ショウジョウバエ精巣に対する放射線の影響

哺乳動物の放射線生物学的研究に対する供試材料とし ての精巣の価値はAlbers-Schönberg(1903)が、X 線照射した家兎および天笠ネズミの雄に不妊症の誘発を 発見して以来、今日まで多数の形態遺伝学的研究成果に 示されるように、それは放射線生物学のバックボーンと なった。すなわちBergonié & Tribondeau(1905) ¹⁾, Hertwig(1911)²⁾, Hertwig(1920)³⁾, Schinz & Slotopolsky(1945)⁴⁾, Regaud & Lacassagne(1927)⁵⁾, Wigoder(1929)⁶⁾, Asdell & Warren(1931)⁷⁾, Snell(1933)⁸⁾, Nakaizumi et al (1937)⁹⁾, Hertwig(1938)¹⁰⁾, Snell¹¹⁾, von Wattenwill & Joël(1941)¹²⁾, Bloom(1937, 1941)¹³⁾, Eshenbrenner & Miller(1950)¹⁴⁾, Fogg & Cowing(1951)¹⁵⁾, Shaver(1953)¹⁶⁾, 柏 原•近藤(1954·55)¹⁷⁾, Kohn & Kallman(1954) ¹⁸⁾, Oakberg (1955)¹⁹⁾, Russel & Russell (1958)²⁰⁾等によれば、実験動物家兎、ラット、マウス 等の放射線照射による精子発生攪乱機構は、未分化の精 粗細胞 spermatogonia がイオン化放射線に対し最も 感受性高く、精子形成の進む過程で、その放射線感受性 が順次低下し、成熟精子は放射線抵抗性を示し、交尾慾 にも影響少く、精子発生の過程のみが放射線に対し、選 択的に影響される。放射線障害を受けた精粗細胞の機能 再生する時は、受胎力も回復する。すなわち「哺乳類組 織の放射性感受性は、組織における未分化細胞の数、組 織における細胞分裂活動の程度、および活発な組織細胞 の増殖過程にある時間の長さなどに影響される」という Bergonie & Tribondeau の法則(1905)¹⁾ が実に、 X 線被爆精巣 Röntgenhoden より生れ, 放射線学 Radiology の基本概念となり今日に到っている。 細 胞増殖の活力は、ごく初期の未分化の細胞と、分化の進

柏原孝夫

んだ最終の成熟細胞との間に介在する分裂細胞の数量で 推定されるが、マウス・ラットなどの精巣における分裂 組織は、本問題解明に好都合な材料である。

一方放射線遺伝学の基礎に最も貢献したショウジョ ウバエ Drosophila melanogaster は人為突然変 異の研究によく使われても、精巣の放射線被爆反応に関 しては僅かの研究しか見られぬ[Friesen(1937)²¹⁾, Fritz-Niggli(1956)²²⁾, Welshons & Russell (1957)²³⁾]。 それはドロフィラの精巣が組織学的また は細胞学的研究に不便なためである24)。 しかるに柏原 ・近藤 (1954~55)¹⁷⁾および Kohn & Kallman (1954)¹⁸⁾により「マウスなどの精巣重量の変化がX線 障害の生物的指標となり得ること」が証明されて以来, 放射線の生物的線量測定Biodosimetryに精巣の利用 が可能となった。此処にSpermatogenesisの放射線 感受性を精密に追究するのと異り、ドロソフィラ精巣の 大いさ、および精細胞分布の変化などにつき、マクロの 放射線影響を調べることも意味があると思われ本実験が 行われた。それは実験動物マウス・ラット等に比べて、 ドロソフィラの生活環が短く、飼育管理も容易なため、 放射線影響の生物的指標に利用出来る場合には、 ドロソ フィラの方がむしろ有利な場合も想定されたからである。

