二硫化炭素の気相拡散係数の測定*

長坂實上**, 平井 洋***

(昭和52年8月10日受理)

Gaseous Binary Diffusion Coefficients of Carbon Disulfide MINORU NAGASAKA and HIROSHI HIRAI

Abstract: -The improved Stefan method was used to measure the binary diffusion coefficients of carbon disulfide (CS_2) in hydrogen, helium, nitrogen, air and argon at one atmospheric pressure. The measurements were made at a temperature from -10° C to 40° C at intervals of 5°C. The temperature exponent for each system was calculated.

緒 言

気相拡散係数は化学工業における吸収,吸着等を考え るときの基本的な物性値である。その値は多数の系につ いて実測され,また,推算式も多数報告されている。し かし,そのほとんどの実測値は一つの温度に対するもの であり,広い温度範囲にわたって実測した例は少ない。 また,拡散係数の温度指数は他の温度での拡散係数を推 算するとき用いる有用な値であるが,この温度指数につ いての報告も少ない。そこで,比較的実験の容易なステ ファン法(蒸発法)で二硫化炭素の水素,へリウム,窒 素,空気およびアルゴン中での拡散係数を-10-40Cの 温度範囲で測定し,温度指数も求めた。これらの値をこ れまでに報告されているWinkelmann および Lugg^のの求 めた実測値と比較した。また,推算式としてよく用いら れるHirschfelder 6^{10} および Fuller 6^{20} の推算式による 値と実測値を比較し検討した。

実 験

2成分系気相拡散係数の測定に改良ステファン型セル を使用した。その概略をFig.1に,また,拡散セルの詳 細をFig.2に示した。ステファン法は操作は簡便である が,精度の面で劣るといわれてきた。そこで,実験装置 による誤差をできるだけ除くために次の点に特に注意し て装置を作成した。

- a) 拡散セルの毛細管の内径および外径は一定である こと。
- b) 測定用窓ガラスの厚さは一定であること。

使用した毛細管はパイレックス製で真空成型したもの であり(シゲミスタンダードジョイント㈱製),内径

Fig. 1 Schematic diagram of experimental apparatus.

^{*} この報文を「気相における拡散係数の研究(第7報)」とする。

^{**} 茨城大学工学部工業化学科(日立市中成沢町)

^{***} 現在, 原電事業株式会社(茨城県東海村)

Fig. 2 Diffusion cell.

0.10 cm, 外径 0.60 cm, 有効長さ 8.0 cm および 20 cm の 2 種 類であった。恒温槽前面の測定用窓ガラスとしてパイレ ックス製磨板ガラス(水戸理化ガラス㈱製,厚さ0.50cm) を使用した。後述の拡散係数の値から、その毛細管の径 および板ガラスの厚さが実験誤差内で一定であることを 確認した。毛細管を接着した拡散セルを恒温水槽(また はメタノール槽)中に固定した。実験温度は-10~40℃ で5℃間隔であり、水銀温度調節器で±0.03℃以内にな るように恒温槽の温度を調節した。標準温度計を用いて 0.01℃の精度で温度を測った。水素、ヘリウム等のガス を恒温槽の温度にまで加熱(または冷却)するために銅 管製のコイルを使用した。コイルにした銅管は内径 0.4 cm, 外径 0.6 cm, 長さ10 m であり, ガスを恒温槽の温度 と同一にするのに十分な長さであった。拡散路の長さは 気液界面と毛細管上端との距離であり、読取顕微鏡を用 いて0.001cmの精度で測った。測定時間はガスの種類およ び実験温度により2~36時間であった。蒸気圧が高いほ ど, また拡散路長が短いほど蒸発速度は速くなり, 測定 時間は短くなる。しかし,蒸発速度があまり速いと,蒸 発に伴り気液界面の温度低下が起り、その結果として測 定された拡散係数は本来の値より小さくなる。それゆえ、 本実験では蒸発による界面温度の低下を無視しうるよう に、拡散路長を十分長くとって実験した。なお、全ての 測定に対して2cm以上の拡散路長を使用し、さらに一応 の目安として、液面が1 cm低下するのに2時間以上を要 するように拡散路長を決めて実験した。100~500 cm³/ minのガス流量で測定した拡散係数の値が測定精度内で

