Note on the stability of a presemistar operation

Akira Okabe∗

Abstract

In [8] Matsuda has investigated stability of a semistar operation. In this paper we extend the notion of stability of a semistar operation to the presemistar operation case and we shall study stability properties of presemistar operations.

1. Introduction

Throughout D will be an integral domain with quotient field K. Let $\mathcal{K}(D)$ be the set of all nonzero D-submodules of K. Each member of $K(D)$ is called a Kaplansky fractional ideal of D or a K-fractional ideal of D. Let $\mathcal{F}(D)$ be the set of all nonzero fractional ideals of D and let $\mathcal{F}_f(D)$ be the set of all nonzero finitely generated fractional ideals of D. We denote the set of all nonzero integral ideals of D by $\mathcal{I}(D)$.

First we shall recall the definition of a presemistar operation which has been defined in [14].

Let \star be a self-map of $\mathcal{K}(D)$. Then \star is called a presemistar operation on D, if the following three conditions are satisfied:

(E) $E \subseteq E^*$ for all $E \in \mathcal{K}(D)$;

(OP) If $E \subseteq F$, then $E^* \subseteq F^*$ for all $E, F \in \mathcal{K}(D)$;

(T) $(aE)^* = aE^*$ for all $a \in K \setminus \{0\}$ and all $E \in \mathcal{K}(D)$.

As in [14], we say that a self-map \star of $\mathcal{K}(D)$ has Extension Property (resp. Order Preservation Property, Transportability Property) if \star satisfies condition (E) (resp. $(OP), (T)$).

A self-map \star of $\mathcal{K}(D)$ is called a *semistar operation* on D, if it is a presemistar operation on D and satisfies the following condition:

(I) $(E^*)^* = E^*$ for all $E \in \mathcal{K}(D)$.

Received 13 Nov 2017; revised 9 April 2018

²⁰⁰⁰ Mathematics Subject Classification. Primary 13A15.

Key Words and Phrases. presemistar operation, semistar operation, stable.

[∗]Professor Emeritus, Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan (a.okabe58@aw.wakwak.com)

We say that a self-map \star of $\mathcal{K}(D)$ has *Idempotence Property* if \star satisfies condition (I).

Here we list some representative examples of semistar operations.

If we set $E^{\bar{d}} = E$ (resp. $E^{\bar{e}} = K$) for all $E \in \mathcal{K}(D)$, then the map $E \mapsto E^{\bar{d}}$ (resp. $E \mapsto E^{\bar{e}}$) is a semistar operation on D and is called the \bar{d} -operation (resp. the \bar{e} -operation).

For each $E \in \mathcal{K}(D)$, we set $E^{-1} = \{x \in K \mid xE \subseteq D\}$ and $E^{\overline{v}} = (E^{-1})^{-1}$. Then the map $E \mapsto E^{\bar{v}}$ is a semistar operation on D and is called the \bar{v} -operation. Here it is easily seen that $E^{-1} = \{0\}$ for all $E \in \mathcal{K}(D) \setminus \mathcal{F}(D)$ and therefore $E^{\bar{v}} = K$ for all $E \in \mathcal{K}(D) \setminus \mathcal{F}(D).$

Let \star be a self-map of $\mathcal{F}(D)$ such that $D^{\star} = D$. Then \star is called a *star operation* on D if the conditions (E), (OP), (T), and (I) hold for all $a \in K \setminus \{0\}$ and all E, F in $\mathcal{F}(D)$. Each star operation \star on D can be extended to a semistar operation \star^e on D as shown in [12,Proposition17].

If $E \in \mathcal{F}(D)$, then $E^{-1} \in \mathcal{F}(D)$ and so $E^{\bar{v}} \in \mathcal{F}(D)$. Hence, if we set $E^v = E^{\bar{v}}$ (resp. $E^d = E^{\tilde{d}}$) for all $E \in \mathcal{F}(D)$, then the self-map v (resp. d) of $\mathcal{F}(D)$ is a star operation on D, because $D^{\bar{v}} = D^{\bar{d}} = D$ holds. The map v (resp. d) is called the v-operation (resp. the d-operation) on D.

For any $E, F \in \mathcal{K}(D)$, the set $\{x \in K \mid xF \subseteq E\}$ is denoted by $E : F$ and for each $E \in \mathcal{K}(D)$, the set $D : E$ is also denoted by E^{-1} .

As in [14], the set of all presemistar operations (resp. all semistar operations) on D is denoted by $\textbf{PS}(D)$ (resp. $\textbf{S}(D)$).

2. Definition of stability

In this paper, we denote the set of positive integers by N and the set of non-negative integers by N_0 .

In [8], the definition of stability of a semistar operation was given. We first extend the definition of stability in [8] to the presemistar operation case.

We set $X_1 = \mathcal{F}_f(D), X_2 = \mathcal{F}(D), X_3 = \mathcal{K}(D)$. Let $a, b, c \in \mathbb{N}_0$ such that $a+b+c \geq$ 2 and let $\star \in \mathbf{PS}(D)$. Assume that \star satisfies the following condition

(S) $(F_0 \cap \cdots \cap F_a \cap G_0 \cap \cdots \cap G_b \cap H_0 \cap \cdots \cap H_c)^* = F_0^* \cap \cdots \cap F_a^* \cap G_0^* \cap \cdots \cap G_b^* \cap$ $H_0^* \cap \cdots \cap H_c^*$

for all $F_i(0 \leq i \leq a), G_i(0 \leq j \leq b), H_k(0 \leq k \leq c)$ where $F_i \in X_1$ for $i \neq 0, G_i \in X_2$ for $j \neq 0, H_k \in X_3$ for $k \neq 0$ and $F_0 = G_0 = H_0 = K$.

If \star satisfies condition (S), then \star is called an $f_1^a f_2^b f_3^c$ -stable presemistar operation on D or \star is said to be $f_1^a f_2^b f_3^c$ -stable.

Hereafter we set $f = f_1, g = f_2$, and $h = f_3$ and for simplicity, we also denote $f^a = f_3$ $f^a g^0 h^0, g^b = f^0 g^b h^0, h^c = f^0 g^0 h^c, f^a g^b = f^a g^b h^0, g^b h^c = f^0 g^b h^c, f^a h^c = f^a g^0 h^c.$ For example, \star is f^2 -stable, if $(F_1 \cap F_2)^\star = F_1^\star \cap F_2^\star$ for every $F_1, F_2 \in X_1$, \star is ghstable, if $(G \cap H)^* = G^* \cap H^*$ for every $G \in X_2, H \in X_3$ and \star is h^2 -stable, if $(H_1 \cap H_2)^* = H_1^* \cap H_2^*$ for every $H_1, H_2 \in X_3$ and so on.

For the sake of completeness, we state the definition of stability of a star operation. Let \star be a star operation on D and let $a, b \in \mathbb{N}_0$ such that $a + b \geq 2$. Then \star is called an $f^a g^b$ -stable star operation on D if \star satisfies the following condition

$$
(S_0) \qquad (F_0 \cap \dots \cap F_a \cap G_0 \cap \dots \cap G_b)^{\star} = F_0^{\star} \cap \dots \cap F_a^{\star} \cap G_0^{\star} \cap \dots \cap G_b^{\star}
$$

for all $F_i(0 \leq i \leq a)$, $G_j(0 \leq j \leq b)$ where $F_i \in X_1$ for $i \neq 0$, $G_j \in X_2$ for $j \neq 0$ and $F_0 = G_0 = K$.

