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Stability of Tridiagonal Systems of Linear Equations

Morisuke Hasumi* and Hiroshi Onosg*

1. Introduction. The purpose of this note is to give some sufficient condi-
tions for the stability of tridiagonal systems of linear equations. This study was
suggested by a recent paper by T. Torii (2). We consider a one-parameter
family of systems of linear equations
€] AC)x(h)=f(h) O ho)
where x(%) and f(Ah) denote real (or complex) n-dimensional column vectors and
A(R) denotes an nxn tridiagonal matrix

/(B e (R 0\
as(h) be(h) c.(h)
| ar(h) bs(h) cy(h)
@ A= ] . . .
|

L n1(h) bpr(B) cn-1(h)
0 a, () by (R
The dimension n depends on the parameter . We suppose that
3 n(h) — o as h — 0.

Such a family will appear when we want to solve certain differential equations
by finite difference methods. In that case the parameter 4 will stand for the
mesh size. We may consider a family with a finite number of parameters but a
similar treatment is possible. We assume that A(%) is inversible for each 0<%
< hy and furthermore that

€)) supnso | AR I} <+oo.

Here the norm || 77| of an nxn matrix T=(¢;) is given by

(5) | Tll =max @-gnEf AR
»

In accordance with Torii (2], we say that the tridiagonal systems (1) (or, more
precisely, the family, 4(4)) are stable if

{6) supy ol AUl)'l I <{Hoo.

Torii 2] has given a formula for expressing || A(Z) ' || in terms of fundamental
solutions of certain homogeneous system associated with the matrix A(%) and
discussed conditions under which (6) holds. Our conditions for (6) given in the

present paper are expressed in terms of the coefficients a,(h), bx(h) and c.(A)
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themselves. Therefore our conditions may be easier to handle than Torii’s. Here
we shall not discuss unstable cases as well as other problems relating to the
capacity of computers.

2. Basic observations. In order to estimate the norm of the matrix A(A)"?Y,
we factorize A(h) into two triangular matrices L{#) and R(%) as follows:

D ACR)=L(HR(R
where
(k) 0 r k) si(h) 0\
(1) pu(h) ORO) |
LC}OZI g:(h> pa() and R(h) = ) : : : . }
k .. ’. Tn-1(h) $n1(h) )
0 (k) pu(h)/ 0 m(h) /-
Then we have
ax(B) = qre(A)7i-1Ch) 25k<n(h),
(W =p (D (k)
® Bl R) = ()1 (B + gl W) s (B 2<k<n(h),
cx(R) =pe(R)sK(h) 1<kZn(h)—1.

This factorization device is known to be the Gauss method (cf. Henrici [1; p.
3527). Putting L(A)t=(cy;(h)) and R(h)"*=(d;;(h)), we get, after a simple com-
putation,

(0 <J

cy(h) = i L/p(R) i=j

(=11 ¢5:1(A)g42(h)---q:(h) i>7

DR (h)-p()
and

0 i>j

diy () = } 1/ri(h) i=
(_1>j__iSi<h>5i+1<]z)"’§j-1(h> B i< 7

T@(h)f{*—l(ﬁ)"'?’j(h)
Since we have A(A)~'=R(h)~'L(A)~' and therefore || AR || <
JRCAY-HI 1 L(A)-']|, the condition (6) holds if

® sup asol] LA <400
and
(10) Sup r>o I RCE)= I <+ oo

Using the formula (5) for L(A)™!, we get

FLCR)=H || =max ygrgnmy (1 +ux(h) Fun( -1+ +un(W w1 (B --us(B))/ | px(h) |
where w(A)= 1 gu(h)/pr-1(R) | for 2<k=<n(%). So a sufficient condition for (9) is
the following:

an inf o<n, 1gr=aen | pu(h) 1 >0 and lim sup wux(A)< |

where the “lim sup” is taken along the directed set{(%, £): 0<h<hy and 1<k<Z
n(h)} with the partial ordering (%, 2) <(%, /), meaning that A<k’ and iz/h.
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On the other hand, we can write || L(h)~*{| in the form