一定となることを確認したうえで、250 cm³/minのガス 流量で実測した。また、このガス流量においては毛細管 9) 上端付近で渦は出来ていないことを計算により確かめた。 使用した2種類のセルで拡散路長のみを2~8 cmおよび 5~20 cmに変化させても得られた拡散係数は±0.2%以 内で一定となった。実験圧力は実験室の大気圧であり、 普通、実測の開始時および終了時の気圧の平均値を実験 圧力として用いた。実験時間が8時間以上となるときは、 5時間毎に大気圧を測定し、それらの平均値を使用した。 水銀気圧計により0.1 mmHgの精度で気圧を測った。拡 散係数の値は1気圧(760 mmHg)に補正された値である。

二硫化炭素は試薬特級品をObachの方法¹¹⁾により測定の 度毎に再蒸溜して使用した。再蒸溜に際し,溜出物の捕 集には褐色の共栓三角フラスコを使用し,光および外気 にさらされないように注意した。その溜出物の臭いは一 種の芳香があり,不快臭ではなかった。しかしこの臭い は日数の経過とともに徐々に不快臭に変った。また,溜 出液を通常の透明なガラスの三角フラスコに保存した場 合,1週間ほどで黄白色の浮遊物を生じた。そこで,こ れら臭いおよび浮遊物の拡散係数への影響を調べるため に次のような3種類の予備実験を行なった。

- ロ) 再蒸溜後無色の共栓三角フラスコ中に試料を保存 する。
- ハ)市販の試薬特級品をそのまま褐色共栓三角フラス コ中に入れ保存する。

3種類の試料を試薬棚に保存し,数日後その試料を用いて拡散係数を測定した。試料の保存状態および保存日数の拡散係数への影響を調べた。

ガス(H_2 ,He, N_2 ,Air およびAr)は市販のボンベ 詰のもの(日立酸素㈱,空気以外は 99.9 vol の以上)を 使用した。そのさい,五酸化燐の粉末を詰めた乾燥管で 乾燥して使用した。

結 果

¹²⁾ 拡散係数を次式により計算した。

$$D_{AB} = \frac{(Z_{\theta}^2 - Z_0^2)}{2 \theta} \cdot \frac{R T \rho_L}{M_L P} \cdot \frac{p_{BM}}{p_{AL} - p_{A0}}$$
(1)

ここで、各温度における二硫化炭素の密度および蒸気圧 は文献にある式より算出した。 $^{3),5)}$ 拡散係数の実測値を Table 1 に示した。また、 $CS_2 - H_2$ および $CS_2 - Air$

Table 1	1 Experimental Diffusion Coefficients for Carbon Disulfide in Gases at						
	1 atm.			15	3	0.1036±0.0001	0.1036
				20	5	0.1070 <u>+</u> 0.0002	0.1067
				25	4	0.1103 <u>+</u> 0.0004	0.1098
Temp.	No. of	Diffusion coefficie	nt cm²/sec	30	6	0.1124 <u>+</u> 0.0004	0.1130
°C	data	Exptl.	Recalcd.	35	4	0.1156 <u>+</u> 0.0001	0.1161
		H ₂ - CS ₂		40	3	0.1197±0.0005	0.0094
-10	2	0.3682±0.0011	0.3659 ^{b)}		-		
- 5	2	0.3768±0.0016	0.3781			Air - CS ₂	
0	4	0. <u>3906±</u> 0.0010	0.3906	-10	2	0.0884±0.0001	0.0879
5	2	0.4020±0.0007	0.4032	- 5	2	0.0910 <u>+</u> 0.0000	0.0907
10	4	0.4163±0.0006	0.4160	0	2	0.09 <u>36±</u> 0.0001	0.0936
15	4	0.4280±0.0005	0.4290	5	2	0.0960 <u>+</u> 0.0002	0.0965
20	4	0.4418±0.0014	0.4422	10	2	0.099 <u>3±</u> 0.0004	0.0995
25	2	0.4551±0.0017	0.4555	15	2	0.1020 <u>+</u> 0.0003	0.1025
30	4	0.4689 <u>+</u> 0.0008	0.4690	20	2	0.1049 <u>+</u> 0.0000	0.1055
35	2	0.4837±0.0005	0.4827	25	2	0.1085 <u>+</u> 0.0001	0,1085
40	6	0.4973±0.0014	0.4965	30	2	0.111 <u>3+</u> 0.0000	0.1116
		He - CS ₂		35	2	0.1154 <u>+</u> 0.0002	0.1147
-10	3	0.3329±0.0007	0.3317	40	4	0.1185 <u>+</u> 0.0001	0.1179
- 5	4	0.3426 <u>+</u> 0.0008	0.3428			Ar - CSc	
0	6	0.3533 <u>+</u> 0.0015	0.3540			A1 - 0.02	
5	2	0.3653 <u>+</u> 0.0007	0.3654	-10	2	0.0786±0.0002	0.0783
10	6	0.3771±0.0010	0.3769	- 5	4	0.0807 <u>+</u> 0.0003	0.0808
15	3	0.3869±0.0010	0.3886	0	4	0.0833±0.0001	0.0834
20	4	0.3993 <u>+</u> 0.0002	0.4005	5	2	0.0864±0.0003	0.0861
25	2	0.4151±0.0004	0.4125	10	4	0.0890 <u>+</u> 0.0003	0.0888
30	2	0.4245 <u>+</u> 0.0007	0.4246	15	2	0.0912 <u>+</u> 0.0002	0.0915
35	2	0.4371±0.0014	0.4369	20	2	0.0937±0.0001	0.0942
40	4	0.4494+0.0007	0.4494	25	2	0.0963 <u>+</u> 0.0002	0.0970
				30	4	0.0999 <u>±</u> 0.0004	0.0998
		$N_2 - CS_2$		35	2	0.1029 <u>+</u> 0.0001	0.1027
-10	2	0.0888±0.0001	0.0888	40	2	0.1063 <u>+</u> 0.0000	0.1056
- 5	2	0.0916±0.0000	0.0917		d a	istion	
0	2	0.0943±0.0004	0.0946	a) Aver	age dev	animentel data he	o of the
5	2	0.0977±0.0000	0.0976	ססמג (ס		erimental data by us	e or the
10	4	0.1008 <u>+</u> 0.0004	0.1006	temperature exponent (m) for each sy D6			n system.

