
Development of GPS Assisted

Online CO2-Temperature Mapping System

GPS を利用した CO2 と気温のマッピングシステムの開発

March 2014

Thammita A.S. Anuruddha

Graduate School Of Science and Engineering

Ibaraki University,

Hitachi City

Submitted As a Partial Requirement of PhD in Applied Beam Science

Abstract

The objective of this research was to develop a global access method for accurate CO2

density in certain points of the world. The greenhouse effect is one of most potential

deleterious impact of human race and all other species on earth. This is a very big

concern on the scientific field as well as it seems to be a good reason even for changing

governments, being a strong political issue today. Emerging of greenhouse gases as a

result of uncontrolled development makes a world an unsuitable place to live for

existences. Gaseous constituents that absorb and emit radiation at specific wavelengths

within the spectrum of thermal infrared radiation are known as Greenhouse Gases

(GHGs) (Scheutz et al., 2009). Most of world agreed and accepts that a human-induced

increasing concentration of GHG in the atmosphere of the earth causes global climate

change. Direct and indirect impacts of industrialization such as fossil fuel burning etc..,

enhanced the emission of green house gases such as CO2 after the 20th Century. As of

January 2011, the level of atmospheric CO2 is monitored as 391.19 ppm by volume. It

is very helpful to measure CO2 level and temperature level with GPS information

because it can easily map the both levels of a particular area.

Properly designed and managed online knowledge sharing systems can improve the

availability of real-time data around the world through internet among interested users

of such data as researchers, students, decision makers etc. The data gathered by the

sensing device stored in such knowledge sharing system called KISSEL (Knowledge

Integrated Servers System for E-Learning) which operated and maintained by Ibaraki

University, Japan. Accessing to KISSEL, anyone can monitor certain existence CO2

levels and densities in the places where sensing devices are installed. A prototype has

been developed for a versatile, flexible, cost efficient, and high speed instrument to

monitoring the CO2 over Temperature. It helps to map CO2 data of a path such as

roads, sea paths, and air ways below 18 km altitude or a place for long time. The device

is named as –AIR BOY–. This system is portable and easy to use. The data collected and

stored in this system alone can be used to analyze CO2 concentrations against time,

temperature, global coordinates or altitude. It utilizes a CO2 Sensor, temperature

Sensor, a GPS+Altitude receiver, LCD Panel, a microcontroller and a USB-UART

module with an Ethernet interface. Gathered data by the system, transmits to a database

in a server called KISSEL.

Gathered data transmitted from the sensing device to the database over internet by http

GET request, with encapsulated data of its quarry string. In the end of the server side, it

de-capsulate the quarry string in to data and stores it in the database. Then it mapped

on a Google map according to a color code in respect of the density of CO2 in each

point. This system can be deployed anywhere in the world whether internet connection

is available or not. Once it connects to the internet, it starts to send the saved data to

the KISSEL data base and update it.

Power consumption is also very low of this module can simply operate using 1x1 feet

solar panel. Internal rechargeable battery pack can store power to operate overnight.

Taking In-Situ data of GHG can be very useful in industrial areas, and garbage dumps

etc which cannot be taken using remote sensing method using satellite spectrum images.

It is very useful for respective parties such as researchers and general public. In this

study, it is gathered data in three countries, Sri Lanka, India and Japan, observed a

higher level of CO2 around industrial, urban areas than rural areas in all three

countries. Temperature also was higher in such places than rural areas. Multiple place

monitoring in same time of the day in each region is necessary. This system can fix as

many as possible in some industrial areas to gather data and share that data to the

general public without any fee. Exposing this unknown data of GHG emissions free to

public can give them an idea to force their respective community leaders, company

owners, vehicle users to reduce the emission level of GHG to reduce the rise of climate

change. This study demonstrates that system could make meaningful contributions to

global climate-change mitigation by making its real-time sensed data available to

public and other respective parties. It should be further developed by adding a good

and solid body; a water resistant option should also be added.

 1

Acknowledgement

A major research project like this is never the work of anyone alone. The contributions of

many different people, in their different ways, have made this possible. I would like to extend

my appreciation especially to the following.

I sincerely Thank Prof, Atsushi Minato and Satoru Ozawa for making this research possible.

their support, guidance, advices throughout the research project, as well as his pain-staking

effort in proof reading the drafts, are greatly appreciated. Indeed, without their guidance, I

would not be able to put the topic together.

My good Friend Ravi, for encouraging me to undertake the master’s and PhD programs. The

experience has been an interesting and rewarding one. Thanks Ravi.

Of course, this project would not have been possible without the participation of the Bhaggya,

who helped me lot during this project by developing many modules of the system.

All the Srilankan fellowmen in Japan, who shared happiness and burdens for long time.

Thank you pals.

My colloquies in the Lab, Warnajith, Youe San, Gihan And Lakesh, who did a great help

when I was not in Japan during the research. Thanks mates.

Ibaraki University, Japanese Government and people of Japan, Thank you giving this

opportunity to me.

Last but not least, I would like to thank my family members for their unconditional support,

both financially and emotionally throughout all of my degrees. In particular, the patience and

understanding shown them during the fourteen years up to complete my PhD, is greatly

appreciated. I know, at times, my temper is particularly trying.

 2

Preface

This thesis is submitted in partial fulfillment of the requirements for a Doctor of Engineering

in Applied Beam Science. It contains work done from March 2009. My supervisor on the

project has been Professor Atsushi Minato, the Kansei Mathematic Laboratory in Ibaraki

University. The dissertation has been made solely by the author; some of the text and figures

however, is based on the research of others, and I have done my best to provide respective

references to related sources.

In winter, 2008, my Professor Atsushi Minato introduced me the Microcontroller, with one of

his simple development. That device intended for Reading GPS coordination, and processing

data which operated solely by stand alone without a computer. I was impressed and intrigued

by this new means of controlling without a computer, so I decided to develop some system

using this device and I started to Develop “AIRBOY” for My masters Studies, later

developed it as a full and completed system and a partial submission for my PhD.

Writing this thesis has been hard but in the process of writing I feel I have learned a lot and

our conceptions of Environment Monitoring in Sri Lanka have certainly changed! I have

dealt with a lot of subjects, in an attempt to give this thesis a broad perspective on Carbon

Dioxide Monitoring in South Asia, thus combining many aspects of Applied Beam Science,

Digital Electronics and human-computer interaction

 3

Index Of Topics

1 AIRBOY and GPS 7

1.1 What is GPS? 7

1.2 History of GPS 7

1.3 Why do we need GPS 8

1.4 How GPS works 8

1.5 How accurate GPS is? 9

1.6 The GPS satellite system 9

1.7 What’s GPS signals are? 9

1.8 Sources Of GPS signal errors 9

1.8.1 Ionosphere and troposphere delays 9

1.8.2 Signal multipath 10

1.8.3 Receiver clock errors 10

1.8.4 Orbital errors 10

1.8.5 Number of satellites visible 10

1.8.6 Satellite geometry/shading 10

1.8.7 Intentional degradation of the satellite signal 10

1.9 Other competing earth mapping systems 10

1.10 Restrictions on civilian use 10

1.11 Introduction to CO2 Carbon Dioxide 11

1.12 What is Carbon dioxide 11

1.13 History of CO2 12

1.14 Greenhouse Effect 12

1.15 CO2 as a Greenhouse Gas 12

1.16 Global warming and Earth’s temperature 12

2 CO2 and AIRBOY 13

2.1 The AIRBOY GPS based CO2 and Temperature mapping system 13

2.2 How AIRBOY been composed. 14

2.2.1 Arduino Family microcontroller 16

2.2.2 CO2 SenseAir K-30 temperature Sensor 20

2.2.3 GPS52D GPS receiver (Position Co) 23

2.2.4 LCD Panel HD44780 25

2.2.5 Internal memory (EEPROM) ATMEL 24C1024 27

2.2.6 Arduino Ethernet Shield DEV-09026 29

2.2.7 SIMCom 908 GSM/GPRS Module 30

2.2.8 I²C BUS 31

2.2.9 UART 32

2.2.10 TCPIP 33

2.2.11 MODBUS 33

2.3 Advantages of Air Boy system and its Applications 34

2.3.1 Relatively small – easy to carry / transport 34

2.3.2 Relatively cheaper 34

2.3.3 User friendliness 34

2.3.4 Auto data saving capacity 34

2.3.5 Easy to data collection 34

 4

2.3.6 Can be support different research and other activities 34

2.3.7 light Weight 34

2.3.8 Durability 34

2.3.9 Mapping capability 35

2.3.10 Accuracy and high efficiency 35

2.3.11 Low Power Consumption 35

3. AIRBOY Layout and its Outline 36

3.1 Co2.h 39

3.1.1 GPRMC 39

3.1.2 GPGGA Data Format 42

3.1.3 I2C.h 45

3.1.4 At24c.h 45

3.1.5 read_byte (address) 45

3.1.6 read_bytes(address,buffer,length) 46

3.1.7 search_byte(bits) 46

3.1.8 search_byte(bits,start address) 46

3.1.9 search_byte(bits,start address,n) 46

3.1.10 write_byte(address,bits) 46

3.1.11 write_bytes(address, buffer,length 47

3.1.12. Lcd.h 47

3.1.13. init(rs,en,d7,d6,d5,d4)p 47

3.1.14. rint(character) 47

3.1.15 println(character) 47

3.1.16 Print(text) 47

3.1.17 printlk(text) 47

3.1.18 print(int) 47

3.1.19 println(int) 47

3.1.20 print(long) 48

3.1.21 println(long) 48

3.1.22 cursor(int 8_x, int8_y) 48

3.1.23 cursor_on() 48

3.1.24 clear 48

3.1.25 cursor_off() 48

3.1.26. getGPS() 48

3.2. EEPROM Saving Structure 49

3.3. ASCII Table 50

4. The Program 51

4.1. Program /structure 51

4.2. Web Interface Programming 51

5 AIRBOY Assembly 58

5.1 Calibration 60

5.2 Data Gathering and Analyze 61

5.3 Presenting Data on a Color Coded Map 63

5.4 Trial Observations 63

5.5 Commissioning 66

5.6 Conclusion 70

 5

5.7 Further Developments 70

5.8 References 71

Index of Figures

Figure 1 – Global temperature and Carbon Dioxide 13

Figure 2 TTL and CMOS Logic Voltages 16

Figure 3 - pin configuration of the ATMega 328 microcontroller 17

Figure 4 - SenseAir K-30 temperature Sensor 20

Figure 5 - SENSEAIR K-30 CO2 sensor PCB and Connection Overview 22

Figure 6 - GPS52D GPS receiver (Position Co) 23

Figure 7 - GPS Module Pin Out 23

Figure 8 - LCD Panel HD44780 25

Figure 9 - Pinout of the LCD Panel HD44780 26

Figure 10 - Pin Configuration of the LCD panel HD44780 26

Figure 11 - Atmel 24C1024 EEPROM 27

Figure 12 - EEPROM Pin Configuration 28

Figure 13 – Absolute Maximum ratings of EEPROM 28

Figure 14 - Arduino Ethernet Shield DEV-09026 29

Figure 15- SIMCom 908 GSM/GPRS Module 30

Figure 16 - Official Logo for I²C Interface 30

Figure 17 - I²C BUS Block Diagram 32

Figure 18 - I²C Interface Schematic 32

Figure 19 - UART Character Framing 33

Figure 20 - AIRBOY System Architecture 38

Figure 21 – Circuit Diagram 39

Figure 22 - Data Packet 43

Figure 23- storing method of data in EEPROM 49

Figure 24 – ASCII Table 50

Figure 25 – Initialization Process 52

Figure 26 - Main Loop 53

Figure 27 - The GetGPS process in main loop, 54

Figure 28 - Dividing process of GPS data inserting delimiters 55

Figure 29 - Writing Process to EEPROM 56

Figure 30 - Finding the next registers to be written on the EEPROM 57

Figure 31 – Actual Components setout 58

Figure 32 – Actual Prototype 59

Figure 33 - Calibration of AIRBOY 60

Figure 34 - Mapping around Hitachi city 61

Figure 35 - CO2 and Temperature Level Over the time 62

Figure 36 - CO2 Monitoring Color Code 63

Figure 37 – Trial Monitoring – Japan 63

Figure 38 – Trial Monitoring India and Srilanka 63

Figure 39 - AIR-BOY Telemetry Data web 64

Figure 40 - Map of a Location of the monitoring 64

Figure 41 - Location of monitoring (Goods Shed Bus Stand - Kandy) 66

 6

Figure 42 - Commissioning and Data gathering 67

Figure 43 - Respiratory Diseased Deaths in Kandy 67

Figure 44 - The lowest ppm of carbon dioxide of the 36 hours observation session 68

Figure 45 - The Highest ppm of carbon dioxide of the 36 hours observation session 68

Figure 46 - CO2 level comes again to The approximately same (only 4ppm difference 68

Figure 47 - Chart for the 24 hour CO2 level loop (Time in UTC) 69

Bibiliography

6.1. - The Main Program 74

6.2. - at24c.h 99

6.3. - co2.h 103

6.4. - I2c.h 105

6.5. - lcd.h 110

 7

1.0 AIRBOY and GPS

Smog hanging over cities is the most familiar and obvious form of air pollution. Mainly

CO2 is main greenhouse gas which liable for warming of the earth and then the water vapor.

Industrialization enhanced the emission of green house gases such as CO2.

 It is very helpful to measure CO2 level and temperature level with GPS information

because it can easily map the both levels of a particular area.

This thesis is for introduce a prototype of developed architecture for a versatile, flexible,

cost efficient, and high speed Instrument to monitoring the CO2 and temperature which helps to

map data of a path such as roads, Sea paths, Air ways below 18 km altitude etc. The device is

named as –AIR BOY– . In first and second chapters, it has been briefly introduced and

explained, what is GPS, CO2, and its related factors such as temperature, global warming etc.

1.1 What is GPS?

The Global Positioning System (GPS) is a satellite-based navigation system made up of a

network of 24 satellites placed into orbit by the U.S. Department of Defense.

‘The Global Positioning System (GPS) is a U.S.-owned utility that provides users with

positioning, navigation, and timing (PNT) services. This system consists of three segments:

the space segment, the control segment, and the user segment. The U.S. Air Force develops,

maintains, and operates the space and control segments.’ (National Coordination Office for

Space-Based Positioning, Navigation, and Timing (2013-sep) What is GPS? [Online],

Available: http://www. http://www.gps.gov/systems/gps/ 5,Nov,2013)

It was established in 1973 to overcome the limitations of previous navigation systems.

GPS was originally intended for military applications, but in the 1980s, the government made

the system available for civilian use. GPS works in any weather conditions, anywhere in the

world, 24 hours a day. There are no subscription fees or setup charges to use GPS. It is a

space-based global navigation satellite system (GNSS) that provides reliable location and

time information in all weather and at all times and anywhere on or near the Earth when and

where there is an unobstructed line of sight to four or more GPS satellites.

1.2 History of GPS

The design of GPS is based partly on similar ground-based radio navigation systems, such

as LORAN and the Decca Navigator developed in the early 1940s, and used during World

War II. In 1956 Friedwardt Winterberg proposed a test of general relativity using accurate

atomic clocks placed in orbit in artificial satellites. To achieve accuracy requirements, GPS

uses principles of general relativity to correct the satellites' atomic clocks. Additional

inspiration for GPS came when the Soviet Union launched the first man-made satellite,

Sputnik in 1957. A team of U.S. scientists led by Dr. Richard B. Kershner were monitoring

Sputnik's radio transmissions. They discovered that, because of the Doppler Effect, the

 8

frequency of the signal being transmitted by Sputnik was higher as the satellite approached,

and lower as it continued away from them. They realized that because they knew their exact

location on the globe, they could pinpoint where the satellite was along its orbit by measuring

the Doppler distortion (see Transit (satellite)).

The first satellite navigation system, Transit, used by the United States Navy, was first

successfully tested in 1960. It used a constellation of five satellites and could provide a

navigational fix approximately once per hour. In 1967, the U.S. Navy developed the Timation

satellite that proved the ability to place accurate clocks in space, a technology required by

GPS. In the 1970s, the ground-based Omega Navigation System, based on phase comparison

of signal transmission from pairs of stations,[3] became the first worldwide radio navigation

system. Limitations of these systems drove the need for a more universal navigation solution

with greater accuracy.

1.3 Why do we need GPS

While originally a military project, GPS is considered a dual-use technology, meaning it

has significant military and civilian applications.

GPS has become a widely deployed and useful tool for commerce, scientific uses, tracking,

and surveillance. GPS's accurate time facilitates everyday activities such as banking, mobile

phone operations, and even the control of power grids by allowing well synchronized

hand-off switching. Farmers, surveyors, geologists, and countless others perform their work

more efficiently, safely, economically, and accurately.

Many civilian applications use one or more of GPS's three basic components: absolute

location, relative movement, and time transfer.

1.4 How GPS works

“The Way it works is simple. Heavenly Bodies appear to travel in predictable path across the

sky. With Certain tools – Sexent, astrolabe Chronometer experienced navigators could

measure relative angles and distances between themselves and these reference points giving

them a fairly good idea of where they were on earth.” (Steve Featherstone - Outdoor Guide to

using your GPS – Page 09, 2004)

GPS satellites circle the earth twice a day in a very precise orbit and transmit signal

information to earth. GPS receivers take this information and use triangulation to calculate

the user's exact location. Essentially, the GPS receiver compares the time a signal was

transmitted by a satellite with the time it was received. The time difference tells the GPS

receiver how far away the satellite is. Now, with distance measurements from a few more

satellites, the receiver can determine the user's position and display it on the unit's electronic

map.

A GPS receiver must be locked on to the signal of at least three satellites to calculate a 2D

position (latitude and longitude) and track movement. With four or more satellites in view,

 9

the receiver can determine the user's 3D position (latitude, longitude and altitude). Once the

user's position has been determined, the GPS unit can calculate other information, such as

speed, bearing, track, trip distance, distance to destination, sunrise and sunset time and more.

1.5 How accurate GPS is?

Today's GPS receivers are extremely accurate, thanks to their parallel multi-channel

design. Garmin's 12 parallel channel receivers are quick to lock onto satellites when first

turned on and they maintain strong locks, even in dense foliage or urban settings with tall

buildings. Certain atmospheric factors and other sources of error can affect the accuracy of

GPS receivers. AIRBOY’s GPS receiver is accurate to within 15 meters on average.

1.6 The GPS satellite system

The 24 satellites that make up the GPS space segment are orbiting the earth about 12,000

miles above us. They are constantly moving, making two complete orbits in less than 24

hours. These satellites are traveling at speeds of roughly 7,000 miles an hour.

GPS satellites are powered by solar energy. They have backup batteries onboard to keep them

running in the event of a solar eclipse, when there's no solar power. Small rocket boosters on

each satellite keep them flying in the correct path.