ML =max | signe (1 pelh) ™ | +o'u(h) | pe-i(R) | 7

F ' (MW (h) | pr—e(h) | 1 +u, (DWW ea (B -t'o(Ch) | pu(R) 1 ~Y)
where wi(h)= | gu(h)/pr(#) | , so that the second condition in (I1) can be rep-
laced by lim sup #'x(h)<_ 1. A similar observation can be made for R(%4)~! and
we get the following
Treoren 1. The tridiagonal systems (1) are stable if any one of the following cases

occurs: (i) (P, (P, (Py), (Pp; (i) (P, (P, (Py), (Py); (i) (P), (P, (B,
(PD; (Gv) (P, (P (P, (P)); where

(PO inf CipCh) 12 0<Ch<hy, 1Sk=n()] >0,
(Ps) inf Clr(h)]: 0<h<lhy 1SkZn(l)] >0,
(P lim sup | gesr()/puCh) | <1,

(Py) lim sup | ¢:(W)/pu(h) 1 <1,

P lim sup | sy(A) /(B | <1,

P lim sup | se(A)/mlh) | <1

In what foilows, we shall try to get some conditions on the coefficients a;(h),
bx(h), (k) themselves which imply one of the four cases mentioned in Theorem 1.

3. Conditions on the moduli of «.(%), 6.(%) and ¢ (A). In this section, we
obtain some relations between the moduli of the coefficients ay(h), 8:(h) and ¢ (h)
which imply the stability of the systems (1). First we show

Turoren 2. If there exist constants v, 6 and e such that

0=r<l, 0=6<l, 0<e

and, for all 0<h<hy,

(12) [ o) | Zes 10D | —7 [ era(h) | =e Sfor 2<k<n(h),

(13) fae(h) | =v 16D |, | an() | ZrC ol | =71 | ce-a(A) 1)

Jor 2=Zk<n(h),

a4 (A+70) L a(h) | S0 ] beaa(h) | Jor 1=<k=n(h),
then the systems (1) are siable and we have
e 1

Proof. To see this, we put p,(h)=p.(h)---=1. This is clearly possible. We

first fix an A so that we do not write the parameter £ explicitly. We want to

show that | ¢u(h) | <7 for all 2<i=<na(h). Clearly, | ¢ | =|a/n | =1a/b | <r
by (13). Supposing | ¢ | <v for k<n(h), we have

[ oo | =1 @ |/ b—quer-1 | ST s | /(b | —7 L ara [ DT
in view of (12) and (13). By induction we get the desired result. Since pp=1
for all &, we thus see that (P,) and (Py) are true. Moreover, |r | = | b, | =¢
and

brel = bi—quer-1 | Z [ bl — 1 sl leicr | 20| —7 [ o1 | Ze

for 2 <k<n(h) by (12), so that (Fy) is true. Finally we have
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Pse/tran | =1 o/ rer—qrarce) | S e | /Cl bgar | —7 [ or | DS0
for 1=<k<n(h) by (14). So we have (P,). Hence our conditions imply the case
(i) of Theorem ! and therefore the systems (1) are stable. It is easy to see from
the estimates for | ¢x|, | 7|, | s/7s | that we have the desired bound for
14, Q. E.D.
Turoren 3. If there exist constants y, 8 and e such that
0<<r<l, 056<1, 0<e
and, together with (12) and (13),
s) Foe) | =0C T be(h) | —1 | e () 1) Sor 2=k=n(h)
is true, then the systems (1) are siable and the estimate for || ACh)~'|l is the same as in
Theorem 2.
Progf. We see as before that (12) and (13) imply (Py), (P), (&) (and (P)).
Now it follows from (15) that (we again omit &)
[se/re | = | e/ Cor—qrei-D | S lee | /(L b | —7 | e | D=0
because | g; | <7. So we have (P/) and consequently the case (ii) of Theorem
1. Q.E.D.
Similarly we get the following two theorems.
Turorew 4. If there exist constants v, & and e such that
0=sr<l, 00«1, 0<e

and
(16> Vo) | =& | bu() | —71 1 ax(h) | Ze Jor 2=k<n(h),
an laWisrio, la® | =rCl (D —rlalh)|)

Jor 2=k=n(h),
(18) (A+7rd) Jalh) | =61 bu(h) | Jor 2<k=n(h),

then the systems (1) are stable and the estimate for || ACR)~'|| is the same as in Theorem
()

Tueorem 5. If there exist constants v, 6 and e such that
0=r<l, 00, O<e
and, together with (16) and (17),
a9 [ara(R) | Z0C) bu(h) | —7 | ax(h) | D Jor 2=k=n(h)
is true, then the systems (1) are stable and the estimate for || ACh)™'] is the same as in
Theorem 2.

