Fe-N合金の焼入時効過程におよぼす 予備時効析出物の効果*

市村 稔,* 今林 守**

(昭和57年9月8日受理)

Effect of Precipitates formed during Pre-ageing on the Process of Quench Ageing in Fe-N Alloy MINORU ICHIMURA and MAMORU IMABAYASHI

Abstract – In the preceding paper, we reported that the precipitation of metastable nitride at 100°C in Fe-N alloys was accelerated remarkably by the pre-ageing treatments at 50°C, 200°C and 300°C.

In this study, we obtained the ageing temperature dependence of the rate of metastable nitride precipitation and the apparent activation energy for precipitation of metastable nitride at $50^{\circ}C^{180}C$ after pre-ageing at $50^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$, and we made clear the reason for the effect of precipitates formed by pre-ageing on the precipitation process of metastable nitride.

Except for ageing at higher temperature than 150°C, the precipitation process of metastable nitride was accelerated by pre-ageing and the rate of acceleration was increased with falling of pre-ageing or ageing temperature.

One of the most probable reason for the stimulation of precipitation of metastable nitride by pre-ageing is an easy nucleation of metastable phase, that is the complete nucleation of metastable phase in specimen preaged at 50°C, the partial nucleation of metastable phase in specimen pre-aged at 200°C and the preferential nucleation of metastable phase on the surface of stable phases formed by pre-ageing at 300°C.

The apparent activation energy obtained in the ageing process after pre-ageing is lower than the activation energy of diffusion of nitrogen in α -iron. Therefore, the diffusion of nitrogen may be enhanced by the existence of precipitates formed during pre-ageing. The enhanced diffusion of nitrogen will be another probable reason for the effect of ageing acceleration by pre-ageing.

1. 緒 言

Fe -N 系合金の焼入時効において,時効開始時にす でに析出物が存在する場合にその後の本時効がどのよう な影響を受けるかという点については充分明らかではな い。著者らは前報において Fe - N合金の100 C 時効過 程におよぼす予備時効析出物の効果について検討し,50 C,200 C および 300 C の予備時効によってその後の 100℃時効が促進されることを報告した。

本報ではこの効果の本時効温度依存性を内耗測定によ って追求するとともに,100℃時効過程におよぼす予備 時効析出物の影響の様子をレプリカ法による電顕観察に よって検討して,予備時効析出物の存在による本時効促 進の原因を明らかにすることを目的とする。

^{* 1975}年10月 日本金属学会札幌大会にて発表

^{**} 茨城大学工学部金属工学科(日立市中成沢町)

2. 実験方法

試料は Johnson – Matthey 社製の純鉄(板状,0.5^t × 5^w×170^{ℓ}mm)を湿水素処理(750C)で脱炭脱窒し, 分解アンモニアガス中で窒化(500C)後,均一化焼鈍 (950C)を行ったものである。 溶体化処理は純アルゴ ンガス中で行い,580 Cで10min保持後室温のシリコ ン油中へ急冷した。180C以下の時効はシリコン油浴, 200C以上の時効は硝酸塩浴を用いた。内耗値は約1Hz の捩り自由振動の減衰から求め,約24Cのピーク値をと った。

Fig.1 は本実験の試料の内耗値と時効による変化を

Fig. 1 Schematic drawings of changes in the internal friction during pre-ageing and ageing process.

模式図で示したものである。内耗値($Q^{-1} \times 10^4$)が約 350 のNa5の試料を溶体化処理後予備時効して内耗値を 約100 に減少させる。そのあと、 準安定相の析出する 50℃~180℃の種々の温度で本時効を行う。なお、予備 時効温度は安定相(Fe4N)の析出する300℃,準安定相 (Fe16N2)の析出する200℃および50℃の3種類とし た。また、予備時効析出物のない場合として、内耗値 ($Q^{-1} \times 10^4$)が約70~90のNa1~4の試料により通常 の焼入時効を行い、Na5の試料による準安定相の析出過 程と比較した。

5. 結 果

No.5の試料を用いて行った実験結果の中から3例をえ らんでつぎに示す。Fig.2-(1) は本時効温度(T_a)が 50℃の場合であり,規格化した内耗値の低下割合(1-W)を本時効時間の対数に対してプロットしたものであ る。図の左側から予備時効温度(T_p)の低い順に50℃ (\bigcirc),200℃(\triangle),300℃(\square)とならび,いずれも破 線(\blacksquare)で示した予備時効なしの試料No.2の場合よりも短

