷重を受けない場合と比較して、引張の 大きさが小さくなる。このことより、過大荷重を受けた後はき裂先端に引張の残留応 力が形成され、き裂は進展しやすくなるつまりき裂進展速度は速くなるものと推定で きる。

これらの傾向を荷重条件ごとに定量的に評価することによって過大荷重の組合せ とき裂前縁応力の変化について定式化を行う。図 3.3-20 は、図 3.3-18 及び図 3.3-19 の各解析条件のき裂前縁の応力分布に対して、き裂先端から 5 µm の位置における応 力を過大荷重が負荷されていない Case 1 での応力で正規化した値(S_{22,a}/S_{22,b})と、過大 荷重の組合せの関係を示した図である。縦軸は正規化したき裂前縁応力、横軸は次式 で表される過大荷重の組合せから算出される応力比である。

$$R' = \left(\frac{1}{R_X} - 1\right) R_{el} \tag{3.3-3}$$

ここで R_x は、過大荷重が、過大荷重前の履歴と比較してどの程度大きな荷重である かを表す応力比であり、次式で表される。

$$R_x = P_{max,0} / Max(P_{max,i-1})$$
 3.3-4

 $P_{\max,0}$ は過大荷重前の荷重履歴における極大荷重であり、 $Max(P_{\max,i-1})$ は評価したい荷 重以前の荷重履歴における最大荷重である。 R_{el} は過大な引張荷重とそれに続く過大 な圧縮荷重の比であり、次式で表される。

$$R_{el}=Max(P_{min,i-1})/Max(P_{max,i-1})$$
 3.3-5

ここで、 $Max(P_{min,i-1})$ は評価したい荷重以前の荷重履歴における最小荷重である。これらの式で用いられる $P_{max,0}$ 、 $Max(P_{max,i-1})$ 及び $Max(P_{min,i-1})$ の関係性について図 3.3-21 に示す。図 3.3-20 からき裂先端前縁応力と R'の関係は次式のように表すことができる。

$$\frac{S_{22,a}}{S_{22,b}} = A^{R'}$$
 3.3-6

ここで、Aはフィッティング係数である。本式を用いることで、過大荷重後のき裂進 展速度に関して、き裂先端前縁の応力変化を基に評価可能であると考えられる。

図 3.3-7 解析における荷重・開口変位曲線 (Case 1)

図 3.3-8 解析における荷重-開口変位曲線 (Case 2)

図 3.3-10 解析における荷重・開口変位曲線 (Case 4)

図 3.3-11 解析における荷重・開口変位曲線 (Case 5)

図 3.3-12 解析における荷重・開口変位曲線 (Case 6)

図 3.3-13 解析における荷重・開口変位曲線 (Case 7)

図 3.3-14 解析における荷重・開口変位曲線 (Case 8)

図 3.3-15 解析における荷重·開口変位曲線 (Case 9)

図 3.3-16 解析における荷重·開口変位曲線 (Case 10)

図 3.3-17 負荷及び除荷時のき裂先端の応力分布

図 3.3-18 各ケースにおけるき裂先端の応力分布(Case 2, 4, 9, 10)

図 3.3-19 各ケースにおけるき裂先端の応力分布(Case 3, 5, 6, 7, 8)

図 3.3-20 過大荷重の組合せとき裂先端前縁応力の変化

図 3.3-21 過大荷重の組合せ

3.4. 過大荷重がき裂進展及ぼす影響の評価手法の検討¹⁹⁾

3.2 で実施した過大荷重を含むき裂進展試験において過大荷重によるき裂進展速度 の変化とき裂先端の鈍化が観測され、試験結果と CTOD との比較によりき裂鈍化がき 裂進展速度の遅延に寄与していることが示唆された。また、3.3 で実施した過大荷重 を含む繰返し荷重負荷を模擬した FEM 解析において、過大荷重によるき裂前縁応力 の変化を定式化し、解析結果と 3.2 の実験結果の比較より過大荷重によるき裂進展速 度の変化をき裂先端前縁応力の変化によって評価可能であることを示唆した。本節で は、このき裂鈍化及びき裂先端前縁応力の変化に基づくき裂進展速度の変化を考慮し たき裂進展評価式を構築する。

鈍化き裂先端の応力集中は、き裂先端が充分先鋭化されていない機械加工ノッチの ように、低下する傾向にあると考えられる。実験では鈍化したき裂先端からの新たな き裂発生が確認されており、過大荷重後のき裂進展挙動が機械加工ノッチからのき裂 進展の初期段階と同様な挙動を示すと仮定した。実際、き裂発生直後はき裂の安定進 展領域のき裂進展速度に比べて遅く、過大荷重によるき裂鈍化後のき裂進展において 観測されるき裂進展遅延と同様の傾向を示す。この仮定に基づいて過大荷重による鈍 化を考慮したき裂進展評価式を構築した。Castro ら²²⁾は、低サイクル疲労損傷累積の 原理に基づいて、き裂進展の初期段階であるき裂進展の閾値(ΔK_{th})付近の領域におけ るき裂進展速度評価式を次式のように提案している。

$$\frac{da}{dN} = C[\Delta K - \Delta K_{th}(R)]^m \left(\frac{K_c}{K_c - K_{max}}\right)$$
3.4-1

ここで、C及びmはParis則で用いられる疲労き裂進展パラメータであり、 $\Delta K_{th}(\mathbf{R})$ は応力比に伴って変化する応力拡大係数範囲の閾値である。 K_c は材料の破壊靱性に関連する定数である。このモデルは応力拡大係数が適用できる小規模降伏条件下において有効であるが、本論文で対象としている塑性変形を伴うような繰返し荷重には適用できない。しかし、2章において説明したように、 $\Delta K \ e \Delta J$ に拡張することで、弾塑性領域に適用可能である。

$$\frac{da}{dN} = C' [\Delta J - \Delta J_{th}(R)]^{m'} \left(\frac{J_c}{J_c - J_{max}}\right)$$
3.4-2