Note 2.1. Let $a, b \in \mathbb{N}_0$ such that $a + b \geq 2$. Then it is easy to see that the star operation v is $f^a g^b$ -stable if and only if the semistar operation \bar{v} is $f^a g^b$ -stable.

If D is a Noetherian domain, then $X_1 = X_2$. Hence, for a Noetherian domain, we have $f_1 = f_2$ by definition and hence we have $f = g$.

Lemma 2.1. (cf.[8, Lemma 2.1 (3), (4)]) Let $n \in \mathbb{N}$ and $a, b \in \mathbb{N}_0$ such that $a +$ $b + n \geq 2$. Then we have the following implications :

- (1) $f^a g^n h^b$ -stable $\Longrightarrow f^{a+1} g^{n-1} h^b$ -stable.
- (2) $f^a g^b h^n$ -stable $\implies f^a g^{b+1} h^{n-1}$ -stable.
- (3) $f^a g^b h^n$ -stable $\implies f^{a+1} g^b h^{n-1}$ -stable.

Lemma 2.2. (cf.[8, Proposition 2.2 (1), (2), (3)]) Let $n \in \mathbb{N}$ and $a, b \in \mathbb{N}_0$ such that $a + b + n \geq 2$. Then

- (1) $f^{n+1}g^ah^b$ -stable $\implies f^ng^ah^b$ -stable.
- (2) $f^a g^{n+1} h^b$ -stable $\implies f^a g^n h^b$ -stable.
- (3) $f^a g^b h^{n+1}$ -stable $\Longrightarrow f^a g^b h^n$ -stable.

If we take $a = b = 0$ in Lemma 2.2, then we have the following

Proposition 2.1. Let \star be a presemistar operation on D. If \star is f^k -stable (resp. g^k -stable, h^k -stable) for some integer $k \geq 2$, then \star is f^n -stable (resp. g^n -stable, h^n -stable) for every integer n such that $2 \le n \le k$.

Proposition 2.2. (cf.[8, Lemma 2.1 (1), (2)]) Let \star be a presemistar operation on D. Then

- (1) If \star is gⁿ-stable for some integer $n \geq 2$, then \star is gⁿ⁺¹-stable.
- (2) If \star is hⁿ-stable for some integer $n \geq 2$, then \star is hⁿ⁺¹-stable.
- (3) If \star is gⁿ-stable for some integer $n \geq 2$, then \star is $f^a g^b$ -stable for all $a, b \in \mathbb{N}_0$ such that $a + b \geq n$.
- (4) If \star is h^n -stable for some integer $n \geq 2$, then \star is $f^a g^b h^c$ -stable for all $a, b, c \in \mathbb{N}_0$ such that $a + b + c \geq n$.

Proof. The proofs of (1) and (2) are straightforward.

- (3) This follows from Proposition 2.2 (1) and the definition of stability.
- (4) This follows from Proposition 2.2 (2) and the definition of stability.

The following implications are easily derived from the definition of stability and the inclusion relation $X_1 \subseteq X_2 \subseteq X_3$.

Note 2.2.

(1) h^2 -stable $\implies gh$ -stable $\implies g^2$ -stable $\implies fg$ -stable $\implies f^2$ -stable.

(2) h^2 -stable $\Longrightarrow gh$ -stable $\Longrightarrow fh$ -stable $\Longrightarrow fg$ -stable.

Corollary 2.1. Let \star be a presemistar operation on D.

If \star is g^k-stable (resp. h^k-stable) for some integer $k \geq 2$, then \star is gⁿ-stable (resp. h^n -stable) for every integer $n \geq 2$.

Proof. This follows from Propositions 2.1 and 2.2.

An integral domain D is called a *coherent domain* if every finitely generated ideal of D is finitely presented (or finitely related).

Proposition 2.3. (cf.[3, Theorem 2.2]) An integral domain D is a coherent domain if and only if the intersection of any two finitely generated ideals of D is again finitely generated. In particular, each Noetherian domain is a coherent domain.

Proposition 2.4. Let D be a coherent domain and let \star be a presemistar operation on D. If \star is f^k -stable for some integer $k \geq 2$, then \star is also f^{k+1} -stable.

Proof. Suppose that \star is f^k -stable for some integer $k \geq 2$. Then \star is f^n -stable for each integer *n* such that $2 \le n \le k$ by Proposition 2.1 and so \star is f^2 -stable. Now choose arbitrary elements $F_1, F_2, \cdots, F_k, F_{k+1} \in \mathcal{F}_f(D)$. Then, since $F_k \cap F_{k+1} \in \mathcal{F}_f(D)$ by Proposition 2.3, we have $(F_1 \cap F_2 \cap \cdots \cap F_k \cap F_{k+1})^* = (F_1 \cap F_2 \cap \cdots \cap (F_k \cap F_{k+1}))^*$ $F_1^{\star} \cap \cdots \cap F_{k-1}^{\star} \cap (F_k \cap F_{k+1})^{\star} = F_1^{\star} \cap \cdots \cap F_{k-1}^{\star} \cap F_k^{\star} \cap F_{k+1}^{\star}$. Therefore f^k -stable $\implies f^{k+1}$ -stable for every integer $k \geq 2$.

Corollary 2.2. Let D be a coherent domain and let \star be a presemistar operation on D. Then

 \star is f^k -stable for some integer $k \geq 2 \Longleftrightarrow \star$ is f^n -stable for every integer $n \geq 2$.

Proof. This follows from Propositions 2.1 and 2.4.

Proposition 2.5. Every Prüfer domain is a coherent domain.

Proof. This follows from [6, Proposition 25.4 (1)].

Corollary 2.3. Let D be a Prüfer domain and let \star be a presemistar operation on D. Then

 \star is f^k -stable for some integer $k \geq 2 \Longleftrightarrow \star$ is f^n -stable for every integer $n \geq 2$.

Proof. This follows from Corollary 2.2 and Proposition 2.5.

3. Stability properties (Semistar operation case)

We recall two types of integral domains. An integral domain D is called an essential domain if there exists a family of prime ideals $\{P_\lambda \mid \lambda \in \Lambda\}$ of D such that every $D_{P_{\lambda}}$ is a valuation overring of D and $D = \cap_{\lambda} D_{P_{\lambda}}$. Next, an integral domain D is called a *v*-domain if each $F \in \mathcal{F}_f(D)$ is *v*-invertible, that is, $(AA^{-1})^v = D$.

 \Box

 \Box

 \Box

Proposition 3.1. ([1, Theorem 7])

- (1) If D is an essential domain, then v is $fⁿ$ -stable for every integer $n \geq 2$,
- (2) If D is an integrally closed domain such that v is $fⁿ$ -stable for every integer $n \geq 2$, then D is a v-domain.

It follows from Proposition 3.1 that if D is an integrally closed domain which is not a *v*-domain, then *v* is not $fⁿ$ -stable for some integer $n \geq 2$.

Proposition 3.2. ([9, Theorem 2]) If D is a v-domain, then v is $fⁿ$ -stable for every integer $n \geq 2$.

Proposition 3.3. Let D be a Prüfer domain. Then v is $fⁿ$ -stable for every integer $n \geq 2$.