材料と実験方法

成熟ドロソフィラ雄の精巣に対する X線, 7線および 中性子 fastneutron の影響を,精巣の大いさに注目し て観察した。エーテル麻酔のドロソフィラをリンゲル液 に侵し,腹部切開で,精巣が採り出され(図1,2),直 ちに位相差顕微鏡(千代田10×10)の下で,写真撮影 された。得られたネガフィルムにより双眼解剖顕微鏡 (×6)の下で,精巣の大いさ(最大径の長さ、および

図1 ショウジョウバエ雄性生殖器官 (Demerec(1965):Biology of Drosophila²⁴⁾を改写)

精巣側面積),精細胞の量的分布(Spermatogenesisを3区に別けた)その他が記録され、また必要に応 じて生の精巣を位相差の下で描写し、精巣面積測定の補 助に使った。

ドロソフィラの供試系統はカリフォルニア大学バーク レイ動物学教室 Prof. Stern の Drosophila 系統保 存室に飼育された Canton-S 野生型である。 実験区 毎に孵化直後の雄ドロソフィラ200匹づつが用意され、 照射区と対照区に分けて、 夫々ケージに 50 匹づつ 収容 し、供試した。ケージは中性子照射にも便利な、放射活 性化されない lucite tube (外径 13 mm, 長さ 60 mm, 筒壁長さ 2.0 mm) が AEC より提供された。 照射が終 了した後,筒のドロソフィラは直ちに新鮮な飼育瓶に移 し、30日間の観察に供せられた。 この雄のみ飼育する 瓶には、雌雄同居さす繁殖瓶では見られぬ黴が、飼育開 始2週間目頃より発生すること多く、30日間の飼育観 察に対し、同一条件が維持されるとは限らぬように思わ れた。すなわち黴の発生防止が本実験には重要であり、 細菌培養と同じ感覚が蠅の出し入れその他に大切であっ た。蠅は照射後1日目,3日目~数日の間隔で,30日間 計13回瓶より採り出され、精巣の形態的変化が経時的

に追究された。

放射線照射装置はすべてBerkeley のLawrence Radiation Laboratory のものである。 各実験共 総照射線量は 4000R に統一した。 本実験でショウジョ ウバエ被爆線量を 4000R に設定した理由は、ドロソフ ィラを含む昆虫に対する LD₅₀ が哺乳類の100倍以上と 計算されていて, Drosophila melanogaster成虫 は 64,000R(τ 線⁶⁰Co) 被爆に対し不妊は起きても, 生命には影響ない²⁶⁾こと, および従来の突然変異誘発 に 4000R 照射が層々用いられて来たことによる。 また 照射方法は全身一回照射である。

a) X線照射:X線発生装置Philips-Xray 250 kV, 25 mAの下で, 57.75 R/min(線源より45cm) の条件で69分16秒で4000 R 照射。

b) γ線照射:⁶⁰Co-25,000 Rads/hr=395.8
R/min の条件で, 10.1分間→ 4000 R 照射

c) 中性子照射:サイクロトロンの条件は 62.0µahes Be+H₂⁺(12 Mer), 20 inch の距離で1.4 時間 照射→ 4500 Rad. [Energy distribution Comparable to fission Spectrum (Watt)]。

実験成績ならびに考察

1) 正常精巣の日令的変化について

ドロソフィラの系統,種類,飼育環境条件とくに栄養 により相異はみられるものの,一般に羽化直後の精巣は 軟くて未熟な外観を呈するが,1日令で成雄の形態(図 2)を示した。キイロショウジョウバエの一世代は25℃ 飼育で約10日とされている。したがって10日令を過ぎ る頃より精巣は次第に萎縮の傾向を示し,20日令を過 ぎると,精巣の大いさは始めの60~70%程度に縮少し, 精子発生の退化も見られる。以上の日令的精巣の変化が 起きるため,放射線の影響をドロソフィラ精巣の大いさ で調べるためには、少く共10日令までの変化で評価さ れる必要がある(図2~3)。本実験の大いさの変化に 関する測定は,精巣の写真撮影を用いて,その側面積に もとづき行われたが,重量計測に匹敵する精度と考えら れた。