時間側にある。すなわち,50℃本時効は50℃,200℃, 300℃の予備時効によって促進され,その促進の程度は 予備時効温度が低い程大きいことを示している。なお, この図で〇印は $T_p = T_a = 50$ ℃であり,予備時効析出物 が本時効でそのまま連続的に成長するために,本時効に おける準安定相の核生成は完全に省略され,予備時効に よる本時効促進の程度は最大となる。Fig.2-(2)は T_a = 100℃の場合でその傾向はFig.2-(1)と同様である。 Fig.2-(3)は $T_a = 150$ ℃の場合である。ここで,破線は 後述の方法によって,時間定数(τ)の本時効温度依存性 から推定された予備時効なしの場合の計算曲線,W = 1 - exp〔-($t/1.445 \times 10^3$)¹⁰〕, を示したものであ る。本時効温度が高くなるに従って予備時効による本時 効促進の程度は次第に小さくなり, T_a =150℃では300℃ 予備時効による促進効果はみられなくなる。また,50℃ と200℃予備時効の場合の本時効曲線の位置関係が低温 時効に比べて逆転しているが,この点についてはあとで 説明する。

予備時効による本時効促進の程度を比較するために、 (2) いわゆる Johnson – Mehlの式による時間定数(で)を 用いることにする。

 $W = 1 - \exp\left[-(t/\tau)^{n}\right]$ (1) ここに、Wは析出分率、(1-W)は固溶分率、nは時 効指数である。また、Wert⁽³⁾によれば時間定数(τ)の温 度依存性は次式で与えられる。

 $\tau = \tau_0 \exp\left(Q / RT\right)$ (2)ここに、 τ_0 は定数、Qは活性化エネルギー、Rはガス定 数, Tは絶対温度である。各時効曲線に対して式(1)によ って求められたnと τ をまとめてTable 1 に示す。こ こで時効指数(n)は1.0を平均に0.6から1.5の間にば らついている。 τの本時効温度依存性を式(2)にもとづい て検討するために、 $\log \tau \epsilon 1/T$ に対してプロットし た結果をFig.3に示す。ここで、▲と●は予備時効なし の場合である。初期内耗値のより高い●印をもとにして 一点鎖線の直線を引いた。なお、Fig.2-(3)の破線の 曲線は Fig. 3 の一点鎖線の T_a=150℃への外挿値(τ = 1.445×10³)と時効指数の平均値(n=1.0)を式(1) に代入して計算したものである。Fig.3の一点鎖線の 傾きから、式(2)に従って求められたみかけの活性化エネ ルギーは約17kcal/molとなり、α-Fe中のNの拡

Table 1	Ageing	exponent	(n)	and	time
	constar	it ($ au$)			

Specimen	Q''×10*	Tp(°C)	T _a (°C)	n	τ(sec)	Q;'×10'	Qé'×10*
No.1	~70		50 80 100 130 150 180	0.70 0.72 0.90 1.13 0.78 0.88	5.75×10 ⁵ 6.21×10 ⁴ 5.50×10 ⁴ 9.77×10 ³ 4.90×10 ³ 9.77×10 ³	65.0 76.2 69.4 76.2 68.5 60.7	0 3.69 5.00 8.59 12.9 32.0
No.2 No.3 No.4	~90 ~90 ~90	:	50 75 100	0.63 0.81 0.91	6.31×10 ⁵ 1.00×10 ⁵ 2.51×10 ⁴	91.6 86.2 91.6	0 2.0 5.0
No.5	~350	300 200 50	50 50 50	$ \begin{array}{c} 0.71 \\ 0.64 \\ 0.61 \end{array} $	3.16×10 ⁵ 9.55×10 ⁴ 1.02×10 ⁴	98.1 94.7 94.7	0 0 0
		300 200 50	80 80 80	0.85 0.87 1.26	2.04×10* 1.74×10* 9.12×103	94.7 94.7 94.7	3.69 3.69 3.69
		300 200 50 300 200 50 300 200 50	100 100 100 100 100 100 100 100	0.73 0.78 0.98 0.62 0.63 0.95 0.65 0.57 0.82	2.37×10* 1.59×10* 3.30×103 7.59×103 2.40×103 1.55×103 2.51×103 1.55×103 1.55×103	87.2 80.8 94.7 98.1 98.1 98.1 98.1 98.1 98.1 98.1	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
		300 200 50	130 130 130	1.16 1.23 1.19	4.98×10 ³ 1.12×10 ³ 2.46×10 ³	98.1 101.7 94.7	8.59 8.59 8.59
		300 200 50	150 150 150	1.23 1.16 1.22	1.26×10 ³ 3.80×10 ² 6.03×10 ²	98.1 94.7 94.7	12.9 14.6 16.8
		300 200 50	180 180 180	1.48 1.33 1.50	5.01×10 ² 2.00×10 ² 3.09×10 ²	98.1 94.7 94.7	35.6 32.8 32.3

Fig. 3 Temperature dependence of time constant (τ) of specimens No. 1 ∿No. 4 not-pre-aged (▲,
●) and No. 5 pre-aged at 50°C (○), 200°C (△) and 300°C (□).

