容量値独立形重み付け電荷生成回路

佐々木克己", 塚元康輔,** 綿引 猛,** 宮田武雄**

(昭和61年9月8日受理)

Capacitance-Independent Type Weighted Charge Generate Circuit

Katsumi SASAKI,* Kousuke TSUKAMOTO,** Takeshi WATAHIKI** and Takeo MIYATA**

Abstract - A unit-charge generater is described which is capable of generating the unit-charge without the use of matched capacitors. The high-accuracy weighted charge is achieved by adding the unit-charge.

Some exact unit-charges are realized by charging and discharging a capacitor through OP-Amp circuits. A cancellation of the offset voltage effect from OP-Amp is attained with symmetrical circuit.

As the experimental results, the unit and weighted charge are accurately generated by means of this method.

1. まえがき

ICの集積度が年々増大し、それに伴い素子の微細化 が進むにつれて、IC内の素子精度に関する問題が次第 に重要度を増している。IC内の素子精度に限界がある 現在、ディジタルーアナログ変換器(以下DACとする) においては素子精度および素子間の不整合に不感である ことが望まれる。

現在 DACの回路構成において,使用する容量値に対 して不感な特性を得る方法は二種類に大別される。その 一つは3個の容量によって電荷を逐次加算して D/A変 換を行う方法⁽¹⁾⁽²⁾,他方は容量アレイによって一度に多 数の容量に単位電荷を蓄積した後にディジタル信号に応 じた単位電荷を加算して D/A 変換を行う方法⁽³⁾⁽⁴⁾であ る。前者は逐次方式であるために変換時間が長くなり⁽⁵⁾, 後者は容量およびスイッチを多数使用するために精度が 低下する⁽⁶⁾欠点がある。

本論文はこれらの点に着目し,容量値に独立でかつ演

算増幅器(以下オペアンプとする)のオフセット電圧に不感 な単位電荷を生成し、さらに加算回路を付加して任意の 重み付け電荷を正確に生成する回路構成を提案する。す なわち,4個の単位電荷生成用容量に蓄積された単位電 荷を全て加算して得られる電荷を循環することで、容量 アレイを用いる方式より少ない容量およびスイッチで逐 次方式より高速な変換が可能になることを示す。

さらに,提案した回路についての測定結果を示し,単 位電荷および重み付け電荷の生成特性について考察して いる。

2. 原理および回路構成

まず,従来の容量値に独立な重み付け電荷生成回路の 基本回路を Fig.1 に示す。 Fig.1 (a)には容量を 3 個使用 した逐次方式を示し, Fig.1 (b)には容量 アレイを用いる 方式について示してある。逐次方式は, Co に蓄えられ た電荷を C₁ と C₂ が直列に接続された回路へ転送した 後今度は C₁ と C₂ を並列に接続して再び Co に転送す

 * 茨城大学大学院工学研究科電子工学専攻(日立市中成沢町) Graduate Student, Department of Electronic Engineering, Faculty of Engineering, Ibaraki University, Hitachi 316, Japan
 ** 茨城大学工学部電子工学科(日立市中成沢町)

Department of Electronic Engineering, Faculty of Engineering, Ibaraki University, Hitachi 316, Japan ることで2倍の重み付けされた電荷を得ている。容量ア レイを用いる方式は,一度に多数のアレイ容量に等しい 電荷を蓄積した後ディジタル信号に応じた個数分の電荷 を一度に加算することで目的の電荷量を得ている。従っ て,逐次方式は素子数は少なくて済むが変換時間が長く なり,反対に容量アレイを用いる方式は変換は速いが素 子数が多くなる。

Fig. 1 The circuit for generating a weighted charge (a) with three capacitors (b) with capacitor array.