These theorems can be proved by setting r,(A)=r,(A)= -~ =1 and we omit
the proof. Obviously, if we assign other non-zero values to p,(%), p.(h),... (or
to r(h), r.(h), ...) which satisfy (P,) (or (P.,)), then we get theorems similar to
Theorems 2 through 5.

Cororrary 1. If la(B) | =]aB) | = - =a, |b6,(B) | =]|by(h)| = =b,
fe() | =1 elh) | = =¢, and if a+c<b, then the systems (1) are stable and we

have
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1
A N —
A=) £

Proof. First we suppose that ¢<la. If ¢=0, then we can take y==a/b, 6=0 and
e==b in Theorem 2 so that we get the corollary. Now let ¢>0. If we put f(f)
=ct*—bt+a, then f(0)==a=0 and f(1)=c—b+a< 0 by assumption. So the smaller
root of the equation f(¥)=0, which we call r,, satisfies 0 <7,<1 and the other
root, 7; say, is larger than 1. We have

To=(0—(*—4ac)'’*) /2
and 71=Cb+(b*—4ac)*/)2¢.
If we put
co=b—71c=(b+(b®—4ac)'*)/2, and
0=¢/(b—7106)=2¢/(b+(*—4ac)'*),
then y=v,, =0, and e==¢, satisfy the conditions in Theorem 2 and a simple
computation proves the corollary. Q. E.D.

In particular, this corollary can be applied to the case in which a.(2)=as(k)
= ... =qa, b(h)=b.(k) ---=b and ¢(F)=c,(h)= --- =¢. Torii [2] has shown, among
others, that, if a, b and ¢ are real, and if |a+c| < |b], then the systems (1)
are stable. When a and ¢ have the same sign, our corollary covers this result.
In the next section, we shall find conditions which will imply Torii’s result in
case ac<0.

Cororrary 2. Suppose that we have two families of tridiagonal matrices {ACh)} and
{4/} with a(R)=n'Ck) for all 0<h<ho If {A(R)} satisfies the conditions of any one
of Theorems 25, and iof

TadW 1S la®) ], 1o/ Z 18R], [ =1 ()|
Jor all possible h and k, then the family {A’(h)} is also stable and || A'(l)~ | < 1 AR ]
Sor 0O<h<hy. In particular, if there exist positive numbers a, b, ¢ such that a+c¢ <b and
Var(h) | Za, | b(h) | b, | el | S, then the family {A(R))} is stable and
AR 1 £1/(b—a—c) for 0 h<lhy.
This is trivial and so we omit the proof.
4. TFurther conditions for stability. We begin with the proof of Torii’s

theorem mentioned in the last section.

Treoren 6 (Toril (20). Let as(h)=a.(h)= --- =a, b)(h)=by(h)= --- =b, and ¢, (k)
=¢,(h)=--- =¢c. If a, b and ¢ are real, aud if |a+c| <|b|, then the systems (1) are
stable.

Proof. If ac=0, then Corollary 1 in the last section implies this theorem so
that we assume ac<0.

We suppose that a>0, $>0 and ¢<0. Putting p,(A)=p.(A)=...=1 in (8), we
get, by omitting 4,

a=qte— (2ZK), b=r, b=rct+eq 2=k, c=5:(1=k). So if we put g(®)=a/(b
—ct), then grri=g(qy) for k=2. It follows easily from our assumption on a, b, ¢
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and ¢,=a>0 that gy, ¢, ...are all positive and tend to the limit ¢« that is given
by g(gw)=(e, 1. €., go=(b—(b>—4%ac)"?)/2c. As 0<¢q.<1, we see that (P,) is true.
On the other hand, r,=b, rp=b—cq,=>b for k=2. So (P,) also holds. The sequence
{ri} tends t0 re=06—cgu=Cb+—4ac)1)/2. As —a—cb, we see by a simple
computation that | s/r.|=]c| /e~ 1¢| /re<l. Thus (£;) holds and therefore
the systems (1) are stable.