- 35 -

- 36 -

図 3

2) X 線照射成績

X線照射雄ドロソフィラの精巣大いさは図2~4に示 されるように,照射後2回で明瞭な減少傾向現われ,6

X 線照射

日目には精巣の大いさが顕著に下り,低い値となった。 すなわちマウス(柏原・近藤)¹⁷⁾では照射後10~15日 以後でないと精巣重量による生物的効果の判定が容易で ないことに比べて,ドロソフィラでは照射後数日を経て, X線の影響が精巣の大いさより充分判定されるとすれば 極めて興味ある成績である。しかし10日令以後では,精 巣の大いさのみで放射線の生物的効果を判定することに 疑問が残るであろう。それは正常区といえどもある程度 の萎縮が生ずるからである。勿論図2に示されるように 照射区と正常区の28日令、30日令の精巣には顕著な相 違が見られ,その差が日令を追って益々大となることは 事実である。

次に精巣の管の径は照射後1~3日で減少し,5日で 最も著しい減少傾向をたどっている。精細胞全体の量的 分布は正常区においても日令と共に減少するが,精子発 生の過程を精粗細胞,精母細胞(減数分裂の全過程を含

図5 精細胞数の日令による変化とX線照射の影響

DAYS AFTER IRRADIATION

(AGE OF DROSOPHILA)

うに、照射3日目より減少し、9日令で最低値となり、 一方11日令でまた少しく回復し、18日令以後減少の一 途をたどった。以上は放射線照射による直接の影響以外、 日令にもとづく精細胞分布の変化が重なった結果と思わ れた。また精粗細胞数の減少は照射区で著しく、9日目 で最初の約30%に減少するが、正常区は同一日令で実 験開始時の1日令と変らない精粗細胞の密度であり、30 日令でやっと60%に減少する程度であるため、精巣の 大いさと共に精粗細胞の分布を確かめることは必要であ ろう。以上解剖顕微鏡の下で、精細胞の分布密度が調べ られるときは、X線照射3日目で放射線の影響が現われ るようである。以上は(Welshons & Russel)²³⁾の 成績と同じ傾向に感ぜられた。

める),精子に3大別するとき,図5~6に示されるよ

 X線, γ線ならびに中性子の精巣大いさに及ぼす 影響の比較

X線, 7線ならびに中性子をドロソフィラの同一日令, 同一時期に照射した場合,精巣大いさに対する影響は, 図7に示されるように,X線区の影響は,水準が高いた め顕著でないが,7線ならびに中性子照射群では精巣の 大いさが明らかに減少する結果が得られた。すなわち7 線と中性子の質的差異も関係するが,ドロソフィラ精巣 に対し,直接的な放射線の影響が示されたわけである。 本実験ではX線の影響が前回程ではないが,4日令まで の曲線の傾斜角度が,正常区,7線区,X線区,中性子 区の順に急となっているため,放射線の生物的影響が教 課書通りの順番でドロフィラ精巣にも現われたことは興 味深い。すなわちイオン化放射線の生物的効果がドロソ フィラ精巣の大いさで, 照射後4日目で判定出来る可能 性が本実験により示されたのである。

また 7 線, X 線, 中性子の順に被爆精巣の大いさ減少 の速度が速くなる傾向は, 被爆マウスに対する致死率が 7 線, X 線, 中性子の順に高まる Upton (1956)の理論 ²⁷⁾によく似て, イオン化放射線の生物学的作用が, マ ウスとドロソフィラで同じ傾向を示すといえるであろう。

本実験の中性子照射量は 4500R に相当し, X線 およ び 7 線の 4000 R より 10% 程度多く, その影響を比較 する上で,線量を考慮に入れねばならぬが,図7に示さ れるように,精巣の大いさに対する中性子の効果はX線 の場合に比べて 30~50%多いと推定される。