Here are some other interesting facts about the GPS satellites (also called NAVSTAR, the

official U.S. Department of Defense name for GPS):

 The first GPS satellite was launched in 1978.

 A full constellation of 24 satellites was achieved in 1994.

 Each satellite is built to last about 10 years. Replacements are constantly being built and

launched into orbit.

 A GPS satellite weighs approximately 2,000 pounds and is about 17 feet across with the

solar panels extended.

 Transmitter power is only 50 watts or less.

1.7 What’s GPS signals are?

Each GPS satellite transmits data on two frequencies, L1 (1575.42 Mhz UHF band) and

L2 (1227.60 MHz). The signals travel by line of sight, meaning they will pass through clouds,

glass and plastic but will not go through most solid objects such as buildings and mountains.

1.8 Sources of GPS signal errors

Factors that can degrade the GPS signal and thus affect accuracy include the following:

1.8.1 Ionosphere and troposphere delays - The satellite signal slows as it passes through

the atmosphere. The GPS system uses a built-in model that calculates an average

amount of delay to partially correct for this type of error.

 10

1.8.2 Signal multipath - This occurs when the GPS signal is reflected off objects such as

tall buildings or large rock surfaces before it reaches the receiver. This increases the

travel time of the signal, thereby causing errors.

1.8.3 Receiver clock errors - A receiver's built-in clock is not as accurate as the atomic

clocks onboard the GPS satellites. Therefore, it may have very slight timing errors.

1.8.4 Orbital errors - Also known as ephemeris errors, these are inaccuracies of the

satellite's reported location.

1.8.5 Number of satellites visible - The more satellites a GPS receiver can "see," the better

the accuracy. Buildings, terrain, electronic interference, or sometimes even dense

foliage can block signal reception, causing position errors or possibly no position

reading at all. GPS units typically will not work indoors, underwater or underground.

1.8.6 Satellite geometry/shading - This refers to the relative position of the satellites at

any given time. Ideal satellite geometry exists when the satellites are located at wide

angles relative to each other. Poor geometry results when the satellites are located in a

line or in a tight grouping.

1.8.7 Intentional degradation of the satellite signal - Selective Availability (SA) is an

intentional degradation of the signal once imposed by the U.S. Department of Defense.

SA was intended to prevent military adversaries from using the highly accurate GPS

signals. The government turned off SA in May 2000, which significantly improved

the accuracy of civilian GPS receivers.

1.9 Other competing earth mapping systems

 The Russian GLObal NAvigation Satellite System (GLONASS)

 Chinese Compass navigation system (Planned)

 Galileo positioning system of the European Union (Planned).

1.10 Restrictions on civilian use

 The U.S. Government controls the export of some civilian receivers. All GPS receivers

capable of functioning above 18 kilometers (11 mi) altitude and 515 metres per second (1,001

kn)[48] are classified as munitions (weapons) for which U.S. State Department export

licenses are required. These limits attempt to prevent use of a receiver in a ballistic missile.

They would not prevent use in a cruise missile because their altitudes and speeds are similar

to those of ordinary aircraft. AIRBOY GPS module is a civilian receiver.

 11

1.11 Introduction to CO2 Carbon Dioxide

1.12 What is Carbon dioxide ?

Carbon dioxide (chemical formula CO2) is a chemical compound composed of two oxygen

atoms covalently bonded to a single carbon atom. It is a gas at standard temperature and

pressure and exists in Earth's atmosphere in this state. CO2 is a trace gas comprising 0.039%

of the atmosphere.

Deforestation and forest degradation accounts for 6-17% of allanthropogenic greenhouse gas

emissions and tropical forest covercontinues to decline globally although at a slower rate than

in thepast (FAO, 2010a;Hett, Castella, Heinimann, Messerli, & Pfund,2012;Le Quere,

Raupach, Canadell, & Marland, 2009;Van derWerf et al., 2009).

As part of the carbon cycle known as photosynthesis, plants, algae, and cyanobacteria absorb

carbon dioxide, sunlight, and water to produce carbohydrate energy for themselves and

oxygen as a waste product. By contrast, during respiration they emit carbon dioxide, as do all

other living things that depend either directly or indirectly on plants for food. Carbon dioxide

is also generated as a by-product of combustion; emitted from volcanoes, hot springs, and

geysers; and freed from carbonate rocks by dissolution.

As of January 2011, the level of atmospheric CO2 is monitored as 391.19 ppm by volume. In

2009 January, it was 386.92, which monitored 4.27ppm has been grown within two years of

period. Atmospheric concentrations of carbon dioxide fluctuate slightly with the change of

the seasons, driven primarily by seasonal plant growth in the Northern Hemisphere.

Concentrations of carbon dioxide fall during the northern spring and summer as plants

consume the gas, and rise during the northern autumn and winter as plants go dormant, die

and decay.

Carbon dioxide has no liquid state at pressures below 5.1 standard atmospheres (520 kPa). At

1 atmosphere (near mean sea level pressure), the gas deposits directly to a solid at

temperatures below −78 °C (−108 °F; 195.1 K) and the solid sublimes directly to a gas above

−78 °C. In its solid state, carbon dioxide is commonly called dry ice.

CO2 is an acidic oxide: an aqueous solution turns litmus from blue to pink. It is the anhydride

of carbonic acid, an acid which is unstable in aqueous solution, from which it cannot be

concentrated. In organisms carbonic acid production is catalyzed by the enzyme, carbonic

anhydrate.

 12

1.13 History of CO2

In the seventeenth century, the Flemish chemist Jan Baptist van Helmont observed that when

he burned charcoal in a closed vessel, His interpretation was that the rest of the charcoal had

been transmuted into an invisible substance he termed a "gas" or "wild spirit" (spiritus

sylvestre).

In the 1750s by the Scottish physician Joseph Black found, limestone (calcium carbonate)

could be heated or treated with acids to yield a gas he called "fixed air." He observed that the

fixed air was denser than air and supported neither flame nor animal life.

Carbon dioxide was first liquefied (at elevated pressures) in 1823 by Humphry Davy

1.14 Greenhouse Effect

 Carbon dioxide is a greenhouse gas as it transmits visible light but absorbs strongly in

the infrared and near-infrared. As the chemically most stable non-condensing greenhouse gas,

it acts as a critical 'climate control knob'.

1.15 CO2 as a Greenhouse Gas

Since the beginning of the Industrial revolution, the burning of fossil fuels has increased

the levels of carbon dioxide in the atmosphere from 280ppm to 391.19ppm. Unlike other

pollutants, carbon dioxide emissions do not result from inefficient combustion: CO2 is a

product of ideal, stoichiometric combustion of carbon. The emissions of carbon are

directly proportional to energy consumption. CO2 is the second highest greenhouse gas in

atmosphere.

1.16 Global warming and Earth’s temperature

Local and global weather has always fluctuated and always will, so global warming cannot be

expected to be a smooth process. But what can be seen above is that half of all man-made

CO2 has been put into the air since 1975, and that matches the one-degree F global

temperature increase since 1975 rather well.

Gas

Formula

Contribution

(%)

Water Vapor H2O 36 – 72 %

Carbon Dioxide CO2 9 – 26 %

Methane CH4 4 – 9 %

Ozone O3 3 – 7 %

 13

Figure 1 Global Temperature Over the Carbon Dioxide

Steven Stroft, Evidence that CO2 is Cause,[Online],

Available: http://www. http://zfacts.com/p/226.html [24 Aug 2013

2. CO2 and AIRBOY

AirBoy is basically made for portable uses for any kind of user. It has several advantages

over current existing systems. It Gathers CO2 data with Temperature and integrates it with

in-situ GPS coordination and store those data to EEPROM while storing it to the

EEPROM. The system has several advantages.

2.1 The AIRBOY GPS based CO2 and Temperature mapping system

The main objective was to develop air boy was to make a LOW-COST stand alone

system for various kind of users such as researchers, travelers, etc.

The device is named as –AIR BOY– . This is a portable and easy to use device,

because of its mobility and portability. Most of systems require PC and not standalone.

Standalone systems are very costly comparing with –AIR BOY–. Its found that it is very

hard to find a GPS based device which measures CO2 and Temperature in the market.

http://www.archaeol.freeuk.com/EHPostionStatement.htm

 14

2.2 How AIRBOY been composed.

This device been composed by using certain modules and protocols,

 Devices

2.2.1 Arduino microcontroller

2.2.2 CO2 SenseAir K-30 temperature Sensor,

2.2.3 GPS52D GPS receiver

2.2.4 LCD Panel KL SN102 94V-0

2.2.5 internal memory (EEPROM) ATMEL 24C1024

2.2.6 Arduino Ethernet Shield DEV-09026

2.2.7 SIMCom 908 GSM/GPRS Module

Protocols

2.2.8 I²C Bus

2.2.9 UART

2.2.10 TCPIP

2.2.11 MODBUS

 What is Arduino?

Arduino is an open-source computing platform based on a simple microcontroller

board, and a development environment for writing software for the board.

Arduino can utilize to develop various modules, obtaining inputs from a variety of

switches or sensors, and controlling a variety of circuitries such as , motors, and other

outputs. Arduino projects can make as stand-alone, or they can be communicate with

software running on the computer By downloading the open-source IDE (Bootloader),

from internet, microcontroller can be make ARDUINO READY.

Arduino hardware consists an open source circuitry hardware based on 8 bit ATMEL

AVR and 32 bit Atmel ARM core. In this project, it has been utilized the Atmel AVR

architecture.

 15

 Why Arduino?

Many other microcontrollers can found in the market and, many programmable

platforms available for physical computing. Netmedia's BX-24, Parallax Basic Stamp, ,

MIT's Handyboard, Phidgets etc

According to ther Arduino Web page, “Arduino also simplifies the process of working

with microcontrollers, but it offers some advantage for teachers, students, and

interested amateurs over other systems” (http://arduino.cc/en/Guide/Introduction –

Accessed 2012 Jan 15)

Arduino over the other Microcontrollers

Arduino has several advantages over other microcontrollers.

 Inexpensive

 Cross-platform

 Simple, clear programming environment

 Open source and extensible software

 Open source and extensible hardware

Arduino utilizes C++ programming architecture and very similer to c++ consist its

own libraries to communicate with hardware. In robotics application, arduino can

easily be used.

Arduino can be added various interchangeable modules as add-ons called shields.

These shields can be connect to the hardware board through various pins or can be

connected and addressed separately through I
2
C serial Bus interface, a communication

protocol developed by Philips Inc.

 Original arduino utilizes Atmel AT MEGAfamily microcontrollers while a handful of

some other brands been used by arduino compatibles. Usually the power input is 5V –

9V, included a 5V DC onboard power regulator and a 16 MHz crystal oscillator or a

resonator made by ceramic.

Arduino microcontroller has a preprogrammed bootloader which make simplified

the uploading process of the programme to its own on-chip flash memory.

All of arduino hardware can access through RS232 serial connection, however,

 16

most of boards utilize a voltage level shifter in between computer and the hardware to

change CMOS level to TTL levels vice versa. Without converting voltage levels

properly, both computer and microcontroller cannot communicate. The level

difference between TTL and CMOS is showed in following figure 3.1

Figure 2 TTL and CMOS Logic Voltages

2.2.1 Arduino Microcontroller

The project is an effort to use the stand alone microcontroller of Arduino Uno

(Atmega 328) with the other electronics parts in order to be portable and independent

device. Atmega328 is an Atmel fabricated megaAVR series single-chip

microcontroller, a high performance 8bit AVR RISC based one which has 32 KB ISP

flash memory with programmable reading and writing ability. It consists following

capabilities ad resources.

 1 KB EEPROM

 32 KB ISP flash memory

 131 Powerful Instructions – Most Single Clock Cycle Execution

 2 KB SRAM,

 23 general purpose I/O lines

 17

 Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

 Data retention: 20 years at 85°C/100 years at 25°C(1)

 32 general purpose working registers

 Three flexible timer/counters with compare modes

 Internal and external interrupts,serial programmable USART

 A byte-oriented 2-wire serial interface

 SPI serial port

 6-channel 10-bit A/D converter (8-channels in TQFP and QFN/MLF packages)

 Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

 One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and

Capture Mode

 Programmable watchdog timer with internal oscillator

 Five software selectable power saving modes

The pin configuration of the microcontroller is as follows in figure 3

Figure 3 - pin configuration of the ATMega 328 microcontroller

Source – ATMEGA 328 Data Sheet, Atmel Corporation 2013,Aug

 18

There are 28 pins available in this microcontroller including 23 general purpose I/O

lines.

Pin Specification

Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

The Port B is an 8-bit I/O port with bi-directional capability and attached internal

pull-up resistors (can be select for each bit alone). The output Port B buffers offers

symmetrical drive characteristics with both high sink and source capability. Port B

pins that are externally pulled low itself, will source current if the pull-up resistors are

activated. The Port B pins are always tri-stated. This keeps it state when a reset

condition occurred, even if the clock is not running.

By Depending on the fuse settings of clock selection, PB7 can be used as output from

the inverting Oscillator amplifier. In the system, all of Port B pins are used for sensors

and shields.

Port C (PC5:0)

Port C consists 7-bit bi-directional I/O ports with internal pull-up resistors (can be

select for each bit alone). Symmetrical drive characteristics with both high sink and

source capability are available in The PC5:0 output buffers. Port C pins that are pulled

low will source current externally As inputs, if the pull-up resistors are activated. The

Port C pins are always tri-stated. This keeps it state when a reset condition occurred,

even if the clock is not running In the AIRBOY, all the Port C pins are utilized.

PC6/RESET

If the RSTDISBL Fuse is programmed, , PC6 is used as an I/O pin. Note that the

electrical characteristics of PC6 differ from those of the other pins of Port C. If the

un-programmed RSTDISBL Fuse is available, PC6 is used as a Reset input. Keeping a

low level state on this pin for longer than the minimum pulse length will generate a

Reset, Shorter pulse length will not trigger the function however. In the system of

AIRBOY, the reset pin has been utilized to reset the whole program. However, the

external memory will not erase on this reset. All the flash registers erased by pressing

the reset button of the system including GPS memory. After resetting, the system

might take some time to receive GPS data and to determine the latitudes and

longitudes which depends on the strength of signal available on site. Until proper GPS

signal detected, the rest of system will not work such as temperature sensing, CO2

sensing and Ethernet connection etc accords to the program hierarchy.

 19

Port D

Port D consists 8-bit bi-directional I/O ports with internal pull-up resistors (can be

select for each bit alone). Symmetrical drive characteristics with both high sink and

source capability are available in The Port D output buffers. Port D pins that are

pulled low will source current externally as inputs, if the pull-up resistors are activated.

The Port D pins are always tri-stated. This keeps it state when a reset condition

occurred, even if the clock is not running. In the system, all of PortD s are been

deployed for sensors and shields.

AVCC

AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. Even if

the ADC is not used, It should be externally connected to VCC. If the ADC is used, it

has been connected to VCC through a low-pass filter in the system. PC6..4 use

digital supply voltage, VCC.

AREF

AREF is the analog reference pin for the A/D Converter. System utilizes this pin to

sense analog data out from LM35 temperature sensor.

 20

2.2.2 CO2 SenseAir K-30 temperature Sensor

Figure 4 - SenseAir K-30 temperature Sensor

 Air boy utilizes SENSEAIR K30 module as its CO2 sensor, identified as a precise carbon

dioxide detector for the project. The K30 sensor platform CO2Engine® K30 can be customized

for a variety of sensing and control applications such as AIRBOY. This platform is designed to

be an OEM module for built-in applications in a host apparatus, and hence should be optimized

for its tasks during a dialog between SenseAir and Arduino microcontroller. In this project, the

task of receiving data has beed done successfully and Sense-Air kit works on arduino without

any problem.

Functional Group Descriptions and Ratings

Power Supply

G+ referred to G0: Absolute maximum ratings 4.5 to 14V, stabilized to within 10%

4.5 to 9V preferred operating range.

Unprotected against reverse connection!

Serial Communication

UART (TxD,

RxD)

CMOS, ModBus communication protocol.

Logical levels corresponds 3.3V powered logics. Refer to “ModBus on

CO2

Engine K30“ for electrical specification.

Outputs

OUT1 Buffered linear output 0..4 or 1..4VDC or 0..10V or 2..10V, depending

on

specified power supply and sensor configuration. ROUT < 100 _,

RLOAD > 5 k_

Load to ground only!

Resolution 10mV (8.5 bits in the range 0..4V)

 21

OUT2 Buffered linear output 0..4 or 1..4VDC or 0..5V or 1..5V, depending on

specified power supply and sensor configuration. ROUT < 100 _,

RLOAD > 5 k_

Load to ground only!

Resolution 5mV

Can be used as alternative for OUT1, or for a second data channel, or in

an

independent linear control loop, such as a housing temperature

stabilization

OUT3 CMOS unprotected. Digital (High/Low) output.

High Output level in the range 2.3V min to DVDD = 3.3V. (1 mA

source)

Low output level 0.75V max (4 mA sink)

Can be used for gas alarm indication, or for status indication etc.

OUT4 CMOS unprotected. Digital (High/Low) output.

High Output level in the range 2.3V min to DVDD = 3.3V. (1 mA source)

Low output level 0.75V max (4 mA sink)

Can be used for gas alarm indication, or for status indication etc.

Status CMOS unprotected.

High Output level in the range 2.3V min to DVDD = 3.3V. (1 mA source)

Low output level 0.75V max (4 mA sink)

Inputs

Din0, Din1, Din2,

Din3,

Din4

Digital switch inputs, pull-up 120k to DVCC 3.3V. Driving it Low or

connecting to ground G0 activates input.

Pull-up resistance is decreased to 4..10k during read of input or jumper.

Advantages are lower consumption most of the time the input/jumper is

kept low and larger current for jumpers read in order to provide cleaning

of

the contact.

Can be used to initiate calibration or to switch output range or to force

output to predefined state. All depends on customer needs.

Din0, Din1, Din2,

Din3,

Din4

Digital switch inputs, pull-up 120k to DVCC 3.3V. Connecting to ground

G0 activates input.

Pull-up resistance is decreased to 4..10k during read of input or jumper.

Advantages are lower consumption most of the time the input/jumper is

kept low and larger current for jumpers read in order to provide cleaning

current. They are the same as inputs on IDC connector.

Can be used to initiate calibration or to switch output range or to force

output to predefined state. All depends on customer needs.

I²C extension

Contact SenseAir

for

information

Pull-up of SDA and SCL lines to 3.3V.

 22

Figure 5- SENSEAIR K-30 CO2 sensor PCB and Connection Overview

Source – SenseAirK-30 Data Sheet, Delsberg, Sweden, 2013 Aug.