本論文では、任意の容量値をもった容量とオペアンプと を組み合わせ、オペアンプ入力端のナレータ近似による仮想 短絡を利用して容量値に無関係に理想単位電荷を生成す る回路を提案する。その回路構成をFig.2に示す。また、 この回路において生成された単位電荷の加算により得ら れる重み付け電荷は、原理的に容量の精度に依存しない。

Fig.2の回路について動作を説明する。図において、 最初にS₁のみをON、Vin=0として全ての容量(Cx、 C₁ ~ C₄)の残存電荷を放電する。次にS₂のみをON としてVinを印加すると、オペアンプのイマジナリ・ショー トにより C_Xの両端の電位差は Vin となる。この時, C_X を含めて C₁, C₃およびオペアンプで閉回路を構成してお り, Q = C_X・Vin なる電荷が C_X, C₁, C₃ にそれぞ れ蓄積される。最後に S₃のみを ON, Vin = 0 とする と, オペアンプのイマジナリ・ショートにより今度は C_X, C₂, C₄およびオペアンプで構成された閉回路に C_Xの放電 電流が流れ, C₂, C₄ にもそれぞれ Qなる電荷が蓄積さ れる。このように本回路では C_X に一回充・放電するだ けで一度に 4 個の容量に電荷が蓄積でき, また C₁ ~ C₄ にそれぞれ蓄積される電荷量(以下単位電荷とする)は, 本質的に C₁ ~ C₄ の各容量値に対して独立である。従 って, この単位電荷を加算回路に転送することにより, 正確に 1~4 倍の重み付けされた電荷が得られる。

Fig. 2 Basic construction of the unit-charge generate circuit.

以上の三方式について, n bit のD/A変換を行うと きのスイッチと容量の数および変換に必要なスイッチ動 作回数の最大値を求めてTable 1 に示す。表より,提案 回路は容量アレイを用いる方式よりも少ない数のスイッ チおよび容量で,逐次方式よりも高速な変換が可能であ ることがわかる。

Table 1 Comparison of three methods.

			n=bit~numbers
	The circuit for generating a weighted, change with three capacitors. (Fig.1(a))	The circuit for generating a weighted charge with capacitor array. (Fig.1.1b)	The circuit for generating a weighted charge with new method.
Capacitor (numbers)	3	2 ⁿ	6
Switch (numbers)	9	2 ⁿ⁺¹	10
Switching — Phase (MAX-numbers)	∑. 	2	n=odd 3 ∏ n=even 3 ∏ − 3

Fig.3 に、オペアンプのオフセット電圧軽減効果について 示す。図中 ΔV_1 , ΔV_2 をそれぞれのオペアンプのオフセッ ト電圧, また CXの両端電圧を V_A , V_B とすると V_A お よび V_B は

$$V_A = V_{in} + \varDelta V_1$$
 , $V_B = \varDelta V_2$ (V) (1)

で示される。従って、CXに蓄積される電荷QX は次式 で表わされる。

$$Q_{\mathbf{X}} = C_{\mathbf{X}} \cdot (\mathbf{V}_{\mathbf{A}} - \mathbf{V}_{\mathbf{B}})$$

= $C_{\mathbf{X}} \cdot \mathbf{V}_{\mathrm{in}} + C_{\mathbf{X}} (\varDelta \mathbf{V}_{1} - \varDelta \mathbf{V}_{2}) (C) (2)$

この時, $\Delta V_1 = \Delta V_2$ ならば式(2)の右辺第二項は消え, $\Delta V_1 \succeq \Delta V_2$ の場合でもオフセット電圧の影響は軽減 される。

Fig. 3 Effect of the offset voltage.

3. 測定および結果

5.1 測定方法

Fig.4の回路図に基づき測定回路を試作し,以下の3 つの場合について測定を行った。

- (i) 全容量(C_X, C_Y, C₁~C₄)の公称容量値(以下 容量値とする)が等しい場合。
 容量値が次の6種類の場合について実側した。
 1(nF), 4.7(nF), 10(nF), 22(nF),
 47(nF), 100(nF)
- (ii) C₁~C₄のうちの1個を22(nF)に対して10(nF) および47(nF)とした場合。
- (iii) C_Xおよび C_Y の容量比を変化させた場合。
 基本容量値を 22[nF]として、① C_X, C_Y 共に
 10[nF]および 47[nF]とした場合、② C_X: C_Y =
 1:2とした場合。

Fig.5にアナログ・スイッチを制御するクロック・タ イミング・チャートを示す。今回の測定においては、ス イッチ制御の各フェーズの周期を使用容量 Cと回路抵抗 Rとの時定数 C・Rの10倍とした。なお、測定にはデ ィジタル・マルチメータを使用し、スイッチの制御クロ ックおよびディジタル・マルチメータの制御にはマイク ロ・コンピュータを使用した。

Fig. 4 Capacitance independent type unit and weighted charge generate circuit.

