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Abstract

We generalized the maximum work formulation of the second law for a
nonequilibrium initial state. This generalization allows us to find the maximum
work that can be gained from a nonequilibrium initial state. We are able to
consider isolated systems as well as those coupled to heat reservoirs, undergoing
both adiabatic and isothermal transitions.

The derivation is based on the information geometry. The maximum work
formulation is generalized as a relation between the work and a relative en-
tropy with an effective temperature. The relative entropy, also known as the
Kullback–Leibler divergence, is always positive and gives a “distance” between
the nonequilibrium initial distribution and the canonical distribution.

For a finite Hamiltonian system without a heat reservoir, the effective tem-
perature is determined by an isentropic condition. The maximum work is real-
ized in two successive processes: an instantaneous stabilization of the nonequilib-
rium initial distribution and an isentropic process. When the system is coupled
to a large heat reservoir, the effective temperature is the temperature of the
heat reservoir. From the generalized second law, the maximum work is realized
in two successive processes: an instantaneous stabilization and a quasi-static
isothermal process.

In this thesis, we explicitly show how the maximum work is realized in the
limit of instantaneous stabilization in a finite quantum system. Instantaneous
stabilization does not appear in traditional thermodynamics. We introduced
this process in order to extract the maximum work from the nonequilibrium
initial state. It prevents spontaneous relaxation such as free expansion in a gas
system. Since it is an ideal instantaneous process, its realizability is a crucial
problem we must consider.

We consider a finite quantum system with a Hamiltonian that has a time
dependence associated with an external cyclic operation. The first step in ex-
tracting work from a nonequilibrium initial state is to stop its time evolution.
This may be accomplished by changing the initial Hamiltonian to an effective
Hamiltonian for which the nonequilibrium initial state is a stable canonical dis-
tribution. After the stabilization, we performed an isentropic process which
changes the effective Hamiltonian to the final Hamiltonian. We show how the
maximum work is realized in the limit of instantaneous stabilization in an ex-
actly solvable two–level system.

We confirm that the generalized work relation is consistent with known re-
sults. Several authors showed the validity of the second law for a passive ini-
tial state in an N–level system. Hatsopoulos–Gyftopoulos and Allahverdyan–
Balian–Nieuwenhuizen obtained the maximum work from a non-passive initial
state. Our result is completely consistent with their results.

We show how to extract the maximum work for a process that includes a
crossing of adiabatic energy levels. Work extracted from a thermally isolated
equilibrium system is maximized for quasi-static realization of a given process.
Allahverdyan and Nieuwenhuizen rigorously showed that this principle can be
violated for crossings of adiabatic energy levels. Therefore, we give a non-quasi-
static process that maximizes work extraction when there is a level crossing.



Finally we propose an efficient quantum feedback control in a symmetric
two–level quantum system connected to an energy source. For the symmet-
ric two–level quantum system we may skip the restoration process. After re-
excitation by the energy source, we repeat the instantaneous stabilization. Since
a real stabilization is an almost instantaneous process, we can control the system
even though it is coupled to an energy source. The minimum period is deter-
mined by a re-excitation time, such as the relaxation time Since our argument
is not restricted within thermodynamics, we can choose any energy source, such
as the light from sun, to make the re-excitation time much shorter. We expect
our efficient quantum process plays an important role in a quantum dot solar
cell.
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Chapter 1

Introduction

1.1 Background

The second law of thermodynamics is the central law of nature[1]. When a sys-
tem is in equilibrium and within an isothermal condition, the Kelvin principle,
one representation of the second law, is

W cycle ≥ 0 (1.1)

where W cycle is work done on the system by an external cyclic operation. The
second law asserts the impossibility of perpetual motion of the second kind.

Approximately two decades ago, two important theorems of nonequilibrium
statistical mechanics, the fluctuation theorem[2] and Jarzynski work relation[3,
4], were rigorously proved. From these theorems, the maximum work formula-
tion of the second law is exactly proved

< W cycle|ρcan,0(β) >≥ 0 (1.2)

where ρcan,0(β) is the initial canonical distribution of the system with the inverse
of the temperature β and < •|ρ > is the expectation value integrated over a
probability density ρ. The maximum work formulation of the second law is valid
for the expectation value. Therefore,W cycle can be negative for rare cases within
finite systems as suspected by Evans-Morriss-Cohen [2]. After the proposals of
these theorems, the second law was refreshed in relation with the information
theory [5-12].

Recently, the maximum work formulation of the second law was generalized
for a nonequilibrium initial state [13-18]. Work on the system by an external
cyclic operation for a nonequilibrium initial state is bounded from below:

< W cycle|ρ0 >≥ −β−1D[ρ0||ρcan,0(β)] (1.3)

where the relative entropy (Kullback –Leibler divergence) is defined as [19]

D[ρA||ρB ] =< log
ρA
ρB

|ρA > (1.4)

The relative entropy means the “distance” between two probability densities
in the information geometry [20]. It is always positive and vanishes only for
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ρA = ρB . In the generalization of the maximum work formulation, the relative
entropy, the “distance” between the initial probability density and the initial
canonical distribution, indicates the initial “nonequilibriumness”. Therefore,
the generalized second law returns to the original second law for the initial
equilibrium state.

The generalized second law is a universal law. It is rigorously derived
from only fundamental properties of Hamiltonian dynamics (conservation of
the Gibbs-Shannon entropy) and information geometry (non-negativity of the
relative entropy)[20, 21]. It is applicable to a thermally isolated small classi-
cal/quantum Hamiltonian system even outside the realm of thermodynamics.
In this sense the second law becomes universal parallel to the first law, which is
the universal law of energy conservation.

The temperature cannot be defined for a finite isolated system. For a finite
isolated system, the temperature β−1 in Eq.(1.3) should be replaced by an
effective one β̃−1 which is determined by the isentropic condition,

Scan,0(β̃) = S0 (1.5)

where the entropy for the canonical distribution with the effective temperature,

Scan,0(β̃) = − < log ρcan,0(β̃)|ρcan,0(β̃) > (1.6)

and the initial entropy,
S0 = − < log ρ0|ρ0 > (1.7)

The generalized second law gives a fundamental relation between energy (the
maximum work) and information (the relative entropy). It is a generalization of
the Landauer principle [22-27] and reduces it for a quantum system of one bit
memory in a thermal bath. The energy corresponding to an unit of information
is given by the effective temperature for a finite bath.

In this thesis, we consider a process to gain the maximum work from a
nonequilibrium initial state. To gain maximum work from a non-equilibrium
initial state, we have to avoid dissipation. To prevent spontaneous relaxation
such as free expansion of gas, the initial Hamiltonian should be instantaneously
changed at the beginning of the process so that the initial state is a canonical
distribution for the changed Hamiltonian. This canonical distribution can evolve
to the final canonical distribution in a process that is dissipationless. The final
Hamiltonian should be the initial Hamiltonian for a cyclic operation.

We consider a finite quantum system: the N–level system. Its Hamiltonian
has a time dependent parameter θ(t) associated with an external cyclic oper-
ation. The first step in extracting work from a nonequilibrium initial state is
to stop its time evolution. This may be accomplished by changing the initial
Hamiltonian to an effective Hamiltonian for which the nonequilibrium initial
state is a stable canonical distribution. After the stabilization, we perform an
isentropic process that changes the effective Hamiltonian to the final Hamilto-
nian. We show how the maximum work is realized in the limit of instantaneous
stabilization in an exactly solvable two–level system. Since the process of in-
stantaneous stabilization does not appear in traditional thermodynamics, its
realizability is a problem we must consider.

The time evolution of an N–level system is quasi-periodic because the level
spacings are generally finite. An N–level system is not a thermodynamic sys-
tem; however it is mathematically very interesting. Lenard, Pusz–Woronowicz,
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Tasaki, and Allahverdyan–Nieuwenhuizen [28-31] rigorously derived the second
law for an initial passive state. Furthermore, Hatsopoulos–Gyftopoulos, and
Allahverdyan–Balian–Nieuwenhuizen, [32, 33]. generalized the second law for a
non-passive initial state. Their arguments are based on the majorization theory
for N–dimensional vector space. For a non-passive initial state, we obtain the
maximum work that is completely consistent with their results.

Allahverdyan–Nieuwenhuizen also discussed the maximum work for a process
that includes a crossing of adiabatic energy levels [34]. Work extracted from a
thermally isolated equilibrium system is maximized for quasi-static realization
of a given process. Allahverdyan–Nieuwenhuizen rigorously showed that this
principle can be violated for a crossing of adiabatic energy levels. Therefore, we
give a non-static process including an instantaneous stabilization that maximizes
work extraction when there is a level crossing.