Proof. By Proposition 2.5, D is a coherent domain and so by Proposition 2.4, it suffices to show that v is f^2 -stable. To prove this, choose arbitrary elements $A, B \in$ $\mathcal{F}_f(D)$. Then, by [6, Theorem 25.2 (g)], $(A \cap B)^{-1} = A^{-1} + B^{-1}$ and therefore $(A \cap B)^{v} = ((A \cap B)^{-1})^{-1} = (A^{-1} + B^{-1})^{-1} = D : (A^{-1} + B^{-1}) = (D : A^{-1}) \cap (D : A^{-1})$ B^{-1}) = $A^v \cap B^v$ as desired. \Box

Remark 3.1. The proof of Proposition 3.3 can be also derived from tha fact that every finitely generated fractional ideal of a Prüfer domain is invertible and so divisorial.

There exists a Noetherian domain D such that the star operation v on D is not f^2 -stable as shown in the following example.

Example 3.1. ([5, Example 1.8]) Let $D = k[[X^3, X^4, X^5]]$ with a field k. Then D is a 1-dimensional Noetherian local domain with maximal ideal $M = (X^3, X^4, X^5)$. If we set $I = (X^3, X^4), J = (X^3, X^5)$, then $I^v = J^v = M$ and $I \cap J = (X^3)$ and so $(I \cap J)^v = (X^3) \subsetneq I^v \cap J^v = M$. Thus v is not f^2 -stable.

Here we must say that this example is due to W. Heinzer as noted in [1, p.4].

In general, f^2 -stable does not imply g^2 -stable even for a Prüfer domain as seen in the following example.

Example 3.2. If we choose a Prüfer domain D as constructed in [11, Example 3.1], then it is shown that the star operation v on D is not g^2 -stable. But v is always f^2 -stable by Proposition 3.3.

In $[8, Example 3.16]$, Matsuda has provided a Prüfer domain with exactly two maximal ideals such that there exist semistar operations on D which are $fⁿ$ -stable for every integer $n \geq 2$ and which are not g^2 -stable (see also [8, Note, p.7]). It was shown in [7, Lemma 4] that every Prüfer domain with exactly two maximal ideals is a Bezout domain. Thus it follows that in general, f^2 -stable does not imply g^2 -stable even for a Bezout domain.

In general, g^2 -stable does not imply h^2 -stable as shown in the next example.

Example 3.3. ([8, Example 3.2 (2)]) Let $D = k[X, Y]$ with a field k. We set $E^* = E$ for every $E \in \mathcal{F}(D)$ and set $E^* = K(= k(X, Y))$ for every $E \in \mathcal{K}(D) \setminus \mathcal{F}(D)$. Then \star is a semistar operation on D and is evidently g^2 -stable. But if we set $E =$ $k[X, Y, \frac{1}{Y}, \frac{1}{Y^2}, \cdots]$ and $F = k[Y, X, \frac{1}{X}, \frac{1}{X^2}, \cdots]$, then $(E \cap F)^* = k[X, Y] \subsetneqq E^* \cap F^* =$ $k(X, Y)$. Hence \star is not h^2 -stable.

Proposition 3.4. ([8, Propositions 3.8 and 3.12]) Let \star be a semistar operation on D. Then

- (1) $fg\text{-}stable \Longrightarrow g^2\text{-}stable.$
- (2) $fh\text{-}stable \Longrightarrow h^2\text{-}stable.$

Corollary 3.1. Let \star be a semistar operation on D. Then

- (1) $fg\text{-stable} \Longleftrightarrow g^2\text{-stable}.$
- (2) $fh\text{-}stable \iff h^2\text{-}stable.$

Proof. This follows from Note 2.2 and Proposition 3.4.

4. Stability properties (Presemistar operation case)

For each nonzero integral ideal I of D, we set $E^{\lambda(I)} = E : I$ for each $E \in \mathcal{K}(D)$. Then, by [14, Proposition 3.1], the self-map $\lambda(I)$ of $\mathcal{K}(D)$ is a presemistar operation on D.

Proposition 4.1. For each nonzero integral ideal $I, \lambda(I)$ is h^n -stable for every integer $n \geq 2$.

Proof. By definition, $\lambda(I)$ is h^2 -stable and hence, by Proposition 2.2 (2), $\lambda(I)$ is also h^n -stable for every integer $n \geq 2$. П

Let F be a family of nonzero ideals of D with $D \in \mathcal{F}$. Then

- (1) F is called a *semifilter* of D if, for all $I, J \in \mathcal{I}(D), I \supset J \in \mathcal{F}$ implies $I \in \mathcal{F}$.
- (2) F is called a filter of D if it is a semifilter and $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$.
- (3) F is said to be monoidal if $A, B \in \mathcal{F}$ implies $AB \in \mathcal{F}$.

As in [14], for each presemistar operation \star , we set $\mathcal{F}^* = \{I \in \mathcal{I}(D) \mid I^* = D^*\}.$ Then we have the following

Proposition 4.2. ([14, Lemma 4.1]) Let \star be a presemistar operation on D. If \star is h^2 -stable, then \mathcal{F}^* is a filter of D.

For each filter F of D, we set $E^{\star_{\mathcal{F}}} = \bigcup \{E : J \mid J \in \mathcal{F}\}\)$ for every $E \in \mathcal{K}(D)$. Then we have the following

Proposition 4.3. ([14, Lemma 4.2]) For each filter $\mathcal F$ of $D, \star_{\mathcal F}$ is an h^2 -stable presemistar operation on D.

A presemistar operation \star on D is said to be *strong* if $E^{\star}F^{\star} \subseteq (EF)^{\star}$ for all $E, F \in \mathcal{K}(D)$ (see [14, Definition 4.1]) and \star is said to be proper if \star is not a semistar operation on D (see [14, p.34]).

Proposition 4.4. ([14, Theorem 4.1])

- (1) If F is a monoidal filter of D, then $\star_{\mathcal{F}}$ is h²-stable and strong.
- (2) If \star is an h²-stable and strong presemistar operation on D, then \mathcal{F}^{\star} is a monoidal filter of D.

Proposition 4.5. ([14, Proposition 4.4]) Let \star be a presemistar operation on D. If \star is h²-stable and strong, then $\star = \star_{\mathcal{F}^*}$.

Let I be an element of $\mathcal{K}(D)$ such that $D \subseteq I$. If we set $E^{\mu(I)} = EI$ for all $E \in \mathcal{K}(D)$, then $\mu(I)$ is a presemistar operation on D by [14, Proposition 3.2 (1)].

Example 4.1. Let k be a field and let $D = k[[X^5, X^6]]$. If we set $I = D + XD$, then $I^2 = D + XD + X^2D \neq I$ and so by [14, Proposition 3.2 (3)], $\mu(I)$ is a proper presemistar operation on D.

Proposition 4.6. Let $0 \neq d$ be a nonunit of D.and let $I = \frac{1}{d}D$. Then $\mu(I)$ is a proper presemistar operation on D and is $hⁿ$ -stable for every integer $n \geq 2$.

Proof. Since $I = \frac{1}{d}D \supseteq \frac{1}{d}dD = D$ and $I \neq I^2$, it follows from [14, Proposition 3.2] that $\mu(I)$ is a proper presemistar operation on D. Moreover, for arbitrary two elements $E_1, E_2 \in \mathcal{K}(D)$, we have $(E_1 \cap E_2)^{\mu(I)} = (E_1 \cap E_2)^{\frac{1}{d}} D = E_1 \frac{1}{d} D \cap E_2 \frac{1}{d} D = E_1^{\mu(I)} \cap E_2^{\mu(I)}$ and so $\mu(I)$ is h^2 -stable. Then $\mu(I)$ is h^n -stable for every integer $n \geq 2$ by Corollary 2.1 as we wanted. П

We shall now construct a presemistar operation of new type on D .