散のための活性化エネルギーに近い値となった。なお, ▲印の高温部における一点鎖線からの上方へのずれは過 飽和度の低下にもとづく核生成不足(nucleation difficulty)によるものと思われる。

Na 5 の試料を用い,予備時効温度が300℃(□),200 $C(\Delta)$ および50℃(○)で得られたτに対して平均的 に引いた直線の傾きから得られたみかけの活性化エネル ギーの値はそれぞれ,14.4,14.2 および9.0kcal/mol となった。 T_p =300℃の高温部を除けば,3本の実線は 一点鎖線よりも下側にあり,予備時効によって本時効が 促進されることを示している。その促進の程度は T_a が 低い程大きく, また T_p =50℃の高温部を除けば T_p が低 い程大きいことがわかった。

Photo.1 はNa 5 の試料の 50℃, 200℃および 300℃ 予備時効後の 100℃本時効途中における組織変化を電顕 レプリカ法によって観察した結果の一部を示したもので ある。 $\sqrt[3]$ は $T_p = 50$ ℃の場合である。 $\sqrt[3]$ は予備時 効直後の状態で小さな準安定相が多数析出している。 $\sqrt[3]</sup> と$ る はその後の 100℃時効の中期(析出分率, W= 51%)と終期(W= 98%)での析出状態で, 100℃時効が進むにつれて,準安定相の数は次第に少なくなり寸法はより $大きくなる。 <math>\sqrt[3]$ ~ $\sqrt[6]$ は $T_p = 200℃の場合である。 <math>\sqrt[4]$ は 200℃予備時効直後の状態で比較的大きな準安定相が 析出している。 $\sqrt[3]$, $\sqrt[6]$ と 100℃時効が進むにつれて,大 粒子間に新しく小粒子の析出が生じ,粒子数が幾分増加 している。 $\sqrt[3]$ ~ $\sqrt[3]$ は $T_p = 300℃の場合である。<math>\sqrt[3]$ は

Photo. 1 Structural changes during ageing at 100°C of specimen No. 5 pre-aged at 50°C ($\sqrt{10} \sqrt{3}$), 200°C ($\sqrt{40} \sqrt{50}$) and 300°C ($\sqrt{10} \sqrt{50}$).

300℃予備時効直後の状態で,大きな板状の安定相が析 出している。 (20)、(20) と100℃時効が進むにつれて,小さ な準安定相が多数析出し次第に成長する。この段階では 粒子数はそれほど変化しない。なお,板状安定相の先端 部に準安定相の析出が認められた。

これらのレプリカ写真から定量金属組織学をもとに線 分法によって粒子の平均半径(r)と単位体積当りの粒子 数(N_p)を求めた。すなわち,析出粒子が半径r,厚さ tの円盤状で, $r \gg t$ の場合には次式が得られる。

$$N_p = 2 N_a^2 / \pi N_\ell \tag{3}$$
$$r = N_\ell / N_a \tag{4}$$

ここで、 N_a は単位面積当りの粒子数、 N_d は単位長さ当 りの粒子数である。 $N_a \ge N_d を \nu \tau \eta$ カ写真上で実測し て式(3)と式(4)から $N_p \ge r \varepsilon$ 計算し、100℃本時効の析 出分率(W)に対してプロットした結果をFig.4 に示す。 〇印は T_p =50℃の場合であり、100℃時効中に N_p は大 きく減少し、rはわずかに増加する。△印は T_p =200℃ の場合で、 N_p が徐々に増加し、rは大きく減少する。□ 印は T_p =300℃の場合で、100℃時効の後半において N_p はほぼ一定、rは幾分増加の傾向を示している。この 傾向は核生成が時効のごく初期で終了すると考えられて いる通常の焼入時効の場合の傾向と一致しており、300℃ 予備時効で生じた安定相そのものが100℃本時効の析出 中心となりえないことから考えて妥当であると思われる。

4. 考 察

レプリカ法による組織観察ならびに線分法による粒子 半径(r)と粒子数(N_p)の検討をもとにして、予備時効 による本時効促進の原因をつぎのように考察する。T_p= 50℃の場合は予備時効で生じた多くの小さな準安定相 のほとんどが本時効でそのまま成長するが、その後の凝 集粗大化のために時効中にN_nが減少しrが増加する。 すなわち,本時効の核生成が全面的に省略され、しかも 核密度が大であるために本時効が促進される(τ が減少 する)。ただし、本時効温度が高くなると、予備時効で 生じた多くの準安定相の中で比較的小さな粒子が不安定 となって再固溶消滅するために、本時効の核生成省略の 程度は次第に低下し、 $T_a = 150$ C以上では $T_p = 50$ Cと $T_p = 200 C \text{O} \tau \text{O}$ 大小関係は逆転するようになる。 $T_p =$ 200℃の場合は、予備時効で生じた大きな準安定相はそ のまま本時効で成長するが、それに加えて本時効温度で の新しい小さな準安定相が析出し成長するために、Nnが 増加し平均値としての r は減少する。すなわち,本時効 の核生成が一部省略されるために本時効が促進される。 なお、この場合は $T_n(200C) > T_n(50C \sim 180C)$ で あるために、T_p = 50℃の場合のような予備時効析出物 の一部再固溶消滅はおこらない。T_p=300℃の場合は本

Fig. 4 Changes of the number of particles per unit volume (1) and the radius of particles (2) during ageing at 100°C after pre-ageing at 50°C (○), 200°C (△) and 300°C (□) of specimen No. 5.