 23

2.2.3 GPS52D GPS receiver (Position Co)

Figure 6 GPS52D GPS receiver

Figure 7 GPS Module Pin Out

This is a common GPS module available on market. The parameters are as follows. Cost is

around 5-8USD

 Parameters *3-1 Description * 3-1

Receive mode 12-channel parallel

Receiving frequency 1575.42MHz ± 1MHz ， C/A 码 1575.42MHz ±

1MHz, C / A code

Sensitivity Tracking -142dBm -142dBm

 24

Capture -137dBm -137dBm

Accuracy Location 15m(二维) ： GPS (SA=OFF ， PDOP ≤ 3) Than

15m (D): GPS (SA = OFF, PDOP ≤ 3)

Speed 1m/s： GPS (SA=OFF ， PDOP ≤ 3) Better than 1m

/ s (rms): GPS (SA = OFF, PDOP ≤ 3)

News Altitude -500m~18000m -500m ~ 18000m

Speed 1800km/h 以内 1800km / h or less

Acceleration 2g 以内 2g or less

 (TTFF)

Positioning time

(TTFF)

Cold start 70 seconds (typical values measured at room

temperature)

Warm start 38 seconds (typical values measured at room

temperature)

Hot Start 8 seconds (typical values measured at room

temperature)

The smallest unit

of measurement

Two-dimensional

position

0.0001 分 0.0001 min

Altitude 0.1m 0.1m

Speed 0.01km/h ， 0.01 节 0.01km / h, 0.01 节

Position 0.01 度 0.01 degrees

Data output frequency 1 time per second

Positioning Two-dimensional and three-dimensional automatic

switching

Low-power mode Time setting and switch control

GPS Differential GPS SBAS SBAS

Output data format NMEA-0183 NMEA-0183 compatible

Power Supply Normal mode +3.1VDC ~ +3.6VDC +3.1 VDC ~ +3.6 VDC

(measured at room temperature)

Backup mode +2.1 VDC ~ +3.6 VDC (measured at room

temperature)

Current

consumption

Normal mode 56mA ~75mA 56mA ~ 75mA (measured at room

temperature)

Backup mode 6 μ A (typical values measured at room temperature)

Operating temperature - 30 ℃ ~ +80 ℃ - 30 ℃ ~ +80 ℃

Storage temperature -40 ℃ -40 ℃ ~ +80℃ ~ +80 ℃

Dimensions *3-10 30.8mm (W) × 25.8mm (D) × 9.7mm (H)

including the antenna and shield * 3-10

Weight 12 grams or less, including the antenna and shield

 25

2.2.4 LCD Panel HD44780

Figure 8 - LCD Panel HD44780

This is a liquid-crystal-display panel (LCD) for displaying time. This is a liquid crystal display

made by SUNLIKE Co. in Taiwan. The display of two lines can be performed by 16 characters

per line. This is a common LCD can find in market. Costs around 5USD. Low power

consumption is the most attractive feature of this module. This modules parameters are as

follows.

 Absolute Maximum Ratings

(1) Electrical Absolute Ratings

Item Symbol Min. Max. Unit

Power Supply for Logic VDD-VSS -0.3 7.0 Volt

Power Supply for LCD VDD-VO -0.3 12.0 Volt

Input Voltage VI -0.3 VDD Volt

LED Power Dissipation PAD - 0.9 W

LED Forward current IAF - 195 mA

LED Reverse Voltage VR - 8 V

(2) Environmental Absolute Maximum Ratings

Normal Temperature Wide Temperature

Item Operating Storage Operating Storage

Min, Max. Min, Max. Min, Max. Min, Max.

Ambient

Temperature 0℃ +50℃ -20℃ +70℃ -20℃ +70℃ -30℃ +80℃

 26

Note 2 Ta≦50℃: 80% RH max

Ta>50℃: Absolute humidity must be lower than the humidity of 85%RH at 50℃

Note 3 Ta at -20℃ will be<48hrs at 70℃will be <120hrs when humidity is higher than 70%.

Note 4 Background color changes slightly depending on ambient temperature. This

phenomenon

is reversible.

Note 5 Ta≦70℃: 75RH max

Ta>70℃: absolute humidity must be lower than the humidity of 75%RH at 70℃

Note 6 Ta at -30℃ will be <48hrs, at 80 ℃ will be <120hrs when humidity is higher than 70%.

Figure 9 - Pinout of the LCD Panel HD44780

No Symbol Function

1 Vdd 5V

2 Vss 0V

3 Vo Contrast Adj

4 RS Register Select

5 R/W Read/Write

6 E Ebable Signal

7 DB0 Data BIT0

8 DB1 Data BIT1

9 DB2 Data BIT2

10 DB3 Data BIT3

11 DB4 Data BIT4

12 DB5 Data BIT5

13 DB6 Data BIT6

14 DB7 Data BIT7

Figure 10 - Pin Configuration of the LCD panel HD44780

 27

2.2.5 Internal memory (EEPROM) ATMEL 24C1024

Figure 11 - Atmel 24C1024 EEPROM

This is an ATMEL company manufactured EEPROM. (Figure 3.1.5.1) Cost is around 5USD.

The AT24C1024 provides 1,048,576 bits of serial electrically erasable and programmable read

only memory (EEPROM) organized as 131,072 words of 8 bits each. The device’s cascadable

feature allows up to 2 devices to share a common 2-wire bus. The device is optimized for use in

many industrial and commercial applications where lowpower and low-voltage operation are

essential. The devices are available in spacesaving 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead

Leadless Array (LAP) and 8-ball dBGA packages. In addition, the entire family is available in

2.7V (2.7V to 5.5V) versions.

Features

• Low-voltage Operation

– 2.7 (VCC = 2.7V to 5.5V)

• Internally Organized 131,072 x 8

• 2-wire Serial Interface

• Schmitt Triggers, Filtered Inputs for Noise Suppression

• Bi-directional Data Transfer Protocol

• 400 kHz (2.7V) and 1 MHz (5V) Clock Rate

• Write Protect Pin for Hardware and Software Data Protection

• 256-byte Page Write Mode (Partial Page Writes Allowed)

• Random and Sequential Read Modes

• Self-timed Write Cycle (5 ms Typical)

• High Reliability

– Endurance: 100,000 Write Cycles/Page

– Data Retention: 40 Years

• 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead LAP and 8-ball dBGATM Packages

Description

 28

Figure 12

Source – Atmel24c1024 Data Sheet, Atmel Corporation, 2013, July

Figure 13

Source – Atmel24c1024 Data Sheet, Atmel Corporation, 2013, July

 29

2.2.6 Arduino Ethernet Shield DEV-09026

Figure 14 - Arduino Ethernet Shield DEV-09026

Arduino Ethernet shield is a module which made by arduino company by deploying

ATMega328 microcontroller. This module has been utilized by this project to connect

the system to the Ethernet and to the internet later on. Arduino programming language

has been used to program this module to send readings to the KISSEL Server. The

Wiznet W5100 Ethernet chip has been utilized by this module to communicate with

Ethernet through RJ45 Interface. This chip capable both TCP and UDP protocols.

 There are several numbers of indicator LEDs and it displays following information.

 PWR: indicates that the board and shield are powered

 LINK: indicates the presence of a network link and flashes when the shield

transmits or receives data

 FULLD: indicates that the network connection is full duplex

 100M: indicates the presence of a 100 Mb/s network connection (as opposed

to 10 Mb/s)

 RX: flashes when the shield receives data

 TX: flashes when the shield sends data

 COLL: flashes when network collisions are detected

This shield transmits Data over the internet when it connects to Internet.

 30

2.2.7 SIMCom 908 GSM/GPRS Module

This system has been attached a SIMCom908 GSM/GPRS Module as following figures

Figure 15- SIMCom 908 GSM/GPRS Module

 SimCom908 is a Quad Band 850 / 900 / 1800 / 1900MHz module that supports with

GPRS Multi-slot class 10, GPRS Mobile Station class B. This compliant to GSM phase

2 / 2+ - Class 4 (2W @ 850 / 900 MHz) and Class 1 (1W @ 1800 / 1900 MHz). Very

 31

sophisticated and Dimensions are 30 x 30 x 3.2mm. This module can be controlled by

AT commands. Supplied range of voltage is 3.2V – 4.8 V. This module is GPS capable

but this project does not use that, uses more precise GPS module than it. This Module

has been attached to the system, but its still on its configuration stage. It is expected to

send data over the GPRS as a packet, which breaks the neediness of wired internet

network, but improves the portability and mobility by improving its wireless

communication capability. It is expected to complete the full attachment very soon to

this system,

 The data packet will send over the GSM network by developing and attaching this

module to the system and will be able to use most of the places in the world where

GSM signals are available. This improved the “Place Independency” and will be able to

get relevant data more precisely where even internet or RJ45 interface is not available.

2.2.8 I²C BUS

Figure 16 - Official Logo for I²C Interface

AIRBOY uses I²C bus interface to communicate and store data in EEPROM. I²C

(Inter-Integrated Circuit, generically referred to as "two-wire interface") is a multi-master serial

single-ended computer bus invented by Philips that is used to attach low-speed peripherals to a

motherboard, embedded system, or cellphone. I²C uses only two bidirectional open-drain lines,

Serial Data Line (SDA) and Serial Clock (SCL), pulled up with resistors. Typical voltages used

are +5 V or +3.3 V although systems with other voltages are permitted.

The I²C reference design has a 7-bit address space with 16 reserved addresses, so a

maximum of 112 nodes can communicate on the same bus. Common I²C bus speeds are the

100 kbit/s standard mode and the 10 kbit/s low-speed mode, but arbitrarily low clock

frequencies are also allowed. Recent revisions of I²C can host more nodes and run at faster

speeds (400 kbit/s Fast mode, 1 Mbit/s Fast mode plus or Fm+, and 3.4 Mbit/s High Speed

mode). Following figure 3.1.6.1 shows the conman connection of I²C bus.

 32

Figure 17 - I²C BUS Block Diagram

 Figure 18 - I²C Interface Schematic

 Figure 3.1.6.2. shows how to connect two or more devices to the bus in detail. When

idle, the SDA and SCL lines are pulled up to the supply voltage with a pull-up resistor.

2.2.9 UART

The Universal Asynchronous Receiver/Transmitter (UART) controller is the key component

of the serial communications subsystem of a computer. The UART takes bytes of data and

transmits the individual bits in a sequential fashion. At the destination, a second UART

re-assembles the bits into complete bytes.

AIRBOY uses this interface to communicate with GPS module and the external USB module

when it downloads stored data from EEPROM

 33

Serial transmission is commonly used with modems and for non-networked communication

between computers, terminals and other devices.

 Figure shows a 7o1 UART frame with 7 data bits, 1 parity and 1 stop bit, 11 bits in total.

UART ’s character frame as follows.

 Figure 19 - UART Character Framing

2.2.10 TCP/IP

 In The system AIR-BOY, The Ethernet shield is use TCP/IP protocol to communicate

with its server and send data to its database placed at KISSEL. TCP and IP were developed

by a Department of Defense (DOD) research project to connect a number different

networks designed by different vendors into a network of networks (the "Internet").

As with all other communications protocol, TCP/IP is composed of layers:

 IP - is responsible for moving packet of data from node to node. IP forwards each

packet based on a four byte destination address (the IP number). The Internet

authorities assign ranges of numbers to different organizations. The organizations

assign groups of their numbers to departments. IP operates on gateway machines

that move data from department to organization to region and then around the

world.

 TCP - is responsible for verifying the correct delivery of data from client to server.

Data can be lost in the intermediate network. TCP adds support to detect errors or

lost data and to trigger retransmission until the data is correctly and completely

received.

 Sockets - is a name given to the package of subroutines that provide access to

TCP/IP on most systems.

2.2.11 MODBUS

MODBUS is an application layer messaging protocol which developed on 1979 to

provide Client/Server communication between digital electronics which connected over

different types of buses or networks. This positioned at level 7 at ISO/OSI 7 layer model,

a elegent and simple structure which continued to grow, widely accessed by internet

community at a reserved port 505 on the TCP/IP stack

 In this system, K30 CO2 Sensor communicates over the MODBUS protocol with the

Arduino microcontroller as a request/reply module.

 34

2.3 Advantages of Air Boy system and its Applications

2.3.1 Relatively small – easy to carry / transport

a. Data can be collected in wide range of locations (eg; Deep Ocean, top

of the mountains, middle of deserts, Rain forests, urban areas etc..)

b. Comparison studies can be easily conducted because of its mobile

activity (we can compare CO2 concentrations in between Cities,

countries and location to location

c. Useful for time series data collection (day to day, week to week, month

to month and year to year etc..)

2.3.2 Relatively cheaper – therefore easily can be used in research activities

rather than expensive methods. It is calculated that AIRBOY can

manufactured around 150US$. It is found that a

GPS+CO2+TEMPERATURE measuring device is very hard to find in the

market for any price.

2.3.3 User friendlyness – anyone can use, no technical knowledge need for

operate. There are no special attention needed after its powered on..

2.3.4 Auto data saving capacity – (automatic data recording) It saves data

automatically to internal EEPROM (Electrically Erasable Programmable

Read-Only Memory) itself. Data capacity is 1 megabit for now. Saved

data can be easily transferred to computer using USB interface.

2.3.5 Easy to data collection – we can fixed it required location or we can fixed

in our vehicle when we traveling with required root. There is no

maintenance required for this device.

2.3.6 Can be support different research and other activities- pollution

monitoring, environmental studies, urban planning, Global warming

research activities, green house gases monitoring programs etc, can

deploy this device easily in low cost.

2.3.7 Light weight –

2.3.8 Durability- It can be combined with solar power, then it will keep long

time period data collection activities

 35

2.3.9 Mapping capability – Data associated with GPS locations. Therefore

preparing of distribution maps will relatively easier than other CO2

measuring devices. It is very easy to make a map with GOOGLE mapping

system.

2.3.10 Accuracy and high efficiency

SENSEAIR K30 sensor is sensitive +-30ppm accuracy and can be used

in 0-2000 ppm range.

2.3.11 Low Power Consumption

Its power consumption is 200mA when the device is full operational. In

Low – Power GPS mode, its consumption is 180mA at 5V

 36

3 AIRBOY Layout and its Outline

20 MHz Arduino Microcontroller gathers data from CO2 and temperature sensors using I/O

ports and in the same time from GPS through UART interface. Then it stored as raw data to the

EEPROM using I²C bus protocol. Raw data of both sensors inputs as voltage levels. The CPU

subjects inputs to ADC conversion and calculates the real values using Arduino programming

language, while displaying calculated data through LCD panel using necessary transfer

functions.

There are three inputs and three outputs to and from the CPU. The CO2 sensor and the GPS

module are interfaced using the serial port of the CPU. Each of these two devices is read

through a multiplexer sequentially.

The GPS module repeatedly transmits GPS data as a character string. It is done at a rate of

one set of sentences per second. These sentences are in the NMEA sentence [5] format.

Between two sentence chunks, is a rest of about 500ms. The CPU looks for a pause of this

length and captures the next sentence. This synchronization has to be done in the program

because the GPS module runs in a different time base. These sentences in the chunk have to be

parsed and necessary information has to be extracted in the CPU. Only two types of NMEA

sentences are parsed in the CPU namely GPGGA and GPRMC. Following are two real

example sentences.

$GPRMC,062906.499,V,0658.8112,N,08002.1135,E,005.0,089.0,100413,,,N*77

$GPGGA,062906.499,0658.8112,N,08002.1135,E,0,00,7.3,79.7,M,-91.7,M,,0000*40

The CPU has to check the validity of each sentence and parse only the valid sentences. The

values extracted in the process are latitude, longitude, altitude, date, time and speed. Speed of

travel is necessary to judge if the CO2 readings were taken without moving or not.

 The CO2 sensor K-30 senses the air using the diffusion method. The chosen module

converts the reading to a digital value using an onboard D/A converter. It then prepares the

value for transmission in the requested format using ModBus[3] protocol. The values

transmitted are in the range of 0ppm – 8000ppm. The CPU switches over from GPS module to

the CO2 sensor using a digital multiplexer and requests the CO2 value from it. The sensor then

sends the requested value.

The temperature sensor LM35 reads the temperature and outputs it as a highly linear

analog voltage in the range of 0V to 5V. The CPU reads this voltage through one of its analog

inputs.

The Atmel AVR CPU collects all these values and displays it on the 16x2 character Hitachi

LCD module. The CPU sends the characters to the LCD module using six parallel digital lines.

In addition, the CPU constructs a character string of minimum required length to neatly pack all

the values. It then stores this packet in the EEPROM.

A 128KB ATMEL EEPROM memory is used to store the packets constructed in the CPU.

Special memory algorithms were developed to utilize the memory at its best because the length

of the packet may vary in changing versions and because the memory is accessed one page at a

time. Difference in page size and our packet length leaves some bits unused. The developed

algorithm uses these bits and makes the page operations transparent to the rest of the program.

 37

This system utilizes the SPARKFUN Pro-Ethernet module to interface with LAN over the

TCPIP prtocol, is used to communicate with the data upload PHP webpage. The CPU

constructs an HTTP query string with the constructed packet having values read. It then

makes a HTTP request to the PHP upload page through the LAN interface. The upload.php

packet format as follows.

Upload.php?packet=xxxxxxxxxxxxxxxxxxxxx

“xxxx” represents the set of data which red and processed by Atmel CPU. An example

data packet of location as follows.

Upload.php?packet=$GPRMC,062906.499,V,0658.8112,N,08002.1135,E,005.0,089.0,10041

3,,,N*77$GPGGA,062906.499,0658.8112,N,08002.1135,E,0,00,7.3,79.7,M,-91.7,M,,0000*4

0

There is no acknowledgement which getting from server side. By receiving the data

set/packet, the program processes it and separates each values of CO2 level, Temperature,

Altitude, Time and Position. Then it writes to MYSQL database on kissel server.

 HTTP/1.0 GET request

http://kissel.base.ibaraki.jp/airboy/upload.php?packet=31382f

30332f37370031383a31363a303000a0a0a0a0b0b0b0b0c0c0d0e0f0f0

 The microcontroller makes the above GET request with the acquired data composed

as a single hexadecimal query string parameter.

index.php page reads data in MYSQL database and integrates it with color code and

displays over the GOOGLE MAPS API. Figure III shows the entire system architecture and

figure IV shows the actually implemented prototype.

http://kissel.base.ibaraki.jp/airboy/upload.php?packet=31382f30332f37370031383a31363a303000a0a0a0a0b0b0b0b0c0c0d0e0f0f0
http://kissel.base.ibaraki.jp/airboy/upload.php?packet=31382f30332f37370031383a31363a303000a0a0a0a0b0b0b0b0c0c0d0e0f0f0

 38

Arduino

CPU

LCD

EEPROM
CO2

GPS

Temperature

M
u

ltip
le

x
e

r

SIM908 GSM/

GPRS Module

Ethernet Shield

USB Uart

Internet

KISSEL SERVER

PC

Figure 20 - AIRBOY System Architecture

SENSEAIR- K30 infrared CO2 sensor has been deployed to sense the CO2 level. CO2 level

determine by PPM (Particles per million). It communicates with Arduino CPU, over the

MODBUS protocol. This K30 CO2 Module measures CO2 level and send it to the CPU through

a multiplexer to compare with Temperature over the time which obtained from GPS sensor and

Temperature sensor.LM35 well known IC module has been used for sense the air temperature.