Theorem 4.1. Let I be a nonzero integral ideal of D. We set

$$
E^{p(I)} = \begin{cases} E: I & \text{for all } E \in \mathcal{F}(D) \\ K & \text{for all } E \in \mathcal{K}(D) \setminus \mathcal{F}(D) \end{cases}
$$

Then

- (1) p(I) is a presemistar operation on D.
- (2) If I is an invertible integral ideal of D, then $p(I)$ is a proper presemistar operation on D.
- (3) p(I) is always g^2 -stable.
- (4) If $I = I^2$, then p(I) is a semistar operation on D.

Proof.

- (1) Evidently $E \subseteq E^{p(I)}$ for all $E \in \mathcal{K}(D)$ and so p(I) satisfies condition (E). Next we shall show taht p(I) satisfies condition (OP). Let $E \subseteq F$ in $\mathcal{K}(D)$. If $F \in \mathcal{F}(D)$, then $E \in \mathcal{F}(D)$ and so $E^{p(I)} = E : I \subseteq F : I = F^{p(I)}$. Next assume that $E \in \mathcal{F}(D)$ and $F \notin \mathcal{F}(D)$. Then $E^{p(I)} = E : I \subseteq K = F^{p(I)}$. Lastly assume that $E \notin \mathcal{F}(D)$ and $F \notin \mathcal{F}(D)$. Then $E^{p(I)} = K = F^{p(I)}$. Thus condition (OP) holds. Choose an element $0 \neq x \in K$. If $E \in \mathcal{F}(D)$, then $xE \in \mathcal{F}(D)$ and therefore $(xE)^{p(I)} = (xE) : I = x(E : I) = xE^{p(I)}.$ If $E \notin \mathcal{F}(D)$, then $xE \notin \mathcal{F}(D)$ and hence $(xE)^{p(I)} = K = xK = xE^{p(I)}$. Thus $p(I)$ satisfies condition (T). Hence p(I) is a presemistar operation on D.
- (2) Assume that I is an invertible integral ideal of D. Then $I \neq I^2$ and so we have $(D^{p(I)})^{p(I)} = D : I^2 \neq D : I = D^{p(I)}$. Hence $p(I)$ is not a semistar operation on $D.$
- (3) For every $E, F \in \mathcal{F}(D)$, we have $(E \cap F)^{p(I)} = (E \cap F) : I = (E : I) \cap (F : I) =$ $E^{p(I)} \cap F^{p(I)}$ and therefore p(I) is g^2 -stable.
- (4) If $E \in \mathcal{F}(D)$, then $E^{p(I)} = E : I \in \mathcal{F}(D)$ and so, by hypothesis, $(E^{p(I)})^{p(I)} =$ $(E: I): I = E: I² = E: I = E^{p(I)}. Next, if $E \notin \mathcal{F}(D)$, then $E^{p(I)} = K \notin \mathcal{F}(D)$$ and hence $(E^{p(I)})^{p(I)} = K = E^{p(I)}$. Thus $p(I)$ satisfies condition (I).

 \Box

Now we shall consider the following condition:

Definition 4.1.

(NI) There exist $F \in \mathcal{F}(D)$ and $E \in \mathcal{K}(D) \setminus \mathcal{F}(D)$ such that $F \not\subset E$ and $E \neq K$.

We say that an integral domain D has *Noninclusion Property* if D satisfies the above condition (NI).

Theorem 4.2. Assume that D satisfies condition (NI). Then $p(I)$ is not gh-stable for each invertible integral ideal I of D.

Proof. By hypothesis, there exist $F \in \mathcal{F}(D)$ and $E \in \mathcal{K}(D) \setminus \mathcal{F}(D)$ such that $F \nsubseteq E$ and $E \neq K$. Then $F^{p(I)} = F : I = FI^{-1}$ and $E^{p(I)} = K$ and therefore $F^{p(I)} \cap E^{p(I)} =$ FI^{-1} . Now, since $F \cap E \subseteq F$, we have $F \cap E \in \mathcal{F}(D)$ and so $(F \cap E)^{p(I)} = (F \cap E)I^{-1}$. Suppose that $(F \cap E)^{p(I)} = F^{p(I)} \cap E^{p(I)}$. Then $(F \cap E)I^{-1} = FI^{-1}$ and hence $F = F \cap E$ which implies $F \subseteq E$, a contradiction. Hence we have $(F \cap E)^{p(I)} \neq F^{p(I)} \cap E^{p(I)}$. Thus $p(I)$ is not *qh*-stable as we wanted.

Proposition 4.7. Assume that an integral domain D satisfies condition (NI). Then there exists a proper presemistar operation \star which is g^2 -stable but is not gh-stable.

Proof. It follows from Theorems 4.1 and 4.2 that $\star = p(I)$ is g^2 -stable but is not gh -stable for every invertible integral ideal I of D . \Box

Corollary 4.1. Let D be a Noetherian domain which satisfies condition (NI). Then there exists a proper presemistar operation \star which is f^2 -stable but is not fh-stable.

Proof. Since D is a Noetherian domain, we get $f = q$ and so our assertion follows from Proposition 4.7. П

Now we shall show that there exists an integral domain D which satisfies condition (NI) in Definition 4.1.

Example 4.2. Let k be a field and let $D = k[X, Y_1, Y_2, \cdots]$. Set $I = D + \frac{1}{X}D \in$ $\mathcal{F}(D)$ and set $J = \sum_{n=1}^{\infty} D \frac{1}{X+Y_n} \in \mathcal{K}(D) \setminus \mathcal{F}(D)$. Then $I \nsubseteq J$ and $J \neq K =$ $k(X, Y_1, Y_2, \dots)$, where K is the quotient field of D. Therefore D satisfies condition (NI). Evidently D is not a Noetherian domain. If we take $J' = \sum_{n=1}^{\infty} D\frac{1}{Y_n} \in \mathcal{K}(D)$ $\mathcal{F}(D)$, then we also have $I \nsubseteq J'$ and $J' \neq K = k(X, Y_1, Y_2, \dots)$.

The integral domain D constructed in Example 4.2 is not a Noetherian domain. But we can show that there exists a Noetherian domain D which satisfies condition (NI) in Definition 4.1.

Example 4.3. Let k be a field and let $D = k[X, Y]$. Set $I = D + \frac{1}{X}D \in \mathcal{F}(D)$ and $J = \sum_{m=1}^{\infty} D \frac{1}{X+Y^m} \in \mathcal{K}(D) \setminus \mathcal{F}(D)$. Then $I \nsubseteq J$ and $J \neq K = k(X, Y)$, where $K = k(X, Y)$ is the quotient field of $D = k[X, Y]$. Hence D satisfies condition (NI). Evidently D is a Noetherian domain.

In [4], an integral domain D is called a *conducive domain* if $D: R = \{x \in K \mid$ $xR \subseteq D$ \neq (0) for each overring R of D other than K. It is well known that D is a conducive domain if and only if $\mathcal{K}(D) = \mathcal{F}(D) \cup \{K\}$ (see [13, Proposition 43]).

Note 4.1. If an integral domain D satisfies condition (NI), then D is not a conducive domain.

Proposition 4.8. Let D be a non-conducive integral domain and let $I \in \mathcal{K}(D)$ $\mathcal{F}(D)$ such that $D \subseteq I \subseteq K$. We set

$$
E^{q(I)} = \begin{cases} EI & \text{for all } E \in \mathcal{F}(D) \\ K & \text{for all } E \in \mathcal{K}(D) \setminus \mathcal{F}(D) \end{cases}
$$

Then

(1) $q(I)$ is a proper presemistar operation on D.