We finally consider a more realistic system: a two–level system connected to
an energy source. We proposed an efficient quantum feedback control [27, 35]
in a symmetric two–level system. We expect that our efficient quantum process
plays an important role in a quantum dot solar cell.
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1.2 Outlines

In Chapter 2, we consider a classical Hamiltonian system that is thermally iso-
lated. The maximum work formulation of the second law is rigorously proved
for the initial equilibrium state. When the total system is divided into two,
system and heat reservoir, the maximum work formulation is extended for an
isothermal process. We generalize the maximum work formulation for a nonequi-
librium initial state. This generalization is extended for a transition between
nonequilibrium states. In Chapter 3, we consider an N–level quantum system.
A periodic operation to gain the maximum work from a nonequilibrium initial
state is explicitly shown in an exactly solvable two–level system. The periodic
operation consists of an instantaneous stabilization and an isentropic restora-
tion is applied in the case of level crossing. These arguments are extended to an
N–level system in which a passive state plays as the role of the canonical state.
Finally we consider a two–level system connected to an energy source. An effi-
cient quantum feedback control is proposed. In Chapter 4, we give conclusion
and remarks.

This thesis is based on the following three papers of our group:
1. Generalization of the second law for a nonequilibrium initial state

H.-H. Hasegawa, J. Ishikawa, K. Takara, and D.J. Driebe
Physics Letters A 374 (2010) 1001-1004.

2. Generalization of the second law for a transition between
nonequilibrium states
K. Takara, H.-H. Hasegawa, and D.J. Driebe
Physics Letters A 375 (2010) 88-92.

3. Application of the Generalized Work Relation for an N-level Quantum
System
J. Ishikawa, K. Takara, H.-H. Hasegawa and D. J. Driebe
Entropy 16 (2014) 3471-3481.

Many parts of this thesis are quoted from these papers without explicit citation.
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Chapter 2

The Generalized Second
Law

In this chapter, we generalize the maximum work formulation of the second
law for a transition between initial and final nonequilibium states. First, we
consider a thermally isolated total system. For an equilibrium initial state, we
derive the maximum work formulation in an adiabatic process. When the total
system is divided into an operated system and a huge reservoir, the maximum
work formulation is reconsidered in an isothermal process. Then, we general-
ize the maximum work formulation for a nonequilibrium initial state. When
we have information about the nonequilibrium final state, we can generalize
the maximum work formulation for a transition between the initial and final
nonequilibium states.

Our arguments are based on the microscopic Hamiltonian dynamics and in-
formation geometry. We derive the generalized second law for classical Hamil-
tonian dynamics in this chapter. The derivation for quantum mechanics [36] is
shown in Appendix B.

2.1 System

We consider a Hamiltonian system that is thermally isolated. The total system
consists of a system we operate on and a reservoir. They are coupled to each
other. The total Hamiltonian is a sum of three Hamiltonians, H(S)(x, a(t)),
H(R)(y) and the interaction between them, H(I)(x, y), as

H(r, θ(t)) = H(S)(x, θ(t)) +H(R)(y) +H(I)(x, y) (2.1)

where r = (x, y) ∈ Γ is a phase space point of the total system. A point,
x (y), is included in a phase space Γ(S) (Γ(R)). The phase space of the total
system is written as Γ = Γ(S) ×Γ(R). θ(t) is a time-dependent parameter of the
Hamiltonian of the system. θ(t) follows a given protocol associated with external
operations to the system. We represent a function in the system (reservoir) with
superscript, (S)((R)). We prepare a separable nonequilibrium initial probability
density at the beginning t = 0; ρ(r, 0) = ρ(S)(x, 0)ρ(R)(y, 0). We put them in
contact for intermediate times (0 < t < T ) then we separate them at the end
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t = T . It is assumed that the interaction Hamiltonian is negligible for both the
beginning and end.

The time evolution of the probability density of the total system is governed
by Liouville equation as

i
∂ρ(r, t)

∂t
= L(t)ρ(r, t) (2.2)

where L(t) is the Liouvillian corresponding to the Hamiltonian H(r, θ(t)). Here-
after, we abbreviate Ht(r) = H(r, θ(t)) and ρt(r) = ρ(r, t) for convenience.

9



2.2 Work equality in information geometry

In this section, we show that a work in Hamiltonian dynamics is rewritten
as a difference between the initial and final relative entropies (divergences) in
information geometry.

In the thermally isolated Hamiltonian system, the work done on the system
is given as the difference between the initial and final total energies,

< W |ρ0 >≡< HT |ρT > − < H0|ρ0 > (2.3)

where the bra-ket notation is defined as

< ft|ρt >≡
∫
Γ

ft(r)ρt(r)dr (2.4)

is an expectation value of a physical quantity f at time t. The probability
density at time t is written as

ρt = Utρ0 = Texp[−i
∫ t

0

L(t′)dt′]ρ0 (2.5)

where T is the well-known time ordered product. Note that the time evolution
operator is an unitary operator so that the Gibbs-Shannon entropy is conserved.
Hereafter, we abbreviate W =< W |ρ0 > and Et =< Ht|ρt > for convenience.
The canonical distribution at time t with temperature α−1 is defined as

ρcan,t(α) = exp[α{Ft(α)−Ht}] (2.6)

where the Boltzmann constant was chosen as unity. Since our temperature
includes the Boltzmann constant, the dimension of our temperature is energy.
The free energy is defined as a normalization factor in the canonical distribution,

Ft(α) = −α−1 log

[∫
Γ

exp[−αHt(r)]dr

]
(2.7)

Our derivation of the maximum work formulation is based on fundamental
properties of Hamiltonian dynamics and information geometry: conservation
of the Gibbs-Shannon entropy under Hamiltonian dynamics and non-negativity
of the relative entropy (Kullback-Leibler divergence). The proofs of the non-
negativity of the Kullback-Leibler divergence [37] is given in Appendix A.

The Gibbs-Shannon entropy is defined as

St ≡ − < log ρt|ρt > . (2.8)

Since the time evolution operator is a unitary operator,

ST = S0 (2.9)

The relative entropy (Kullbac–Leibler divergence) between a probability den-
sity of the system and the canonical distribution gives “nonequilibriumness”

D[ρ||ρcan(α)] =< log
ρ

ρcan(α)
|ρ > (2.10)
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Now we derive work equality in information geometry. We rewrite Eq.(2.3)
as follows,

W = FT (α)− F0(α)− < FT (α)−HT |ρT > + < F0(α)−H0|ρ0 >
= ∆F (α)− α−1 < log ρcan,T (α)|ρT > +α−1 < log ρcan,0(α)|ρ0 >

(2.11)

where ∆F (α) = FT (α) − F0(α). Using the conservation of the Gibb–Shanonn
entropy,

W −∆F (α) = −α−1 < log ρcan,T (α)|ρT > −ST

+ α−1 < log ρcan,0(α)|ρ0 > +S0

= α−1D[ρT ||ρcan,T (α)]− α−1D[ρ0||ρcan,0(α)]
(2.12)

We note that Eq.(2.12) is valid for any positive α.
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2.3 The maximum work formulation in an adi-
abatic process

In this section we derive the maximum work formulation for an equilibrium
initial state in an adiabatic process. By neglecting the reservoir we consider
the system to be thermally isolated system, H = H(S) and ρ = ρ(S). The work
equality Eq.(2.12) is rewritten as

W = ∆F (α) + α−1D[ρT ||ρcan,T (α)]− α−1D[ρ0||ρcan,0(α)]. (2.13)

It is clear that the work is uniquely determined since the both initial and final
states are known.