Fig. 5 Sequence diagram of switches in Fig. 4.

3.2 測定結果

Fig.4 において,入力電圧 Vin とC_X との積 Vin ·Cx を理想蓄積電荷として誤差電荷量 Qerror を次のように 定義する。

 $Q_{error} = (V_{out} \cdot C_Y) - (V_{in} \cdot C_X) \quad (C) \quad (3)$

3.2.1 測定(i)

(a) 単位電荷生成

Fig.6 に,電荷加算器に転送した後の単位電荷生成用 容量 C₁ ~ C₄ 毎の誤差電荷量を示す。 同図(a)は入力電 圧に対する誤差電荷量を示し,(b)は容量値に対する誤差 電荷量を示す。図からわかるように,容量の組み合わせ が同一である場合の誤差電荷量は入力電圧に依存し,ま た入力電圧が一定の場合にも誤差電荷量は単位電荷生成 用容量の値に依存している。

(b) 電荷加算

Fig.7に,電荷加算の組み合わせに対する出力電圧を示す。図より,転送に使用する容量を2個,3個,4個とすると,出力電圧が正確に2倍,3倍,4倍となることが確認できる。

(a) Error charge versus input voltage.

(b) Relations between capacitance and error charge.

3.2.2 測定(ii)

測定(ii)により求められた蓄積電荷から測定(j)で求めた 蓄積電荷を引いて得られた電荷の偏差を $C_1 \sim C_4$ 毎に グラフ化してFig.8に示す。図より,容量値を変化させ た場合に影響を受ける蓄積電荷は,容量値を変化させた 容量に蓄積される電荷であることが確認できる。 3.2.3 測定()))

Fig.9に、 C_X および C_Y の容量比に対する $C_1 \sim C_4$ の誤差電荷量を、それぞれの容量について示す。図より、単位電荷の生成においては、 $C_X \ge C_Y$ の比ではなく $C_X \ge C_1 \sim C_4$ との比の方が生成電荷に与える影響が大きいことが確認できる。また C_X の値による影響は、 C_3 および C_4 よりも C_1 および C_2 の方にはっきりと表われている。

3.3 まとめ

Fig.6(a)において, 誤差電荷量が入力電圧に比例して

Fig. 7 Relations between capacitor combination and output voltage.

Fig. 8 Relations between capacitor combination and charge deviation.

いることから、 $C_1 \sim C_4$ にそれぞれ誤差を生じる容量が 付加されていると考えられる。この誤差を生じる容量の 主な要因は、4.2で述べるようにアナログ・スイッチの 寄生容量であると考えられる。

Fig.6(b)は,容量値の変化により誤差電荷量が変化す る様子を示している。今回の測定では制御クロック1フ ェーズの長さを時定数C・Rの10倍にしており,容量 値が大きくなるにつれてクロックの周期も長くなる。従 って容量値に依存する誤差電荷量の主な要因は,基板等 からのリークであると考えられる。

また,測定(ii)および(iii)に示されるように,本回路は原 理的に容量値独立形ではあるが,使用する容量の比を1 :2というように大きくしてしまうと生成される電荷の 精度が悪化してしまう。この原因の一つとして先に述べ たアナログ・スイッチの寄生容量が考えられ,アナログ ・スイッチの寄生容量が高精度化に大きく係ってくると 考えられる。

4. むすび

4.1 オペアンプのバイアス電流

単位電荷生成用容量Cに蓄積される電荷をQ,オペア ンプのバイアス電流Iにより生じる誤差電荷をqとする と,Qおよびqは次式で与えられる。

Fig. 9 Relations between capacitor combination and error charge.