It senses temperature in Celsius and it will easily can support the user to take his decisions

because the CO2 level and Temperature level has a sort of mutual relationship inside the

atmosphere, mostly an ascending similarity. The CO2Engine® K30 is basically maintenance

free in normal environments because of the built-in self-correcting algorithm. Basically the

AIR-BOY is a maintenance free device which needs only the power from externally.

 39

Figure 21 Circuit Diagram

Co2.h,i2c.h,at24c.h,lcd.h header filers are in-house developed or customized header

files. These file has been created or altered to suite of needs of the AIR-BOY project.

3.1 Co2.h

 This file consist only data structures regarding the sensors and saved data of EEPROM.

There are four structures are defined inside, those are,

GPRMC, GPGGA, GPS, EEPROM_RECORD

3.1.1 GPRMC- the incoming GPRMC sentence from GPS unit is parsed and stores

inside the data structure for further processing. From this sentence, several parameters are

taken. This GPRMC sentence is known as the "Recommended Minimum" sentence, and

the most common sentence received by most of domestic GPS devices such as

Navigations, smart phone applications etc... Following data are taken and stored among

the incoming data set of GPRMC sentence for further processing.

 40

 Latitude

 Longitude

 Speed

 Date

 Time

The format of the GPRMC sentence as follows

$GPRMC,HHMMSS.SS,A,DDMM.MMM,N,DDDMM.MMM,W,Z.Z,Y.Y,DDMMYY,

D.D,V,M,NS*CC<CR><LF>

This one sentence contains nearly everything a normal GPS application needs those are

Message

Component

Description

HHMMSS.SS UTC time in hours, minutes, and seconds of the GPS position

A Status (A = valid, V = invalid)

DDMM.MMM Latitude in degrees, minutes, and decimal minutes

N Latitude location (N = North latitude, S = South latitude)

DDDMM.MMM Longitude in degrees, minutes, and decimal minutes

W Longitude location (E = East longitude, W = West longitude)

Z.Z Ground speed, in knots

Y.Y Track made good, reference to true north

DDMMYY UTC date of position fix in day, month, and year

D.D Magnetic Variation, in degrees

V Variation sense (E = East, W = West)

M Mode indicator

Variable length valid character field type with the first two characters

currently defined.

 First character indicates the use of GPS satellites

 Second character indicates the use of GLONASS satellites

If another satellite system is added to the standard, the mode indicator

will be extended to three characters. New satellite systems shall always

be added on the right, so the order of characters in the Mode Indicator

 41

is: GPS, GLONASS, other satellite systems in the future.

The characters shall take one of the following values:

 N = No fix. Satellite system not used in position fix, or fix not

valid

 A = Autonomous. Satellite system used in non-differential

mode in position fix

 D = Differential. Satellite system used in differential mode in

position fix

 P = Precise. Satellite system used in precision mode. Precision

mode is defined as no deliberate degradation (such as Selective

Availability) and higher resolution code (P-code) is used to

compute position fix.

 R = Real Time Kinematic. Satellite system used in RTK mode

with fixed integers

 F = Float RTK. Satellite system used in real time kinematic

mode with floating integers

 E = Estimated (dead reckoning) mode

 M = Manual input mode

 S = Simulator mode

The mode indicator shall not be a null field.

NS Navigational status; options are:

 S = Safe

 C = Caution

 U = Unsafe

 V = Not valid for navigation

*CC Checksum

<CR> Carriage return

<LF> Line feed

GPGGA – the incoming GPGGA sentence from GPS unit is parsed and stores inside the

data structure. AIRBOY uses GPGGA , NMEA data format to receive its data from GPS

receiver, –AIR BOY– System uses $GPGGA GPS Fix format for the system with WGS-84

 42

datum and following data are taken and stored among the incoming data set of GPGGA

sentence for further processing.

3.1.2 GPGGA Data Format

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh

1 = UTC of Position , 2 = Latitude ,3= N or S

4= Longitude, 5 = E or W 6 = GPS quality indicator (0=invalid; 1=GPS fix; 2=Diff. GPS fix)

7 = Number of satellites in use [not those in view]

8= Horizontal dilution of position, 9= Antenna altitude above/below mean sea level (geoid),

10 = Meters (Antenna height unit),11 = Geoidal separation (Diff. between WGS-84 earth

ellipsoid and mean sea level.=geoid is below WGS-84 ellipsoid), 12 = Meters (Units of

geoidal separation), 13 = Age in seconds since last update from diff. reference station, 14= Diff.

reference station ID#, 15 = Checksum. AIR BOY- is used 1,2,3,4,5,6,9 data for its calculations.

 In early stage, Data has been gathered around HITACHI city ibaraki ken Japan around

15 Km. There were 300 data values were found in EEPROM. Following Figure 5.0 shows

some data sets which downloaded from EEPROM

090436344187N140384900E0,33d,7d

090736347417N140389129E1,2a5,7a

090936351547N140389168E0,2a5,77

091436353843N140398275E1,29d,79

091836364702N140405750E0,2b5,76

092236367214N140400125E0,2a9,73

092536361734N140392321E1,29d,70

093336347518N140382851E1,2f5,73

093836343149N140386029E1,29d,71

094136344133N140384975E1,295,71

Received Data in EEPROM

Last 6 digits separated by two commas are CO2 and Temperature levels respectively.

Following figures show GPS, CO2 and Temperature measurement when the device is

operational. The detailed explanation of a data set is described in following Figure 5.1.

Figure 22 - Data Packet

 43

The system Uses following parameters which extracts from the GPGGA sentence for its

calculations.

 Altitude

 Fixed quality

 Number of satellite

The example of GPGGA sentence as follows

$GPGGA,001038.00,3334.2313457,N,11211.0576940,W,2,04,5.4,354.682,M,-26.574,M,

7.0,0138*79

The syntax of GPGGA sentence as follows.

$GPGGA,HHMMSS.SS,DDMM.MMMMM,K,DDDMM.MMMMM,L,N,QQ,PP.P,AAA

A.AA,M,±XX.XX,M,SSS,RRRR*CC<CR><LF>

Message

Component

Description

HHMMSS.SS UTC time in hours, minutes, and seconds of the GPS position

A Status (A = valid, V = invalid)

DDMM.MMM Latitude in degrees, minutes, and decimal minutes

N Latitude location (N = North latitude, S = South latitude)

DDDMM.MMM Longitude in degrees, minutes, and decimal minutes

W Longitude location (E = East longitude, W = West longitude)

Z.Z Ground speed, in knots

Y.Y Track made good, reference to true north

DDMMYY UTC date of position fix in day, month, and year

D.D Magnetic Variation, in degrees

V Variation sense (E = East, W = West)

M Mode indicator

Variable length valid character field type with the first two characters

currently defined.

 First character indicates the use of GPS satellites

 44

 Second character indicates the use of GLONASS satellites

If another satellite system is added to the standard, the mode indicator

will be extended to three characters. New satellite systems shall always

be added on the right, so the order of characters in the Mode Indicator

is: GPS, GLONASS, other satellite systems in the future.

The characters shall take one of the following values:

 N = No fix. Satellite system not used in position fix, or fix not

valid

 A = Autonomous. Satellite system used in non-differential

mode in position fix

 D = Differential. Satellite system used in differential mode in

position fix

 P = Precise. Satellite system used in precision mode. Precision

mode is defined as no deliberate degradation (such as Selective

Availability) and higher resolution code (P-code) is used to

compute position fix.

 R = Real Time Kinematic. Satellite system used in RTK mode

with fixed integers

 F = Float RTK. Satellite system used in real time kinematic

mode with floating integers

 E = Estimated (dead reckoning) mode

 M = Manual input mode

 S = Simulator mode

The mode indicator shall not be a null field.

NS Navigational status; options are:

 S = Safe

 C = Caution

 U = Unsafe

 V = Not valid for navigation

*CC Checksum

<CR> Carriage return

<LF> Line feed

 45

GPS – this data structure utilized to extract the relevant GPS data from above two

structures.

EEPROM_RECORD – this data structure has been utilized for to prepare the data to be

written to the eeprom this data consists the GPS data + CO2 + TEMP data.

3.1.3 I2C.h

This file is used to facilitate i2c bus communication using two pins of the micon. This

contents functions to work the two pins to create i2c protocol messages. These messages

are init, start condition, stop condition, ack, no ack, reset, read byte, write byte. There are

separate functions for each of these messages which make the two pins work.

3.1.4 At24c.h

This file uses the i2c.h file and contains the functions nessesary to communicate with an

external atmel eeprom memory. There are eight functions included in this file.

 init (scl pin, SDA pin, memory size, page size)

 this function initializes the external eeprom device using supplied parameters. this

at24c.h library allows us to read and write to the device disregarding the page size of the

device. This library keeps track of the page size and changes the page accordingly to the

read or writes operation being performed.

at24c.init(11,12,131072,256);

this initializes the device whose scl pin and sda pin are connected to the micon with data

pins 11 and 12 respectively. This device used by the project has a memory size of 131072

bytes (128Kb) and a page size of 256 bytes.

3.1.5 read_byte (address)

 This function reads a byte at the givan address and returns it as an 8 bit unsigned integer

 uint8_t a = read_bye(0x0a)

 This function reads a byte from the address 0x0a of eeprom and returns it to the variable

a.

 46

3.1.6 read_bytes(address,buffer,length)

 this function reads a byte stream of a givan length and stores them in to the

buffer provided as a parameter. It also returns the buffer.

 char buffer[128];

 at24c.read_bytes(0x0a,buffer,128);

 this function reads 128 bytes starting from address 0x0a and stores the bytes in to the

char array provided.

3.1.7 search_byte(bits)

 This function calls the overloaded function search_byte(bits,0,1) . This is useful

to easily find the first occurence of a particular byte value. it returns the address as a 32bit

integer and returns -1 if the byte value is not found.

3.1.8 search_byte(bits,start address)

 this function works as the previous function but the search begins at the

start address.

it returns the address as a 32bit integer and returns -1 if the byte value is not found.

3.1.9 search_byte(bits,start address,n)

 this function works as the previous function but finds n
th

 occurrence of the

given byte value. it returns the address as a 32bit integer and returns -1 if the byte value is

not found.

3.1.10 write_byte(address,bits)

 this function writes a given byte value at the given address. it returns -1 if the

address id bigger than the memory size. it returns 0 if the write was successfully

verified and returns -2 if the write verification is failed.

 47

3.1.11 write_bytes(address, buffer,length)

 This function writes a byte stream of a given length starting from the address

provided. this function handles all the page operations. it returns -1 if the address + length

is bigger than the memory size. it returns 0 after completion.

3.1.12 lcd.h

This libraray leverages the work of an open source 3
rd

 party LCD library and is

completely re-written and coustomized to adopt the needs of this project.

3.1.13 init(rs,en,d7,d6,d5,d4)

 this function initializes an LCD device connected to the number of pins passed in as

parameters.

3.1.14 print(character)

 This function prints a single character at the current cursor position.

3.1.15 println(character)

 prints a single character in a new line.

3.1.16 Print(text)

 this function prints a string starting at the current cursor position.

3.1.17 printlk(text)

 prints a string, starting at a new line.

3.1.18 print(int)

 this function prints an integer starting at the current cursor position.

3.1.19 println(int)

 this function prints an integer starting at a new line

 48

3.1.20 print(long)

 prints a long integer starting at the current cursor position.

3.1.21 println(long)

 prints a long integer starting at a new line

3.1.22 cursor(int 8_x, int8_y)

 this function position the cursor at a given x,y coordination of the LCD

3.1.23 cursor_on()

 This makes the cursor visible

3.1.24 cursor_off()

 This makes the cursor invisible

3.1.25 clear

 This function clears the display.

3.1.26 getGPS()

 49

3.2 EEPROM saving Structure

 The data stream that saves to the EEPROM memory has arranged as a packet called “er”

derived from the EEPROM_RECORD data type. “er” consist of the GPS, Temperature and

CO2 data. “er” gets updated once an every cycle of the main loop and always bear latest

relevant data of sensors. Two types of delimiters are used to separate data packets and end

of line. The packet separating delimiter is used as 0x1E with reference of the ASCII table as

displays in below, means the “record separator “ (30
th

 decimal position). 0x03 has been used

to denote “end of text” according to the ASCII table on its 3
rd

 position in decimal. The storing

method of data in EEPROM as follows.

Data Packet

Middle

Delimeter

0x1E

Data packet

Middle

Delimeter

0x1E

Data packet

Final

delimeter

 0x03

Figure 23 - storing method of data in EEPROM

 50

3.3 ASCII Table

 In following figure, the ASCII character table can be found. The 30
th

 Decimal point

represents the record separator and the 3
rd

 Decimal point represents the final delimiter of a

data set.

Figure 24 - storing method of data in EEPROM

Tomas Vilda, ASCII Table,[Online],

Available: http://tvilda.stilius.net/ascii/ascii.php , 14 Dec 2012

http://tvilda.stilius.net/ascii/ascii.php

 51

4 The Program

4.1 Program Structure

 The structure of the program, elaborated as flow charts in later pages. The main

program has been divided to two charts.

4.1.18 Initialization

4.1.19 Main loop

It can be found other functions, stated according to its complexity, which included to

header files which made by especially for this project as

4.1.20 The GetGPS process in main loop, explains receiving and storing method of two types

of GPS sentences.

4.1.21 Dividing process of GPS data in to data sets and inserting delimiters as necessary

4.1.22 Writing process to EEPROM

4.1.23 Finding the next registers to be written on the EEPROM

4.2 Web Interface Programming

 PHP is used for creating the web interface at Kissel server. The Program is as

follows. There are two PHP files are used for whole web constructions so far.

4.2.1 Index.php - Written for display the data base and its values and display the

google map according to the respective coordination

4.2.2 upload.php – This file parses the quary string received from the microcontroller. Then

it decompose the qary string in to data and stores the values in to the database

table.

 52

GPS = dirty

Print “Reading

GPS”

Get GPS

information

Fill

EEPROM_RECORD

using GPS Information

Get Temperature and

store in

EEPROM_RECORD

Sve

EEPROM_RECORD

structure in EEPROM

Get CO2 level and store in

EEPROM_RECORD

structure

Save result

=>0

Print “ EEPROM

Write Faliure

Print “EEPROM

“Write Success”

Open last

EEPROM record

saved

Print Formatted

output on LCD using

EEPROM_RECORD

Delay 5 Minutes

showing current

CO2 and Temp

Level on LCD

NO

NO

YES

YES

Figure 38 - Main Loop

Figure 26 Main Loop

 53

Start

Read GPS Data

Return Value

>= 0

Print “Cant Read

From GPS”

Extract GPRMC

Information from GPS

data

Fill GPS data structure

with GPRMC

Latitude,Longitude,

Speed, Data, Time

Fill GPS data structure

with GPGGA Altitude

Extract GPGGA

information from GPS

Data

GPGGA has Checksum

And

GPRMC has Checsum

And

GPGGA fix quality >0

and

GPGGA number of satellites >2

Make the “dirty”

Flag of GPS data

structure “false”

Stop

No

Yes

Yes

NO

Figure 39 -

The GetGPS process in main loop,

Figure 27 The GetGps Process in main loop

 54

Write a record separator delimiter on to eeprom_next_address

by overwriting the existing text_end delimiter

Increase the eeprom_next_address by one

Create an EEPROM_RECORD sized buffer

Copy the contents of the given EEPROM_RECORD structure on

to the buffer

Write the contents of the buffer on to the EEPROM starting at

eeprom_next_address

Increase the eeprom_next_address by current size of the

EEPROM_RECORD

Write a text_end delimeter at the next_eeprom_address

Stop

Start

Figure 40 -

Dividing process of GPS data

in to data sets and inserting

delimiters as necessary

Figure 28 : Dividing Process of GPS data in
to data sets and inserting delimeters as

nessasary

 55

Start

Create an EEPROM_RECORD sized buffer

Read from eeprom memory a length of

EEPROM_RECORD, starting at record

address and store on the buffer

Declare a new EEPROM_RECORD structure

Copy the contents of the buffer on to the new

EEPROM_RECORD structure

Return the new structure

Stop

Figure - 41

Writing Process to EEPROM

Figure 29 : Writing Process to EEPROM

 56

Start

Calculate the last record address by substracting the size of

EEPROM_RECORD from eeprom_next_address

Call eeprom_open_address with the calculated address and

return the returned EEPROM_RECORD structure

Stop

Figure 42 -

Finding the next registers to be written on the

EEPROM

Figure 30: Finding the next registers to be
written on the EEPROM

 57

5. AIRBOY Assembly.

Figure 31 - Actual Components setout

 58

Figure 32 - Actual Prototype

 59

5.1 Calibration

 The calibration phase has done using a real CO2 and Temperature devices. The real

Device was “ EASY SENSE” a United Kingdom made device manufactured by Data Harvest

Inc. The Calibration setup was done as follows (Figure 4.4.1)

Figure 33- Calibration of AIRBOY

 60

5.2 Data Gathering and Analyzing

 In the early stage of development of this system, 40 data values has been selected

out of 300 values to propagated manually using Google Maps. The map is shows in following

figure 5.2

Figure 34 - Mapping around Hitachi city

 The magnified data value implies the particular point consist 515 ppm CO2 value and 12.5 C

of temperature. The time that gatherd data was 18.04 – 18.41 hours and the whole distance

was 15.3 Km. Green Dots are GPS points and red lone is the path that has used to check

515, 12.5

 61

. A graph has plotted using whole 300 data values by comparing CO2 Vs Temperature, is

shown in Figure 47

Figure 35 - CO2 and Temperature Level Over the time

(weather factor is not removed)

. This system can be installed in some of major metropolis in the world such as Tokyo, New

Delhi, New York etc… This allows having actual image of CO2 emission and its density over

the temperature, time and its respective altitudes. It is very hard to find this type of service in

internet. This will be more accurate free and will be able to use anyone who needs real CO2

readings, comparatively inaccurate and very expensive remote sensing satellite data. Several

trial have been conducted internationally to verify the functionality of the device. Following

images has been generated in recent trial

The device uses an ATMEL AVR microcontroller with a program written in C using the

Arduino platform. The task of the program is to validate the data received from the input

devices and upload the data to the web server periodically. In addition, it also saves the

uploaded data inside a separate EEPROM memory to be later downloaded to the PC if

needed. The microcontroller uses a LAN device with the TCP/IP protocol to send the http

request to the data acquisition PHP page.