(2) If
$$
D \subsetneq I \subsetneq J \subsetneq K
$$
 with $J \in \mathcal{K}(D)$, then $q(I) \leq q(J)$.

Proof.

(1) By definition, $E \subseteq E^{q(I)}$ for all $E \in \mathcal{K}(D)$. Next let $E \subseteq F$ in $\mathcal{K}(D)$. If $F \in \mathcal{F}(D)$, then $E \in \mathcal{F}(D)$ and so $E^{q(I)} = EI \subseteq FI = F^{q(I)}$. If $E \in \mathcal{F}(D), F \notin$ $\mathcal{F}(D)$, then $E^{q(I)} = EI \subseteq K = F^{q(I)}$. If $E \notin \mathcal{F}(D), F \notin \mathcal{F}(D)$, then $E^{q(I)} =$ $K = F^{q(I)}$. Thus condition (OP) holds. Now, let $E \in \mathcal{K}(D)$ and $x \neq 0 \in K$. If

 $E \in \mathcal{F}(D)$, then $xE \in \mathcal{F}(D)$ and hence $(xE)^{q(I)} = xEI = xE^{q(I)}$. If $E \notin \mathcal{F}(D)$, then $xE \notin \mathcal{F}(D)$ and so $(xE)^{q(I)} = K = xK = xE^{q(I)}$. Thus condition (T) also holds. Therefore $q(I)$ is a presemistar operation on D. Now we shall show that q(I) is not a semistar operation on D. By definition, we have $D^{q(I)} = I$ and $I^{q(I)} = K$, because $I \notin \mathcal{F}(D)$. Hence $(D^{q(I)})^{q(I)} = I^{q(I)} = K$ and so $D^{q(I)} \neq (D^{q(I)})^{q(I)}$ which implies that $q(I)$ is not a semistar operation on D.

(2) Since $J \in \mathcal{K}(D) \setminus \mathcal{F}(D), q(J)$ is also a proper presemistar operation on D by (1) and $E^{q(I)} \subseteq E^{q(J)}$ for all $E \in \mathcal{K}(D)$. Hence $q(I) \leq q(J)$ and furthermore $D^{q(I)} = I \subsetneq J = D^{q(J)}$. Thus we have $q(I) \leq q(J)$ as we wanted.

 \Box

Proposition 4.9. Let D be a non-conducive integral domain and let T be a flat overring of D such that $T \neq K$ and $T \notin \mathcal{F}(D)$. We set

$$
E^{q(T)} = \begin{cases} ET & \text{for all } E \in \mathcal{F}(D) \\ K & \text{for all } E \in \mathcal{K}(D) \setminus \mathcal{F}(D) \end{cases}
$$

Then

(1) $q(T)$ is a proper presemistar operation on D.

(2) $q(T)$ is a g^2 -stable presemistar operation on D.

Proof.

- (1) This easily follows from (1) of Proposition 4.8.
- (2) It follows from [10, (3.H) (1)] that $E_1T \cap E_2T = (E_1 \cap E_2)T$ holds for all $E_1, E_2 \in$ $\mathcal{F}(D)$ and hence q(T) is g^2 -stable.

 \Box

In the following example, we shall show that there exists an integral domain D that has a proper presemistar operation \star on D which is g^2 -stable but is not h^2 -stable.

Example 4.4. Let k be a field and let $D = k[X, Y]$. Set $S_1 = \{X^n | n = 0, 1, 2, \dots\}$ and $S_2 = \{Y^m \mid m = 0, 1, 2, \cdots\}$. Then D_{S_1} and D_{S_2} are flat overrings of D such that $D_{S_1}, D_{S_2} \in \mathcal{K}(D) \setminus \mathcal{F}(D)$. Furthermore D is not a conducive domain. To see this, let J be a K-fractional ideal of D defined in Example 4.3, then $J \notin \mathcal{F}(D)$ and $J \neq K = k(X, Y)$ and so D is not a conducive domain by [13, Proposition 43]. Thus there exists a non-conducive integral domain D such that D has a flat overring T which satisfes the conditions in Proposition 4.9. Hence $q(D_{S_i})$ is g^2 -stable for each $i \in \{1,2\}$ by Proposition 4.9. Now we set $E_1 = \sum_{n=1}^{\infty} D\frac{1}{X^n}$ and $E_2 = \sum_{n=1}^{\infty} D\frac{1}{Y^n}$. Then it is easily seen that $E_1, E_2 \in \mathcal{K}(D) \setminus \mathcal{F}(D)$ and $E_1 \cap E_2 = D$. If we set $\star = q(D_{S_i})$ for some $i \in \{1,2\}$, then, by definition, $(E_1 \cap E_2)^\star = D^\star = D_{S_i} \neq K$ but $(E_1)^{\star} \cap (E_2)^{\star} = K \cap K = K$ and so $(E_1 \cap E_2)^{\star} \neq (E_1)^{\star} \cap (E_2)^{\star}$. Thus \star is not h^2 -stable but is g^2 -stable by Proposition 4.9.

Note 4.2. It will be seen that in general, f^2 -stable does not imply h^2 -stable. Let $D =$ $k[X, Y]$ with a field k and let S_i be a multiplicatively closed subset of D constructed in Example 4.4 for each $i \in \{1,2\}$. Then $q(D_{S_i})$ is a proper presemistar operation on D which is f^2 -stable but not h^2 -stable for each $i \in \{1,2\}$ as shown in Example 4.4, because D is a Noetherian domain.

We shall show that there exists a proper presemistar operation which is not f^2 stable.

Example 4.5. Let k be a field and let $D = k[[X^3, X^4, X^5]]$. Then D is a Noetherian local domain with maximal ideal $M = (X^3, X^4, X^5)$. Choose a nonunit $a \neq 0$ of D. Then the presemistar operation $v[aD]$ defined in [15, Proposition 3.1] is a proper presemistar operation on D by [15, Proposition 3.2 (1)]. If we take $I = (X^3, X^4)$ and $J = (X^3, X^5)$, then $I^{\bar{v}} = J^{\bar{v}} = M$ and $(I \cap J)^{\bar{v}} = (X^3)$. Hence, by [15, Lemma 3.1], we have $I^{v[aD]} = \frac{1}{a}I^{\bar{v}} = \frac{1}{a}M, J^{v[aD]} = \frac{1}{a}J^{\bar{v}} = \frac{1}{a}M$ and $(I \cap J)^{v[aD]} = \frac{1}{a}(I \cap J)^{\bar{v}} = \frac{1}{a}(X^3)$ and so $(I \cap J)^{\overline{v}[aD]} = \frac{1}{a}(X^3) \subsetneq \frac{1}{a}M = I^{v[a\overline{D}]} \cap J^{v[aD]}$. Thus $v[aD]$ is not f^2 -stable.

We can also construct a proper presemistar operation which is not fh -stable.