For an unknown final state, the work equality can be rewritten as an inequal-
ity for a given initial state. The whole information regarding with the final state
is included in the first relative entropy in Eq.(2.13). Therefore, we immediately
obtain the following inequality using non-negativity of the relative entropy,

W ≥ ∆F (α)− α−1D[ρ0||ρcan,0(α)]. (2.14)

This inequality is valid for any final probability density, ρT .
This inequality is also valid for any positive α. Therefore, we define an effec-

tive temperature β̃−1 = α−1 for which the right-hand-side (RHS) of Eq.(2.14)
is maximized. In order to maximize RHS, we first rewrite it as

RHS = FT (α)− E0 + α−1S0. (2.15)

After taking the derivative of RHS with respect to α−1 we obtain

dRHS

dα−1
= −Scan,T (α) + S0. (2.16)

where we used
dFT (α)

dα−1
= −Scan,T (α). (2.17)

From the monotonicity of the entropy of the canonical distribution, Scan,T (α̃),
the effective temperature is uniquely determined by the isentropic relation,

Scan,T (β̃) = S0. (2.18)

The uniqueness of the effective temperature is shown in Appendix C
We obtain the generalized maximum work formulation for a nonequilibrium

initial state in an adiabatic process with the effective temperature,

W ≥ ∆F (β̃)− β̃−1D[ρ0||ρcan,0(β̃)]. (2.19)

We confirm that the generalized maximum work formulation returns to the
maximum work formulation for an equilibrium initial state. Suppose the system
is in equilibrium by connecting a reservoir with temperature β−1 in the past.
We disconnect the system from the reservoir and make it thermally isolated. We
start a periodic operation on it at t = 0. Then, the initial probability density is
the canonical distribution with temperature β−1. From the isentropic relation
for a periodic operation,

Scan,0(β̃) = Scan,T (β̃) = S0 = Scan,0(β), (2.20)
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the effective temperature β̃−1 is the same as the temperature β−1. Since the
relative entropy vanishes, the original second law is reproduced

W ≥ 0 (2.21)

where we used ∆F (β) = 0 for a periodic operation.
Let us discuss by what processes the maximum work is realized for a nonequi-

librium initial state. To gain maximum work from a nonequilibrium initial state,
we have to avoid dissipation. To prevent spontaneous relaxation, such as the
free expansion of gas, the initial Hamiltonian should be instantaneously changed
at the beginning of the process so that the initial state is a canonical distribution
for the changed Hamiltonian. This canonical distribution can evolve to the final
canonical distribution in a process that is dissipationless. The final Hamiltonian
should be the initial Hamiltonian for a cyclic operation.

The generalized maximum work formulation is rewritten as

W ≥< HT |ρcan,T (β̃) > − < H0|ρ0 > (2.22)

where we substituted the isentropic relation into the relative entropy in Eq.(2.14).
We formally introduce a Hamiltonian, H0, for which the nonequilibrium

initial probability density can be written as a canonical distribution, ρ0 =
exp[β̃{F0(β̃) − H0}] where F0(β̃) is the free energy for H0. Then, the max-
imum work, right-hand-side of Eq.(2.22) with the negative sign, is rewritten
as

−Wmax =WIE +WIS (2.23)

where

WIS ≡ < H0 −H0|ρ0 >, (2.24)

WIE ≡ < HT |ρcan,T (β̃) > − < H0|ρ0 > . (2.25)

The most efficient way to gain work from the nonequilibrium initial proba-
bility density in an adiabatic process is as follows:
(1) Change the initial Hamiltonian, H0 to H0 for instantaneous stabilization
(IS) of the initial probability density.
(2) Change H0 to the final Hamiltonian, HT , in an isentropic process (IE).
Here we assume that the isentropic process exists.
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2.4 The generalized maximum work formulation
for a transition between nonequilibrium states
in a process with a finite reservoir

In this section we consider a process in which the system is connected to the
finite reservoir. We make the following two assumptions:
(1)The initial probability density is separable for the system and the reservoir

as ρ0 = ρ
(S)
0 ρ

(R)
0 .

(2)The final marginal probability density of the system is given but the final
marginal probability density of the reservoir is unknown.

We start at Eq.(2.12). We rewrite the final relative entropy as follows,

D[ρT ||ρcan,T (α)] = D[ρT ||ρ(S)T ρ
(R)
T ] +D[ρ

(S)
T ||ρ(S)can,T (α)] +D[ρ

(R)
T ||ρ(R)

can(α)].
(2.26)

The derivation of Eq.(2.26) is shown in Appendix D. By substituting Eq.(2.26)
into Eq.(2.12), the work equality is rewritten in terms of the final marginal
probabilities,

W = ∆F (α) +D[ρT ||ρ(S)T ρ
(R)
T ] +D[ρ

(S)
T ||ρ(S)can,T (α)]

+ D[ρ
(R)
T ||ρ(R)

can(α)]− α−1D[ρ0||ρcan,0(α)]. (2.27)

By neglecting the first and third relative entropies with respect to the final state
of the reservoir, we obtain the following inequality,

W ≥ ∆F (α) + α−1D[ρ
(S)
T ||ρ(S)can,T (α)]− α−1D[ρ0||ρcan,0(α)]. (2.28)

This inequality is valid for any positive α.
Similar to the argument in the previous section, we will determine the ef-

fective temperature for which the lower bound of the work is maximized. The
right-hand-side(RHS) of Eq.(2.28) is rewritten to make clear the α dependence,

RHS = E
(S)
T − E0 + F (R)(α)− α−1(S

(S)
T − S0). (2.29)

The derivative of RHS with respect to α−1 is,

d(RHS)

dα−1
= −S(R)

can (α)− S
(S)
T + S0. (2.30)

From the monotonicity of the entropy of the canonical distribution, the effective
temperature is uniquely determined by the isentropic relation,

S(R)
can (β̃) + S

(S)
T = S0. (2.31)

With the effective temperature, the maximum work formulation is generalized
for a transition between nonequilibrium states in a process with a finite reservoir,

W >≥ ∆F (β̃) + β̃−1D[ρ
(S)
T ||ρ(S)can,T (β̃)]− β̃−1D[ρ0||ρcan,0(β̃)]. (2.32)

The dissipative work W − ∆F (β̃) is bounded by the difference between the
initial total relative entropy and the final relative entropy of the system. As
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discussed before, the relative entropy gives the “distance” from equilibrium.
The dissipative work is bounded by the change of the “nonequilibriumness”.

Using the isentropic relation, Eq.(2.32) is also rewritten as,

W ≥ E
(S)
T + < H(R)|ρ(R)

can(β̃) > −E0. (2.33)

In the next section, we will use the equation to discuss by what processes the
maximum work is realized in the next section.
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2.5 The generalized maximum work formulation
for a transition between nonequilibrium states
in a quasi-isothermal process

The temperature is ordinarily defined for an infinite reservoir. We assume that
the number of degrees of freedom of the reservoir, N (R), is much greater than
the number of degrees of freedom of the system, N (S). In this section, we in-
troduce an effective temperature, β−1, of the reservoir realized after isentropic
equilibration without contact with the system. Using this effective temperature
we will rewrite the generalized maximum work formulation for a transition be-
tween nonequilibrium states in a process with a large but finite reservoir. We
call this process a quasi-isothermal process.

From the following isentropic relation,

S(R)
can (β) ≡ S

(R)
0 . (2.34)

an effective temperature, β−1, of the reservoir is determined. The effective
temperature is realized after isentropic equilibration without contact with the
system.

As assumed, the initial probability density of the total system is separable,

ρ0 = ρ
(S)
0 ρ

(R)
0 . Since the interaction Hamiltonian is negligible in the beginning,

E0 = E
(S)
0 + E

(R)
0 . (2.35)

Therfore, we rewrite Eq.(2.33) as

W ≥ E
(S)
T − E

(S)
0 + < H(R)|ρ(R)

can(β̃) > −E(R)
0 . (2.36)

Here,

< H(R)|ρ(R)
can(β̃) > = F (R)(β̃) + β̃−1S(R)

can (β̃) (2.37)

= F (R)(β̃) + (β̃−1 − β−1)S(R)
can (β̃)

− β−1{S(S)
T − S

(S)
0 }+ β−1S

(R)
0 . (2.38)

where we used the isentropic relation, S
(R)
can (β̃) = −S(S)

T + S
(S)
0 + S

(R)
0 . Then,

Eq.(2.36) is rewritten as,

W ≥ E
(S)
T − E

(S)
0 − β−1{S(S)

T − S
(S)
0 }+∆W (β̃) +W

(R)
EQ (2.39)

where ∆W (β̃) is a correction of the work for the finite reservoir,

∆W (β̃) ≡ F (R)(β̃)− F (R)(β) + (β̃−1 − β−1)S(R)
can (β̃) (2.40)

and W
(R)
EQ is the work for the isentropic equilibration without contact with the

system,

W
(R)
EQ ≡< H(R)|ρ(R)

can(β) > −E(R)
0 . (2.41)

Because of energy conservation for the isentropic equilibration,

W
(R)
EQ = 0. (2.42)
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The effective temperature must satisfy < H(R)|ρ(R)
can(β) >= E

(R)
0 .