10

10.5

11

11.5

12

12.5

13

18
:0
4

18
:0
7

18
:1
1

18
:1
4

18
:1
7

18
:2
0

18
:2
4

18
:2
7

18
:3
0

18
:3
3

18
:3
7

18
:4
0

Time

T
e
m

p

0

100

200

300

400

500

600

C
O

2 Temperature

CO2

 62

5.3 Presenting Data on a Colour Coded Map

 The received data from devices across the globe is validated in the server side and

stored in the MySQL database. The users visit the map webpage and the map is displayed

using a colour coded CO2 layer on top of a Google Map. The map is then updated

periodically without refreshing the page using AJAX
[1]

. The site will be hosted in the

KISSEL
[2]

 server of Ibaraki University Kansei Mathematics Lab. Refer figure I for colour

codes.

0-365

366-375

376-385

386-500

500<

 Concentration in Particles per

million (ppm)

Figure 36 - CO2 Monitoring Color Code

5.4 Trial Observations

Figure 37 – Trial Monitoring – Japan

Figure 38 – Trial Monitoring India and Srilanka

0

 63

System gathered CO2 data in Srilanka, Japan and India as a Trial monitoring session. It

showed a certain results and successfully transmitted it in to a database on the web. a

Screenshot of the webpage as follows. By clicking on the “See On Map” button, user can see

the map of respective data. The color coding part is still to be developed.

Figure 39 - AIR-BOY Telemetry Data web

Figure 40 - Map of a Location of the monitoring

 In India, The system gathered CO2 data in Puducherry City and Tiruchirappali City. In

Puducherry, it is observed that the CO2 level is slightly higher in middle of the city limit and

observed 14 hours as on its mean of entire reading. In time of whole observation, the device

kept on the same place and didn’t move to anywhere. In this observation, the Device has been

gathered data successfully including GPS coordination and transmitted to its server over the

internet successfully.

 In Tiruchirapalli has relatively lower amount of CO2, observed 8 hours on outer border of

 64

the city. Calculation has done on its mean of entire reading. In this area, it is observed that the

Level of CO2 is slightly lower than previous place, Puducherry. In Tiruchirapalli, the windy

surroundings has been observed during the monitoring time. In time of whole observation,

the device kept on the same place and didn’t move to anywhere. In this observation, the

Device has been gathered data successfully including GPS coordination and transmitted to its

server over the internet successfully.

In srilanka, The city called Bakamuna, In Polonnaruwa District has been observed for 48

hours.It is observed that the Level Of CO2 is slightly lower than Observed next City in

srilanka, the capital Colombo. Colombo was the most contaminated City on whole

observation, which has higher CO2 level. In Colombo, it is observed CO2 data for 48 hours of

time. In time of whole observation, the device kept on the same place and didn’t move to

anywhere. In this observation, the Device has been gathered data successfully including GPS

coordination and transmitted to its server over the internet successfully.

In japan, CO2 level of Okazaki-shi, Aichi-ken, was observed during the trial. It is found

that the CO2 level around the area is higher than the next place of observation, Ibaraki

University, Hitachi City in Ibaraki prefecture. In time of whole observation, the device kept

on the same place and didn’t move to anywhere. In this observation, the Device has been

gathered data successfully including GPS coordination and transmitted to its server over the

internet successfully.

In whole observations, Thiruchirapalli enjoys the lowest rate of CO2 among six cities of three

countries, 406 mean PPM. Colombo displayed the highest rate of CO2 is 784 mean ppm.

However, there is an error to be corrected. The time factor should be removed from these data

because in day time, the Oxygen concentration in atmosphere is high and in night time the

CO2 rate is higher than O2. A fair technique should be introduced to remove this error.

 65

5.5 Commissioning

 The fully developed system has been commissioned at one of highly polluted

highland city in Srilanka called KANDY. Data gathered in most polluted area of the city, in

front of Central Bus Stand and the Train station. Both Bus and Train services are Diesel

Driven in srilanka. This City called Kandy is a one of important world heritage site according

to the UNESCO.

Figure 41 Location of monitoring (Goods Shed Bus Stand - Kandy)

There are hundreds of ancient temples are around the city with ancient paintings and carvings.

It has been reported of fading colors, and damaged itself of ancient paintings. It is reported

that ancient cave paints of Altamira in spain also damaged by the same incident.

“During the 1960s and 1970s, the paintings were being damaged by the carbon dioxide in the breath

of the large number of visitors. Altamira was completely closed to the public in 1977, and reopened to

limited access in 1982.” newworldencyclopedia.org. (2013) ESA: Altamira Cave: [Online]. Available

from: http://www.newworldencyclopedia.org/entry/Altamira_(cave) [Accessed 3rd january 2014]

Higher density of carbon dioxide might cause this and it is very important to measure the

 66

density of green house gases using this kind of online portable monitoring system. There are

many lung diseases and respiratory problems are also reported around the Kandy city. After a

brief monitoring within 36 hours, the data was depicted; almost whole day the density of CO2

keeps same comparing with Colombo

Figure 42 Commissioning and Data gathering

Figure 43- Respiratory Diseased Deaths in Kandy

(Statistics from Statistical Division of Ministry Of Health Srilanka, 2013, Nov)

Monitoring session started at +5. 30 GMT in 2014.02.14 at Kandy City. The first data received

GPRS by the server, at +5. 33GMT, after three minutes, turning power on. This time usually take

the system to initialize GPS and GSM modules in the start. After receiving first data,

approximately one reading had been received from the server wirelessly for 36 hours. It is

observed that data varied from 74ppm within 17 hours. Again it comes to approximately same

365ppm in 2014.02.05 at 8.58GMT, after 24 hours of smallest reading. There was only 4ppm

difference monitored in the 24 hours observation loop. Refer Figure 51, 52, 53.

 67

Figure 44– The lowest ppm (361ppm)of carbon dioxide of the 36 hours observation

session

Figure 45– The Highest ppm (435ppm)of carbon dioxide of the 36 hours observation

session

Figure 46– CO2 level comes again to The approximately same (only 4ppm difference

monitored) lowest ppm, (365ppm) after exactly 24 hours from firstly monitored lowest

ppm.

 68

Figure 47– Chart for the 24 hour CO2 level loop (Time in UTC)

 In the Figure 54, It can be seen more precisely that the CO2 level comes back to the

approximately same level after 24 hours, just varies with 4ppm.

 This time in UTC and should be add +5.30 hours to get local time. The highest peak if

CO2 shows in 7.30 – 8.00 AM local time, the busiest time in the day of the City. Thousands

people around there in this rush time and can be seen the most vehicular traffic of the day.

This place is very near to the train and bus station. Big spikes of CO2 emissions can be

observed within the later hours.

0

50

100

150

200

250

300

350

400

450

500

2
0

1
4

/0
2

/0
4

 7
:1

2

2
0

1
4

/0
2

/0
4

 8
:2

4

2
0

1
4

/0
2

/0
4

 9
:3

6

2
0

1
4

/0
2

/0
4

 1
0

:4
8

2
0

1
4

/0
2

/0
4

 1
2

:0
0

2
0

1
4

/0
2

/0
4

 1
3

:1
2

2
0

1
4

/0
2

/0
4

 1
4

:2
4

2
0

1
4

/0
2

/0
4

 1
5

:3
6

2
0

1
4

/0
2

/0
4

 1
6

:4
8

2
0

1
4

/0
2

/0
4

 1
8

:0
0

2
0

1
4

/0
2

/0
4

 1
9

:1
2

2
0

1
4

/0
2

/0
4

 2
0

:2
4

2
0

1
4

/0
2

/0
4

 2
1

:3
6

2
0

1
4

/0
2

/0
4

 2
2

:4
8

2
0

1
4

/0
2

/0
5

 0
:0

0

2
0

1
4

/0
2

/0
5

 1
:1

2

2
0

1
4

/0
2

/0
5

 2
:2

4

2
0

1
4

/0
2

/0
5

 3
:3

6

2
0

1
4

/0
2

/0
5

 4
:4

8

2
0

1
4

/0
2

/0
5

 6
:0

0

2
0

1
4

/0
2

/0
5

 7
:1

2

2
0

1
4

/0
2

/0
5

 8
:2

4

2
0

1
4

/0
2

/0
5

 9
:3

6

2
0

1
4

/0
2

/0
5

 1
0

:4
8

Temperature (°C)

CO2 (ppm)

 69

5.6 Conclusion

This environmental case study in KANDY CITY has done to verify the functionality of

AIRBOY system. This system successfully could take data, and send it to its server over the

GSM network. This is is accessible to public over the internet..

This GPS Assisted Online CO2-Temperature Mapping System prototype has following

advantages and disadvantages over the remote sensing satellite imaging technique.

Advantages

1. Anyone can access data in free of charge

2. Real time monitoring

3. Device is light-weight and can save data and can upload when it connect to the internet

4. Very cheap and economical

Disadvantages

1. Cannot transfer data without an internet connection

2. It is very hard to make a smooth CO2 flowing image as in remote sensing technique,

because CO2 level changes very sharply in location to location.

This paper humbly attempts to make a very accurate on location, carbon monitoring service,

in free of charge for people who interested to monitor such as Researchers, Naturists,

Students, Decision makers etc., who tries to control carbon emission to save the mother earth.

However, the development of this system will be critically depends on resources which are

available. We make more innovative solutions to sustain and overcome those constrains.

5.7 Further Developments

 This system can easily improve as a one stop solution for Air Quality monitoring

system which can monitor multiple gases with particular matters. The inner program

architecture is developed well to plug any kind of sensor with least changes to its processor.

A Wireless device can be added to connect this system with pc, freely with an optional solar

panel. An internal rechargeable battery pack can be installed to enhance mobility. Finally, a

suitable design of industrial cover/case will qualify this for the market. ,

 70

5.8 References

[1] http://www.modbus.org/specs.php (Accessed on January 7, 2012)

[2] http://aprs.gids.nl/nmea/ (Accessed on January 7, 2012)

[3] Scott Meyers, “Effective C++ second Edition”Addison Wesley Longman, Inc.

Harlow, England,1998.

[4] Richered Barnett, Sarah Cox and Larry O’Cull, “Embedded C Programming and the

Atmel AVR”, Delmer Cengage Learning, NewYork,USA,2007.

[5] “GSU-52 Series” White paper module, Position Co.Ltd., Tokyo , Japan,2006.

[6] “LM35 Precision Centigrade Temperature Sensors” Data sheet, National

Semiconductor Corporation, USA, and November 2000.

[7] “EM_CO2-Engine_K30-STA” Data sheet, Sense Air AB Co,Delsbo,Sweden,

[8] “SUNLIKE SC1602BSLB” Data sheet,2000.

[9] http://zfacts.com/p/226.html (Accessed on Junary 14, 2012)

[10] Chan et al., 2002 C.W. Chan, Y. Peng, L.L. Chen Knowledge acquisition and

ontology modeling for construction of a control and monitoring expert system

International Journal of Systems Science, 33 (2002), pp. 485–503

[11] (FAO, 2010a;Hett, Castella, Heinimann, Messerli, & Pfund,2012;Le Quere, Raupach,

Canadell, & Marland, 2009;Van derWerf et al., 2009).

[12] Sholeh et al., 2007M. Sholeh, H.F. Svendsen, A.H. Karl, J. OlavSelection of new

absorbents for carbon dioxide capture ,Energy Conversion and Management, 48

(2007), pp. 251–258

[13] Zhou et al., 2009Q. Zhou, C.W. Chan, P. Tontiwachi wuthikul A monitoring and

diagnostic expert system for carbon dioxide capture Expert System with

Applications, 36 (2009), pp. 1621–1631

[14] FAO, 2010a;Hett, Castella, Heinimann, Messerli, & Pfund,2012;Le Quere, Raupach,

Canadell, & Marland, 2009;Van derWerf et al., 2009).

[15] IPCC (Intergovernmental Panel on Climate Change)IPCC special report on carbon

dioxide capture and storageCambridge University Press, New York (2005) Available

at: http://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf. (Accessed on

July 4, 2013)

http://www.modbus.org/specs.php
http://aprs.gids.nl/nmea/
http://zfacts.com/p/226.html

 71

[16] NETL (National Energy Technology Laboratory)Best practices for monitoring,

verification, and accounting of CO2 stored in deep geologic formations National

Energy Technology Laboratory, Pittsburgh (PA) (2009) Available at:

http://www.netl.doe.gov/technologies/carbon_seq/refshelf/MVA_Document.pdf.

(Accessed on June 7, 2013)

[17] D.W. Vasco, A. Rucci, A. Ferretti, F. Novali, R.C. Bissel, P.S. Ringrose et

al.Satellite-based measurements of surface deformation reveal fluid flow associated

with the geological storage of carbon dioxide Geophys Res Lett, 37 (2010), p.

L03303 http://dx.doi.org/10.1029/2009GL041544 , (Accessed on August 29, 2013)

[18] M.D. Morris Factorial sampling plans for preliminary computational experiments

Technometrics, 33 (2) (1991), pp. 161–174 http://dx.doi.org/10.2307/1269043

(Accessed on August 29, 2013)

[19] Arduino. (n.d.). Retrieved from http://www.arduino.cc/.(Accessed on August 29,

2013)

[20] Schmidt, M. “Arduino: A Quick Start Guide”, Pragmatic Bookshelf, January 22

2011, Pg. 201.

[21] Arduinowifishield.(2013).Retrieved from

http://arduino.cc/en/Main/ArduinoWiFiShield. (Accessed on, sep 9, 2013)

[22] Sainsmart mega2560 board 3.2 tft lcd module display shield kit for atmel atmega avr

16au atmega8u2. (2013). Retrieved from

http://henningkarlsen.com/electronics/library.php?id=52. (Accessed on Sep 9, 2013)

[23] WiFi.ScanNetworks. (N.D). Retrieved from

http://arduino.cc/de/Reference/WiFiScanNetworks. (Accessed on Sep 12, 2013)

[24] Wifi.ssid. (N.D). Retrieved from http://arduino.cc/en/Reference/WiFiSSID.

[25] Connectwith wpa. (N.D). Retrieved from http://arduino.cc/en/Tutorial/ScanNetworks.

(Accessed on Sep 14, 2013)

[27] O. Gruber ASDEX Upgrade enhancements in view of ITER application

Fusion Engineering and Design, 84 (2009)

[28] V. Bobkov, ICRF operation with improved antennas in a full W-wall ASDEX

Upgrade – status and developments, in: 24th IAEA FEC, San Diego, in press.

[29] Arduino, Homepage: http://arduino.cc. (Accessed on Sep 24, 2013)

http://dx.doi.org/10.1029/2009GL041544
http://dx.doi.org/10.2307/1269043
http://www.arduino.cc/
http://henningkarlsen.com/electronics/library.php?id=52
http://arduino.cc/de/Reference/WiFiScanNetworks
http://arduino.cc/en/Tutorial/ScanNetworks
http://arduino.cc/

 72

[30] J.P. Aikio, T. Rahkonen A comprehensive analysis of AM–AM and AM–PM

conversion in an LDMOS RF power amplifier IEEE Transactions on Microwave

Theory and Techniques, 57 (February (2)) (2009)

[31] D. Grine Improvement of the phase regulation between two amplifiers feeding the

inputs of the 3 dB combiner in the ASDEX-Upgrade ICRH system AIP Conference

Proceedings, vol. 1406 (2011), p. 105 View Record in Scopus | Cited By in Scopus

(1)

[32] K. Polozhiy Influence of the phase shift between antennas on W sputtering in

ASDEX Upgrade 38th EPS Conference on Plasma Physics (2011)

[33] http://arduino.cc/en/Main/ArduinoBoardDue (Accessed on sep 29, 2013)

[34] W. Mccarter, O. Vennesland Sensor systems for use in reinforced concrete structures

Constr Build Mater, 18 (6) (2004), pp. 351–358

[35] Quinn B, Kelly G. Feasibility of embedded wireless sensors for monitoring of

concrete curing and structural health. In: Sensors and smart structures technologies

for civil, mechanical, and aerospace systems, San Diego, USA, March 2010.

[36] Datasheet Filter Cap SF2 for Humidity and Temperature Sensor SHT2x, December

2011.

<http://www.sensirioncom/en/pdf/product_information/Datasheet_filter-cap_sf2.pdf

>. (Accessed on sep 29, 2013)

http://arduino.cc/en/Main/ArduinoBoardDue

 73

Bibliography

The Program Code

6 The Main Program

#include <stdlib.h>

#include <arduino.h>

#include "co2.h"

#include "lcd.h"

#include "at24c.h"

#define DEVICE_ID "0000000000000000"

/**************************GLOBAL****************************/

LCD lcd;

AT24C at24c;

int32_t eeprom_next_address=-1;

uint8_t mpx_a0; //mpx address

uint8_t mpx_a1; //mpx address

#define GSM_POWERKEY 8

#define SERVER "www.sliit.net"

/**/

int readGPS(unsigned long interval,char* GPSdata)

{

 //if(!(GPSdata=(char*)malloc(512)))return -2;

 unsigned short index=0;

 boolean captured=false;

 boolean ready_to_capture=false;

 boolean capture_enable=false;

 unsigned long timeout=800;

 Serial.begin(9600);

 //Serial.println("Reading GPS...");

 unsigned long lastCharTime=millis();

 while(true)

 {

 if((millis()-lastCharTime)>timeout)

 {

 ready_to_capture=false;

 capture_enable=false;

 74

 //Serial.println("Timeout");

 return -1;

 }

 //Serial.println("interval = "+String(millis()-lastCharTime));

 if((millis()-lastCharTime)>interval)

 {

 if(captured)

 {

 Serial.flush();

 Serial.end();

 break;

 //return 0;

 //sREG=SREG;

 //cli();

 }

 else

 {

 if(ready_to_capture)

 {

 capture_enable=true;

 //lastCharTime=millis();

 }

 }

 }

 //////////////////////////////////////

 if(!capture_enable)

 {

 //Serial.println("¥n!capture_enable");

 while(Serial.available())

 {

 Serial.read();

 ready_to_capture=true;

 //Serial.write(Serial.read());

 lastCharTime=millis();

 }

 }

 else

 {

 //Serial.println("¥ncapture_enable");

 while(Serial.available())

 {

 GPSdata[index]=Serial.read();

 index++;

 //Serial.write(Serial.read());

 ready_to_capture=true;

 75

 lastCharTime=millis();

 captured=true;

 }

 }

 //////////////////////////////////////

 }

 GPSdata[index]='¥0';

 //prints(GPSdata);

 return 0;

}

int getRecordCount(char* sourceChars)

{

 int i=0;

 int recordCount=0;

 while(sourceChars[i]!='¥0')

 {

 if(sourceChars[i]==',')recordCount++;

 i++;

 }

 i=0;

 if(recordCount>0)recordCount++;

 return recordCount;

}

GPRMC getGPRMC(char* GPSdata);

GPRMC getGPRMC(char* GPSdata)

{

 GPRMC gprmc;

 char GPSline[512];

if(subString(GPSdata,indexOf(GPSdata,"$GPRMC"),indexOf(GPSdata,"¥r¥n"),GPSli

ne)<0)

 if(subString(GPSdata,indexOf(GPSdata,"$GPRMC"),GPSline)<0)

 {

 printsln("No GPRMC sentence.");

 delay(500);