ここで、C'及び m'は Paris 則をΔJ に拡張した式におけるき裂進展パラメータである。 この式を、本試験における過大荷重によるき裂鈍化に基づくき裂進展遅延を評価可能 なように、次式のように改良した。

$$\frac{da}{dN} = C' \left[\Delta J - \Delta J_{i=1} \left(\frac{J_{max,el} - J_{max,i}}{J_{max,el} - J_{max,1}} \right) \right]^{m'} \qquad 3.4-3$$

ここで、 $\Delta J_{i=1}$ は過大荷重直後1サイクル目の ΔJ 、 $J_{max, el}$ は過大引張荷重時の最大J積 分値、 $J_{max, i}$ はiサイクル目の最大J積分値、 $J_{max, 1}$ は過大荷重後1サイクル目の最大J積分値である。本式は、5.3-2式における ΔJ_{th} を次のように仮定し置換した。まず、閾 値 ΔJ_{th} を過大荷重直後の1サイクル目における ΔJ ($\Delta J_{i=1}$)に置換する。これは、過大荷 重によるき裂鈍化直後のき裂進展が機械加工ノッチからのき裂発生直後と同じ挙動 を示すという仮定に基づいている。次にき裂進展に伴って遅延効果が小さくなるのに 合わせて ΔJ_{th} は小さくなり、最終的には $J_{max,i}$ が $J_{max,el}$ に等しくなる条件で遅延効果が 消え、同時に ΔJ_{th} が0となるように補正する項を追加した。

次に、過大荷重によるき裂前縁応力の変化がき裂進展に及ぼす影響について評価 した。弾性域における過大な引張荷重の影響評価式として修正 Wheeler モデル⁵⁾が知 られている。修正 Wheeler モデルは、き裂長さと塑性域の関係を用いてき裂進展の駆 動力であるΔK を補正することによって過大な引張荷重によるき裂進展遅延を表す式 である。具体的には、現在の塑性域が、以前に受けた過大荷重による塑性域に含まれ る場合進展は遅延し、塑性域の境界 Z_iが過大荷重による塑性域の境界 Z_{el}に達すると 遅延は解消されるという仮定に基づき次式のように与えられるき裂進展遅延モデル である。概念図を図 3.4-1 に示す。

$$\Delta K_a(a_i) = \Delta K_b(a_i) \left(\frac{r_{pi}}{r_{pel} + a_{el} - a_i}\right)^{\gamma}$$

$$a_i + r_{pi} < a_{el} + r_{pel}$$
3.4-4

ここで、 a_i はi番目のサイクルにおけるき裂長さ、 a_{el} は過大荷重負荷時のき裂長さ、 r_{pi} はi番目のサイクルにおける塑性域、 r_{pel} は過大荷重による塑性域、 γ はフィッティングパラメータである。修正 Wheeler モデルを弾塑性領域に適用させるために、 ΔK を ΔJ に置換して次式を得た²⁴⁾。

$$\Delta J_{a}(a_{i}) = \Delta J_{b}(a_{i}) \left(\frac{r_{pi}'}{r_{pel}' + a_{el} - a_{i}}\right)^{r'}$$

$$a_{i} + r_{pi}' < a_{el} + r_{pel}'$$
3.4-5

ここで、 $\Delta J_i \ge \Delta J_{ret, i}$ は、それぞれ i 番目のサイクルにおける J 積分範囲及び遅延を考慮して校正された J 積分範囲である。その他の係数は式.3.4-4 と同様である。特に、 小規模降伏条件のとき $\Delta K \ge \Delta J$ の間には以下の関係が成り立つため、

$$\Delta J = \frac{\Delta K^2 \left(1 - \nu^2\right)}{E}$$
3.4-6

小規模降伏条件下ではフィッティングパラメータγ=2γが成り立つ。このΔK をΔJ に置 換した修正 Wheeler モデルを以下 *J*-Wheeler モデルと称する。 *J*-Wheeler モデルは $\gamma' > 0$ と定義されており、過大な引張荷重によるき裂進展の遅延のみを評価可能な式である。 過大荷重によるき裂進展加速においても、過大な引張荷重と圧縮荷重によるき裂先端 応力分布は過大な引張荷重によって形成された塑性域サイズと関連があると考えら れるので、J-Wheeler モデルと同様の考え方で評価が可能であると考えた。そこで、 J-Wheeler モデルと過大荷重とき裂前縁応力の関係式(式 3.3-6)を組合せることで、過 大荷重によるき裂前縁応力の変化を考慮し、き裂進展加速を評価可能な式を構築した。

J積分値とき裂前縁応力の関係は、HRR場²⁵⁾²⁶⁾が過大荷重や繰返し荷重を受けた後 において適用可能であると仮定すると、次式のように表される。

$$J = B \left(\frac{\sigma}{\sigma_0}\right)^{n+1}$$
 3.4-7

ここで、B は材料物性である Ramberg-Osgood 型パラメータ α 及び n、参照応力 σ_0 、き 裂長さ a から算出される定数である。上式と式 3.3-6 を組合せることで、過大荷重に よるJ積分値の変化は次式のように表される。

$$\frac{J_a}{J_b} = \left(\frac{S_{22,a}}{S_{22,b}}\right)^{n+1} = A^{(n+1)R'}$$
 3.4-8