A similar argument works for other combinations of signs for a, & and ¢.
This establishes the theorem. Q. E. D.

The following theorem gives a partial generalization of Theorem 6.

Tueoren 7. Suppose that ar(h)Z=0, bl A)Z=0, cx(h) =<0, and the following conditions

are satisfied:

(€] a==in{ [(bp(h)—Cbr(h)?—4ar 1\ (B)ek—1 (DY) /205-1(h) ¢ ce-1(B)03>>0,
@n B=lim sup (br(h)—(bx(h)*—4ai a(B)ci (I /201 (A1
the limit being taken for such k as c._y(A)=:0,
22) y=sup L(ara()/bx(h): cu-r(B)20] < o0,
(23) o=lim sup ar.:(A)/bu(h) <1
the limit being taken for such k as ar(h)ex-1(h)=0,
@24 r==lim sup @ .2(A)bx(R)/ (bR b () —ars1 (e (A))<1
the limit being taken for such k as ay(hyee—1(h)=0 and ar ((B)ex(h)3:0,
(25) e=lim sup @c1(£)/(br(h)—ci—s(h) 6) <1
where ==y a*/(a®+71—a) and the limit is taken for such k as c.-1(h)=:0,
(26) E==lim sup | (A | /bu(h)<1
the limit being taken for such k as awh)ci—(h)=0,
27N y=lim sup bx—1(h) | ee(h) | /Clir(BDbu(D—ar(h)ci-1(R)) <1
the limit being taken for such k as apy(h)ce1(R)=c0 and ar-1(A)ci-2(A)=0,
(28) F==lim sup | (k) | /(bu(h)—cea(h)o) <1
the limit being taken for such k as cv-,(h)=0,
29 inf (k) >>0.
Then, the systems (1) are stable.
Proof. We put p(h>=p,(h)=...=1 in (8). Then (P)) is trivially true. Next

we shall show that ¢,(A)=0 for all 2<k=<n(h). Since r,(h)=b,(k) >0, g:(h)=a:s(h)/
b (A)=0. Since A(h) and therefore R(%) are inversible, 7.(A)=by(h)—cr—, (W gr( A=
0 so that grr1(h)=ar1(h)/ (br(h)—cior(ADg(h)). So, if g:(A)=0, then gra(A)=0 as
far as k+1Zn(h). Hence, by induction, ¢y(2)=0 for all 2<i<n(k). Thus,

infiz1 | 7% | =infiz21(br—cr-19s) Zinfiz1b: >0 ‘
by (29), so that (P;) also holds.

We shall show (P5): lim sup ¢x(A)<{1. In order to avoid notational complic-
ation, we omit the parameter £ below. By our hypothesis, there exist an >0
and an N such that, for £>N,

(30) 0<a =S (by— (b2—4ar 4100 DY)/ 201 B+e <L, if 51560
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(€2))] aps/ xS o+e<l, it awer-1=0,

(32) Apy1bx—1/ (br—1br—arci1) <t +e <1, if arop—1220, ar—10p—2=0,
and

(33 a1/ (bp—cr-16) S+, if cp130.

We put p=max(B+e, o+e, v+e, £+e). Let k=N -+m, where m is sufficiently large
and will be determined later.

(@) If arr—1=0, then grii=ar.1/bpeZlo+e<p by (31).

(&) If ax.1=0, then ¢i,1=0p.

(@) If ar==0, awcr-12=0 but ag_ick_»=0, then gx=ay/br—1, so that

Grt1=0x +1/ (br—Cr1qr) =@+1/ (b—cr—1{ar/ br—1))
=@ 11031/ (br—rbr—ancr—1) <t +<p
by (32).