 //return (struct GPRMC_t){0};

 return gprmc;

 }

 //printsln(GPSline);

 int recordCount;

 if((recordCount=getRecordCount(GPSline))!=13)

 {

 76

 printsln("No 13 records. Found ");

 prints(recordCount);

 prints(".");

 //return (struct GPRMC_t){0};

 return gprmc;

 }

 char time[7];

subString(GPSline,nthIndexOf(GPSline,',',1)+1,nthIndexOf(GPSline,',',1)+7,ti

me);

 char time2[]={

time[0],time[1],':',time[2],time[3],':',time[4],time[5],'¥0' };

 copyString(time2,gprmc.time);

 //printsln("¥nTime: "); prints(gprmc.time);delay(1000);

subString(GPSline,nthIndexOf(GPSline,',',2)+1,nthIndexOf(GPSline,',',3),gprm

c.validity);

 //prints(gprmc.validity);

 char latitude[10];

subString(GPSline,nthIndexOf(GPSline,',',3)+1,nthIndexOf(GPSline,',',4),lati

tude);

 char lat[3];

 subString(latitude,0,2,lat);

 char latMins[8];

 subString(latitude,2,latMins);

 gprmc.latitude=atof(lat)+(atof(latMins)/60);

 char north[2];

subString(GPSline,nthIndexOf(GPSline,',',4)+1,nthIndexOf(GPSline,',',5),nort

h);

 if(north[0]=='S')gprmc.latitude*=-1;

 //printsln("Latitude:¥n");prints(gprmc.latitude);delay(1000);

 char longitude[11];

subString(GPSline,nthIndexOf(GPSline,',',5)+1,nthIndexOf(GPSline,',',6),long

itude);

 char longi[4];

 subString(longitude,0,3,longi);

 char longiMins[8];

 subString(longitude,3,longiMins);

 gprmc.longitude=atof(longi)+(atof(longiMins)/60);

 77

 char east[2];

subString(GPSline,nthIndexOf(GPSline,',',6)+1,nthIndexOf(GPSline,',',7),east

);

 if(east[0]=='W')gprmc.longitude*=-1;

 //printsln("Longitude:¥n");prints(gprmc.longitude);delay(1000);

 char speed_in_knots[6];

subString(GPSline,nthIndexOf(GPSline,',',7)+1,nthIndexOf(GPSline,',',8),spee

d_in_knots);

 gprmc.speed_in_kmph=atof(speed_in_knots)*1.852;

 //printsln("Speed (km/h):¥n");prints(gprmc.speed_in_kmph);delay(1000);

 char course_made_good_true[6];

subString(GPSline,nthIndexOf(GPSline,',',8)+1,nthIndexOf(GPSline,',',9),cour

se_made_good_true);

 gprmc.course_made_good_true=atof(course_made_good_true);

 //prints(gprmc.course_made_good_true);

 char date[7];

subString(GPSline,nthIndexOf(GPSline,',',9)+1,nthIndexOf(GPSline,',',10),dat

e);

 char date2[]={

date[0],date[1],'/',date[2],date[3],'/',date[4],date[5],'¥0' };

 copyString(date2,gprmc.date);

 //printsln("Date: ");prints(gprmc.date);

 // printsln("Time: "); prints(gprmc.time);delay(1000);

 char magnetic_variation[6];

if(subString(GPSline,nthIndexOf(GPSline,',',10)+1,nthIndexOf(GPSline,',',11)

,magnetic_variation)<=0)magnetic_variation[0]='¥0';

 gprmc.magnetic_variation=atof(magnetic_variation);

 //prints(gprmc.magnetic_variation);

subString(GPSline,nthIndexOf(GPSline,'*',1)+1,nthIndexOf(GPSline,'*',1)+3,gp

rmc.checksum);

 //prints(gprmc.checksum);

 return gprmc;

}

 78

GPGGA getGPGGA(char* GPSdata);

GPGGA getGPGGA(char* GPSdata)

{

 GPGGA gpgga;

 char GPSline[512];

if(subString(GPSdata,indexOf(GPSdata,"$GPGGA"),indexOf(GPSdata,'*',indexOf(G

PSdata,"$GPGGA"))+3,GPSline)<0)

 //if(subString(GPSdata,indexOf(GPSdata,"$GPGGA"),GPSline)<0)

 {

 printsln("No GPGGA sentence.");

 delay(500);

 //return (struct GPRMC_t){0};

 return gpgga;

 }

 //printsln(GPSline);

 int recordCount;

 if((recordCount=getRecordCount(GPSline))!=15)

 {

 printsln("GPGGA not 15 records. Found ");

 prints(recordCount);

 prints(".");

 //return (struct GPRMC_t){0};

 return gpgga;

 }

 char time[7];

subString(GPSline,nthIndexOf(GPSline,',',1)+1,nthIndexOf(GPSline,',',1)+7,ti

me);

 char time2[]={

time[0],time[1],':',time[2],time[3],':',time[4],time[5],'¥0' };

 copyString(time2,gpgga.time);

 //printsln("¥nTime: "); prints(GPRMC.time);delay(1000);

 char latitude[10];

subString(GPSline,nthIndexOf(GPSline,',',2)+1,nthIndexOf(GPSline,',',3),lati

tude);

 char lat[3];

 subString(latitude,0,2,lat);

 char latMins[8];

 subString(latitude,2,latMins);

 79

 gpgga.latitude=atof(lat)+(atof(latMins)/60);

 char north[2];

subString(GPSline,nthIndexOf(GPSline,',',3)+1,nthIndexOf(GPSline,',',4),nort

h);

 if(north[0]=='S')gpgga.latitude*=-1;

 //printsln("Latitude:¥n");prints(gpgga.latitude);delay(1000);

 char longitude[11];

subString(GPSline,nthIndexOf(GPSline,',',4)+1,nthIndexOf(GPSline,',',5),long

itude);

 char longi[4];

 subString(longitude,0,3,longi);

 char longiMins[8];

 subString(longitude,3,longiMins);

 gpgga.longitude=atof(longi)+(atof(longiMins)/60);

 char east[2];

subString(GPSline,nthIndexOf(GPSline,',',5)+1,nthIndexOf(GPSline,',',6),east

);

 if(east[0]=='W')gpgga.longitude*=-1;

 //printsln("Longitude:¥n");prints(gpgga.longitude);delay(1000);

 char fix_quality[2];

subString(GPSline,nthIndexOf(GPSline,',',6)+1,nthIndexOf(GPSline,',',7),fix_

quality);

 gpgga.fix_quality=atoi(fix_quality);

 //printsln("Fix quality:¥n");prints(gpgga.fix_quality);delay(1000);

 char number_of_satellites[3];

subString(GPSline,nthIndexOf(GPSline,',',7)+1,nthIndexOf(GPSline,',',8),numb

er_of_satellites);

 gpgga.number_of_satellites=atoi(number_of_satellites);

 //prints(gpgga.number_of_satellites);

 char hdop[6];

subString(GPSline,nthIndexOf(GPSline,',',8)+1,nthIndexOf(GPSline,',',9),hdop

);

 gpgga.hdop=atof(hdop);

 //prints(gpgga.hdop);

 char altitude[8];

 80

subString(GPSline,nthIndexOf(GPSline,',',9)+1,nthIndexOf(GPSline,',',10),alt

itude);

 gpgga.altitude=atof(altitude);

 //prints(gpgga.altitude);

 char geoid_height[8];

subString(GPSline,nthIndexOf(GPSline,',',11)+1,nthIndexOf(GPSline,',',12),ge

oid_height);

 gpgga.geoid_height=atof(geoid_height);

 //prints(gpgga.geoid_height);

 char time_since_last_dgps_update[7];

subString(GPSline,nthIndexOf(GPSline,',',13)+1,nthIndexOf(GPSline,',',14),ti

me_since_last_dgps_update);

 gpgga.time_since_last_dgps_update=atoi(time_since_last_dgps_update);

 //prints(gpgga.time_since_last_dgps_update);

subString(GPSline,nthIndexOf(GPSline,',',14)+1,nthIndexOf(GPSline,',',14)+5,

gpgga.dgps_reference_station_id);

 //prints(gpgga.dgps_reference_station_id);

subString(GPSline,nthIndexOf(GPSline,'*',1)+1,nthIndexOf(GPSline,'*',1)+3,gp

gga.checksum);

 //printsln(gpgga.checksum);

 return gpgga;

}

GPS getGPS();

GPS getGPS()

{

 switchMultiplexer(0);//Switch multiplexer to GPS

 GPS gps;

 GPRMC gprmc;

 GPGGA gpgga;

 char* GPSdata=(char*)malloc(512);

 //char* GPSline;

 if(readGPS(100,GPSdata)<0){

 printsln("Can't read from GPS...");

 81

 delay(1000);

 printsln(" ");

 }

 else

 {

 //printsln(GPSdata);

 gprmc=getGPRMC(GPSdata);

 //printsln("GPRMC Checksum: ");prints(gprmc.checksum);delay(1000);

 /*

 printsln("GPRMC Latitude:¥n");prints(gprmc.latitude);delay(1000);

 printsln("GPRMC Longitude:¥n");prints(gprmc.longitude);delay(1000);

 printsln("GPRMC Speed

(km/h):¥n");prints(gprmc.speed_in_kmph);delay(1000);

 printsln("GPRMC Date: ");prints(gprmc.date);

 printsln("GPRMC Time: "); prints(gprmc.time);delay(1000);

 */

 gps.latitude=gprmc.latitude;

 gps.longitude=gprmc.longitude;

 gps.speed_in_kmph=gprmc.speed_in_kmph;

 copyString(gprmc.date,gps.date);

 copyString(gprmc.time,gps.time);

 gpgga=getGPGGA(GPSdata);

 //printsln("GPGGA Checksum: ");prints(gpgga.checksum);delay(1000);

 //printsln("GPGGA Altitude:¥n");prints(gpgga.altitude);delay(1000);

 gps.altitude=gpgga.altitude;

 if((gprmc.checksum[0]!='¥0')&&(gpgga.checksum[0]!='¥0'))

 {

 if(gpgga.fix_quality>0&&gpgga.number_of_satellites>2)

 {

 gps.dirty=false;

 }

 }

 }

 free(GPSdata);

 switchMultiplexer(3); //switch to unused port

 return gps;

}

int getAnalogCO2()

{

 return 2000.0*analogRead(A0)/850.7276507276507;

}

 82

int getCO2()

{

 switchMultiplexer(1);//Switch multiplexer to CO2

 int CO2;

 Serial.begin(9600,SERIAL_8N2);

 Serial.write(0xfe);

 Serial.write(0x04);

 Serial.write(0x00);

 Serial.write(0x03);

 Serial.write(0x00);

 Serial.write(0x01);

 Serial.write(0xd5);

 Serial.write(0xc5);

 Serial.flush();

 for(int i=0;Serial.available()<5;i++)

 {

 delay(60);

 if(i>2){

 Serial.end();

 return -1;

 }

 }

 Serial.read();

 Serial.read();

 Serial.read();

 CO2=Serial.read();

 CO2=(CO2<<8)+Serial.read();

 Serial.end();

 switchMultiplexer(3); //switch to unused port

 return CO2;

}

int getTemperature()

{

 return 150.0*analogRead(A7)/319.022869022869; //for 4.815V supply

 //use 307.2 for 5.000V supply

}

void _gsm_power_pulse()

{

 pinMode(GSM_POWERKEY,OUTPUT);

 digitalWrite(GSM_POWERKEY,HIGH);

 delay(500);

 83

 digitalWrite(GSM_POWERKEY,LOW);

 delay(1000);

 digitalWrite(GSM_POWERKEY,HIGH);

}

int _gsm(char* command, char* expectedResponse, unsigned long timeout)

{

 uint16_t SIZE=256;

 char readbuffer[SIZE];

 uint16_t index;

 unsigned long starttime;

 index=0;

 starttime=millis();

 if(command!="")

 {

 while(Serial.available())Serial.read();

 Serial.println(command);

 Serial.flush();

 }

 while(millis()-starttime<timeout)

 {

 while(Serial.available())

 {

 if(index<SIZE)

 {

 readbuffer[index]=Serial.read();

 index++;

 if(readbuffer[index-1]=='¥n')

 {

 readbuffer[index]='¥0';

 index=0;

 if(strstr(readbuffer,expectedResponse)!=NULL)

 {

 while(Serial.available())Serial.read();

 return 0;

 }

 }

 }

 }

 readbuffer[index]='¥0';

 if(strstr(readbuffer,expectedResponse)!=NULL)

 {

 while(Serial.available())Serial.read();

 84

 return 0;

 }

 }

 return -1;

}

int _gsm_power_on()

{

 boolean success=false;

 unsigned long starttime;

 uint16_t net_login_timeout=20000;

 for(uint8_t i=0;i<2;i++)

 {

 _gsm_power_pulse();

 starttime=millis();

 while(millis()-starttime<net_login_timeout)

 if(_gsm("AT+CREG?","+CREG: 0,1",1000)==0)

 {

 success=true;

 blink13(32);

 break;

 }

 if(success)break;

 }

 return success?0:-1;

}

int gsm_boot_or_reboot()

{

 boolean success=false;

 Serial.begin(9600);

 Serial.flush();

 switchMultiplexer(2);

 while(Serial.available())Serial.read();

 if(_gsm("AT","OK",2000)==0)

 {

 _gsm_power_pulse();

 _gsm("","NORMAL POWER DOWN",5000);

 delay(1000);

 }

 success=_gsm_power_on()==0;

 Serial.end();

 85

 switchMultiplexer(3);

 if(success)return 0;

 return -1;

}

int gsm_power_on()

{

 Serial.begin(9600);

 Serial.flush();

 switchMultiplexer(2);

 while(Serial.available())Serial.read();

 int gsm_power_status=0;

 if(_gsm("AT+CREG?","+CREG: 0,1",1000)!=0)

 {

 gsm_power_status=_gsm_power_on();

 }

 Serial.end();

 switchMultiplexer(3);

 printsln("GSM: ");

 if(gsm_power_status==0)prints("READY");

 else prints(gsm_power_status);

 delay(2000);

 return gsm_power_status;

}

int gsm_power_down()

{

 boolean success=false;

 Serial.begin(9600);

 Serial.flush();

 switchMultiplexer(2);

 while(Serial.available())Serial.read();

 if(_gsm("AT","OK",2000)==0)

 {

 _gsm_power_pulse();

 _gsm("","NORMAL POWER DOWN",5000);

 delay(1000);

 success=true;

 }

 Serial.end();

 switchMultiplexer(3);

 if(success)return 0;

 86

 return -1;

}

void blink13(uint8_t times)

{

 pinMode(13,OUTPUT);

 for(uint8_t i=0;i<times;i++)

 {

 digitalWrite(13,HIGH);

 delay(25);

 digitalWrite(13,LOW);

 delay(50);

 }

}

int upload(EEPROM_RECORD er)

{

 printsln("Uploading...");

 unsigned char* buffer=(unsigned char*)&er;

 int length=sizeof(EEPROM_RECORD);

 char eeprom_record_hex[length*2+1];

 for(int i=0;i<length;i++)

 {

 sprintf(&eeprom_record_hex[i*2],"%02X",buffer[i]);

 }

 eeprom_record_hex[length*2]=0;

 char get_request[192];

 strcpy(get_request,"GET /airboy/upload.php?packet=");

 strcat(get_request,eeprom_record_hex);

 int checksum=0;

 for(int i=0;i<length*2;i++)

 {

 checksum+=(int)eeprom_record_hex[i];

 }

 unsigned char* checksumPointer=(unsigned char*)&checksum;

 char checksumString[5];

 for(int i=0;i<2;i++)

 {

 sprintf(&checksumString[i*2],"%02X",checksumPointer[i]);

 }

 checksumString[4]=0;

 strcat(get_request,checksumString);

 strcat(get_request,DEVICE_ID);

 strcat(get_request," HTTP/1.1¥r¥nHOST: ");

 87

 strcat(get_request,SERVER);

 strcat(get_request,"¥r¥n¥r¥n¥x1A");

 Serial.begin(9600);

 Serial.flush();

 switchMultiplexer(2); //switch multiplexer to GPRS

 boolean success=false;

 _gsm("¥x1A","",2000);

 _gsm("AT+CIPCLOSE","CLOSE OK",2000);

 char cipstartline[128];

 strcpy(cipstartline,"AT+CIPSTART=¥"TCP¥",¥"");

 strcat(cipstartline,SERVER);

 strcat(cipstartline,"¥",¥"80¥"");

 if(_gsm(cipstartline,"CONNECT OK",5000)==0)

 if(_gsm("AT+CIPSEND",">",5000)==0)

 if(_gsm(get_request,"HTTP/1.1 200 OK",10000)==0)

 success=true;

 Serial.end();

 switchMultiplexer(3); //switch to unused port

 if(success)printsln("HTTP/1.1 200 OK");

 //else printsln("Upload failed.");

 if(success)return 0;

 return -1;

}

int8_t eeprom_format()

{

 eeprom_next_address=0;

 int8_t i = at24c.write_byte(0,0x03);

 printsln("Format complete. Waiting 10sec.");

 delay(10000);

 return i;

}

int8_t eeprom_save(EEPROM_RECORD er)

{

 if(at24c.write_byte(eeprom_next_address,0x1e)<0)return -1;

 eeprom_next_address++;

 char buffer[sizeof(EEPROM_RECORD)];

 memcpy(buffer,&er,sizeof(EEPROM_RECORD));

if(at24c.write_bytes(eeprom_next_address,buffer,sizeof(EEPROM_RECORD))<0)ret

urn -1;

 eeprom_next_address+=sizeof(EEPROM_RECORD);

 88

 if(at24c.write_byte(eeprom_next_address,0x03)<0)return -1;

 return 0;

}

EEPROM_RECORD eeprom_open(uint32_t record_id)

{

 uint32_t record_address=record_id*(sizeof(EEPROM_RECORD)+1)+1;

 return eeprom_open_address(record_address);

}

EEPROM_RECORD eeprom_open_last()

{

 uint32_t record_address=eeprom_next_address-sizeof(EEPROM_RECORD);

 return eeprom_open_address(record_address);

}

EEPROM_RECORD eeprom_open_address(uint32_t record_address)

{

 char buffer[sizeof(EEPROM_RECORD)];

 at24c.read_bytes(record_address,buffer,sizeof(EEPROM_RECORD));

 EEPROM_RECORD er;

 memcpy(&er,buffer,sizeof(EEPROM_RECORD));

 return er;

}

/*

void eeprom_dump_json()

{

 if(eeprom_next_address==0)

 {

 printsln("No records in EEPROM to dump.");

 delay(5000);

 printsln(" ");

 return;

 }

 uint32_t record_address;

 uint32_t last_address=eeprom_next_address-sizeof(EEPROM_RECORD);

 printsln((int)(last_address/sizeof(EEPROM_RECORD)));

 prints(" records will be dumped.");

 delay(2000);

 prints("Memory dump in..",0);

 char countdown[3];

 for(int i=5;i>0;i--)