ここで、添え字 a は過大荷重後を、添え字 b は過大荷重前を表している。これは、J 積分値に関する式であるので、繰返し荷重によるき裂進展を評価するために、J 積分 値をJ積分値範囲(ΔJ)へと拡張する必要がある。繰返し荷重におけるJ積分値と ΔJ の 関係について、Rahman²⁷⁾はき裂の開閉口挙動を考慮して、次式を提案している。

 $\Delta J = \beta J$

ここで、βはき裂開口荷重(Pop)と極小荷重(Pmin)の比で表される荷重開口比(Pop/Pmin)で ある。式 3.4-8 と式 3.4-9 を組合せることで、過大荷重によるΔJの変化は、次式のよ うに表される。

$$\frac{\Delta J_a}{\Delta J_b} = \frac{\beta_a J_a}{\beta_b J_b} = \frac{\beta_a}{\beta_b} A^{(n+1)R'}$$
3.4-10

J-Wheeler モデル(式 3.4-5)と式 3.4-10 を比較して、式 3.4-10 の定数 A を置き換えるこ とにより、J-Wheer モデルはき裂前縁応力を考慮して次式のように修正される。

3.4-9

$$\Delta J_{a}(a_{i}) = \frac{\beta_{a}}{\beta_{b}} \Delta J_{b}(a_{i}) \left(\frac{r_{pi}'}{r_{pel}' + a_{el} - a_{i}}\right)^{\gamma'R'}$$

$$3.4-11$$

ここで、 γ は実験から求められる補正係数である。ここでの γ は *J*-Wheeler モデルにおける γ とは異なる値であることに注意が必要である。本式は、FEM 解析から得られた過大荷重負荷ケースにおけるき裂先端残留応力分布の傾向を考慮して構築した。過大な引張が大きいほど、つまり R_{el} が大きいほど、 ΔJ を大きく見積もることでき裂進展を加速させる。また、過大な引張後の圧縮が小さいほど、つまり R_{i} が小さいほど、 ΔJ を大きく見積もることでき裂進展を加速させる。

3.4-11 式を 3.4-3 式に導入することで、過大荷重によるき裂鈍化とき裂先端応力の変化を考慮した次式を得た。

$$\frac{da}{dN} = C' \left[\frac{\beta_a}{\beta_b} \Delta J_b(a_i) \left(\frac{r_{pi}}{r_{pel} + a_{el} + a_i} \right)^{\gamma' \left(\frac{1}{R_X} - 1 \right) R_{el}} - \Delta J_{i=1} \left(\frac{J_{max,el} - J_{max,i}}{J_{max,el} - J_{max,i}} \right) \right]^m$$
 3.4-12

ここで、 β は $_{\beta=1+P_o/P_{min}}$ のようにき裂開口荷重 P_o と P_{min} の比で表されるき裂開口比であ

る。 β については、実際に各サイクルの P_o が測定されていればそれを用いて算出する こととし、 P_o が測定されていない場合には保守的に $\beta_a = \beta_b = 2$ を使用する。式 3.4-12 において、過大な圧縮荷重によって過大荷重後の CTOD が一定振幅荷重時の CTOD と同程度となる場合、もしくは過大な引張荷重時が充分小さく過大荷重後の CTOD が 一定振幅荷重時の CTOD と同程度である場合、3.4-12 式の鈍化の影響を表現している 項(中括弧内第二項)は 0 となる。

本式を用いて STPT410 及び SUS316 の Case1~Case3 の試験結果を評価した例を図 3.4-2~図 3.4-7 に示す。これらより、き裂先端の鈍化に伴うき裂進展遅延効果とき裂 先端残留応力による加速効果を考慮した本手法を用いることにより、実験値にほぼ一 致する予測結果が得られた。なお実験結果に対するフィッティングで定められる加速 効果に関する材料物性 γ 'は、STPT410 において γ ' = 4、SUS316 において γ ' = 1.4 であ る。

図 3.4-1 き裂進展遅延領域

図 3.4-2 き裂進展評価例 (STPT410 Case1)

図 3.4-3 き裂進展評価例 (STPT410 Case2)

図 3.4-4 き裂進展評価例 (STPT410 Case3)

図 3.4-5 き裂進展評価例 (SUS316 Case1)

図 3.4-6 き裂進展評価例 (SUS316 Case2)

図 3.4-7 き裂進展評価例 (SUS316 Case3)

3.5. 結言

過大荷重がき裂進展に及ぼす影響は、過大荷重によるき裂開閉口挙動、き裂鈍化及びき裂前縁応力分布の変化に着目して評価できる。それぞれの要因について試験と FEM 解析に基づいて評価式を構築し、それらを組合せることによって、過大荷重が き裂進展及ぼす影響を考慮したき裂進展評価式を提案した。

4. 地震荷重下におけるき裂進展評価手法の提案

4.1. 諸言

地震荷重下におけるき裂進展評価手法を構築するに当たり、不規則波形における弾塑性破壊力 学パラメータ算出法を提案し、また2章及び3章において提案してきたき裂進展評価手法を組合 せる。それにより、高経年化を考慮した耐震安全評価やリスク評価、耐震裕度評価に資するき裂 進展評価手法を構築する。

4.2. 不規則波形における弾塑性破壊力学パラメータの算出手法の検討²⁸⁾

2章や3章における試験片レベルでの繰返し荷重によるき裂進展試験では、試験で得られる荷重 -変位曲線からΔJを算出しき裂進展速度を評価してきた。しかし配管等の実機構造物では、荷重-変位曲線を得ることが困難であり、直接ΔJを算出することが困難である。従って、配管において き裂進展評価を行うためには、測定が容易な負荷データのみからΔJを推定する手法の構築が必要 である。