We obtain the generalized maximum work formulation for a transition be-
tween nonequilibrium states in a quasi-isothermal process,

W ≥ E
(S)
T − E

(S)
0 − β−1{S(S)

T − S
(S)
0 }+∆W (β̃). (2.43)

After the long but straightforward calculations mentioned in Appendix E, we
obtain a simple expression of the correction of the work for the finite reservoir,

∆W (β̃) = β−1D[ρ(R)
can(β̃)||ρ(R)

can(β)] ≥ 0. (2.44)

Using the relation between the relative entropy and the Gibbs-Shannon entropy,

β−1D[ρt||ρ
(S)
can,t(β)] = −β−1S

(S)
t + E

(S)
t − F

(S)
t (β). (2.45)

We finally obtain the generalized maximum work formulation for a transition
between nonequilibrium state in a quasi-isothermal process in terms of the rel-
ative entropies,

W ≥ ∆F (S)(β) + β−1D[ρ
(S)
T ||ρ(S)can,T (β)]

− β−1D[ρ
(S)
0 ||ρ(S)can,0(β)] + ∆W (β̃). (2.46)
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2.6 The generalized maximum work formulation
for a transition between nonequilibrium states
in an isothermal process

In this section, we generalize the maximum work formulation for a transition
between nonequilibrium states in an isothermal process. The isothermal process
is realized in the limit of the infinite reservoir.

We start at Eq.(2.46),

W ≥ ∆F (S)(β) + β−1D[ρ
(S)
T ||ρ(S)can,T (β)]

− β−1D[ρ
(S)
0 ||ρ(S)can,0(β)] + ∆W (β̃).

We choose the initial probability density of the reservoir as the canonical dis-
tribution with temperature, β−1. The effective temperature is uniquely deter-
mined by the isentropic relation,

S(R)
can (β̃) + S

(S)
T = S(R)

can (β) + S
(S)
0 . (2.47)

From order estimations in regard to the degrees of freedom of both the system
and reservoir,

β̃ − β ∼ O(N (S)/N (R)) → 0 (2.48)

in the limit of the infinite reservoir, N (R) → ∞.
The correction of the work for the finite reservoir is given in Eq.(2.40),

∆W (β̃) = F (R)(β̃)− F (R)(β) + (β̃−1 − β−1)S(R)
can (β̃).

Using the relation, S
(R)
can (β) = −dF (R)(β)/dβ−1, it is easy to show that the terms

of the first order, O(β̃−1 − β−1), cancel in the Taylor expansion. In the limit of
the infinite reservoir, the correction of the work vanishes,

∆W (β̃) ∼ O(N (R)(N (S)/N (R))2) → 0. (2.49)

In the limit of the infinite reservoir, we obtain the generalized maximum
work formulation for a transition between nonequilibrium states in an isothermal
process as

W ≥ ∆F (S)(β) + β−1D[ρ
(S)
T ||ρ(S)can,T (β)]− β−1D[ρ

(S)
0 ||ρ(S)can,0(β)]. (2.50)

We show by what processes the maximum work is realized in an isothermal
process. We rewrite Eq.(2.50) as

W ≥ E
(S)
T − E

(S)
0 − β−1{S(S)

T − S
(S)
0 }, (2.51)

where we used the isentropic relation Eq.(2.47 ) to rewrite relative entropies in
Eq.(2.50).

Similar to the previous argument, we formally introduce a Hamiltonian,

H(S)
0 (H(S)

T ), for which the nonequlibrium initial (final) probability density can
be written as a canonical distribution,
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ρ
(S)
0 =exp[β{F (S)

0 (β) − H(S)
0 }](ρ(S)T = exp[β{F (S)

T (β) − H(S)
T }]) where F (S)

0 (β)

(F (S)
T (β)) is the free energy for H(S)

0 (H(S)
T ). Then we obtain

−Wmax =WIR +WQI +WIS (2.52)

where

WIS ≡ < H(S)
0 −H

(S)
0 |ρ(S)0 >, (2.53)

WQI ≡ F (S)
T (β)−F (S)

0 (β), (2.54)

WIR ≡ < H
(S)
T −H(S)

T |ρ(S)T > . (2.55)

Interpreting each of these terms we see that the most efficient way to gain
work from the nonequilibrium initial probability density in a process for two
coupled Hamiltonian systems is as follows:

(1) Change the initial Hamiltonian, H
(S)
0 , to H(S)

0 for instantaneous stabilization
(IS) of the initial probability density.

(2) Change H(S)
0 to H(S)

T in a quasi-static isothermal process (QI).

(3) Change H(S)
T to the final Hamiltonian, H

(S)
T for instantaneous release (IR)

of the final probability density of the system.
Here we assumed that the quasi-static isothermal process exists.
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2.7 The generalized Clausius relation for a tran-
sition between nonequilibrium states in an
isothermal process

From the first law of thermodynamics, the absorbed heat is given as

Q ≡ E
(S)
T − E

(S)
0 −W. (2.56)

Using Eq.(2.43), the heat, Q, absorbed in a quasi-isothermal process is
bounded from above,

Q ≤ β−1{S(S)
T − S

(S)
0 } −∆W (β̃). (2.57)

Then, the maximum absorbed heat is obtained from the maximum work as

Qmax = β−1{S(S)
T − S

(S)
0 } −∆W (β̃). (2.58)

Similarly, the heat, Q absorbed in an isothermal process is bounded from
above,

Q ≤ β−1{S(S)
T − S

(S)
0 }. (2.59)

The maximum absorbed heat is obtained as

Qmax = β−1{S(S)
T − S

(S)
0 }. (2.60)

We generalise the Clausius relation for a transition between nonequilibrium
states by using both the initial and final Gibbs-Shannon entropies instead of
the entropies of the initial and final canonical distributions [8,14,37,38].
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Chapter 3

N–level Quantum System

3.1 Generalized work relation for N–level quan-
tum system

We consider a thermally isolated quantum Hamiltonian system. The Hamilto-
nian H(θ(t)) depends on time t through the parameter θ(t) following a given
protocol associated with an external operation to the system. Hereafter, we
abbreviate θt = θ(t) for convenience.

The time evolution of the system is governed by the quantum Liouville equa-
tion,

iℏ
∂ρ(t)

∂t
= [H(θt), ρ(t)]. (3.1)

The density matrix at time t is given as

ρ(t) = U(t)ρ(0)U(t)−1 (3.2)

where the unitary time evolution operator U(t) ≡ Texp(−i
∫ t

0
H(θt′)dt

′/ℏ)
where T means the time ordered product.

The work on the thermally isolated system from t = 0 to t = T is given as

W = Tr[H(θT )ρ(T )]− Tr[H(θ0)ρ(0)]. (3.3)

It is important to note that the maximum work done by the system corresponds
to the lowest work done on the system in our definition. Hereafter we will discuss
a lower bound of the work on the system.

In the generalized second law the canonical distribution plays a crucial role
even outside the context of a system in contact with a heat reservoir. The
canonical distribution expresses a connection between energy (the Hamiltonian)
and information (the probability distribution). Its meaning is the equilibrium
state in thermodynamics but it also has meaning in a thermally isolated sys-
tem. We consider the canonical distribution with the inverse of temperature α,
ρcan(α, θ) = exp[α{F (α, θ) −H(θ)}] where we choose the Boltzmann constant
unity and F (α, θ) ≡ −α−1 log(Tr[exp{−αH(θ)}]) is the corresponding free en-
ergy. Our definition of the temperature includes the Boltzmann constant so that
the dimension of our temperature is energy. Using the canonical distribution,
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we can rewrite the work as

W = ∆F (α)−α−1Tr[log(ρcan(α, θT ))ρ(T )]+α
−1Tr[log(ρcan(α, θ0))ρ(0)] (3.4)

where ∆F (α) = F (α, θT )− F (α, θ0).
The von Neumann entropy of the state at time t is defined as S(t) ≡

−Tr[log(ρ(t))ρ(t)]. Using the conservation of the von Neumann entropy under
unitary time evolution, S(T ) = S(0), the work may be written as the important
equality

W = ∆F (α) + α−1D[ρ(T )||ρcan(α, θT )]− α−1D[ρ(0)||ρcan(α, θ0)] (3.5)

where D[ρ||σ] ≡ Tr[{log(ρ) − log(σ)}ρ] is the non-negative quantum relative
entropy [12, 21]. This is an identity for any inverse of temperature α. In
this equality the dissipative work W −∆F (α) is exactly given as the difference
between the initial and the final “distance” from equilibrium with a temperature.

Using the non-negativity of the second term in the right-hand-side of Eq.(3.5),
we obtain the generalized maximum work formulation for a nonequilibrium ini-
tial state,

W ≥ ∆F (β̃)− β̃−1D[ρ(0)||ρcan(β̃, θ0)] (3.6)

where the effective temperature β̃−1 is uniquely determined by an isentropic
condition: the von Neumann entropy for the final canonical distribution is equal
to the initial von Neumann entropy Scan(β̃, θT ) = S(0), which makes the right
hand side of Eq.(3.6) maximum for α = β̃.