近年再び天笠ネズミの精巣重量がイオン化放射線を受けた(X線およびγ線で1500R 照射の場合),被爆後

30 日までは著しい減少はみられぬものの, 照射後60 日 で正常精巣の1/2 以下になった報告²⁵⁾ に接し, 精巣に 関する放射線生物学的効果が現在もなお追究されている ことに対し, Röntgenhoden は古くして, かつ新し いテーマであるといえるであろう。

さてマウス等の被爆線量が400~600 Rであるに対し, 本実験では4000 R 照射であり,むしろそれ以下の被爆 線量では,図7より考えてドロソフィラ精巣の大いさで Biodosimetryが容易でないと思われる故,照射量 の大きい場合に対し,ショウジョウバエ精巣によるBiodosimetryが可能といえるであろう。すなわち数千 ~数万 R被爆のような場合にはショウジョウバエをむし ろ利用すべきであると考えた。ショウジョウバエをむし ろ利用すべきであると考えた。ショウジョウバエにとっ て4000 R 照射は LD₅₀ の 1/10 以下であることを考え ると,それはマウスの場合(LD₅₀ = 400 R ~ 500 R) の1/10 = 40 R 以下の照射量に相当し,かかる意味で はショウジョウバェ精巣はマウスよりも非常に放射線感 受性が高いといえるのである。すなわちマウスでは40 R ある。

以上ドロソフィラの羽化直後の雄に放射線を作用さす 時、実験動物マウスなどで得られたと同一傾向の精巣大 いさ、ならびに精細胞分布の減少がみられ、4000 R 照 射で3~6日後に放射線の効果が判定されると推定され た。しかしマウス等に見られる典型的な無精子期を確認 出来なかった。それは本実験の被爆線量が4000 Rと設 定されたことによる(ドロソフィラにとって4000 Rは LD₅₀の1/10以下の線量,また不妊線量が3~4万R であるため²⁶⁾、また照射後の回数が数日間という短期間 があり、事実30日後の精巣では無精子状態も見られる (図2~3)。一方ドロソフィラの生活環は10日間であ ることも関連して, 放射線の影響は短期に評価さるべき であり、放射線の急性効果測定にドロソフィラ精巣の応 用価値があると思われる。また精巣の萎縮は一般に受胎 力の減退を意味するものであり、それは雄性造精機能の 指針であるため、照射雄の受胎性が平行して調べられる こと、すなわち突然変異誘発の有無を含む子孫への影響 も同時に調査されるべきであるが、今回は形態的変化の

みに限定した。

以上成雄ドロソフィラの精巣がマウスの場合と同様, イオン化放射線に対し敏感に反応することが証明された。

要約と結論

 ショウジョウバエ Drosophila melanogaster 精巣の放射線による肉眼的変化(解剖顕微鏡使用)
が,照射後 30 日間追跡された結果,実験動物マウス精 巣のX線照射による変化と類似の形態変化が認められた。

2. X線, 7線および中性子何れも 4000R 相当が成 雄ドロソフィラに全身1回照射され, 1~3日後に精巣 大いさの減少が認められ,精細胞の分布も同時に著しく 減少した。ドロソフィラに対する LD₅₀ の 1/10 以下の 被爆線量で,照射後早期に精巣の大いさが変化したこと は,マウスの場合に比べて,ドロソフィラ精巣の方が放 射線感受性大であると思われる。

3. ドロソフィラ精巣に対し, 7線,X線および中性 子の順番で,放射線作用が大となり,放射線生物学の定 説に一致する結果が得られた。

 ドロソフィラ精巣に対する放射線の影響はマウス
ラット等の実験哺乳動物における場合に匹敵するが、 ドロソフィラのLD₅₀ が60,000 R 以上であるため、小 線量よりも、大線量(4000 R 以上)効果のBiodosimetry に適すると思われた。

5. ドロソフィラ精巣は10日令までしか影響評価に 利用出来ないので,放射線の影響を調べる場合は羽化直 後の雄が供試されねばならない。すなわち放射線照射に よる Biodosimetry が照射後数日以内に必要な場合 で,しかも大線量が照射される時,ドロソフィラ精巣は 肉眼的影響診断に便利な材料であろう。