 ΔJ は、その弾性成分である ΔJ_{el} と塑性成分である ΔJ_{pl} の和として表される。 ΔJ_{el} は、応力拡大係 数範囲 ΔK から算出できる。 ΔJ_{pl} は、荷重-開口変位曲線に囲まれた面積と比例関係にあることか ら、ランダムな荷重波形における ΔJ をサイクル毎の荷重-開口変位曲線を仮定して算出すること とした。図 4.2-1 は、I から II, III に至る 1 サイクル当たりの荷重 – 開口変位曲線を模式的に表し ている。i 番目のサイクルにおける ΔJ の塑性成分 $\Delta J_{pl,i}$ は、図中の赤斜線部と青斜線部の面積に相 当する J 積分値に等しいと考えられる。この仮定を基に、 ΔJ の算出式を式 4.2-1 のように構築し た。式 4.2-1 の第 1 項は、弾性成分である ΔJ_{elo} 第 2 項は、図 4.2-1 における赤斜線部に相当する J 積分値。第 3 項は青斜線部に相当する J 積分値を表している。ここで第 2 項は、図 4.2-2 に示す ように、1 サイクルごとの開口変位の変化が小さい場合の荷重 – 開口変位曲線を仮定し、ADEF に相当する J 積分値 (J_{ADEF})から算出される。この図 4.2-2 における荷重 – 開口変位曲線は、次 の手順で仮定した。

0 kN まで弾性的に除荷する。

② 応力ーひずみ関係が Ramberg-Osgood 形の構成式に従うときの除荷曲線 (C→D) に沿って最 小荷重 P_{\min} まで除荷する。

③ 最大荷重まで除荷時の挙動を反転させて負荷する。応力比が正 (R \geq 0)の場合は、 P_{\min} まで 弾性的に除荷し、弾性的に P_{\max} まで再負荷する。

54

図 4.2-2 の赤色部 (ABF 及び CDE) に相当する J 積分値 J_{ABF} は、J 積分値算出の簡便式²⁹⁾を用い て算出できる。青色部 (BCEF) に相当する J 積分値 J_{BCEF} は、次のように算出する。青色部は、 赤色部を三角形と近似したとき底辺を等しくする平行四辺形なので、面積の比から J_{BCEF} は J_{ABF} を用いて式 4.2-2 のように表せる。したがって J_{ADEF} 、すなわち図 4.2-1 における赤斜線部の J 積 分値は、 J_{ABF} , J_{BCEF} 及び J_{CDE} の和として式 4.2-1 の第 2 項のように表せる。第 3 項 (青斜線部) は、 次のように求める。図 4.2-1 の青斜線部における $P \ge 0$ の領域は、i 番目のサイクルにおける $J_{max,i}$ とそれ以前のサイクルにおける J_{max} の最大値 MAX($J_{max,i-1}$)との差から求める。そして、荷重の比 から、 $J_{max,i} - MAX(J_{max,i-1})$ に (1-R) を乗じることにより青斜線部に相当する J 積分値を算出 する。なお、青斜線部の平行四辺形への近似、及び図 4.2-2 における赤色部の三角形への近似に おける幾何学的な仮定は、実際より J 積分値を大きく見積っており、保守的な評価である。

$$\Delta J_{i} = \Delta J_{el,i} + \Delta J_{pl,i} = \frac{\Delta K^{2} (1 - \nu^{2})}{E} + \left\{ (J_{\max,i} - MAX(J_{\max,i-1}))(1 - R_{i}) + J_{ABF} \frac{1}{|R_{i}|} \right\} \quad 4.2-1$$

$$J_{BCEF} = 2J_{ABF} \left(\frac{1}{|R|} - 1 \right) \quad 4.2-2$$

図 4.2-1 仮定された荷重-開口変位曲線

図 4.2-2 AJ 算出のための模式図

4.3. 地震荷重下におけるき裂進展評価手法の提案

ここまでを総合し、整備した実用的地震時き裂進展評価手法の評価手順を以下に示す。

- <u>繰返し数Nについて P_{max}-P_{min} ペアもしくは M_{max}-M_{min} の抜き出し</u>
- ② <u>J積分値の算出</u>

 a_{i-1} 、 $P_{max, i}$ 、 $M_{max, i}$ 、RからJ積分値の簡易算出式²⁹⁾を用いて $J_{max, i}$ を算出し、そこから J_{max} と ΔJ との関係式(式 4.3-1)を用いて ΔJ_i を算出する。

$$\Delta J_{i} = \Delta J_{el,i} + \Delta J_{pl,i} = \frac{\Delta K^{2} (1 - v^{2})}{E} + \left\{ (J_{\max,i} - MAX(J_{\max,i-1}))(1 - R_{i}) + J_{R} \frac{1}{|R_{i}|} \right\}$$

$$4.3-1$$

③ 過大荷重の影響評価

過大荷重のき裂進展に及ぼす影響評価式(式 4.3-2)を用いて ΔJ_i を過大荷重の影響を考慮した $\Delta J_{eff,i}$ に修正する。

$$\Delta J_{eff}(a_i) = \frac{\beta_a}{\beta_b} \Delta J_i(a_i) \left(\frac{r_{pi}'}{r_{pel}' + a_{el}} - a_i\right)^{\gamma \left(\frac{1}{R_x} - 1\right)R_{el}}$$

$$4.3-2$$

$$a_i + r_{pi}' < a_{el} + r_{pel}'$$

④ 疲労き裂進展量の算出

き裂鈍化を考慮したき裂進展式(4.3-3)に $\Delta J_{\text{eff},i}$ 代入し、 $\Delta J_{\text{eff},i}$ から繰り返し荷重負荷による疲労 き裂進展量 $\Delta a_{i, fatigue}$ を算出する。

$$\frac{da}{dN} = C' \left[\Delta J_{eff}(a_i) - \Delta J_{eff,1} \cdot \left(\frac{J_{max,el} - J_{max,i}}{J_{max,el} - J_{max,1}} \right) \right]^{m'} \quad (\text{CTOD}_{\min,el} > 0)$$

$$\frac{da}{dN} = C' \left[\Delta J_{eff}(a_i) \right]^{m'} \quad (\text{CTOD}_{\min,el} < 0) \quad 4.3-3$$