 $Q = C \cdot Vin \quad (C) \tag{4}$

$$q = \int_0^{\tau} I dt = I \tau (C)$$
 (5)

ここで τ は制御 クロック1 フェーズの周期であり,今回 は単位電荷生成用容量 C とアナログ・スイッチの保護用 抵抗 R との時定数 C · R の 10 倍とした。従って, Q と q の比は

$$\frac{q}{Q} = \frac{I \cdot \tau}{C \cdot Vin} = \frac{10 \cdot R}{Vin} \cdot I$$
(6)

となる。R = 1.2[kQ], | Vin | min = 0.5[V], カ タログ値において | I | max = 200 [pA] であるから, 最悪条件においてQとqの比は次式で与えられる。

$$\frac{q}{Q} \le 4.8 \cdot 10^{-6}$$
 (7)

従って,オペアンプのバイアス電流によるもれ電荷率は 5・10⁻⁴ 〔%〕以下となり,その影響は無視して良い。

4.2 寄生容量およびオペアンプのオフセット電圧 による影響

Fig.10に、容量値を22(nF)としたときの、転送前 における生成単位電荷の誤差を示す。また、Table 2に アナログ・スイッチの寄生容量およびオペアンプのオフ セット電圧による誤差を示す。測定電圧の誤差が1(mV) 程度であるので、±22(pC)の電荷誤差を考慮してFig. 10とTable 2を比べると,測定から求められた誤差電荷 量と、アナログ・スイッチの寄生容量およびオペアンプ のオフセット電圧による理論的な誤差電荷量とが良く一 致している事がわかる。従って、本回路を使用して単位 電荷を生成する場合、主な誤差要因はアナログ・スイッ チの寄生容量およびオペアンプのオフセット電圧である と考えられる。

Table 2 Error charge by parasitic capacitances and offset voltages.

Capacitor	Parasitic Capacitance [pF]	Error Charge by Offset Voltage [pC]	Total Error Charge [pC]
C1	121	-13	121.Vin-13
C2	121	0	121•Vin
C3	0	-10	-10
G4	0	22	22

次に,生成された単位電荷を加算回路へ転送する時の 誤差について述べる。Fig.11に,電荷転送時の誤差電 荷量を示す。加算回路の積分器に用いたオペアンプのオ フセット電圧を測定した結果,2[mV]のオフセット電 圧が確認された。Fig.11は容量値が22[nF]における 結果を示しているので,オペアンプのオフセット電圧に よる誤差電荷量は2[mV]・22[nF]=44(pC]とな り,転送電荷の極性とオペアンプのオフセット電圧の極 性が同符号である事から転送における誤差は-44(pC) となる。従って,先程と同じく測定電圧の誤差を考慮す ると,転送時の誤差は積分用オペアンプのオフセット電 圧が大きな位置を占めると考えられる。

Fig. 10 Error charge characteristics of the unit-charge before transfer.

Fig. 11 Error charge with transfer.

12

以上の結果,提案した回路構成によって容量値に独立 な単位電荷の生成が行われ,また,生成された単位電荷 は正確に加算可能であることが確認できた。

今後の課題として,より高精度な重み付け電荷生成の ために,電荷の誤差要因の解明および誤差補正処理方法 の開発が必要となる⁽⁷⁾。

参考文献

- (1) 木田博之,綿引猛,宮田武雄:茨城大学工学部研究 集報, "容量値独立形重み電荷形成とD/A変換へ の応用",第29巻,pp.153-159
- (2) 安藤雅幸,石川幸夫,塚元康輔,綿引猛,宮田武雄 :茨城大学工学部研究集報, "容量値独立形フロー ティングA/D変換器",第33巻,pp.165-171
- (3) 木田博之:昭和 56 年度茨城大学修士学位論文,
 "ディジタル・アナログインターフェースの高精度

化に関する研究"

- (4) 市毛勝正,塚元康輔,綿引猛,宮田武雄:茨城大学 工学部研究集報, "任意容量形フローティングA/D 変換器の高精度化",第32巻, pp.183-188
- (5) R. E. Susrez, P. R. Gray and D. A. Hodges: IEEE J. Solid - State Circuits, "ALL-MOS Charge Redistribution Analog - to - Digital Conversion Techniques - Part II", SC-10, (1975), pp. 379-385
- (6) J. L. McCreary and P.R. Gray: IEEE J. Solid-State Circuits, "ALL-MOS Charge Redistribution Analog-to-Digital Conversion Techniques-Part I", SC-10, (1975), pp. 371-379
- (7) 谷木正文:昭和60年度電子通信学会総合全国大会,
 "MOSFETにおける寄生容量・抵抗の回路特性への影響".