謝 辞

本研究は柏原が文部省在外研究員として、米国カリフ *ルニア大学、教授スターン博士の招きで1960~61の 間にバークレイ動物学教室において行った業績の一部で ある。此処に故Stern博士の御指導と御援助、並びに ロックフェラー財団の援助に深謝する。またデータ整理 に当り田中亮一博士(現日獣大教授)の御協力を得たこ とを感謝する。

文 献

- 1) Bergonie, J. and L. Tribondeau: Compt. rend. Soc. de biol. Par 57, 522 (1904)
- 2) Hertwig, O.: Arch. f. mikr. Anat. 77,
- 1 (1911)
- Hertwig, G.: Strahlen therapie 11, 821 (1920)
- Schinz, H. R. and B. Slotopolsky: Ergebn. med. Strahlenforsch.1,443(1925)
- Regaud, C. and A. Lacassagne: Radiophysiol. et Radiothérapie 1, 1 (1927)
- 6) Wigoder, S.: British J. Radial. N.S.2, 213 (1927)
- 7) Asdell, S. A. and S. L. Warren: Amer. J. Roentg. Rad. Ther. 25, 81 (1931)
- 8) Snell, G. D.: J. Exp. Zool. 65, 421 (1933)
- 9) Nakaizumi, M., K. Murati and Y. Yamamura: Nature **140**, 359(1937)
- 10) Hertwig, P.: Biol. Zentralbl. 58, 271 (1938)
- 11) Snell, G. D.: Radiol. 36, 189 (1941)
- 12) von Wattenwyl, H. and C. A. Joël: Strahlen therapie **70**, 499 (1941)
- 13) Bloom, W.: Phys. Rev. 17, 589 (1937)
- 14) Eschenbrenner, A. B. and E. Miller: Arch Path, **50**, 736 (1950)
- 15) Fogg. L. C. and R. F. Cowing : Cancer Res. 11, 81 (1951)
- 16) Shaver, S. L.: Amer. J. Anat. 92, 391 (1953)
- 17) 柏原孝夫: 近藤恭司: 日畜会報 24, 184 (1954)
- 18) Kohn, H. I. and R. F. Kallman:Brit. J. Radiol. 27, 586 (1954)
- 19) Oakberg, E. F.: Radiat. Res. 2, 369

(1955)

- 20) Russel, W. L. and L. B. Russell: J. Cellular Comp. Physiol Supple, 1, 103 (1954)
- 21) Friesen, H.: Biol. Z., 6, 1055 (1937)
- 22) Fritz-Niggli, H.: Proc. I. C. P. S.Atomic Energy, Geneva, 11, 179 (1956)
- 23) Welshons, W. J. and W. L. Russel: Proc. N. A. S., 43, 608 (1957)
- 24) Demerec, M.: Biology of Drosophila

p. 508 (1965) Hafner Pub. Co.

- 25) Nour El-Dine, A. A., S. Ismail and A. M. Soliman: J. Egypt. vet. med. Assoc. 35, 93 (1975)
- 26) Bacq, Z. M. and P. Alexander: Fundamentals of Radiobiology p. **299**(1961), Pergamon Press.
- 27) Upton, A. C.: Radiation Research 4, (1956) Academic Press.

THE EFFECTS OF IONIZING RADIATION ON THE SIZE OF DROSOPHILA TESTIS.

TAKAO KASHIWABARA

The morphological changes of Drosophila testis were investigated during 30 days after irradiation of X-, γ -and Neutron-rays (Fig. 2~7).

The size of testis was decreased by about 30% after the 4-6th day of 4,000R-irradiation.

It may be concluded that the reduction of size of the irradiated testis is one of the biodosimetry in *Drosophila melanogaster* in much the same way that they have been obtained from male mice.¹⁷⁾

(Sci. Rep. Fac. Agr. Ibaraki Univ., No.31, 33 ~ 41, 1983)