ここでの条件 CTOD_{min}は、過大荷重後の CTOD が過大荷重を受けない場合の CTOD と比較 して増加しているかどうかで判断するものである。実測するのが望ましいが、実際の評価で 使用する場合には、|P_{max,el}|>|P_{min,el}|のとき CTOD_{min}>0、|P_{max,el}|<|P_{min,el}|のとき CTOD_{min}<0 と簡易 的に判断を行う。

⑤ <u>延性き裂進展量の算出</u>
 静的負荷による破壊靭性試験から得られた J-R カーブ(式 4.3-4)を用いて、 J_{max,i}から延性き
 裂進展量∆a_{i, ductile}を算出する(式 4.3-5)。

$$J_{max} = C_{ductile} (\Delta a)^{n_{ductile}}$$

$$4.3-4$$

$$\left(\frac{da}{dN}\right)_{ductile} = \left(\frac{J_{max,i}}{C_{ductile}}\right)^{n_{ductile}} - \left(\frac{J_{max,i-1}}{C_{ductile}}\right)^{n_{ductile}}$$

$$4.3-5$$

⑥ i番目のサイクルにおけるき裂長さの算出

 a_{i-1} に $\Delta a_{i, fatigue}$ 及び $\Delta a_{i, ductile}$ を加え、i番目のサイクルにおけるき裂長さ a_i を算出する。

上記の手順の②~⑥を既定のサイクル数、または破断するまで繰り返すことで、地震荷重下にお けるき裂進展評価を行う。

4.4. 結言

2章で構築した小規模降伏条件を超える荷重下におけるき裂進展評価法、3章で構築した過大荷 重がき裂進展に及ぼす影響の評価法及び4章で構築した不規則波形における弾塑性破壊力学パラ メータの算出手法を組合せることで、地震荷重下におけるき裂進展評価手法を提案した。

5. 評価手法の検証

5.1. 諸言

4 章で整備したき裂進展評価手法の配管に対する適用性について検討を行う。このため、配管 試験体を用いた模擬地震動負荷によるき裂進展試験を行い、き裂進展データを取得する。そして、 4 章で提案した地震荷重下におけるき裂進展評価式を用いたき裂進展評価を行い、試験結果と比 較することで配管への適用性を確認する。

配管試験体を用いたき裂進展試験³⁰⁾ 5.2.

5.2.1. 供試材及び試験体形状

試験体は表に示す成分の STPT410 配管及び SUS316 配管から製作した。配管試験体の寸法は、 100A × Sch80 × 1800 mm (外径: 114.3 mm 肉厚: 8.6 mm)である。配管試験体には放電加 工による周方向の貫通スリットを施した。

・スリット形状: 20=60° (図 5.2-1 参照)

幅は0.4mm、先端の曲率半径は0.2mm

表 5.2-1 配管試験体の化学成分

	(a) STPT410				
	С	Si	Mn	Р	S
Spec. MIN.	-	0.10	0.30	-	-
Spec. MAX.	0.30	0.35	1.00	0.035	0.035
Meas.	0.19	0.18	0.71	0.020	0.003

(b) SUS316

(wt.%)

					(
SUS316	С	Si	Mn	Р	S	Cr	Ni	Мо
Spec. MIN.	-	-	-	-	-	16.00	10.00	2.00
Spec. MAX.	0.08	1.00	2.00	0.045	0.030	18.00	14.00	3.00
Meas.	0.05	0.39	1.49	0.029	0.005	16.28	10.20	2.04

図 5.2-1 き裂形状の模式図

5.2.2. 試験方法

試験装置としては、油圧サーボ式両振り4点曲げ疲労試験機を用いた。負荷スパンは300 mm、 支持スパンは1200 mm である。模擬地震動負荷試験は荷重制御で行った。負荷波形を図 5.2-2 に 示す。地震波形は実機プラントの床応答スペクトルの包絡に基づき作成された地震波³⁰⁾を基に設 定した。参考にした波形は変位の時刻歴として表わされているものであるが、弾性変形を仮定し、 図に示す波形のピークを模擬地震動の荷重の入力値とした。荷重振幅の大きさについては、波形 の最大ピーク値が降伏応力の2倍相当の荷重となるように設定した。また、試験周波数は、試験 機が波形を問題なく再現できる周波数として、0.5Hz に設定した。256 サイクルのピークを1ブロ ックとし、配管が破損するまでこのブロックを繰り返し負荷した。き裂の進展量は1ブロックご とに配管表面におけるき裂長さを両サイドで測定した。

5.2.3. 試験結果

模擬地震動負荷試験結果の例として、図 5.2-3 及び図 5.2-4 に試験後の配管のき裂周辺の写真 をそれぞれの材料について示す。負荷荷重の時間変化を各々の試験体について図 5.2-5 及び図 5.2-6 に示す。これらの図から、図 5.2-2 に示した規格化入力波形と相似の負荷が与えられている ことが確認できる。荷重-荷重線変位及び荷重-開口変位曲線をそれぞれの配管材に対して図 5.2-7 ~図 5.2-10 に示す。これらの結果は、それぞれ試験開始初期及び破断直前の地震動負荷による結 果を示している。これらの荷重-変位曲線から、0 kN をまたぐ領域においても連続的にデータが 得られており、良好な荷重-荷重線変位を得られていることが分かる。また負荷波形中のある程度 大きなピーク荷重により、荷重-荷重線変位及び開口変位曲線関係が非線形となり、塑性変形が生 じていることが確認される。各ブロックにおいて計測されたき裂進展量をそれぞれの材料につい て図 5.2-11~図 5.2-12 に示す。ここで、①側は試験機手前側、②側は試験機奥側である。模擬地 震動によってき裂はどちらの側へもほぼ均等に伸びていることが分かった。