Fig. 3 Diffusion coeffcients for carbon disulfide : (○) this work, (△) Winkelmann, (□) Lugg, — this work, ---H.C.B. Eq., ----- F.S.G. Eq..

Fig.4 Change of the diffusion coefficients with time elapsed, CS2-Air 25℃:
(○) storage in an amber bottle after redistillation, (△) storage in a glass bottle after redistillation,
(□) storage of special grade reagent in an amber bottle.

系については Fig.3 の a)および b)にも示した。各々の実 測値の平均誤差は 0.3 %以内であり,再現性は非常に良い。 CS2-Air系で行なった予備実験の結果は Fig.4の 如くになった。

気相拡散係数は温度指数(m)を用いて近似的に次のように書くことができる。

Fig. 5 Temperature exponent, $CS_2 - H_2$.

Table 2 Temperature Exponents of Diffusion Coefficients for Carbon Disulfide at 1 atm.

Carrier	Temp.	No. of	Temperatu		
gases	range (°C)	data	Exptl.	Calcd.	Winkelmann ¹⁵⁾
H2	-10 ~ 40	36 ^{a)}	1.755±0.001 ^{b)}	1.877°)	2.01 d)
He	-10 ~ 40	38	1.745±0.001	1.723	
N ₂	-10 ~ 40	37	1.701±0.001	1.898	
Air	-10 ~ 40	24	1.689±0.002	1.933	2.11
Ar	-10 ~40	30	1.722±0.002	1.912	

a) Total number of data in temperature range of -10 ~40 °C.

b) Standard deviation.

c) Calculated values by use of Eq. (3).

d) Calculated values from data at 0 °C and 32.8 °C.

$$D_{AB} = D_{AB0} \left(\frac{T}{T_0}\right)^m \left(\frac{P_0}{P}\right)$$
(2)

ここで、実測値はあらかじめ1気圧における値に補正さ れているので(P_0/P)の値は1になる。(2)式によれば、 拡散係数の実測値とその時の絶対温度を両対数クラフ用 紙にプロットすれば直線となる。 $CS_2 - H_2$ 系について **Fig.5**に示した。その直線の式を用いて再計算して得た 拡散係数の値もTable 1に記入した。**Table 2**には-10

	at 1 atm.					
				Molecule	0 [Å]	€/k [°K]
System	Investigator	Reported Temp.[°C]	values D [cm ² /sec]	H ₂	2.827	59.7
CS2 - H2	Winkelmann ³³⁾	0	0.369	He	2.551	10.22
		19.9	0.425			
		32.8	0.4626	Nz	3.798	71.4
CS ₂ - Air	Winkelmann ¹³⁾	0	0.0883	Air	3.771	78.6
		19.9	0.1015	٨٣	3 51.0	07 7
		32.8	0.112	AL	5.542	92•2
	Lugg 7)	25	0.1045	CSz	4.483	467

Table 3 Comparison of Gaseous Diffusion Coefficients for Carbon Disulfide at 1 atm.