 {

 89

 sprintf(countdown,"%d",i);

 prints(countdown,1);delay(1000);

 }

 delay(3000);

 Serial.begin(9600);

 Serial.flush();

 Serial.println("[");

 for(uint32_t record_id=0;true;record_id++)

 {

 EEPROM_RECORD er;

 record_address=record_id*(sizeof(EEPROM_RECORD)+1)+1;

 if(record_address<=last_address)

 er=eeprom_open_address(record_address);

 else

 {

 Serial.println("]");

 return;

 }

 Serial.println(" {");

 Serial.print(" Latitude: ");

 Serial.print(er.latitude);Serial.println(",");

 Serial.print(" Longitude: ");

 Serial.print(er.longitude);Serial.println(",");

 Serial.print(" Altitude: ");

 Serial.print(er.altitude);

 Serial.print("m");Serial.println(",");

 Serial.print(" Speed: ");

 Serial.print(er.speed_in_kmph);

 Serial.print("Km/h");Serial.println(",");

 Serial.print(" Date: ");

 Serial.print(er.date);Serial.println(",");

 Serial.print(" Time: ");

 Serial.print(er.time);Serial.println(",");

 Serial.print(" Temperature: ");

 Serial.print(er.temperature);

 Serial.print("Â°C");Serial.println(",");

 Serial.print(" CO2: ");

 Serial.print(er.CO2);

 Serial.println("ppm");

 Serial.println(" }");

 Serial.println(",");

 }

 90

 Serial.flush();

 Serial.end();

}*/

/***

**************************/

void setup()

{

 mpx_a0=9;//mpx

 mpx_a1=10;//mpx

 lcd.init(7,6,5,4,3,2);

 at24c.init(11,12,131072,256);

 printsln("RESET");

 delay(500);

 //eeprom_format();

 printsln("Searching next EEPROM address..");

 eeprom_next_address=at24c.search_byte(0x03);

 int state;

 if(eeprom_next_address==-1)

 {

 printsln("Formatting...");

 state=eeprom_format();

 if(state<0)

 {

 printsln("EEPROM ERROR: ");

 prints(state);

 }

 }

 delay(5000);

}

void loop()

{

 printsln("Reading GPS... ");

 GPS gps=getGPS();

 if(!gps.dirty)

 {

 gsm_power_on();

 91

 EEPROM_RECORD er;

 er.latitude=gps.latitude;

 er.longitude=gps.longitude;

 er.altitude=gps.altitude;

 er.speed_in_kmph=gps.speed_in_kmph;

 copyString(gps.date,er.date);

 copyString(gps.time,er.time);

 er.temperature=getTemperature();

 er.CO2=getCO2();//getAnalogCO2();

 //eeprom_save(er);

 /*

 printsln("Saving..");

 if(eeprom_save(er)<0)

 {

 printsln("EEPROM write failure.");

 }

 else

 {

 printsln("EEPROM write success.");

 }

 //delay(5000);

 er=eeprom_open_last();

 */

 printsln("Latitude:¥n");

 prints(er.latitude);

 delay(1000);

 printsln("Longitude:¥n");

 prints(er.longitude);

 delay(1000);

 printsln("Altitude:¥n");

 prints(er.altitude);

 prints("m");

 delay(1000);

 printsln("Speed:¥n");

 prints(er.speed_in_kmph);

 prints("Km/h");

 delay(1000);

 printsln("Date: ");

 prints(er.date);

 printsln("Time: ");

 prints(er.time);

 delay(1000);

 92

 printsln("Temperature:¥n");

 prints(er.temperature);

 prints("'C");

 delay(1000);

 printsln("CO2: ");

 prints(er.CO2);

 prints("ppm");

 delay(1000);

 //printsln("A. CO2:

");prints(getAnalogCO2());prints("ppm");delay(1000);

 if(isValid(er))

 {

 if(upload(er)<0)

 {

 printsln("Upload failed.");

 printsln("GSM Rebooting...");

 gsm_boot_or_reboot();

 }

 }else{

 printsln("Invalid data.");

 }

 delay(5000);

 delayMinutesWhileShowingCO2(1);

 }

 else

 {

 printsln("Invalid GPS data");

 if(gsm_power_down()==0)printsln("GSM shutdown...");

 //if(getCO2()<0)eeprom_dump_json();

 //else

 _printCO2andTemperature();

 }

}

//helper functions...

boolean isValid(EEPROM_RECORD er)

{

 if(er.CO2>0)return true;

 return false;

}

void delayMinutesWhileShowingCO2(unsigned long minutes)

{

 char sleep_text[17];

 93

 char temp_text[3];

 for(unsigned long i=0;i<minutes;i++)

 {

 for(uint8_t j=0;j<(60);j++)

 {

 _printCO2andTemperature();

 strcpy(sleep_text,"Sleeping ");

 if(j==0)sprintf(temp_text,"%d",(int)(minutes-i));

 else sprintf(temp_text,"%d",(int)(minutes-1-i));

 strcat(sleep_text,temp_text);

 strcat(sleep_text,":");

 if((60-j)%60<10)strcat(sleep_text,"0");

 sprintf(temp_text,"%d",((60-j)%60));

 strcat(sleep_text,temp_text);

 prints(sleep_text,1);

 delay(1000);

 }

 }

}

void _printCO2andTemperature()

{

 char CO2_and_temperature[17];

 sprintf(CO2_and_temperature,"%dppm %d'C",getCO2(),getTemperature());

 lcd.clear();

 prints(CO2_and_temperature,0);

}

void switchMultiplexer(uint8_t address){

 pinMode(mpx_a0,OUTPUT);

 pinMode(mpx_a1,OUTPUT);

 digitalWrite(mpx_a0,address & 0b0000001 ? HIGH : LOW);

 digitalWrite(mpx_a1,address & 0b0000010 ? HIGH : LOW);

}

void prints(char* text,uint8_t line)

{

 Serial.begin(9600);

 Serial.println(text);

 Serial.flush();

 Serial.end();

 char print_text[17];

 94

 sprintf(print_text,"%-16s",text);

 lcd.cursor(0,line);

 lcd.print(print_text);

}

void prints(char* text)

{

 Serial.begin(9600);

 Serial.print(text);

 Serial.flush();

 Serial.end();

 lcd.print(text);

}

void printsln(char* text)

{

 Serial.begin(9600);

 Serial.print("¥r¥n");

 Serial.print(text);

 Serial.flush();

 Serial.end();

 lcd.println(text);

}

void prints(int value)

{

 char text[10];

 itoa(value,text,sizeof(text));

 prints(text);

}

void printsln(int value)

{

 char text[10];

 itoa(value,text,sizeof(text));

 printsln(text);

}

void prints(double value)

{

 char text[13];

 dtostrf(value,12,7,text);

 prints(text);

}

 95

void printsln(double value)

{

 char text[13];

 dtostrf(value,12,7,text);

 printsln(text);

}

int subString(char sourceString[], int startIndex,int endIndex,char*

destinationString)

{

 if(startIndex>=0&&startIndex<endIndex)

 {

 int i;

 for(i=startIndex;i<endIndex;i++)

 {

 destinationString[i-startIndex]=sourceString[i];

 }

 destinationString[i-startIndex]='¥0';

 return i-startIndex;

 }

 return -1;

}

int subString(char sourceString[], int startIndex,char* destinationString)

{

 if(startIndex>=0)

 {

 int i;

 for(i=startIndex;i<strlen(sourceString);i++)

 {

 destinationString[i-startIndex]=sourceString[i];

 }

 destinationString[i-startIndex]='¥0';

 return i-startIndex;

 }

 return -1;

}

int copyString(char sourceString[], char* destinationString)

{

 return subString(sourceString,0,destinationString);

}

int indexOf(char sourceString[],char searchString[],int startIndex)

{

 int searchStringLength=strlen(searchString);

 96

 int sourceStringLength=strlen(sourceString);

 if((searchStringLength<sourceStringLength)&&searchStringLength>0)

 {

 int MAXLENGTH=4096;

 int _maxlength=MAXLENGTH-1;

 int index=startIndex;

 int i;

while(index+searchStringLength<sourceStringLength&&index+searchStringLength!

=_maxlength)

 {

 for(i=0;i<searchStringLength;i++)

 {

 if(sourceString[i+index]!=searchString[i])break;

 }

 if(i==searchStringLength)return index;

 index++;

 }

 }

 return -1;

}

int indexOf(char sourceString[],char searchString[])

{

 return indexOf(sourceString,searchString,0);

}

int indexOf(char sourceString[],char searchChar,int startIndex)

{

 int MAXLENGTH=4096;

 int _maxlength=MAXLENGTH-1;

 int index=startIndex;

 while(sourceString[index]!='¥0'&&index!=_maxlength)

 {

 if(sourceString[index]==searchChar)return index;

 index++;

 }

 return -1;

}

int indexOf(char sourceString[],char searchChar)

{

 return indexOf(sourceString,searchChar,0);

}

int nthIndexOf(char sourceString[],char searchChar,int n,int startIndex)

 97

{

 //prints(n);prints(startIndex);

 if(n<=0||(indexOf(sourceString,searchChar,startIndex)<0))return -1;

 if(n==1)return indexOf(sourceString,searchChar,startIndex);

 return

nthIndexOf(sourceString,searchChar,n-1,indexOf(sourceString,searchChar,start

Index)+1);

}

int nthIndexOf(char sourceString[],char searchChar,int n)

{

 return nthIndexOf(sourceString,searchChar,n,0);

}

int _free2DCharArray(char** arr,int count)

{

 for(int i=0;i<count;i++)

 {

 free(arr[i]);

 }

 free(arr);

}

int availableMemory() {

 int mem = 2048; // Use 2048 with ATmega328

 byte *buf;

 while ((buf = (byte *) malloc(--mem)) == NULL)

 ;

 free(buf);

 return mem;

}

int serialMonitor()

{

 Serial.begin(9600);

 Serial.println("Serial Monitor...");

 while(true)

 {

 while(Serial.available())

 {

 Serial.write(Serial.read());

 }

 }

 Serial.end();}

 98

6.2 at24c.h

#include "i2c.h"

/*

 Ex: for AT24C1024B EEPROM

 at24c.init(11,12,131072,256);

*/

class AT24C

{

 public:

 int init(uint8_t scl_pin,uint8_t sda_pin,uint32_t memory_size,uint16_t

page_size)

 {

 i2c.init(scl_pin,sda_pin);

 SIZE=memory_size;

 PAGE_SIZE=page_size;

 }

 uint8_t read_byte(uint32_t address)

 {

 if(address>SIZE-1)return '¥0';

 uint8_t bits;

 i2c.start_condition();

 i2c.write_byte(0b10100000|((address>>15)&0b00001110));

 i2c.write_byte((address>>8)&0xff);

 i2c.write_byte(address & 0xff);

 i2c.start_condition();

 i2c.write_byte(0b10100001|((address>>15)&0b00001110));

 bits=i2c.read_byte();

 i2c.no_ack();

 i2c.stop_condition();

 return bits;

 }

 char* read_bytes(uint32_t address, char buffer[], uint32_t length)

 {

 if((address+length)>SIZE-1){buffer[0]='¥0';return buffer;}

 i2c.start_condition();

 99

 i2c.write_byte(0b10100000|((address>>15)&0b00001110));

 i2c.write_byte((address>>8)&0xff);

 i2c.write_byte(address & 0xff);

 i2c.start_condition();

 i2c.write_byte(0b10100001|((address>>15)&0b00001110));

 for(int i=0;i<length;i++)

 {

 buffer[i]=i2c.read_byte();

 (i<(length-1))?i2c.ack():i2c.no_ack();

 }

 i2c.stop_condition();

 return buffer;

 }

 int32_t search_byte(uint8_t bits)

 {

 return search_byte(bits,0,1);

 }

 int32_t search_byte(uint8_t bits,uint32_t start_address)

 {

 return search_byte(bits,start_address,1);

 }

 int32_t search_byte(uint8_t bits,uint32_t start_address,uint32_t nth)

 {

 if(start_address>SIZE-1)return -2;

 if(!(nth>=0))return -3;

 uint32_t n=0;

 i2c.start_condition();

 i2c.write_byte(0b10100000|((start_address>>15)&0b00001110));

 i2c.write_byte((start_address>>8)&0xff);

 i2c.write_byte(start_address & 0xff);

 i2c.start_condition();

 i2c.write_byte(0b10100001|((start_address>>15)&0b00001110));

 for(uint32_t i=start_address;i<SIZE;i++)

 {

 if(bits==i2c.read_byte())

 {

 n++;

 if(n!=nth)

 {

 (i<SIZE-1)?i2c.ack():i2c.no_ack();

 continue;

 }

 100

 i2c.no_ack();

 i2c.stop_condition();

 return i;

 }

 (i<SIZE-1)?i2c.ack():i2c.no_ack();

 }

 i2c.stop_condition();

 return -1;

 }

 int8_t write_byte(uint32_t address,uint8_t bits)

 {

 if(address>SIZE-1)return -1;

 i2c.start_condition();

 i2c.write_byte(0b10100000|((address>>15)&0b00001110));

 i2c.write_byte((address>>8)&0xff);

 i2c.write_byte(address & 0xff);

 i2c.write_byte(bits);

 i2c.stop_condition();

 delayMicroseconds(5000);

 if(read_byte(address)==bits)return 0;

 return -2; //EEPROM error

 }

 int8_t write_bytes(uint32_t address,char buffer[], uint32_t length)

 {

 if((address+length)>SIZE-1)return -1;

 boolean firstrun=true;

 i2c.start_condition();

 i2c.write_byte(0b10100000|((address>>15)&0b00001110));

 i2c.write_byte((address>>8)&0xff);

 i2c.write_byte(address & 0xff);

 for(uint32_t offset=0;offset<length;offset++)

 {

 if(firstrun)firstrun=false;

 else

 {

 if(!((address+offset)&(PAGE_SIZE-1)))

 {

 i2c.stop_condition();

 delayMicroseconds(5000);

 i2c.start_condition();

 i2c.write_byte(0b10100000|(((address+offset)>>15)&0b00001110));

 101

 i2c.write_byte(((address+offset)>>8)&0xff);

 i2c.write_byte((address+offset) & 0xff);

 }

 }

 i2c.write_byte(buffer[offset]);

 }

 i2c.stop_condition();

 delayMicroseconds(5000);

 return 0;

 }

 private:

 I2C i2c;

 uint32_t SIZE;

 uint16_t PAGE_SIZE;

};

 102

6.3. co2.h

#include <arduino.h>

typedef struct GPRMC

{

 char time[9];

 char validity[2];

 double latitude;

 double longitude;

 int speed_in_kmph;

 double course_made_good_true;

 char date[9];

 double magnetic_variation;

 char checksum[3];

 GPRMC()

 {

 time[0]='¥0';

 validity[0]='¥0';

 latitude=0.0;

 longitude=0.0;

 speed_in_kmph=0.0;

 course_made_good_true=0.0;

 date[0]='¥0';

 magnetic_variation=0.0;

 checksum[0]='¥0';

 }

};

typedef struct GPGGA

{

 char time[9];

 double latitude;

 double longitude;

 unsigned short fix_quality;

 unsigned short number_of_satellites;

 double hdop;

 int altitude;

 double geoid_height;

 int time_since_last_dgps_update;

 char dgps_reference_station_id[5];

 char checksum[3];

 GPGGA()

 {

 time[0]='¥0';

 103

 latitude=0.0;

 longitude=0.0;

 fix_quality=0;

 number_of_satellites=0;

 hdop=0.0;

 altitude=0.0;

 geoid_height=0.0;

 time_since_last_dgps_update=0;

 dgps_reference_station_id[0]='¥0';

 checksum[0]='¥0';

 }

};

typedef struct GPS

{

 char date[9];

 char time[9];

 double latitude;

 double longitude;

 int altitude;

 int speed_in_kmph;

 boolean dirty;

 GPS(){dirty=true;}

};

typedef struct EEPROM_RECORD

{

 char date[9];

 char time[9];

 double latitude;

 double longitude;

 int16_t altitude;//int16_t

 uint8_t speed_in_kmph;//uint8_t

 int8_t temperature;//int8_t

 int16_t CO2;//int16_t

};

 104

6.4 I2c.h

#include <arduino.h>

class I2C

{

 public:

 int init(uint8_t scl_pin,uint8_t sda_pin)

 {

 pinMode(sda_pin,INPUT);

 pinMode(scl_pin,OUTPUT);

 digitalWrite(scl_pin,LOW);

 digitalWrite(sda_pin,HIGH);

 SCL=scl_pin;

 SDA=sda_pin;

 return 0;

 }

 void start_condition()

 {

 //Serial.println("start_condition()");

 digitalWrite(SCL,LOW);

 pinMode(SDA,OUTPUT);

 digitalWrite(SDA,HIGH);

 //interval();

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SDA,LOW);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 pinMode(SDA,INPUT);

 digitalWrite(SDA,HIGH);

 }

 void stop_condition()

 {

 //Serial.println("stop_condition()");

 digitalWrite(SCL,LOW);

 pinMode(SDA,OUTPUT);

 digitalWrite(SDA,LOW);

 //interval();

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SDA,HIGH);

 105

 //interval();//2

 digitalWrite(SCL,LOW);

 //interval();

 pinMode(SDA,INPUT);

 digitalWrite(SDA,HIGH);

 }

 void ack()

 {

 //Serial.println(" ack()");

 digitalWrite(SCL,LOW);

 pinMode(SDA,OUTPUT);

 digitalWrite(SDA,LOW);

 //interval();

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 pinMode(SDA,INPUT);

 digitalWrite(SDA,HIGH);

 }

 void no_ack()

 {

 //Serial.println(" no_ack()");

 digitalWrite(SCL,LOW);

 pinMode(SDA,OUTPUT);

 digitalWrite(SDA,HIGH);

 //interval();

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 pinMode(SDA,INPUT);

 digitalWrite(SDA,HIGH);

 }

 void reset()

 {

 Serial.println("I2C Protocol Reset.");

 digitalWrite(SCL,LOW);

 pinMode(SDA,OUTPUT);

 digitalWrite(SDA,HIGH);

 //interval();

 digitalWrite(SCL,HIGH);

 106

 //interval();

 digitalWrite(SDA,LOW);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 digitalWrite(SDA,HIGH);

 //interval();

 for(int i=0;i<9;i++)

 {

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 }

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SDA,LOW);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SDA,HIGH);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 pinMode(SDA,INPUT);

 digitalWrite(SDA,HIGH);

 }

 uint8_t read_byte()

 {

 pinMode(SDA,INPUT);

 digitalWrite(SDA,HIGH);

 //while(digitalRead(SDA)!=LOW);

 char temp[9];

 //Serial.println("read_byte()------------");

 uint8_t bits=0x00;

 //interval();

 for(int8_t i=7;i>=0;i--)