時効の核生成の省略は考えられない。したがって,この 場合は安定相表面での準安定相の優先的な核生成が本時 効をわずかに促進するものと考えられる。結局,いずれ の場合も準安定相の存在または容易な核生成が本時効を 促進することになる。

予備時効による本時効促進の効果が本時効における準 安定相の核生成の難易のみによって支配されるならば、 時間定数(で)の本時効温度依存性から得られたみかけの 活性化エネルギーの値は準安定相の成長過程を反映して いずれもα-Fe 中のNの拡散のための活性化エネルギ -の値と一致してよさそうである。しかしながら, Fig. 3に示したようにみかけの活性化エネルギーはすべてこ れより低い値となり、しかもその低下の割合は予備時効 温度が低い程大きい。このことは予備時効析出物の存在 によって、また予備時効温度が低い程、本時効における Nの拡散移動が容易になることを意味している。活性化 エネルギーの低下の要因としては、①予備時効析出物に よる析出歪場の形成。②析出歪によるマトリックス中の 転位密度の増加、③予備時効析出物とマトリックスとの 界面拡散等が考えられるがその詳細は不明であり、今後 さらに検討する必要がある。しかしながら、活性化エネ ルギーの低下によって示唆されるNのより容易な拡散は 前述の準安定相の容易な核生成(核生成の省略または優 先核生成)とならんで、予備時効による本時効促進の重 要な原因の一つであろうと思われる。

以上,準安定相の析出に先立って準安定相が存在する 場合には本時効がかなり促進されることがわかった。こ のことは安定相についても全く同様である。その一例を Fig.5に示す。これはNo5の試料を予備時効後180℃ で本時効した場合の時効曲線を示したものである。その

Fig. 5 Double stage precipitation curves during ageing at 180°C of specimen No. 5 pre-aged at 50°C (○), 200°C (△) and 300°C (□).

時効過程は10⁴ sec を境にして2段変化となり,1段目 は準安定相の析出,2段目は安定相の析出に対応する。 $T_p = 300C(\Box 印) の2段目の析出速度は他の予備時効$ の場合に比較して明らかに大きい。これは180℃本時効の2段目の析出開始時点ですでに300℃予備時効による安定相が存在しているために,安定相の核生成の一部が省略されることによると考えられる。

5. 結 論

試料N05を溶体化処理後,50℃,200℃および300℃ で予備時効して内耗値($Q^{-1} \times 10^4$)を350から100 に 低下させた後,準安定相の析出する50℃~180℃の温度 範囲で本時効させ,本時効における内耗値変化の温度依 存性を検討するとともに,100℃本時効途中の組織変化 を観察することによって,本時効過程におよぼす予備時 効の効果について考察してつぎの結論を得た。

- (1)本時効温度が130℃以下の場合には、予備時効は本時効を促進する。その促進の程度は本時効温度または 予備時効温度が低い程大きい。
- (2) 予備時効による本時効促進の第1の原因は準安定相の容易な核生成にある。すなわち,50℃予備時効の場合は準安定相核生成の全面省略,200℃予備時効の場合は準安定相核生成の一部省略,300℃予備時効の場合は安定相表面での準安定相の優先的核生成である。
- (3)予備時効後の本時効過程におけるみかけの活性化 エネルギーがα-Fe中のNの拡散のための活性化エネ ルギーよりも小さいという事実によって示唆されるN のより容易な拡散は、予備時効による本時効促進の第 2の原因であろうと思われる。

参考文献

- (1)市村, 今林;茨城大学工学部研究集報, 30(1982), 113.
- (2) H.K. Hardy and T.J. Heal; Progress in Metal Physics, 5 (1954), 173.
- (3) C. Wert; J. Appl. Physics, 20 (1949), 943.
- (4) A.E. Lord Jr. and D.N. Beshers; Acta Met., 14 (1966), 1659.
- (5) H.K, Hardy and T.J. Heal; Progress in Metal Physics, 5 (1954), 158.
- (6) 佐久間, 西沢; 日本金属学会報, 10 (1971), 279.
- (7) R.L. Fullman; Trans. Met. Soc. AIME, 197 (1953), 447.