図 5.2-3 STPT410 Case1 き裂部写真

図 5.2-4 SUS316 Case1 き裂部写真

図 5.2-5 STPT410 Case1 試験荷重-時間(第2ブロック)

図 5.2-6 SUS316 Case1 試験荷重-時間(第1ブロック)

荷重線変位 **(mm)**

図 5.2-7 STPT410 模擬地震動負荷における荷重-荷重線変位 Case1

図 5.2-8 SUS316 模擬地震動負荷における荷重-荷重線変位 Case1

図 5.2-9 STPT410 模擬地震動負荷における荷重・開口変位曲線 Case1

図 5.2-10 SUS316 模擬地震動負荷における荷重・開口変位曲線 Case1

図 5.2-11 STPT410 Case1 各ブロック番号におけるき裂進展量

図 5.2-12 SUS316 Case1 各ブロック番号におけるき裂進展量

5.3. 試験結果と提案手法を用いた評価結果の比較

配管試験体における模擬地震動負荷試験に対して、4章で提案した地震時き裂進展評価手法を 用いた評価を行う。実際の評価は以下の手順で実施した。

① 繰返し数Nについて P_{max}-P_{min} ペアの抜き出し

実際に負荷された模擬地震動から $P_{\text{max}} \ge P_{\text{min}} \ge 1$ 波ずづ抜き出した。また、得られた $P_{\text{max}} \ge P_{\text{min}} \ge -$ メントに換算し、 $M_{\text{min}} \ge M_{\text{max}} \ge 1$ 波ずつ算出した。さらに、各サイクルのモーメント 比 $\mathbf{R}_{i} (M_{\text{min}}/M_{\text{max}})$ を算出した。

② <u>J積分値の算出</u>

①で得た M_{max} から周方向扇形貫通き裂を有する配管における J 積分値を算出した。用いた式は
 Zahoor らの解²⁹(5.3-7 式)である。

$$J = \frac{\pi a_e R^2 F^2(a_e/b, R/t)}{EI^2} M^2 + \alpha \sigma_0 \varepsilon_0 c \frac{a}{b} h_1(a/b, n, R/t) \left[\frac{M}{M_0} \right]^{n+1}$$
 5.3-7

J 積分値は i=1 番目から①で得た N サイクル目までき裂長さを逐次更新しながら算出する。 次に、算出したJ 積分値を本研究において提案した式を用いてΔJ に変換する。

$$\Delta J_{i} = \frac{\Delta K^{2} (1 - v^{2})}{E} + \left\{ (J_{\max,i} - MAX(J_{\max,i-1}))(1 - R_{i}) + J_{R} \frac{1}{|R_{i}|} \right\}$$
 5.3-8

ここで*J*_Rは、iサイクル目の最小モーメント*M*_{min}の絶対値|*M*_{min}|に対して上記の*J*積分値算出法を 用いて次のように算出される値である。

$$J_{R} = \alpha \sigma_{0} \varepsilon_{0} c \frac{a}{b} h_{1}(a/b, n, R/t) \left[\frac{|M_{\min}|}{M_{0}} \right]^{n+1}$$
5.3-9

過大荷重の影響評価

過大荷重のき裂進展に及ぼす影響評価式を用いて ΔJ_i を過大荷重の影響を考慮した $\Delta J_{eff,i}$ に修正した。ここでは、実際に測定したき裂開口荷重 P_o から算出した β を用いて ΔJ_{eff} の算出を行った。 γ は加速パラメータであり、STPT410においては γ =4、SUS316においては γ =1.4である。塑性域は以下の式を用いて、J積分値から算出する。

$$r_p = p \cdot J_{\max}$$
 5.3-10

ここで、p は塑性域寸法係数で FEM 解析を用いて算出される値²⁴⁾である。ここでは、STPT410 において p=1.07×10⁻²、SUS316 において p=1.34×10⁻² である。ただし、r_p'の単位は mm、 J_{max} の 単位は kJ/m² である。

④ 疲労き裂進展量の算出

③で得られた ΔJ_{eff} を過大荷重の影響を考慮した疲労き裂進展評価式に代入することで、iサイクル目の疲労き裂進展量 $\Delta a_{i, \text{fatigue}}$ を算出した。

⑤ 延性き裂進展量の算出

周方向扇形貫通き裂を有する配管における破壊靱性試験から得られた J-R カーブを用いて、 J_{max,i}から延性き裂進展量 $\Delta a_{i, ductile}$ を算出した。例えば、STPT410の室温条件下においては $C_{ductile}$ =1.2、 n_{ductile}=0.32、SUS316の室温条件下においてはC'=3.36、m'=0.244 である。ただしこれらの係数は Δa の単位が mm、J積分値の単位が MJ/m²のときの値である。これらの値を代入し、i 番目のサ イクルにおける1 サイクルあたりの延性き裂進展量 $\Delta a_{i, ductile}$ を算出した。

⑥ i番目のサイクルにおけるき裂長さの算出

 a_{i-1} に $\Delta a_{i, fatigue}$ 及び $\Delta a_{i, ductile}$ を加え、i 番目のサイクルにおけるき裂長さ a_i を算出した。 上記の②~⑥を破断まで(き裂角度が 180°を超えるまで)繰返した。