From the isentropic condition, we can rewrite Eq.(3.6) as

W ≥ Tr[H(θT )ρcan(β̃, θT )]− Tr[H̃ρ(0)] + Tr[(H̃ −H(θ0))ρ(0)] (3.7)

where an effective Hamiltonian H̃ is introduced to make the nonequilibrium
initial state a canonical distribution: ρ(0) = exp[β̃{F̃ (β̃) − H̃}] where F̃ (β̃) is
the corresponding free energy. The right hand side of the above inequality tells
us how to realize the maximum work in two consecutive processes:
(1) An instantaneous stabilization process in which we instantaneously change
the initial Hamiltonian to the effective Hamiltonian at the beginning to stop the
time evolution from the nonequilibrium initial state;
(2) A restoration process in which the effective Hamiltonian is changed to the
final one in an isentropic process.
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3.2 Periodic operation to obtain the maximum
work from the nonequilibrium initial state
in a two–level quantum system I

Now we will focus on a two-level quantum system to obtain an efficient periodic
operation that extracts the maximum work from a nonequilibrium initial state.
We consider the following time-dependent Hamiltonian [34],

H(θ) =
∆ϵ(θ)

2

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
. (3.8)

The eigenvalues of the Hamiltonian are ±∆ϵ(θ)/2. The probability amplitude
for the ground state is |0, θ >= (− sin(θ), cos(θ))T and the probability amplitude
for the excited state is |1, θ >= (cos(θ), sin(θ))T. The superscript T means the
transposition of the vector. We choose the zero energy as the middle of the two
levels to make them symmetric.

We first consider time-independent energy levels, ∆ϵ = ℏω where ω is the
constant angular frequency corresponding to the energy spacing. We choose the
following parameter with linear time dependence for a given interval t ∈ [a, b),
θt = Ω(t− a) + θa where Ω = (θb − θa)/(b− a). For this linear time-dependent
Hamiltonian one can exactly derive the transition probability, which is the Rabi
formula [39].

We start with the following transition amplitudes,

âk|j(θt) =< k, θt|Uθ(θt)|j, θa > ei(2k−1)η(θt−θa) j, k = 0, 1 (3.9)

where η ≡ ω/(2Ω) and Uθ(θt) = T exp[−i
∫ θt
θa
H(θ)dθ/(ℏΩ)]. The time evolution

operator Uθ(θt) is the same as U(t) previously defined. Since the transition
amplitudes depend on time through the parameter, we introduced Uθ(θt) to
make the parameter dependence explicit. The phase factor was introduced to
cancel out the parameter derivative of Uθ(θt). Therefore, the θt dependence in
the right-hand-side of Eq.(3.9) only appears in the bra-vector < k, θt|. Now we
take the derivative with respect to θt to both sides of Eq.(3.9).

d

dθt
âk|j(θt) =

∑
k′

{ d

dθt
< k, θt|k′, θ′ >} < k′, θ′|Uθ(θt)|j, θa > ei(2k−1)η(θt−θa)

(3.10)
where we used the completeness relation

∑
k′ |k′, θ′ >< k′, θ′| = 1 for any θ′.

Using the relation ∂θ < k, θ|j, θ′ >= (2k − 1)δj,1−k for θ′ → θ , we obtain the
coupled differential equations with respect to θ,

d

dθ
âk|j(θ) = (2k − 1)ei2(2k−1)η(θ−θa)â1−k|j(θ). (3.11)

The solutions for the initial conditions, â0|0(θa) = â1|1(θa) = 1,
â0|1(θa) = â1|0(θa) = 0 are given as

â0|1(θ) = −â∗1|0(θ) = −e−iη(θ−θa)√
1 + η2

sin((θ − θa)
√
1 + η2). (3.12)

From Eq.(3.11), â0|0(θ) (â1|1(θ)) is obtained from the derivatives of â1|0(θ)
(â0|1(θ)) with respect to θ.
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The transition probability from the excited to the ground state is given as

PT = |â0|1(θb)|2 = 1− |â1|1(θb)|2. (3.13)

The survival probability is also given as PS = 1− PT.
First we choose the pure excited state as a nonequilibrium initial state. This

initial state is expected after energy measurement. The cyclic operation includes
two processes:
(1) The stabilization process for t ∈ [0, τ) in which the pure excited state be-
comes the ground state, the canonical distribution with zero temperature, by
changing H(θ0 = 0) to H(θτ = π/2) = −H(θ0 = 0);
(2) The restoration process to the original Hamiltonian without any transition
to the excited state for t ∈ [τ, T ). The final Hamiltonian is restored to the
original Hamiltonian, H(θT ) = H(θ0), for θT = π and θ0 = 0.

The transition probability for finite τ in the stabilization process is illustrated
in Figure 3.1. When we take the limit of τ → 0, while keeping θ0 = 0 and θτ =
π/2, the transition probability becomes 1 for U(θτ , τ) → 1 and the instantaneous
stabilization is realized. In this limit the state does not change, ρ(τ) = ρ(0),
but the energy switches sign, H(θτ ) = −H(θ0).

The survival probability in the restoration process is illustrated in Figure
3.2 where T − τ is the period of the restoration process. In the limit of the
quasi-static process, T − τ → ∞, there is no transition to the excited state and
the ground state is preserved. As is seen in Figure 3.2, there are shorter periods
for a restoration that preserves the ground state (PS = 1). The shortest time
for the restoration is realized by ω(T − τ) =

√
3π, where â∗1|0 = 0 in Eq.(3.12)

for θ − θa = π/2 and η = ω(T − τ)/π.

0 5 10 15 20 25 30
ΩΤ0.0

0.2

0.4

0.6

0.8

1.0
PT

Figure 3.1: In the case of the constant energy levels, transition
probability in the stabilization process for θ0 = 0 and θτ = π/2.

The previous argument can be generalized to an arbitrary nonequilibrium
initial state. Without loss of generality, a nonequilibrium initial state can be
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Figure 3.2: In the case of the constant energy levels, survival probability
in the restoration process for θτ = π/2 and θT = π.

written as the superposition of orthogonal pure states,

ρ(0) = p0|ψ0 >< ψ0|+ p1|ψ1 >< ψ1| (3.14)

|ψ1 > = |1, θ0 > cos(ϕ) + |0, θ0 > sin(ϕ)

|ψ0 > = −|1, θ0 > sin(ϕ) + |0, θ0 > cos(ϕ),

where we define the zero-th and first pure states based on the occupation prob-
ability of the first pure state being equal or less than the zero-th, p0 ≥ p1 ≥ 0
(p0+p1 = 1). Since the states we consider are density matrices, they are opera-
tors in the Hilbert space of probability amplitudes; in particular, the pure state
is a projection operator.

In the stabilization process, the dominant zero-th state is changed to the
ground state. From the property of the unitary time evolution, the first state
becomes the excited state after this stabilization process. Then, the state
ρ(τ) becomes the canonical distribution with the effective temperature β̃−1 =
ℏω/ log(p0/p1). To realize the instantaneous stabilization, we take the limit of
τ → 0 while keeping θ0 = 0 and θτ = ϕ. In this limit, ρ(τ) = ρ(0) and the
Hamiltonian becomes the effective Hamiltonian given as

H̃ = −ℏω
2
|ψ0 >< ψ0|+

ℏω
2
|ψ1 >< ψ1|. (3.15)

The transition probability from the zero-th pure state to the ground state for
finite τ , PT = | − â0|1 sin(ϕ) + â0|0 cos(ϕ)|2, is illustrated in Figure 3.3.

In the restoration process, the final Hamiltonian is restored to the original
Hamiltonian,
H(θT ) = H(θ0), for θT = π. As is seen in Figure 3.4, the shortest time to avoid
any transition is realized by ω(T − τ) = 2

√
(2π − ϕ)ϕ where PS = |â0|0|2 = 1.

The maximum work is given as Wmax = −ℏω sin2(ϕ). This is consistent
with results in [32, 33]. At first glance we can extract the maximum energy
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Figure 3.3: Transition probability in the stabilization process with the
constant energy levels for θ0 = 0 and θτ = ϕ = 3π/4.
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Figure 3.4: Survival probability in the restoration process with the
constant energy levels for θτ = 3π/4 and θT = π.

more efficiently for wider level spacing, ℏω. However, it is important how long
it takes to re-excite the state to extract the work repeatedly. The relaxation
time is crucial for the re-excitation using a heat reservoir as will be discussed
later.
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3.3 Periodic operation to obtain the maximum
work from the nonequilibrium initial state
including an instantaneous stabilization II
–the case of level crossing–

Now we consider an efficient periodic operation including a process with level
crossing to obtain the maximum work. We choose ∆ϵ = −2ℏωθ/π in the Hamil-
tonian. The eigenvalues of the Hamiltonian are ±ℏωθ/π so the level crossing
occurs at θ = 0. We choose the time-dependent parameter for t ∈ [a, b) as
θt = Ω(t− a)+ θa. As was shown by Allahverdyan and Nieuwenhuizen [34], the
transition probability can be rigorously obtained even in a process with level
crossing. Therefore we can explicitly show both the stabilization process and
the restoration process.