℃~40℃の温度範囲における温度指数を示した。5つの 系における温度指数の標準偏差は0.1%程度であった。

考 察

予備実験の結果(Fig.4)から、二硫化炭素では再蒸 溜後10日間位は時間の経過および保存容器の種類による 拡散係数の変化がないことがわかった。しかし、臭いは 1日ではっきり変った。また、市販の試薬特級品につい ては開封時には再蒸溜を行なった場合とほぼ同じ拡散係 数となった。両者とも無色透明な容器に保存した場合約 1週間で黄白色の浮遊物が生じた。この場合でも拡散係 数はほぼ一定の値となった。臭いについては、臭いを変 化させた生成物は微量であり、二硫化炭素の蒸気圧を大 きく変化させなかったものと考えた。また、黄白色の浮 遊物については肉眼で確認できるほど生成しても拡散係 数にはっきりした変化のないことから, この固体生成物 は不溶性かもしくは難溶性のものと考えた。しかし、そ の物質についての詳しい検討は行なっていない。そこで, 本実験では再蒸溜後1日で臭いの変ることを考慮して、 各測定毎に再蒸溜した。

実測値の精度および再現性は Tables 1,2 および Figs. 3,5 を見れば明らかなように非常に良く,全体としての誤差も±0.5%を越えないものと思われる。

得られた実測値を文献値および推算値とも比較した。 Table 3 には文献値として Lugg およびWinkel mann¹³⁾の 値を示した。彼等により報告された拡散係数の値はそれ ぞれの系において怪ぼ同一曲線上にあることが Fig.3の a)および b)からわかる。本実験で得られた値と比較する といずれの場合も数パーセント文献値の方が低い。その 理由として, Lugg の実験においてガス流量が彼の装置 に対して非常に少なく,そのために拡散係数が小さくなったものと思われる。Winkelmannの実験については詳しいデータが得られず検討できなかった。推算式として は多数報告されているものの中より一般に良く用いられ る次の2つを選んだ。一方は理論的に導出された式とし て良く用いられるHirschfelder-Curtiss-Bird式(H. C.B.式と略す)であり,他方は多数の実測値を整理して 得られたFuller-Schettler-Giddings式(F.S.G.式 と略す)である。

H.C.B.式

$$D_{AB} = \frac{1.858 \times 10^{-3} \text{ T}^{3/2} (1/M_{A} + 1/M_{B})^{1/2}}{P \sigma_{AB}^2 \Omega_{AB}}$$
(3)

F.S.G.式

$$D_{AB} = \frac{1.00 \times 10^{-3} \times T^{1.75} (1/M_A + 1/M_B)^{1/2}}{P\{(\Sigma_A v_i)^{1/3} + (\Sigma_B v_i)^{1/3}\}^2}$$
(4)

また、(3)式を用いて計算するときに必要な各成分の(σ) および(ε/κ)の値を Table 4 に示した。(σ_{AB})およ び(ε_{AB})の算出には通常用いられている方法を使用し た。($\sigma_{AB} = (1/2)(\sigma_A + \sigma_B), \varepsilon_{AB} = \sqrt{\varepsilon_A \cdot \varepsilon_B}$) (4)式で用いる拡散容(v_i)の値は文献(2)の値をそのまま 使用した。CS2-H2 およびCS2-Air系の推算値は実 測値および文献値とともに Fig.3 a) および b) に書き入 れてある。また、2つの推算式の値と実測値との差を実 測温度の両端すなわち-10℃および40℃について計算し た結果を Table 5 に示した。CS2-H2 系については両 式とも実測値と非常に良く一致した。CS2-He 系につ

Table 4 Data Used in Calculations by Eq. (3)⁹⁾

Table 5Deviation of Estimated DiffusionCoefficients by H.C.B. and F.S.G.Equations from Observed Ones forCarbon Disulfide in Gases at 1 Atm.

	H.C.B. E	g. ^{a)}	F.S.G. Eq. ^{b)}		
Jases	-10 °C	40 °C	-10 °C	40 °C	
H ₂	1.4 % ^C	:) 0.7 %	-0.3 %	-0.3 %	
He	-12.2	11.8	6.8	6.6	
N ₂	5.5	2.3	1.7	0.8	
Air	5.1	2.1	3.8	2.7	
Ar	4.9	-2.7	-2.2	-6.7	

a) Equation (3)

b) Equation (4)

c) { $(D_{obs} - D_{est_{H}})/(D_{obs})$ } × 100 (%)