上記のように評価した結果を STPT410 について図 5.3-4 に、SUS316 について図 5.3-5 に示す。 これらの結果からわかるように、提案手法による評価結果は比較的試験結果に一致している。 こ のことから、実用的地震時き裂進展評価手法が構築できたことを確認した。

図 5.3-2 荷重履歴における最大荷重と現在のサイクルにおける最大荷重

図 5.3-3 き裂鈍化を考慮した疲労き裂進展評価に必要なパラメータ

図 5.3-4 模擬地震動負荷試験に対する従来手法と提案手法との比較(STPT410)

図 5.3-5 模擬地震動負荷試験に対する従来手法と提案手法との比較(SUS316)

5.4. 結言

提案手法を用いて、過去に実施された配管き裂進展試験結果の評価を行った。その結果、本提 案手法での評価結果は試験値とほぼ一致しており、配管に対して本評価手法が有効であることを 確認した。

6. 結論

本研究では、従来の設計基準地震動を上回る大きさの大地震・動的荷重下におけるき裂を有す る配管に対するき裂進展評価手法の構築を目的として、小規模降伏条件を超える繰返し荷重によ るき裂進展及び過大な引張圧縮荷重のき裂進展に及ぼす影響を評価し、それらを総合して巨大地 震荷重下におけるき裂進展評価手法を提案した。さらに、配管を用いた模擬地震動負荷試験を実 施し、提案手法の妥当性を確認した。

本研究では以下の知見を得た。

- (1) 小規模降伏条件を超える繰返し荷重によるき裂進展では、疲労き裂進展と延性き裂進 展が重畳しており、き裂進展評価の際にはAK に代わって弾塑性破壊力学パラメータで あるAJを用いた評価が有効であることを確認した。
- (2) 過大荷重に伴うき裂鈍化によって、き裂進展が遅延することが確認された。鈍化した き裂からのき裂進展挙動は、機械加工ノッチからのき裂発生やき裂進展と同じように ふるまうことが示唆された。これを受け、き裂鈍化後のき裂進展について、き裂進展 開始初期におけるき裂進展評価の考え方を参考に、遅延効果を考慮したき裂進展評価 式を提案した。
- (3) き裂前縁の応力分布をFEM解析により求め、実験から得られた過大荷重後のき裂進展 速度と比較することで、過大荷重によるき裂前縁応力の変化によりき裂進展速度が変 化することが示唆された。この過大荷重によるき裂前縁応力の変化を定式化し、既存 のき裂進展評価式に導入することにより、過大荷重負荷に伴うき裂前縁応力の変化を 考慮したき裂進展速度評価式を提案した。
- (4) これらの知見を踏まえて、地震荷重下におけるき裂進展評価手法を構築した。また、本研究において提案したき裂進展評価式を用いて、模擬地震動による配管き裂進展試験結果を評価した結果、本提案手法での評価結果は試験値とほぼ一致しており、配管に対して本評価手法が有効であることが確認された。

本研究において提案した巨大地震荷重下におけるき裂進展評価手法を用いることで、軽水炉プ ラントが設計時に設定された基準地震動を上回る大きさの地震動を受けた際の健全性に関して、 従来用いられている疲労き裂進展評価手法と比較して、より正確に評価可能となった。また本手 法の提案を通じて、今後のより合理的な設計・保守に資する有用な知見、基本となるデータを得 られ、各種機械や構造物の安全・信頼性の向上に寄与するところが大きいと考えられる。

72

謝辞

本研究を遂行するにあたりご指導と激励を賜りました茨城大学フロンティア応用原子科学研究 センターの菊地賢司教授に心から感謝の意を表します。論文をまとめるにあたっては、貴重なご 意見を頂いた茨城大学工学部機械工学科の関東康祐教授、同工学部マテリアル工学科の鈴木徹也 教授、同工学部電気電子工学科の三枝幹雄教授ならびに同工学部電気電子工学科の山中一雄教授 に深く感謝いたします。

本論文でまとめました一連の「地震荷重下におけるき裂進展評価に関する研究」は、主として 私が勤めます独立行政法人日本原子力研究開発機構での研究業務を通して行ってきたものです。 これは、独立行政法人原子力安全基盤機構殿からの「高経年化を考慮した機器・構造物の耐震安 全評価手法の高度化」事業における研究業務委託によるものであります。私どもの研究に対し大 変なご指導を頂き、研究業務を委託していただいた独立行政法人原子力安全基盤機構の李銀生氏 および関係者の方々に心から感謝いたします。

独立行政法人日本原子力研究開発機構におきましては、本論文の研究を共に実施してきた鬼沢 邦雄氏、西山裕孝氏、勝山仁哉氏、飛田徹氏及び宇田川誠氏に多大なるご協力・ご支援を頂きま した。ここに記して心より感謝いたします。