We consider the following transition probability similar to the previous case,

âk|j(θt) =< k, θt|U(θt,∆t)|j, θa > e−i2(2k−1)η
∫ θt
θa

θt′dθt′/π j, k = 0, 1. (3.16)

We obtain the coupled differential equations,

d

dθ
âk|j(θ) = (2k − 1)e−i2(2k−1)η(θ2−θ2

a)/πâ1−k|j(θ). (3.17)

The solutions can be written as

â0|1(θ) = c1He(−i
π

4η
, (−1)1/4θ

√
2η

π
) + c2F1(i

π

8η
,
1

2
, i
2θ2η

π
) (3.18)

where c1 and c2 are constants, He is a Hermite polynomial, and F1 is a confluent
hypergeometric function of the first kind [40]. They are generalized for complex
parameters and complex variable.

The transition probability from the initial excited state to the final ground
state is given as PT = |â1|1(θb)|2 and the survival probability PS = |â0|1(θb)|2 =
1− PT. Notice that the initial state is same as the final state in the transition
probability. This comes from the fact that the initial excited state becomes the
final ground state because of the level crossing.

We first consider the stabilization process for t ∈ [0, τ). The instantaneous
stabilization can be realized even in a process with level crossing. For the
nonequilibrium initial state defined in Eq.(3.15), we choose θ0 = −π/2 and
θτ = ϕ > 0 and take the limit of τ → 0. Then, ρ(0) = ρ(τ) and

H(θτ ) = H̃ = −ℏωθτ
π

|ψ0 >< ψ0|+
ℏωθτ
π

|ψ1 >< ψ1|. (3.19)

The transition probability for finite τ , PT = | − â1|1 sin(ϕ) + â1|0 cos(ϕ)|2, is
shown in Figure 3.5.

We consider the restoration process to the original Hamiltonian for t ∈ [τ, T ).
The restoration of the original Hamiltonian, H(θT ) = H(θ0), is realized for
θτ = ϕ and θT = −π/2. We can make an efficient process without any transition
between the two levels by choosing the interval T − τ for which PS = |â0|1|2 = 1
as shown in Figure 3.6.
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Figure 3.5: Transition probability in the stabilization process with
level crossing for θ0 = −π/2 and θτ = ϕ = 3π/4.
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Figure 3.6: Survival probability in the restoration process with
level crossing for θτ = 3π/4 and θT = −π/2.

Using a non-quasi-static operation (As was pointed out by Allahverdyan and
Nieuwenhuizen [34], if level crossing occurs work extraction is not always max-
imized by a quasi-static operation. such as the instantaneous stabilization we
can extract the maximum work in a process with level crossing. The level cross-
ing occurs within the stabilization process. Any effect of the level crossing turns
out to be negligible in the instantaneous limit. The instantaneous stabilization
was originally introduced to prevent spontaneous relaxation of a nonequilibrium
thermodynamic system. It also prevents any loss of work in a process with level
crossing for an N–level quantum system.)
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3.4 Extension to an N–level system

In order to extend our argument forN = 2 to a generalN we first have to modify
the generalized maximum work formulation for a general N–level system. For
N = 2, we can take any nonequilibrium initial state to the final canonical
distribution by adjusting the effective temperature. However, we cannot do
this for a greater N . The set of eigenvalues of the initial density matrix is
preserved under a unitary time evolution. If we can take a nonequilibrium
initial state to the final canonical distribution, the set of eigenvalues of the
initial density matrix must be same as the set of the final canonical distribution
in the diagonal representation. Since the final Hamiltonian (the set of final
energy levels) is given, we cannot take an arbitrary nonequilibrium initial state
to the final canonical distribution using any unitary time evolution.

Fortunately, we can take any nonequilibrium initial state to the final passive
state and the second law for a passive initial state was established in an N–level
quantum system [28, 29, 36, 31] A passive state satisfies the following properties:
(1) It is simultaneously diagonalizable with the Hamiltonian so it can be written
in terms of a sum of energy eigenstates; (2) It is determined by a series of
occupation probabilities for each energy level. (Here we assume no degeneracy
with respect to energy levels.); (3) The series of occupation probabilities is
monotonically decreasing in the wide sense with respect to the level of energy.
(The occupation probabilities of the nth energy level is equal or greater than
the n+ 1th energy level for n = 0, 1, 2, ..., N − 1.)

Similar to an initial canonical distribution, we can not obtain work from an
initial passive state using any periodic operation,

W = Tr[H(θT )ρ(T )]− Tr[H(θ0)ρpassive(0)]

≥ Tr[H(θT )ρpassive(T )]− Tr[H(θ0)ρpassive(0)] (3.20)

where ρpassive(t) is a passive state at time t.
Using the above inequality we obtain the generalized maximum work formu-

lation for a nonequilibrium initial state in an N–level system as

W = Tr[H(θT )ρ(T )]− Tr[H(θ0)ρ(0)]

≥ Tr[H(θT )ρpassive(T )]− Tr[H̃ρ(0)] + Tr[(H̃ −H(θ0))ρ(0)] (3.21)

where H̃ is the effective Hamiltonian for which the nonequilibrium initial state
is written as a passive state in terms of the effective Hamiltonian. The max-
imum work can be extracted in two consecutive processes: the instantaneous
stabilization and an isentropic process such as a quantum quasi-static process
from the effective passive state to the final passive state.

Finally, we consider a periodic operation to obtain the maximum work from
a nonequilibrium initial state in an N–level system. The periodic operation is
divided into two processes: the instantaneous stabilization and the restoration
process to the original Hamiltonian.

Suppose both the initial Hamiltonian and the nonequilibrium initial distri-
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bution are written as a sum of pure eigenstates in each diagonal representation,

H(θ0) =
N−1∑
n=0

ϵn|n, θ0 >< n, θ0| (3.22)

ρ(0) =
N−1∑
j=0

pj |ψj >< ψj | (3.23)

where ϵn < ϵn+1 (n = 0, 1, ..., N − 1) and pure eigenstates, |ψj >< ψj | (j =
0, 1, ..., N − 1), are ordered from the largest occupation probability p0 to the
smallest occupation probability pN−1. Then, we choose the effective Hamilto-
nian as

H̃ =

N−1∑
j=0

ϵj |ψj >< ψj |. (3.24)

The instantaneous stabilization is realized by instantaneously changing from
the initial Hamiltonian to the effective Hamiltonian. The nonequilibrium initial
state is kept in the sudden approximation as was explicitly shown for the two–
level quantum system.

In the restoration process, we change the effective Hamiltonian to the original
Hamiltonian.
The state remains passive without any transition during the minimum period
ℏ/∆ϵ expected from the uncertainty relation.
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3.5 An efficient quantum feedback control

To close this chapter, we comment on an efficient quantum feedback control
using the instantaneous stabilizations. The system needs to be coupled to an
energy source, such as a heat reservoir, to extract the maximum work repeatedly.
We can obtain the maximum work from an initial excited state using the instan-
taneous stabilization. If the system is symmetric, such as a two–level quantum
system, the Hamiltonian after the instantaneous stabilization is the same form
as the original Hamiltonian. Then, we may skip the restoration process. After
re-excitation by the energy source, we repeat the instantaneous stabilization.
Since a real stabilization is an almost instantaneous process, we can control the
system even though it is coupled to an energy source. The minimum period
is determined by the re-excitation time, such as the relaxation time (Since our
argument is not restricted within thermodynamics, we can choose any energy
source such as light from sun to make the re-excitation time much shorter. We
expect our efficient quantum process plays an important role in a quantum dot
solar cell.)

We have to measure the quantum system to know if the system is in the
excited state. The whole process including quantum measurements is called
quantum feed back control [10, 27]. Toyabe et al. reported their experimental
results [35]. We interpret their experiment as a demonstration of our efficient
quantum feedback control using instantaneous stabilizations.
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Chapter 4

Conclusions

In this thesis, we explicitly showed how to realize maximum work in a finite
quantum system with the instantaneous stabilization. Instantaneous stabiliza-
tion does not appear in traditional thermodynamics. We introduced instanta-
neous stabilization in order to extract the maximum work from the nonequi-
librium initial state. The instantaneous stabilization prevented dissipation by
spontaneous relaxation of the system. Since instantaneous stabilization was an
ideal instantaneous process, its realizability was a crucial problem we needed to
solve.