Example 4.6. Let k be a field and let $D = k[X, Y]$. Then D is a non-conducive domain as shown in Example 4.4. We set $I = D + D\frac{1}{X}$
 $\sum_{m=1}^{\infty} D\frac{1}{X+V^m} \in \mathcal{K}(D) \setminus \mathcal{F}(D)$. Then, since $D \subsetneq J \subsetneq I$ main as shown in Example 4.4. We set $I = D + D\frac{1}{X} \in \mathcal{F}_f(D)$ and $J = D + \sum_{m=1}^{\infty} D\frac{1}{X+Y^m} \in \mathcal{K}(D) \setminus \mathcal{F}(D)$. Then, since $D \subsetneq J \subsetneq K$, q(J) is defined and is a proper presemistar operation on D. It is easy to see that $I \cap J = D$ and hence we get $I^{q(J)} \cap J^{q(J)} = IJ \cap K = IJ \neq J = D^{q(J)} = (I \cap J)^{q(J)}$. Therefore $q(J)$ is not fh-stable.

Let D be an integral domain and let \star be a presemistar operation on D. Let S_1 (resp. S_2, S_3) be the set of properties $\{f^n\text{-stable} \mid n \geq 2\}$ (resp. the set of properties ${gⁿ$ -stable $| n \ge 2$, the set of properties ${hⁿ$ -stable $| n \ge 2}$, let S_4 (resp. S_5, S_6) be the set of properties $\{f^n g^m\text{-stable} \mid n \geq 1, m \geq 1\}$ (resp. the set of properties $\{f^nh^m\text{-stable} \mid n \geq 1, m \geq 1\}$, the set of properties $\{g^nh^m\text{-stable} \mid n \geq 1, m \geq 1\}$ and let S_7 be the set of properties $\{f^a g^b h^n$ -stable $| a + b \ge 1, n \ge 1\}$. We shall study implications of these properties in $\{S_i \mid i = 1, 2, \cdots, 7\}$.

First, the following implications are derived from results in Section 2 and the definition of stability.

Theorem 4.3. Let D be an integral domain and let \star be a presemistar operation on D. Then

- (i) If D is a coherent domain, then every two properties in S_1 are equivalent.
- (ii) Every two properties in S_2 are equivalent.
- (iii) Every two properties in S_3 are equivalent.
- (iv) If \star satisfies some property in S_2 , then \star satisfies every property in S_4 .
- (v) If \star satisfies some property in S_3 , then \star satisfies every property in S_5 , S_6 and S_7 .

- (vi) If \star satisfies every (resp., some) property in S_6 , then \star satisfies every (resp., some) property in S_5 .
- (vii) If \star satisfies every (resp., some) property in S_5 , then \star satisfies every (resp., some) property in S_4 .
- (viii) If \star satisfies every (resp., some) property in S_6 , then \star satisfies every (resp., some) property in S_7 .

Proof.

- (i) This follows from Propositions 2.1 and 2.4.
- (ii) This follows from Corollary 2.1.
- (iii) This follows from Corollary 2.1.
- (iv) This follows from Propositions 2.1 and 2.2.
- (v) This follows from Propositions 2.1 and 2.2.
- (vi) This follows from the fact that $g^n h^m$ -stable $\implies f^n h^m$ -stable for all $n, m \in \mathbb{N}$.
- (vii) This follows from the fact that $f^n h^m$ -stable $\implies f^n g^m$ -stable for all $n, m \in \mathbb{N}$.
- (viii) This follows from the fact that $g^n h^m$ -stable $\implies f^a g^b h^m$ -stable for all $n, m \in \mathbb{N}$ and all $a, b \in \mathbb{N}_0$ such that $a + b = n$.

 \Box

Now we shall give a presemistar operation of new type which is g^2 -stable.

Theorem 4.4. Let D be an integral domain and let $I \in \mathcal{K}(D) \setminus \mathcal{F}(D)$ such that $D \subsetneq I \subsetneq K$. We set

$$
E^{r(I)} = \begin{cases} E & \text{for all } E \in \mathcal{F}(D) \\ EI & \text{for all } E \in \mathcal{K}(D) \setminus \mathcal{F}(D) \end{cases}
$$

Then

- (1) $r(I)$ is a g^2 -stable presemistar operation on D.
- (2) If $I \subsetneq I^2 \subsetneq I^3$, then r(I) is a proper presemistar operation on D.

Proof.

(1) First, $E \subseteq E^{r(I)}$ for all $E \in \mathcal{K}(D)$. Next, let $E_1 \subseteq E_2$ with $E_1, E_2 \in \mathcal{K}(D)$. If $E_2 \in \mathcal{F}(D)$, then $E_1 \in \mathcal{F}(D)$ and so $E_1^{\text{r}(1)} = E_1 \subseteq E_2 = E_2^{\text{r}(1)}$. If $E_1 \in \mathcal{F}(D)$ and $E_2 \notin \mathcal{F}(D)$, then $E_1^{\text{r}(1)} = E_1 \subseteq E_2 \subseteq E_2 I = E_2^{\text{r}(1)}$. If $E_1, E_2 \notin \mathcal{F}(D)$, then $E_1^{\text{r}(1)} = E_1 I \subseteq E_2 I = E_2^{\text{r}(1)}$. Hence $E_1^{\text{r}(1)} \subseteq E_2^{\text{r}(1)}$ for all $E_1 \subseteq E_2$ in $\mathcal{K}(D)$. Let $0 \neq x \in K$ and $E \in \mathcal{K}(D)$. If $E \in \mathcal{F}(D)$, then $xE \in \mathcal{F}(D)$. Hence $(xE)^{r(I)} = xE = xE^{r(I)}$. Next, if $E \notin \mathcal{F}(D)$, then $xE \notin \mathcal{F}(D)$ and then $(xE)^{r(I)} = xEI = xE^{r(I)}$. Thus $(xE)^{r(I)} = xE^{r(I)}$ for all $0 \neq x \in K$ and all $E \in \mathcal{K}(D)$. Therefore the map r(I) is a presemistar operation on D. It is evident that $r(I)$ is g^2 -stable.

(2) We have $I^{r(1)} = I^2$ and $(I^{r(1)})^{r(1)} = I^2 I = I^3 \neq I^2 = I^{r(1)}$ and so r(I) is a proper presemistar operation on D.

Proposition 4.10.

- (1) Let k be a field and let $D = k[X_1, X_2, \cdots]$ be a polynomial ring with infinite variables $\{X_n\}_{n\in\mathbb{N}}$. If we set $I = D + D\frac{1}{X_1} + D\frac{1}{X_2} + D\frac{1}{X_3} + D\frac{1}{X_4} + \cdots$, then $r(I)$ is proper and is not h^2 -stable.
- (2) Let k be a field and let $D = k[X, X_1, X_2, X_3, \cdots]$ with infinite variables $\{X\} \cup$ ${X_n}_{n\in\mathbb{N}}$. If we set $I = D + D\frac{1}{X} + D\frac{1}{X_1} + D\frac{1}{X_2} + \cdots$, then r(I) is proper and is not fh-stable.

Proof.