73

参考文献

- P.Scott, et al., The Battelle Integrity o f Nuclear Piping (BINP) Program Final Report, Summary and Implications of Results, NUREG/CR-6837, 2005
- 2) 三浦、"Battelle 原子力配管健全性国際共同研究-成果の概要と我が国の規格基準への影響評価-",電力中央研究所報告 Q04021、平成 17 年 9 月
- R. Olson, R. Wolterman, P. Scott, P. Krishnaswamy, G. Wilkowski, The Next Generation Analysis Methodology for Cracked Pipe Systems Subjected to Dynamic Loading, PVP-Vol.275-1. Seismic Engineering, Vol1.1, 159-172, 1994
- 4) 三浦他, き裂を有する配管の動的破壊評価法の開発, T47, 電力中央研究所報告, 1997
- M. A. Meggiolaro, J. T. P. Castro, Comparison of Load Interaction Models in Fatigue Crack Propagation, proceeding of COBEM 2001, Fracture Mechanics and Structural Integrity, Vol.12, 256, 2001
- 6) O.E.Wheeler, Spectrum Loading and Crack Growth", Journal of Basic Engineering, 181-186, 1972
- Chang, J.B., Engle, R.M., Improved Damage-Tolerance Analysis Methodology, J.Aircraft, Vol.21, pp.722-730, 1984
- Willenborg, J., Engle, R. M. and Wood, H. A., A Crack Growth Reterdation Model Using an Effective Stress Concept, AFFDL-TM-71-I-FBR, Wright-Patterson Air Force Base, Ohio, 1971
- ASTM, ASTM E1921-13, Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, 2013
- 10) ASTM, ASTM E647-13, Standard Test Method for Measurement of Fatigue Crack growth Rates, 2013
- P. C. Paris and F. Erdogan, A critical analysis of crack propagation laws, J. Basic Eng. Trans. ASME, Ser. D. 85-4, 528-534, 1963
- T. Yamada and Y. Yamashita, 2008, "Study on Fatigue Crack Growth Evaluation under Cyclic Large Deformation," Trans. JSME, ser.A, 74, 1263-1270. (in Japanese)
- 13) The Japan Society of Mechanical Engineers ed., The JSME Codes for Nuclear Power Generation Facilities -Rules on Fitness-for-Service for Nuclear Power Plants-, (2008), The Japan Society of Mechanical Engineers.
- 14) Yamaguchi, Y., Katsuyama, J., Onizawa, K., Sugino, H., Li, Y. and Yagawa, G., Experimental and Analytical Studies on the Effect of Excessive Loading on Fatigue Crack Propagation in Piping Materials, Proceedings of PVP2009, ASME Pressure Vessels and Piping Division Conference, PVP2009-77682

(2009).

- 15) Yamaguchi, Y., Katsuyama, J., Onizawa, K., Sugino, H., Li, Y. and Yagawa, G., Experimental and Analytical Studies on the Effect of Excessive Loading on Fatigue Crack Propagation in Piping Materials, Journal of Pressure Vessel Tecnology, (Paper in production)
- 16) K. Ando, N. Ogura and T. Kobari, 1980, "Fatigue Fracture Toughness and J Integral: 1st Report, Effects of Temperature and Stress Ratio upon Fatigue Fracture Toughness (Jfc) in SM 50 Steel," Japan Society of Mechanical Engineers, 46, 409, 933-939. (in Japanese)
- 17) (社)日本電気協会, JEAG4601-2007, 原子力発電所耐震設計審查指針, 2007
- 18) Rice. J. R., P. C. Paris and J. G. Merkle, Progress in flaw growth and fracture toughness testing, ASTM STP 536, 231 (1973)
- 19) Yamaguchi, Y., Li, Y., Katsuyama, J. and Onizawa, K., Evaluation of excessive loading effect on fatigue crack growth behavior based on crack blunting and stress distribution in front of the crack tip, Proceedings of PVP2013, ASME Pressure Vessels and Piping Division Conference, PVP2013-97939 (2013).
- 20) Abaqus ver.6.11 Documentation, SIMULIA Inc., 2011
- Ziegler, H., A Modification of Prager's Hardening Rule, Quarterly of Applied Mathematics, 17, 55-56, 1959
- 22) J. T. P. Castro, M. A. Meggiolaro and A. C. O. Miranda, 2005, "Singular and non-singular approaches for predicting fatigue crack growth behavior", International Journal of Fatigue, 27, 10-12, 1366-1388.
- 23) Yamaguchi, Y., Katsuyama, J., Onizawa, K., Sugino, H., Li, Y. and Yagawa, G., Experimental and Analytical Studies on the Effect of Excessive Loading on Fatigue Crack Propagation in Piping Materials, Proceedings of PVP2009, ASME Pressure Vessels and Piping Division Conference, PVP2009-77682 (2010).
- 24) Yamaguchi, Y., Katsuyama, J., Onizawa, K., Sugino, H., and Li, Y., "Investigation on Evaluation method based on J Integral for Retardation of Crack Growth due to Excessive Loading beyond Small Scale Yielding Condition", Proceedings of PVP2010, ASME Pressure Vessels and Piping Division Conference, PVP2010-25563 (2010).
- 25) J. W. Hutchinson, 1968, "Singular Behavior at The End of a Tensile Crack in a Hardening Material", Journal of the Mechanics and Physics of Solids, 16, 13-31
- 26) J. R. Rice and G. F. Rosengren, 1968, "Plane Strain Deformation Near a Crack Tip in a Power law

Hardening Material", Journal of the Mechanics and Physics of Solids, 16, 1-12.

- 27) S. Rahman, G. Wilkowski, R. Mohan, Low-Cycle Fatigue Crack Growth Considerations in Pipe Fracture Analysis, Nuclear Engineering and Design, 168, 105-118, 1997
- 28) 山口義仁、李銀生、杉野英治、勝山仁哉、鬼沢邦雄、弾塑性破壊力学パラメータに基づく繰返し過大荷重による配管材のき裂進展評価手法の提案、機械学会論文集A編,Vol.77(777), p.685 689, 201, 2011
- 29) A. Zahoor, Ductile Fracture Handbook, EPRI NP-6301, 1989
- 30) 山口義仁、李銀生、勝山仁哉、鬼沢邦雄、地震荷重下における配管のき裂進展評価手法の提案、機械学会 論文集 A 編,Vol.79(802)、2013