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Note on the stability of a presemistar operation

Akira Okabe∗

Abstract

In [8] Matsuda has investigated stability of a semistar operation. In this
paper we extend the notion of stability of a semistar operation to the presemistar
operation case and we shall study stability properties of presemistar operations.

1. Introduction

Throughout D will be an integral domain with quotient field K. Let K(D)
be the set of all nonzero D-submodules of K. Each member of K(D) is called a
Kaplansky fractional ideal of D or a K-fractional ideal of D. Let F(D) be the set
of all nonzero fractional ideals of D and let Ff (D) be the set of all nonzero finitely
generated fractional ideals of D. We denote the set of all nonzero integral ideals of D
by I(D).

First we shall recall the definition of a presemistar operation which has been
defined in [14].

Let ? be a self-map of K(D). Then ? is called a presemistar operation on D, if
the following three conditions are satisfied:

(E) E ⊆ E? for all E ∈ K(D);

(OP) If E ⊆ F , then E? ⊆ F ? for all E,F ∈ K(D);

(T) (aE)? = aE? for all a ∈ K \ {0} and all E ∈ K(D).

As in [14], we say that a self-map ? of K(D) has Extension Property (resp. Order
Preservation Property, Transportability Property ) if ? satisfies condition (E) (resp.
(OP), (T)).

A self-map ? of K(D) is called a semistar operation on D, if it is a presemistar
operation on D and satisfies the following condition:

(I) (E?)? = E? for all E ∈ K(D).
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We say that a self-map ? of K(D) has Idempotence Property if ? satisfies condition
(I).

Here we list some representative examples of semistar operations.
If we set Ed̄ = E (resp. E ē = K) for all E ∈ K(D), then the map E 7→ Ed̄

(resp. E 7→ E ē) is a semistar operation on D and is called the d̄-operation (resp. the
ē-operation).

For each E ∈ K(D), we set E−1 = {x ∈ K | xE ⊆ D} and Ev̄ = (E−1)−1. Then
the map E 7→ Ev̄ is a semistar operation on D and is called the v̄-operation. Here it
is easily seen that E−1 = {0} for all E ∈ K(D) \ F(D) and therefore Ev̄ = K for all
E ∈ K(D) \ F(D).

Let ? be a self-map of F(D) such that D? = D. Then ? is called a star operation
on D if the conditions (E), (OP), (T), and (I) hold for all a ∈ K \ {0} and all E,F in
F(D). Each star operation ? on D can be extended to a semistar operation ?e on D
as shown in [12,Proposition17].

If E ∈ F(D), then E−1 ∈ F(D) and so Ev̄ ∈ F(D). Hence, if we set Ev = Ev̄

( resp. Ed = Ed̄ ) for all E ∈ F(D), then the self-map v ( resp. d ) of F(D) is a
star operation on D, because Dv̄ = Dd̄ = D holds. The map v (resp. d ) is called the
v-operation (resp. the d-operation ) on D.

For any E,F ∈ K(D), the set {x ∈ K | xF ⊆ E} is denoted by E : F and for
each E ∈ K(D), the set D : E is also denoted by E−1.

As in [14], the set of all presemistar operations (resp. all semistar operations ) on
D is denoted by PS(D) (resp. S(D)).

2. Definition of stability

In this paper, we denote the set of positive integers by N and the set of
non-negative integers by N0.

In [8], the definition of stability of a semistar operation was given. We first extend
the definition of stability in [8] to the presemistar operation case.

We set X1 = Ff (D), X2 = F(D), X3 = K(D). Let a, b, c ∈ N0 such that a+b+c ≥
2 and let ? ∈ PS(D). Assume that ? satisfies the following condition

(S) (F0 ∩ · · · ∩Fa ∩G0 ∩ · · · ∩Gb ∩H0 ∩ · · · ∩Hc)
? = F ?0 ∩ · · · ∩F ?a ∩G?0 ∩ · · · ∩G?b ∩

H?
0 ∩ · · · ∩H?

c

for all Fi(0 ≤ i ≤ a), Gj(0 ≤ j ≤ b), Hk(0 ≤ k ≤ c) where Fi ∈ X1 for i 6= 0, Gj ∈ X2

for j 6= 0, Hk ∈ X3 for k 6= 0 and F0 = G0 = H0 = K.
If ? satisfies condition (S), then ? is called an fa1 f

b
2f

c
3 -stable presemistar operation

on D or ? is said to be fa1 f
b
2f

c
3 -stable.

Hereafter we set f = f1, g = f2, and h = f3 and for simplicity, we also denote fa =
fag0h0, gb = f0gbh0, hc = f0g0hc, fagb = fagbh0, gbhc = f0gbhc, fahc = fag0hc. For
example, ? is f2-stable, if (F1 ∩ F2)? = F ?1 ∩ F ?2 for every F1, F2 ∈ X1, ? is gh-
stable, if (G ∩ H)? = G? ∩ H? for every G ∈ X2, H ∈ X3 and ? is h2-stable, if
(H1 ∩H2)? = H?

1 ∩H?
2 for every H1, H2 ∈ X3 and so on.