- (1) We set $J_1 = D + D\frac{1}{X_1} + D\frac{1}{X_3} + D\frac{1}{X_5} + \cdots$ and $J_2 = D + D\frac{1}{X_2} + D\frac{1}{X_4} + D\frac{1}{X_6} + \cdots$. Then $J_1, J_2 \notin \mathcal{F}(D), J_1 \subsetneq I, J_2 \subsetneq I$, and $D \subsetneq I \subsetneq I^2 \subsetneq \overline{I}^3$. Now it is easy to see that $D = J_1 \cap J_2$ and $\frac{1}{X_1 X_2} \notin D$. But $\frac{1}{X_1 X_2} \in J_1 J_2 \subseteq J_1 I \cap J_2 I$. Then $(J_1 \cap J_2)^{r(I)} = D^{r(I)} = D \subsetneq J_1 J_2 \subseteq J_1 I \cap J_2 I = J_1^{r(I)} \cap J_2^{r(I)}$ and therefore $r(I)$ is not h^2 -stable. Moreover it follows from Theorem 4.4 (2) that $r(I)$ is proper.
- (2) We set $A = D + D\frac{1}{XX_1} \in \mathcal{F}_f(D)$ and $J = D + D\frac{1}{X_1} + D\frac{1}{X_2} + \cdots$. Then it is easy to see that $D = A \cap J$, $\frac{1}{XX_1} \notin D$ and $\frac{1}{XX_1} \in JI \cap A$.. Hence we have $(A \cap J)^{r(I)} = D^{r(I)} = D \subsetneq A \cap JI = A^{r(I)} \cap J^{r(I)}$ which implies that $r(I)$ is not *fh*-stable. It also follows from Theorem 4.4 (2) that $r(I)$ is proper.

Furthermore we can also show that there exist infinitely many proper presemistar operations which are not fh-stable.

Proposition 4.11. $\sum_{m=1}^{\infty} D_{\overline{X^{k}+Y^{m}}} \in \mathcal{K}(D) \setminus \mathcal{F}(D)$ for each integer $k \geq 1$. Then $q(J_k)$ is a proper Let k be a field and let $D = k[X, Y]$. We set $J_k = D +$ presemistar operation on D and is not fh-stable for each integer $k \geq 1$.

Proof. If we set $I_k = D + D\frac{1}{X^k} \in \mathcal{F}_f(D)$ for each integer $k \geq 1$, then $(I_k \cap J_k)^{q(J_k)} =$ $J_k \neq I_kJ_k = (I_k)^{q(J_k)} \cap (J_k)^{q(J_k)}$ for each integer $k \geq 1$ as in Example 4.6. Thus $q(J_k)$ is not *fh*-stable for each integer $k > 1$. П

Theorem 4.5. Let D be an integral domain and let \star be a presemistar operation on D. Then

- (i) If \star satisfies every property in S_2 , then \star need not satisfy a property in S_6 .
- (ii) If \star satisfies every property in S_1 , then \star need not satisfy a property in S_5 .

(iii) If \star satisfies every property in S_2 , then \star need not satisfy a property in S_3 .

 \Box

- (iv) \star need not satisfy a property in S_1 .
- (v) \star need not satisfy a property in S_5 .

Proof.

- (i) Assume that D satisfies condition (NI). If we choose an invertible integral ideal I of D, then $\star = p(I)$ is g^2 -stable by Theorem 4.1 but is not gh-stable by Theorem 4.2 and therefore our assertion is valid.
- (ii) Assume that D is a Noetherian domain which satisfies condition (NI). Then, for each invertible integral ideal $I, \star = p(I)$ is f^2 -stable but is not fh-stable by Proposition 4.7.
- (iii) In Example 4.4, it was shown that there exists a proper presemistar operation \star which is g^2 -stable but is not h^2 -stable.
- (iv) This was shown in Example 4.5.
- (v) This was shown in Example 4.6 for a Noetherian domain D and in Proposition 4.10 (2) for a non-Noetherian domain D.

 \Box

Note 4.3.

- (1) If we take D and I as in Proposition 4.10 (2), then we obtain that $r(I)$ is f^n stable for each integer $n \geq 2$ by Theorem 4.4 but is not fh-stable. Hence this presemistar operation r(I) would be a concrete example which satisfies Theorem 4.5 (ii).
- (2) If we take D and I as in Proposition 4.10 (1), then we obtain that $r(I)$ is g^n . stable for each integer $n \geq 2$ by Theorem 4.4 but is not h^2 -stable. Hence this presemistar operation $r(I)$ would be a concrete example which satisfies Theorem 4.5 (iii).

We shall now show that every presemistar operation on a valuation domain V is h^2 -stable. First, we shall recall that each valuation domain is a *conducive domain* and so we have $\mathcal{K}(V) = \mathcal{F}(V) \cup \{K\}$ by [13, Proposition 43], where K is the quotient field of V .

Proposition 4.12. Let V be a valuation domain. Then every presemistar operation on V is h^2 -stable.

Proof. Let E_1 and E_2 be arbitrary elements in $\mathcal{F}(V)$. Then $dE_1 \subseteq V$ and $dE_2 \subseteq V$ for some $0 \neq d \in V$ and so $dE_1 \subseteq dE_2$ or $dE_2 \subseteq dE_1$. Hence we have $E_1 \subseteq E_2$ or $E_2 \subseteq E_1$. Thus $\mathcal{K}(V)$ is linearly ordered with respect to the inclusion relation and therefore our assertion is valid. П

As in [14], we denote the set of all presemistar operations on D by $\text{PS}(D)$.

Note 4.4. Suppose that *V* is a DVR with maximal ideal M . Then we can give a direct proof of Proposition 4.12. First, we recall that we proved $\mathbf{PS}(V) = \{d, e\} \cup \{\lambda(M^n) \mid$ $n \in \mathbb{N}$ in [14, Theorem 3.1]. Next, by Proposition 4.1, $\lambda(M^n)$ is h^2 -stable for each $n \in \mathbb{N}$. Hence every presemistar operation on a DVR V is h^2 -stable.

Proposition 4.13. Let D be a conducive domain and let \star be a presemistar operation on D. Then

- (1) If \star is g^2 -stable, then \star is h^2 -stable.
- (2) If \star satisfies some property in S_2 , then \star satisfies every property in S_3 .

Proof.

- (1) For each $E \in \mathcal{F}(D)$, we have $(E \cap K)^* = E^* = E^* \cap K = E^* \cap K^*$ and therefore, if ★ is g²-stable, then ★ is evidently h²-stable, because $\mathcal{K}(D) = \mathcal{F}(D) \cup \{K\}$ holds.
- (2) This follows from (1) and Theorem 4.3 (ii) and (iii).

5. The ascent and the descent of stability

We recall from [14] the definition of both the ascent and the descent of a presemistar operation.

Definition 5.1. Let T be an overring of D . Then

- (1) For each $\star \in \mathbf{PS}(D)$. we set $E^{\alpha_T(\star)} = E^{\star}$ for all $E \in \mathcal{K}(T)$. Then $\alpha_T(\star)$ is a presemistar operation on T.
- (2) For each $\star \in \mathbf{PS}(T)$. we set $E^{\delta_T(\star)} = (ET)^*$ for all $E \in \mathcal{K}(D)$. Then $\delta_T(\star)$ is a presemistar operation on D.

The presemistar operation $\alpha_T(\star)$ (resp. $\delta_T(\star)$) in Definition 5.1 is called the ascent of \star (from D to T) (resp. the descent of \star (from T to D)).

For each overring T of D, we set $X_1(T) = \mathcal{F}_f(T)$, $X_2(T) = \mathcal{F}(T)$ and $X_3(T) =$ $\mathcal{K}(T)$.

Remark 5.1. Let T be an overring of D. Then it easily follows that $X_3(T) \subseteq$ $X_3, ET \in X_2(T)$ for all $E \in X_2$, and $ET \in X_1(T)$ for all $E \in X_1$.