We considered a finite quantum system with a Hamiltonian that had a time
dependence associated with an external cyclic operation. The first step in ex-
tracting work from the nonequilibrium initial state was to stop its time evo-
lution. The initial Hamiltonian was changed to an effective Hamiltonian for
which the nonequilibrium initial state was a stable canonical distribution. After
the stabilization, we performed an isentropic process that changed the effec-
tive Hamiltonian to the final Hamiltonian. We showed in an exactly solvable
two-level system how the maximum work was realized within the limit of in-
stantaneous stabilization.

Our arguments were extended for a general N–level system. We confirmed
that the generalized work relation is consistent with known results.

We showed how to extract the maximum work for a process that included
a crossing of adiabatic energy levels. Work extracted from a thermally isolated
equilibrium system was maximized for quasi-static realization of a given process.
Allahverdyan and Nieuwenhuizen rigorously showed that this principle could be
violated for a crossing of adiabatic energy levels. We gave a non-quasi-static
process that maximized work extraction when there was a level crossing.

Finally we proposed an efficient quantum feedback control in a symmetric
two–level quantum system connected to an energy source. We expected that
our efficient quantum process plays an important role in the quantum dot solar
cell.
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Appendix A

Non-negativity of the
relative entropy

The relative entropy is defined as

D[ρA||ρB ] =< log
ρA
ρB

|ρA > (A.1)

where ρA and ρB are probability densities.
We assume the following inequality,

x− 1 ≥ log x. (A.2)

Then,

−D[ρA||ρB ] = < log
ρB
ρA

|ρA >

≤ <
ρB
ρA

− 1|ρA >

= < ρB − ρA >

= 1− 1 = 0 (A.3)
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Appendix B

Non-negativity of the
relative entropy in quantum
mechanics

The relative entropy is defined in quantum mechanics as

D[ρA||ρB] = Tr[(log ρA − log ρB)ρA] (B.1)

where density matrices ρA and ρB are written as

ρA =
∑
i

|φi > ρAi < φi|, (B.2)

ρB =
∑
i

|ϕi > ρBi < ϕi|. (B.3)

From the normalization of density matrices,

1 = Tr[ρB]

= Tr[ρBρ
−1
A ρA]

=
∑
i,j

< φi|ϕj > ρBj < ϕj |φi > ρ−1
Ai ρAi

=
∑
i,j

ρBjρ
−1
Ai | < ϕj |φi > |2ρAi. (B.4)

We define Pj,i = | < ϕj |φi > |2ρAi.

Pj,i > 0, (B.5)∑
j,i

Pj,i =
∑
i,j

< φi|ϕj >< ϕj |φi > ρAi

=
∑
i

< φi|φi > ρAi

=
∑
i

ρAi = 1. (B.6)
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Then,

1 =
∑
i,j

ρBjρ
−1
AiPi,j

=
∑
i,j

exp[− log(ρBjρ
−1
Ai )]Pi,j

≥ exp[−
∑
i,j

log(ρBjρ
−1
Ai )Pi,j ] (B.7)

where we used the Jensen inequality, < ex >≥ e<x>. By taking logarithm on
both sides,

0 ≤
∑
i,j

log(ρBjρ
−1
Ai )Pi,j

=
∑
i,j

(log ρBj − log ρAi)| < ϕj |φi > |2ρAi

= Tr[(log ρA − log ρB)ρA]. (B.8)

Finally we obtain,

D[ρA||ρB ] = Tr[(log ρA − log ρB)ρA] ≥ 0. (B.9)
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Appendix C

Uniqueness of the effective
temperature

In this appendix, we show that the isentropic relation Eq.(2.18) uniquely deter-
mines the effective temperature. We start at Eq.(C.1),

RHS = FT (α)− E0 + α−1S0.

The derivative of RHS with respect to α−1 is

dRHS

dα−1
=
dFT (α)

dα−1
+ S0

= −Scan,T (α) + S0 (C.1)

where we used

dF (α)

dα−1
= −α2 dF (α)

dα

= −α2 d

dα
(− 1

α
log

∫
Γ

exp(−αH)dx)

= αF (α)− α < H|ρcan(α) >
= −Scan(α) (C.2)

The effective temperature is uniquely determined by the following two prop-
erties.
(1) Monotonicity of the entropy of the canonical distribution

dScan(α)

dα
= − d

dα
α(F (α)− < H|ρcan(α) >)

= −α−1Scan(α)− α
dF (α)

α
+ α

d < H|ρcan(α) >
dα

= −α < ∆H2|ρcan(α) >≤ 0 (C.3)

where

< ∆H2|ρcan(α) > =< (H − Ecan(α))
2|ρcan(α) >, (C.4)

Ecan(α) =< H|ρcan(α) > (C.5)
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(2) Scan,T (0) ≥ S0 ≥ Scan,T (∞)
For α→ 0, Scan,T (α) becomes the maximum entropy of the uniform probability
density so that Scan,T (0) ≥ ST = S0 where we used the conservation of the
entropy. For α → ∞, Scan,T (α) becomes the minimum entropy of the ground
state so that ST = S0 ≥ Scan,T (∞).
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Appendix D

Derivation of Eq.(2.26)

D[ρT ||ρ(S)T ρ
(R)
T ] =< log(

ρT

ρ
(S)
T ρ

(R)
T

)|ρT >

=< log ρT |ρT > − < log ρ
(S)
T |ρT > − < log ρ

(R)
T |ρT >

=< log ρT |ρT > − < log ρ
(S)
T |ρ(S)T > − < log ρ

(R)
T |ρ(R)

T >

=< log ρT |ρT > − < log ρcan,T (α)|ρT > + < log ρcan,T (α)|ρT >

− < log ρ
(S)
T |ρ(S)T > − < log ρ

(R)
T |ρ(R)

T >

= D[ρT ||ρcan,T (α)]+ < log(ρ
(S)
can,T (α)ρ

(R)
can,T (α))|ρT >

− < log ρ
(S)
T |ρ(S)T > − < log ρ

(R)
T |ρ(R)

T >

= D[ρT ||ρcan,T (α)]+ < log ρ
(S)
can,T (α)|ρT > − < log ρ

(S)
T |ρ(S)T >

+ < log ρ
(R)
can,T (α)|ρT > − < log ρ

(R)
T |ρ(R)

T >

= D[ρT ||ρcan,T (α)]+ < log ρ
(S)
can,T (α)|ρ

(S)
T > − < log ρ

(S)
T |ρ(S)T >

+ < log ρ
(R)
can,T (α)|ρ

(R)
T > − < log ρ

(R)
T |ρ(R)

T >

= D[ρT ||ρcan,T (α)]−D[ρ
(S)
T ||ρ(S)can,T (α)]−D[ρ

(R)
T ||ρ(R)

can,T (α)] (D.1)
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Appendix E

Derivation of Eq.(2.44)

∆W (β̃) = F
(R)
T (β̃)− F

(R)
T (β) + (β−1 − β̃−1) < log ρ

(R)
can,T (β̃)|ρ

(R)
can,T (β̃) >

= F
(R)
T (β̃)− F

(R)
T (β)− β̃−1 < log ρ

(R)
can,T (β̃)|ρ

(R)
can,T (β̃) >

+ β−1 < log ρ
(R)
can,T (β̃)|ρ

(R)
can,T (β̃) >

= F
(R)
T (β̃)− F

(R)
T (β)− F

(R)
T (β̃)+ < H

(R)
T |ρ(R)

can,T (β̃) >

+ β−1 < log ρ
(R)
can,T (β̃)|ρ

(R)
can,T (β̃) >

= −F (R)
T (β)+ < H

(R)
T |ρ(R)

can,T (β̃) > +β−1 < log ρ
(R)
can,T (β̃)|ρ

(R)
can,T (β̃) >

= −β−1 < βF
(R)
T (β)− βH

(R)
T |ρ(R)

can,T (β̃) >

+ β−1 < log ρ
(R)
can,T (β̃)|ρ

(R)
can,T (β̃) >

= −β−1 < log ρ
(R)
can,T (β)|ρ

(R)
can,T (β̃) > +β−1 < log ρ

(R)
can,T (β̃)|ρ

(R)
can,T (β̃) >

= β−1 < log(
ρ
(R)
can,T (β̃)

ρ
(R)
can,T (β)

)|ρ(R)
can,T (β̃) >

= β−1D[ρ
(R)
can,T (β̃)||ρ

(R)
can,T (β)] ≥ 0. (E.1)
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Appendix F

Derivations of Eq.(3.11)
and Eq.(3.12)

We start at Eq.(3.9),

âk|j(θt) =< k, θt|Uθ(θt)|j, θa > ei(2k−1)η(θt−θa) j, k = 0, 1

where θt − θa = Ω(t− a), η = ω/(2Ω) and

Uθ(θt) = T exp[−i

∫ θt

θa

H(θ)dθ/(ℏΩ)].