いては両式とも実測値との差が大きい。これは、ヘリウ ムに関する実測値の少ないことおよびヘリウムの物性の 特異性によるものと思われる。今後、実測データが集積 されるに従いより良い推算値を与えるようになるものと 考えられる。

Winkelmann¹³⁾は3種類の温度について拡散係数を測定 した。これらの値から計算される温度指数は $CS_2 - H_2$ および $CS_2 - Air$ 系に対してそれぞれ 2.01および2.11と 本実験で得られた値に比べてかなり大きい。また, この ことは Fig.3 からもわかる。H.C.B.式より計算された 温度指数も Table 2 にあり, $CS_2 - H_2$ および $CS_2 - He$ 系では実測値とほぼ一致した。しかし, 他の3つの系に ついてはいずれもH.C.B.式により算出される値の方が 実測値より約0.2 だけ大きな値となった。その理由は二 硫化炭素の分子の形が球形で近似しえないところにある と考えられる。

結 論

改良ステファン型拡散セルを用いて、二硫化炭素の拡 散係数を測定した。−10℃~40℃の温度範囲で5℃間隔 で測定し、十分精度の良い実測値を得た。また、これら の実測値から温度指数を求めた。二硫化炭素と水素およ びへリウムの二つの系においてはHirschfelder-Curtiss -Bird式から計算した温度指数と実測値はほぼ一致した。 しかし、他の窒素、空気およびアルゴンの3つの系につ いては温度指数に約0.2の差があることがわかった。

Nomenclature

D _{AB}	:	binary diffusion coefficient for A	A in B
		(cm	²∕sec)
M_L	:	molecular weight of pure liquid	(-)
m	:	temperature exponent, Eq. (2)	(-)
Р	:	total pressure	(atm)
$\mathbf{p}_{\mathbf{A}}$:	partial pressure of component A	(atm)
P BM	:	logarithmic mean partial pressure	of
		component B	(atm)
${f R}$:	gas constant (cm ³ · atm/g-me	ol•°K)
v i	:	atomic diffusion volumes	(cm^3)
z	:	instantaneous length of diffusion	path
			(cm)

Greek Letters

ε_{AB}	:	maximum attractive e	nergy between A
		and B	$(g \cdot cm^2 / sec^2)$
θ	:	time	(sec)
$ ho_{ m L}$:	liquid density	(g/cm^3)
σ_{AB}	:	collision diameter, d	istance between
		centers of molecules	at zero potential
		energy	(Å)
Ω_{AB}	:	collision integral use	ed in Chapman-
		Enskog kinetic theory	(-)

Subscripts

- 0 : zero time
- 1 : specifies the position at the gas-liquid interface
- 2 : specifies the positions at the top of the capillary tube

 θ : time after start of observation

Literature cited

- Bird, R.B., W.E. Stewart, and E.N. Lightfoot
 "Transport Phenomena", p511,746, Wiley, New York, N.Y., 1960
- Fuller, E.N., K. Ensley, and J.C.Giddings : J. Phys., Chem., 73, 3679(1969)
- Hála, E., I.Wichterk, J. Polák, and T. Boublik
 "Vapour Liquid Equilibrium Data at Normal Pressures", p437, Pergamon Press, London,

England, 1968

- 4) Hirschfelder, J.O., C.F. Curtiss, and R.B.
 Bird: "Molecular Theory of Gases and Liquids", p539, Wiley, New York, N.Y., 1954
- 5) "International Critical Tables", Vol.3, p23, McGraw-Hill, New York, N.Y., 1928
- 6) *ibid.*, Vol.5, p62, 1929
- 7) Lugg, G.A. : Anal. Chem., 40, 1072(1968)
- 8) Mason, E.A., and T.R. Marrero: "Advances in Atomic and Molecular Physics", Vol.6, p155, Academie Press, New York, N.Y., 1970

9) Nagasaka, M. : Journal of the Fuculty of Engineering, Ibaraki University, 22, 107 (1974)

- Reid, R.C., and T.K.Sherwood: "The Properties of Gases and Liquids", 2nd ed., p632, McGraw-Hill, New York, N.Y., 1966
- 11) Riddick, J.A., and E.E.Toops, Jr. :
 "Organic Solvents", 2nd ed., p451, Interscience, New York, N.Y., 1955
- 12) Sherwood, T.K., and R.L.Pigford : "Absorption and Extraction", 2nd ed., p17, McGraw-Hill, New York, N.Y., 1952
- 13) Winkelmann, A. : quoted from "Landolt-Börnstein Table, 6. Aufl., Bd. II/5a, p513, Springer-verlag, Berlin, (1969)".