A presemistar operation \star on T is called an $f_T{}^a g_T{}^b h_T{}^c$ -stable presemistar operation on T or \star is said to be $f_T{}^a g_T{}^b h_T{}^c$ -stable, if \star satisfies the following condition

 (S_T) $(F_0 \cap \cdots \cap F_a \cap G_0 \cap \cdots \cap G_b \cap H_0 \cap \cdots \cap H_c)^* = F_0^* \cap \cdots \cap F_a^* \cap G_0^* \cap \cdots \cap G_b^* \cap$ $H_0^* \cap \cdots \cap H_c^*$

for all $F_i(0 \leq i \leq a), G_j(0 \leq j \leq b), H_k(0 \leq k \leq c)$ where $F_i \in X_1(T)$ for $i \neq 0, G_j \in X_2(T)$ for $j \neq 0, H_k \in X_3(T)$ for $k \neq 0$ and $F_0 = G_0 = H_0 = K$.

For simplicity, we shall also denote $f_T{}^a = f_T{}^a g_T{}^0 h_T{}^0$, $g_T{}^b = f_T{}^0 g_T{}^b h_T{}^0$, \cdots , $f_T{}^a h_T{}^c = f_T{}^a g_T{}^0 h_T{}^c$, $g_T{}^b h_T{}^c = f_T{}^0 g_T{}^b h_T{}^c$ as in Section 2.

Remark 5.2. Let T be an overring of D. If $T \in \mathcal{F}(D)$, then $X_2(T) \subset X_2$ and if $T \in \mathcal{F}_f(D)$, then $X_1(T) \subseteq X_1$.

Note 5.1.

- (1) If T is an overring of D such that $T \in \mathcal{F}_f(D)$, then T is integral over D.
- (2) Let u_1, u_2, \dots, u_n be elements of K which are integral over D. If we set $T =$ $D[u_1, u_2, \dots, u_n]$, then T is integral over D and $T \in \mathcal{F}_f(D)$.

Proof. For the proof of (1), see [16, Proposition 13.20] and for the proof of (2), see \Box [16, Corollary 13.21].

Proposition 5.1. ([14, Proposition 2.3 (A) (2) and (B) (2)]) Let T be an overring of D.

- (1) If $\star \in \mathbf{PS}(D)$ is h^2 -stable, then $\alpha_T(\star)$ is h_T^2 -stable.
- (2) Assume that T is faithfully flat over D. If $\star \in \mathbf{PS}(T)$ is h_T^2 -stable, then $\delta_T(\star)$ is h^2 -stable.

Proposition 5.2. Let T be an overring of D .

- (1) Assume that $T \in \mathcal{F}(D)$. If $\star \in \mathbf{PS}(D)$ is g^2 -stable, then $\alpha_T(\star)$ is g_T^2 -stable.
- (2) Assume that T is flat over D. If $\star \in \mathbf{PS}(T)$ is g_T^2 -stable, then $\delta_T(\star)$ is g^2 -stable.

Proof.

- (1) Let $E, F \in \mathcal{F}(T) = X_2(T)$. Then by Remark 5.2, $E, F \in X_2 = \mathcal{F}(D)$ and then, by assumption, $(E \cap F)^{\alpha_T(\star)} = (E \cap F)^{\star} = E^{\star} \cap F^{\star} = E^{\alpha_T(\star)} \cap F^{\alpha_T(\star)}$ and so $\alpha_T(\star)$ is g_T^2 -stable.
- (2) Let $E, F \in \mathcal{F}(D) = X_2$. Then $ET, FT \in X_2(T)$ as stated in Remark 5.1. Since T is flat over $D, (E \cap F)T = ET \cap FT$ by [10, (3.H) (1)] and hence $(E \cap F)^{\delta_T(\star)} = ((E \cap F)T)^{\star} = (ET \cap FT)^{\star} = (ET)^{\star} \cap (FT)^{\star} = E^{\delta_T(\star)} \cap F^{\delta_T(\star)}.$ Thus $\delta_T(\star)$ is g^2 -stable.

Proposition 5.3. Let T be an overring of D .

- (1) Assume that $T \in \mathcal{F}_f(D)$. If $\star \in \mathbf{PS}(D)$ is f^2 -stable, then $\alpha_T(\star)$ is f_T^2 -stable.
- (2) Assume that T is flat over D. If $\star \in \mathbf{PS}(T)$ is f_T^2 -stable, then $\delta_T(\star)$ is f^2 -stable.

Proof. The proof is similar to that of Proposition 5.2.

Proposition 5.4. Let T be an overring of D .

- (1) Assume that $T \in \mathcal{F}_f(D)$. If $\star \in \mathbf{PS}(D)$ is fg-stable, then $\alpha_T(\star)$ is frg $_T$ -stable.
- (2) Assume that T is flat over D. If $\star \in \mathbf{PS}(T)$ is $f_T g_T$ -stable, then $\delta_T(\star)$ is fgstable.

Proof.

- (1) Let $E \in \mathcal{F}_f(T)$ and $F \in \mathcal{F}(T)$. Then, since $T \in \mathcal{F}_f(D)$, $E \in \mathcal{F}_f(D)$ and $F \in \mathcal{F}(D)$. Hence, by assumption, we have $(E \cap F)^{\alpha_T(\star)} = (E \cap F)^{\star} = E^{\star} \cap F^{\star} =$ $E^{\alpha_T(\star)} \cap F^{\alpha_T(\star)}$. Thus $\alpha_T(\star)$ is $f_T g_T$ -stable.
- (2) Let $E \in X_1$ and $F \in X_2$. Then $ET \in X_1(T)$ and $FT \in X_2(T)$ by Remark 5.1. Then, by assumption, $(E \cap F)^{\delta_T(\star)} = ((E \cap F)T)^{\star} = (ET \cap FT)^{\star} =$ $(ET)^{\star} \cap (FT)^{\star} = E^{\delta_T(\star)} \cap F^{\delta_T(\star)}$. Hence $\delta_T(\star)$ is fg-stable.

 \Box

References

- [1] D.D. Anderson, D.F. Anderson, D.L. Costa, D.E. Dobbs, J.L. Mott and M. Zafrullah, Some characterizations of v-domains and related properties, Colloq. Math., 58 (1989), 1-9.
- [2] E. Bastida and R. Gilmer, Overrings and divisorial ideals of the form $D + M$, Michigan Math. J. 20(1973), 79-95.
- [3] S.U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457- 493.
- [4] D.E. Dobbs and R. Fedder, Conducive integral domains, J. Algebra 86 (1984), 494-510.
- [5] M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, in: S. Chapman and S. Glaz (Eds.), Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, Dordrecht, 2000, 169-197.
- [6] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, volume 90, 1992.
- [7] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ., 37 (2005), 53-79.
- [8] R. Matsuda, On the definition of a stable semistar operation, JP J. Algebra, Number Theory and Appl. 18 (2010), 1-9.
- [9] R. Matsuda and A. Okabe, On an AACDMZ question, Math. J. Okayama Univ. 35 (1993), 41-43.

- [10] H. Matsumura, Commutative Algebra, Second Edition, The Benjamin/Cummings Publishing Company, 1980.
- [11] A. Mimouni, Note on star operations over polynomial rings, Comm. in Algebra 36 (2008), 4249-4256.
- [12] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1-21.
- [13] A. Okabe, Some results on semistar operations, JP Jour. Algebra, Number Theory and Appl. 3(2003), 187-210.
- [14] A. Okabe, Presemistar operations on integral domains, Math. J. Ibaraki Univ. 48 (2016), 27-43.
- [15] A. Okabe, Some results on presemistar operations, Math. J. Ibaraki Univ. 49 (2017), 11-22.
- [16] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Second Edition, 2000.