We choose the phase factor to satisfy

< k, θt|
d

dθt
{Uθ(θt)|j, θa > ei(2k−1)η(θt−θa)} = 0 (F.1)

where

< k, θt|
dUθ(θt)

dθt
|j, θa > ei(2k−1)η(θt−θa)

= − < k, θt|
iH(θt)

ℏΩ
Uθ(θt)|j, θa > ei(2k−1)η(θt−θa)

= − < k, θt|
i(2k − 1)ω

2Ω
Uθ(θt)|j, θa > ei(2k−1)η(θt−θa)

= − < k, θt|Uθ(θt)|j, θa > i(2k − 1)ηei(2k−1)η(θt−θa)

= − < k, θt|Uθ(θt)|j, θa >
d

dθt
ei(2k−1)η(θt−θa) (F.2)

where we used H(θt)|k, θt >= (2k − 1)ℏω/2|k, θt >. Therefore,
d

dθt
âk|j(θt) = { d

dθt
< k, θt|}Uθ(θt)|j, θa > ei(2k−1)η(θt−θa)

=
1∑

m=0

{ d

dθt
< k, θt|}|m, θt >< m, θt|Uθ(θt)|j, θa > ei(2k−1)η(θt−θa)

= −
1∑

m=0

{< k, θt|
d

dθt
|m, θt >} < m, θt|Uθ(θt)|j, θa > ei(2k−1)η(θt−θa).

(F.3)

40



Using the relation, < k, θt| d
dθt

|m, θt >= −(2k − 1)δm,1−k, we obtain Eq.(3.11),

d

dθt
âk|j(θt) = (2k − 1) < 1− k, θt|Uθ(θt)|j, θa > ei(2k−1)η(θt−θa)

= (2k − 1)ei2(2k−1)η(θt−θa)a1−k|j(θt).

For j = 0 and k = 1, 0,

d

dθt
â1|0(θt) = ei2η(θt−θa)â0|0(θt), (F.4)

d

dθt
â0|0(θt) = −e−i2η(θt−θa)â1|0(θt). (F.5)

Using these equations,

d2

dθ2t
â1|0(θt) =

d

dθt
ei2η(θt−θa)â0|0(θt)

= { d

dθt
ei2η(θt−θa)}â0|0(θt) + ei2η(θt−θa)

d

dθt
â0|0(θt)]

= 2iηei2η(θt−θa)â0|0(θt)− â1|0(θt)

= 2iη
d

dθt
â1|0(θt)− â1|0(θt). (F.6)

â1|0(θt) satisfies the following differential equation,

d2

dθ2t
â1|0(θt)− 2iη

d

dθt
â1|0(θt) + â1|0(θt) = 0. (F.7)

A general solutions is written as

â1|0(θt) = c1e
i(η−

√
1+η2)θt + c2e

i(η+
√

1+η2)θt . (F.8)

where c1 and c2 are constants. For the initial condition,

â1|0(θa) = c1e
i(η−

√
1+η2)θa + c2e

i(η+
√

1+η2)θa = 0, (F.9)

the coefficients c1 and c2 are rewritten as

c1 = ce−i(η−
√

1+η2)θa , (F.10)

c2 = −ce−i(η+
√

1+η2)θa . (F.11)

By substituting these results to Eq.(F.8),

â1|0(θt) = c(ei(η−
√

1+η2)(θt−θa) − ei(η+
√

1+η2)(θt−θa)). (F.12)

For the initial condition, â0|0(θa) = 0,

â0|0(θa) =
d

dθt
â1|0(θt)|θt=θa

=
d

dθt
c(ei(η−

√
1+η2)(θt−θa) − ei(η+

√
1+η2)(θt−θa))|θt=θa

= −2ic
√
1 + η2 = 1.
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The coefficient is determined as c = − 1

2i
√

1+η2
. By substituting this to Eq.(F.12),

â1|0(θt) =
eiη(θ−θ0)√
1 + η2

sin[
√
1 + η2(θ − θ0)]. (F.13)

For the initial conditions, â0|0(θa) = â1|1(θa) = 1 and â0|1(θa) = â1|0(θa) =
0, we finally obtain Eq.(3.12)

â0|1(θ) = −â∗1|0(θ) = −e−iη(θ−θa)√
1 + η2

sin((θ − θa)
√
1 + η2). (F.14)

From Eq.(3.11), â0|0(θ) (â1|1(θ)) is obtained from the derivatives of â1|0(θ)
(â0|1(θ)) with respect to θ.
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Appendix G

Derivations of Eq.(3.17)
and Eq.(3.18)

We start at Eq.(3.16),

âk|j(θt) =< k, θt|U(θt,∆t)|j, θa > e−i2(2k−1)η
∫ θt
θa

θt′dθt′/π j, k = 0, 1.

where θt − θa = Ω(t− a), η = ω/(2Ω) and

Uθ(θt) = T exp[−i

∫ θt

θa

H(θ)dθ/(ℏΩ)].

We choose the phase factor to satisfy

< k, θt|
d

dθt
{Uθ(θt)|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π} = 0 (G.1)

where

< k, θt|
dUθ(θt)

dθt
|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π

= − < k, θt|
iH(θt)

ℏΩ
Uθ(θt)|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π

=< k, θt|
i(2k − 1)ωθt

πΩ
Uθ(θt)|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π

=< k, θt|Uθ(θt)|j, θa > i2(2k − 1)ηθt/πe
−i2(2k−1)η

∫ θt
θa

θt′dθt′/π

= − < k, θt|Uθ(θt)|j, θa >
d

dθt
e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π (G.2)
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where we used H(θt)|k, θt >= −(2k − 1)ℏωθ/π|k, θt >. Therefore,

d

dθt
âk|j(θt) = { d

dθt
< k, θt|}Uθ(θt)|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π

=

1∑
m=0

{ d

dθt
< k, θt|}|m, θt >< m, θt|Uθ(θt)|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π

= −
1∑

m=0

{< k, θt|
d

dθt
|m, θt >} < m, θt|Uθ(θt)|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π.

(G.3)

Using the relation, < k, θt| d
dθt

|m, θt >= −(2k − 1)δm,1−k, we obtain Eq.(3.17),

d

dθt
âk|j(θt) = (2k − 1) < 1− k, θt|Uθ(θt)|j, θa > e−i2(2k−1)η

∫ θt
θa

θt′dθt′/π

= (2k − 1)e−i4(2k−1)η
∫ θt
θa

θt′dθt′/πâ1−k|j(θ).

= (2k − 1)e−i2(2k−1)η(θ2−θ2
a)/πâ1−k|j(θ).

For j = 1 and k = 0, 1,

d

dθ
â0|1(θ) = −ei2η(θ

2−θ2
a)/πâ1|1(θ), (G.4)

d

dθ
â1|1(θ) = e−i2η(θ2−θ2

a)/πâ0|1(θ). (G.5)

Using these equations,

d2

d2θ
â0|1(θ) = − d

dθ
(ei2η(θ

2−θ2
a)/πâ1|1(θ))

= −(
d

dθ
ei2η(θ

2−θ2
a)/π)â1|1 − ei2η(θ

2−θ2
a)/π

d

dθ
â1|1(θ)

= −i4ηθ/πei2η(θ
2−θ2

a)/πâ1|1 − â0|1(θ)

= i4ηθ/π
d

dθ
â0|1(θ)− a0|1(θ). (G.6)

â0|1(θt) satisfies the following differential equation,

d2

dθ2t
â0|1(θt)− i4ηθ/π

d

dθt
â0|1(θt) + â0|1(θt) = 0. (G.7)

We obtain Eq.(3.18) as a general solution of this differential equation,

â0|1(θ) = c1He(−i
π

4η
, (−1)1/4θ

√
2η

π
) + c2F1(i

π

8η
,
1

2
, i
2θ2η

π
)

where c1 and c2 are constants, He is a Hermite polynomial, and F1 is a confluent
hypergeometric function of the first kind [40]. They are generalized for complex
parameters and complex variable.
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