(d) Suppose in general that aiaak@i—. - - ar—==0, Cr—iCi_2 . . cr—i—17=0 and
@p—im1bi-t—2==0 for some ¢ such as 1=i <m. Then, by (31), ¢ie=at—1/bpi1 S0 +¢
<1. As we shall see below, this implies that gy_;+1228. Moreover (32) implies that

qk—-i-{-1:ak—t+1/<blx'—-f—'€k-—-i~—lqk—i)
=g 10mte1/ (Btmim1Omr— At iCipmim1 ) ST+ <L
So we have 0= qr—11<p. It follows easily that 6<g<p for all k—i+1Z(<k+1
and in particular dZgra1Sp.
We note that the hyperbola
r=f)=ra?/(a?+(r—adx)
passes the points (0, v) and («, a) and the hyperbola,
y=fo(x)=a;/(bj1—Cj2%), with j=k—i+]1,
cuts the y-axis at y=a;/b;~1 (=7 by (22)) and the line y=x at
8= (bjm1— (bjmr?—4as6—2)"*) /2022 ax.
So these two curves intersect for some x between 0 and « and therefore we have
S folxe) for x=2a. Thus,
Gi—iv1=f2(qr—) >fo(1) = f1(1)==4,
which we had to show.

(¢) Finally we suppose that ap,1@ie—1. ..%k-m=0 and ci_ii—z. .. Croma=5=0. If
r=<1, then gy=gp—n=7<l. This implies §<gy.1Sr<1 and therefore d=gy;.=p.
Censequently 0<Zge1<0.

If y>1, then we argue as follows: we put

Sfs)=(r0—(y —k—edx)/d
and define two sequences {#, 4, ...}, {v, vy, ...} by setting inductively
vi=71, #5=2£1(0), vim=fa(#) for j=1.
It is easy to see that {v;} is decreasing, {#;} is increasing, and, after a finite
number of steps——m, steps, say——we shall come to the situation in which
P <O o1 AN £+ e Vmer1 S Some If 0=5¢y<1, then 0Z¢gn.1=0, so that, as
we remarked in (d), 0<qi<p. If gy> 1, then ¢ny41<<d. So we may assume
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without loss of generality that 0<gy< 8. Then we have successively the following :
d<a<lgr < falgw) < fo(O)=71=v,
E+eZqre:> filo)=u,
5<QA7+3<ﬁ;<ﬂ1):U2;
k+e2qyes> [i(0s)=ph,,
k+eZgwramo> [1(Vme) == tmes and
5<9N+27no+1§f3</v‘mo):UmD+1§1-
So we have 0 <gyimesre=p and thus 6<gp. <p provided N4+2my+1< k<n(h)—1.
(a&)— (&) cover all cases that can occur; so we conclude that ¢.(A)<p for
all N+4-2my+2<k<n(h). Hence lim sup | go(h) | <l and the property (FP) is
established.
In order to show (Py), we take N so large and e so small that, together with

(30), (31), (82), and (33), the following are also true: for £>N,

(34) | e | /b= E4e<], if ayer1==0,
(35) biey | e | /(brmrby—aper ) <y +e< 1, il apee—1220, ar—ico—2==0,
(36) [ee | /Cbe—cr10) = +e <1, if ceap0.
Then we argue just as before: we take m large and let A= N+m.
(@) 1If aper==0, then ¢;=0 so that |s/r, | = || /bs<E+e, by (34).

(8" 1If =0, then | s/r| =0.
() If 630, apoe320 but @i—ice—2=0, then ¢x=a/bi-i, so that, by (35),

I se/76 | = | o | /Ch—comrgi)=br-1 | 6k | /(br—rbr—arco—1)Zn+e.
(@) Suppose that @par— ... ax— F0 and ce_; . .. i1 320 but ap_i_icp—is =0
where 1<i<m. Then the argument in (d) proves that d<¢;<p. So, by (36),
Vse/re l = | 6 | /(bp—Crmrgi) = 1 61 | (Du—cxa0) 8+,

(¢’) Suppose finally that @ ... gm0 and cpp—r . . . co—m—s =0.

As was shown in (¢), we have §<¢,<p if we take m=2my+1. So we also have
[ su/me | £ +e.

Summing up, we see that [ s/7. | < max (§+e, y+s, {+e) <1 for all large
k<n(h). Hence we have (P;) as desired. Thus the case (ii) (or (iv)) in Theo-
rem 1 happens and so the systems (1) is stable. Q. E. D.

We can obtain an analogous theorem for the case a,(£) <0, 6,(2)=0, ¢.(A)=0,
but we do not state it here. It is clear that Theorem 6 for >0, 6>0, ¢<0 is

included in Theorem 7.
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