 {

 digitalWrite(SCL,HIGH);

 //interval();

 107

 //Serial.print("read_byte()");Serial.println(digitalRead(SDA));

 bits|=(digitalRead(SDA) << i);

 //Serial.println(digitalRead(SDA));

//Serial.print("read_byte()");Serial.println(digitalRead(SDA)==HIGH);

 //Serial.println(itoa(bits,temp,2));

 digitalWrite(SCL,LOW);

 //interval();

 }

 //no_ack();

 //Serial.println(itoa(bits,temp,2));

 return bits;

 }

 boolean write_byte(uint8_t bits)

 {

 //char temp[9];

 //Serial.println("write_byte()-------------");

 //Serial.println(itoa(bits,temp,2));

 //pinMode(SDA,INPUT);

 //digitalWrite(SDA,HIGH);

 //while(digitalRead(SDA)!=LOW);

 digitalWrite(SCL,LOW);

 digitalWrite(SDA,LOW);

 pinMode(SDA,OUTPUT);

 //interval();

 for(uint8_t i=0;i<8;i++)

 {

 digitalWrite(SDA,(bits<<i) & 0x80);

 //Serial.print("write_byte()");Serial.println((((bits<<i) &

0x80)==0x80));

 //interval();

 digitalWrite(SCL,HIGH);

 //interval();

 digitalWrite(SCL,LOW);

 //interval();

 }

 pinMode(SDA,INPUT);

 digitalWrite(SDA,HIGH);

 //interval();

 digitalWrite(SCL,HIGH);

 108

 //interval();

 //Serial.print("ack: ");Serial.println(digitalRead(SDA));

 while(digitalRead(SDA)!=LOW);

 //Serial.print("ack: ");Serial.println(digitalRead(SDA));

 digitalWrite(SCL,LOW);

 //interval();

 return digitalRead(SDA)==LOW;

 }

 private:

 uint8_t SCL;

 uint8_t SDA;

};

 109

6.5 lcd.h

7 #include <arduino.h>

8

9 class LCD

10 {

11 public:

12 int init(uint8_t rs, uint8_t en, uint8_t d7, uint8_t d6, uint8_t d5, uint8_t

d4)

13 {

14 pinMode(rs,OUTPUT);

15 pinMode(en,OUTPUT);

16 pinMode(d7,OUTPUT);

17 pinMode(d6,OUTPUT);

18 pinMode(d5,OUTPUT);

19 pinMode(d4,OUTPUT);

20 digitalWrite(rs,LOW);

21 digitalWrite(en,LOW);

22 digitalWrite(d7,LOW);

23 digitalWrite(d6,LOW);

24 digitalWrite(d5,LOW);

25 digitalWrite(d4,LOW);

26 RS=rs;

27 EN=en;

28 D7=d7;

29 D6=d6;

30 D5=d5;

31 D4=d4;

32

33 x=0;

34 y=0;

35

36 for(uint8_t i=0;i<16;i++)old_row_1[i]=' ';

37

38 init_sequence();

39 return 0;

40 }

41

42 void print(char character)

43 {

44 if(character=='¥r')cursor(0,y);

 110

45 else if(character=='¥n')cursor(0,++y);

46 else data_write(character);

47 }

48

49 void println(char character)

50 {

51 print('¥n');

52 print(character);

53 }

54

55 void print(char* text)

56 {

57 int length=strlen(text);

58 for(int i=0; i<length; i++)

59 {

60 if(text[i]=='¥r')cursor(0,y);

61 else if(text[i]=='¥n')cursor(0,++y);

62 else data_write(text[i]);

63 }

64 }

65

66 void println(char* text)

67 {

68 print('¥n');

69 print(text);

70 }

71

72 void print(int value)

73 {

74 char text[7];

75 itoa(value,text,10);

76 print(text);

77 }

78

79 void println(int value)

80 {

81 print('¥n');

82 print(value);

83 }

84

 111

85 void print(long value)

86 {

87 char text[12];

88 ltoa(value,text,10);

89 print(text);

90 }

91

92 void println(long value)

93 {

94 print('¥n');

95 print(value);

96 }

97

98 void cursor(uint8_t x,uint8_t y)

99 {

100 /*

101 if(x>15)x=0;

102 if(y>1)y=0;

103 */

104 LCD::x=x;

105 LCD::y=y;

106 instruction_write(LCD_SETDDRAMADDR | y << 6 | x);

107 }

108

109 void cursor_on()

110 {

111 instruction_write(LCD_DISPLAYCONTROL | LCD_CURSORON);

112 }

113

114 void cursor_off()

115 {

116 instruction_write(LCD_DISPLAYCONTROL | LCD_CURSOROFF);

117 }

118

119 void clear()

120 {

121 instruction_write(LCD_CLEARDISPLAY);

122 }

123

124 private:

 112

125 uint8_t RS;

126 uint8_t EN;

127 uint8_t D7;

128 uint8_t D6;

129 uint8_t D5;

130 uint8_t D4;

131

132 uint8_t x;

133 uint8_t y;

134

135 uint8_t old_row_1[16];

136

137 // commands

138 static const byte LCD_CLEARDISPLAY = 0x01;

139 static const byte LCD_RETURNHOME = 0x02;

140 static const byte LCD_ENTRYMODESET = 0x04;

141 static const byte LCD_DISPLAYCONTROL = 0x08;

142 static const byte LCD_CURSORSHIFT = 0x10;

143 static const byte LCD_FUNCTIONSET = 0x20;

144 static const byte LCD_SETCGRAMADDR = 0x40;

145 static const byte LCD_SETDDRAMADDR = 0x80;

146

147 // flags for display entry mode

148 static const byte LCD_ENTRYRIGHT = 0x00;

149 static const byte LCD_ENTRYLEFT = 0x02;

150 static const byte LCD_ENTRYSHIFTINCREMENT = 0x01;

151 static const byte LCD_ENTRYSHIFTDECREMENT = 0x00;

152

153 // flags for display on/off control

154 static const byte LCD_DISPLAYON = 0x04;

155 static const byte LCD_DISPLAYOFF = 0x00;

156 static const byte LCD_CURSORON = 0x02;

157 static const byte LCD_CURSOROFF = 0x00;

158 static const byte LCD_BLINKON = 0x01;

159 static const byte LCD_BLINKOFF = 0x00;

160

161 // flags for display/cursor shift

162 static const byte LCD_DISPLAYMOVE = 0x08;

163 static const byte LCD_CURSORMOVE = 0x00;

164 static const byte LCD_MOVERIGHT = 0x04;

 113

165 static const byte LCD_MOVELEFT = 0x00;

166

167 // flags for function set

168 static const byte LCD_8BITMODE = 0x10;

169 static const byte LCD_4BITMODE = 0x00;

170 static const byte LCD_2LINE = 0x08;

171 static const byte LCD_1LINE = 0x00;

172 static const byte LCD_5x10DOTS = 0x04;

173 static const byte LCD_5x7DOTS = 0x00;

174

175 void init_sequence()

176 {

177 delay(100);

178 digitalWrite(RS,LOW);

179 digitalWrite(D7,LOW);

180 digitalWrite(D6,LOW);

181 digitalWrite(D5,HIGH);

182 digitalWrite(D4,HIGH);

183 enable_pulse();

184 delayMicroseconds(5000); //>4.1ms

185 enable_pulse();

186 delayMicroseconds(150); //>100us

187 enable_pulse();

188 delayMicroseconds(150); //>100us

189

190 digitalWrite(D4,LOW);

191 enable_pulse();

192 delayMicroseconds(150); //>100us

193

194 instruction_write(LCD_FUNCTIONSET | LCD_4BITMODE | LCD_2LINE |

LCD_5x7DOTS);

195 instruction_write(LCD_DISPLAYCONTROL | LCD_DISPLAYOFF | LCD_CURSOROFF

| LCD_BLINKOFF);

196 instruction_write(LCD_CLEARDISPLAY);

197 instruction_write(LCD_ENTRYMODESET | LCD_ENTRYLEFT |

LCD_ENTRYSHIFTDECREMENT);

198 //init ends here.

199

200 instruction_write(LCD_DISPLAYCONTROL | LCD_DISPLAYON | LCD_CURSOROFF |

LCD_BLINKOFF);

 114

201 }

202

203 void instruction_write(uint8_t instruction)

204 {

205 digitalWrite(RS,LOW);

206 write(instruction);

207 if((instruction & LCD_CLEARDISPLAY) || (instruction & LCD_RETURNHOME))

delayMicroseconds(5000);

208 }

209

210 void data_write(uint8_t data)

211 {

212 if(x>15)

213 {

214 y++;x=0;

215 cursor(x,y);

216 }

217 if(y>1)

218 {

219 clear();

220 digitalWrite(RS,HIGH);

221 for(uint8_t i=0;i<16;i++)

222 {

223 write(old_row_1[i]);

224 old_row_1[i]=' ';

225 }

226 y=1;

227 cursor(x,y);

228 }

229

230

231 if(y==1)old_row_1[x]=data;

232 digitalWrite(RS,HIGH);

233 write(data);

234 x++;

235 }

236

237 void write(uint8_t value)

238 {

239 digitalWrite(D7,(value >> 7) & 0x01);

 115

240 digitalWrite(D6,(value >> 6) & 0x01);

241 digitalWrite(D5,(value >> 5) & 0x01);

242 digitalWrite(D4,(value >> 4) & 0x01);

243 enable_pulse();

244 digitalWrite(D7,(value >> 3) & 0x01);

245 digitalWrite(D6,(value >> 2) & 0x01);

246 digitalWrite(D5,(value >> 1) & 0x01);

247 digitalWrite(D4,(value >> 0) & 0x01);

248 enable_pulse();

249 delayMicroseconds(100);

250 }

251

252 void enable_pulse()

253 {

254 digitalWrite(EN,HIGH);

255 delayMicroseconds(100);

256 digitalWrite(EN,LOW);

257 delayMicroseconds(100);

258 }

259 };

260

261 /*

262 //Example implementaion..

263 LCD lcd;

264 void setup()

265 {

266 lcd.init(12,11,5,4,3,2); //(rs,en,d7,d6,d5,d4)

267 }

11. Web Interface Programming

11.1. index.php

<!DOCTYPE html>

<?php

 116

 include "./dbcon/dbcon.php";

 $dbcon=new dbcon();

 $result=$dbcon->get_data("SELECT * FROM telemetry_data ORDER BY timestamp

DESC LIMIT

".(isset($_GET["page"])&&$_GET["page"]>1?(($_GET["page"]-1)*100).",":"")."10

0");

 function add_br($value)

 {

 return $value.'
';

 }

?>

<html>

<style>

#telemetry

{

font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;

width:100%;

border-collapse:collapse;

}

#telemetry td, #telemetry th

{

font-size:1em;

border:1px solid #98bf21;

padding:3px 7px 2px 7px;

}

#telemetry th

{

font-size:1.1em;

text-align:left;

padding-top:5px;

padding-bottom:4px;

background-color:#A7C942;

color:#ffffff;

}

#telemetry tr td

{

background-color:#204020;

}

#telemetry tr.alt td

{

background-color:#408040;

}

sub

{

 117

font-size:0.6em;

}

.button

{

 background-color: #30a030;

 -moz-border-radius: 3px;

 -webkit-border-radius: 3px;

 border-radius:4px;

 color: #00ff00;

 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;

 font-size: 10px;

 text-decoration: none;

 cursor: poiner;

 border: none;

}

</style>

<script type="text/JavaScript" language="JavaScript">

openLinkGotCalled=false;

function openLink(url)

{

 openLinkGotCalled=true;

 //var win=window.open(url, '_blank');

 //win.focus();

 document.getElementById("mapview").src=url;

 document.getElementById("mapview").style.display="block";

}

</script>

<body style="background-color: #000000; color: #00ff00">

<div style="position:absolute;margin: 50px

50px;left:0;right:0;top:0;bottom:0;overflow:auto;"

onclick="if(!openLinkGotCalled){document.getElementById('mapview').style.dis

play='none';document.getElementById('mapview').src='img/brilliant_color_lens

_03_vector_161589.jpg';}else openLinkGotCalled=false;">

<div style="font-family:'Trebuchet MS', Arial, Helvetica, sans-serif;

font-size: 1.5em; text-align: center;">GPS Assisted Online CO₂ /

Temperature Mapping System</div>

<span style="font-family:'Trebuchet MS', Arial, Helvetica,

sans-serif;">AIRBOY CO₂ TELEMETRY DATA

<?php

 if ($result) {

 echo "<table

id='telemetry'>¥n<tr><th>UTC</th><th>Latitude</th><th>Longitude</th><th>Alti

tude (m)</th><th>Speed (km/h)</th><th>Temperature

(C°)</th><th>CO₂ (ppm)</th><th>See on map</th></tr>¥n";

 118

 $styleAlt=true;

 while($row = mysql_fetch_array($result))

 {

 echo $styleAlt?"<tr class='alt'>¥n":"<tr>¥n";

 $styleAlt=!$styleAlt;

/*

 $count = count($row);

 for($i=0;$i<$count/2;$i++)

 {

 $field=$row[$i];

 echo " <td>$field</td>¥n";

 }

*/

 $datetime=$row["timestamp"]; $latitude=$row["latitude"];

$longitude=$row["longitude"]; $altitude=$row["altitude"];

$speed_in_kmph=$row["speed_in_kmph"]; $temperature=$row["temperature"];

$CO2=$row["CO2"];

 ?>

 <td><?php echo $datetime; ?></td>

 <td><?php printf('%.6F',$latitude); ?></td>

 <td><?php printf('%.6F',$longitude); ?></td>

 <td><?php printf('%.1F',$altitude); ?></td>

 <td><?php echo $speed_in_kmph; ?></td>

 <td><?php echo $temperature; ?></td>

 <td><?php echo $CO2; ?></td>

 <td><input type="button" class="button" value="MAP"

onclick="openLink('https://maps.google.com/?ie=UTF8&ll=<?php

printf('%.6F',$latitude); ?>,<?php printf('%.6F',$longitude); ?>&q=<?php

printf('%.6F',$latitude); ?>,<?php

printf('%.6F',$longitude); ?>&spn=4.833408,10.821533&t=m&z=14&am

p;output=embed');" /></td>

 <?php

 //foreach($row as $field)echo " <td>$field</td>¥n";

 //print_r(array_map('add_br',$row));

 echo "</tr>¥n";

 }

 echo "</table>";

 ?>

 <div style="text-align: right;">

 <a href="index.php?page=<?php echo

isset($_GET["page"])&&$_GET["page"]>1?$_GET["page"]-1:'1'; ?>">[<]

 <a href="index.php?page=<?php echo

isset($_GET["page"])?$_GET["page"]+1:'2'; ?>">[>]

 </div>

 <?php

 119

 }

?>

<span style="font-family:'Trebuchet MS', Arial, Helvetica, sans-serif;

font-size: 0.7em;">

The objective of this research is to develop a free global access method for

internet users to have accurate in-situ CO2 density measurements in certain points

of the world, to force relevant parties to reduce Carbon Dioxide emission to save

the mother earth from global warming.

This system has been developed as a part of KISSEL project, Kanssei Mathematics

laboratory, Ibaraki University, Japan. Visit the testdata

analysis page to see how this data canbe used.

</div>

<iframe style="display: none; width: 425px; height: 350px; margin: 0 auto;

left: 0; right: 0; top: 110px; position: absolute; z-index: 100; box-shadow: 0px

0px 10px #000000;" id="mapview" width="425" height="350" frameborder="0"

scrolling="no" marginheight="0" marginwidth="0"

src="img/brilliant_color_lens_03_vector_161589.jpg"></iframe>

</body></html>

11.2 upload.php

<?php

function hex2bin($hex)

{

 $arr=str_split($hex);

 $result="";

 $count=count($arr);

 for($i=0;$i<($count/2);$i++)

 {

 $result.=chr(base_convert($arr[$i*2].$arr[$i*2+1],16,10));

 }

 return $result;

}

 120

function hexTo32Float($strHex) {

 $v = hexdec($strHex);

 $x = ($v & ((1 << 23) - 1)) + (1 << 23) * ($v >> 31 | 1);

 $exp = ($v >> 23 & 0xFF) - 127;

 return $x * pow(2, $exp - 23);

}

/*

 char date[9];

 char time[9];

 double latitude;

 double longitude;

 int16_t altitude;//int16_t

 uint8_t speed_in_kmph;//uint8_t

 int8_t temperature;//int8_t

 int16_t CO2;//int16_t

*/

 $packet = $_GET['packet']; //ex:

31382f30332f37370031383a31363a303000a0a0a0a0b0b0b0b0c0c0d0e0f0f0

 $dateHexString = substr($packet,0,18);

 $timeHexString = substr($packet, 18,18);

 $dateString = hex2bin($dateHexString);

 $timeString = hex2bin($timeHexString);

 $dateString = str_split($dateString);

 $datetime =

'20'.$dateString[6].$dateString[7].'-'.$dateString[3].$dateString[4].'-'.$da

teString[0].$dateString[1].' '.$timeString.'+00:00';

 //echo $datetime;

 $latitude = implode(unpack("f",pack('H*',substr($packet, 36,8))));

 $longitude = implode(unpack("f",pack('H*',substr($packet, 44,8))));

 $altitude = hexdec(substr($packet, 52,2))+hexdec(substr($packet,

54,2))*16*16;

 $speed_in_kmph = hexdec(substr($packet, 56,2));

 $temperature = hexdec(substr($packet, 58,2));

 $CO2 = hexdec(substr($packet, 60,2))+hexdec(substr($packet,

62,2))*16*16;

 $checksum = hexdec(substr($packet, 64,2))+hexdec(substr($packet,

66,2))*16*16;

 $deviceiid = substr($packet, 68,16);

 include "./dbcon/dbcon.php";

 $dbcon=new dbcon();

 121

 $result=$dbcon->set_data("INSERT INTO telemetry_data

VALUES('$datetime',$latitude,$longitude,$altitude,$speed_in_kmph,$temperatur

e,$CO2)");

 $result=$dbcon->get_data("SELECT * FROM telemetry_data");

 function add_br($value)

 {

 return $value.'
';

 }

 //<html><body>

 /*if ($result) {

 while($row = mysql_fetch_array($result))

 {

 print_r(array_map('add_br',$row));

 echo "
";

 }

 }*/

 echo "You said: ".$_GET['packet']."¥r¥n¥r¥n";

 echo "datetime: $datetime¥r¥n";

 echo "latitude: $latitude¥r¥n";

 echo "longitude: $longitude¥r¥n";

 echo "altitude: $altitude¥r¥n";

 echo "speed_in_kmph: $speed_in_kmph¥r¥n";

 echo "temperature: $temperature¥r¥n";

 echo "CO2: $CO2¥r¥n";

 echo "checksum: $checksum¥r¥n";

 echo "device_id: $device_id¥r¥n";

 //</body></html>

?>

	campa 01.pdf
	campa02.pdf