For the sake of completeness, we state the definition of stability of a star operation.
Let ? be a star operation on D and let a, b ∈ N0 such that a+ b ≥ 2. Then ? is called
an fagb-stable star operation on D if ? satisfies the following condition
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(S0) (F0 ∩ · · · ∩ Fa ∩G0 ∩ · · · ∩Gb)? = F ?0 ∩ · · · ∩ F ?a ∩G?0 ∩ · · · ∩G?b
for all Fi(0 ≤ i ≤ a), Gj(0 ≤ j ≤ b) where Fi ∈ X1 for i 6= 0, Gj ∈ X2 for j 6= 0 and
F0 = G0 = K.

Note 2.1. Let a, b ∈ N0 such that a + b ≥ 2. Then it is easy to see that the star
operation v is fagb-stable if and only if the semistar operation v̄ is fagb-stable.

If D is a Noetherian domain, then X1 = X2. Hence, for a Noetherian domain, we
have f1 = f2 by definition and hence we have f = g.

Lemma 2.1. (cf.[8, Lemma 2.1 (3), (4)]) Let n ∈ N and a, b ∈ N0 such that a +
b+ n ≥ 2. Then we have the following implications :

(1) fagnhb-stable =⇒ fa+1gn−1hb-stable.

(2) fagbhn-stable =⇒ fagb+1hn−1-stable.

(3) fagbhn-stable =⇒ fa+1gbhn−1-stable.

Lemma 2.2. (cf.[8, Proposition 2.2 (1), (2), (3)]) Let n ∈ N and a, b ∈ N0 such
that a+ b+ n ≥ 2. Then

(1) fn+1gahb-stable =⇒ fngahb-stable.

(2) fagn+1hb-stable =⇒ fagnhb-stable.

(3) fagbhn+1-stable =⇒ fagbhn-stable.

If we take a = b = 0 in Lemma 2.2, then we have the following

Proposition 2.1. Let ? be a presemistar operation on D. If ? is fk-stable (resp.
gk-stable, hk-stable ) for some integer k ≥ 2, then ? is fn-stable (resp. gn-stable,
hn-stable ) for every integer n such that 2 ≤ n ≤ k.

Proposition 2.2. (cf.[8, Lemma 2.1 (1), (2)]) Let ? be a presemistar operation on
D. Then

(1) If ? is gn-stable for some integer n ≥ 2, then ? is gn+1-stable.

(2) If ? is hn-stable for some integer n ≥ 2, then ? is hn+1-stable.

(3) If ? is gn-stable for some integer n ≥ 2, then ? is fagb-stable for all a, b ∈ N0

such that a+ b ≥ n.

(4) If ? is hn-stable for some integer n ≥ 2, then ? is fagbhc-stable for all a, b, c ∈ N0

such that a+ b+ c ≥ n.

Proof. The proofs of (1) and (2) are straightforward.
(3) This follows from Proposition 2.2 (1) and the definition of stability.
(4) This follows from Proposition 2.2 (2) and the definition of stability.

The following implications are easily derived from the definition of stability and
the inclusion relation X1 ⊆ X2 ⊆ X3.
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Note 2.2.

(1) h2-stable =⇒ gh-stable =⇒ g2-stable =⇒ fg-stable =⇒ f2-stable.

(2) h2-stable =⇒ gh-stable =⇒ fh-stable =⇒ fg-stable.

Corollary 2.1. Let ? be a presemistar operation on D.
If ? is gk-stable ( resp. hk-stable ) for some integer k ≥ 2, then ? is gn-stable (

resp. hn-stable ) for every integer n ≥ 2.

Proof. This follows from Propositions 2.1 and 2.2.

An integral domain D is called a coherent domain if every finitely generated ideal
of D is finitely presented (or finitely related).

Proposition 2.3. (cf.[3, Theorem 2.2]) An integral domain D is a coherent domain
if and only if the intersection of any two finitely generated ideals of D is again finitely
generated. In particular, each Noetherian domain is a coherent domain.

Proposition 2.4. Let D be a coherent domain and let ? be a presemistar operation
on D. If ? is fk-stable for some integer k ≥ 2, then ? is also fk+1-stable.

Proof. Suppose that ? is fk-stable for some integer k ≥ 2. Then ? is fn-stable for each
integer n such that 2 ≤ n ≤ k by Proposition 2.1 and so ? is f2-stable. Now choose
arbitrary elements F1, F2, · · · , Fk, Fk+1 ∈ Ff (D). Then, since Fk ∩ Fk+1 ∈ Ff (D) by
Proposition 2.3, we have (F1∩F2∩· · ·∩Fk ∩Fk+1)? = (F1∩F2∩· · ·∩ (Fk ∩Fk+1))? =
F1

?∩· · ·∩Fk−1
?∩ (Fk ∩Fk+1)? = F1

?∩· · ·∩Fk−1
?∩Fk?∩Fk+1

?. Therefore fk-stable
=⇒ fk+1-stable for every integer k ≥ 2.

Corollary 2.2. Let D be a coherent domain and let ? be a presemistar operation
on D. Then

? is fk-stable for some integer k ≥ 2⇐⇒ ? is fn-stable for every integer n ≥ 2.

Proof. This follows from Propositions 2.1 and 2.4.

Proposition 2.5. Every Prüfer domain is a coherent domain.

Proof. This follows from [6, Proposition 25.4 (1)].

Corollary 2.3. Let D be a Prüfer domain and let ? be a presemistar operation on
D. Then

? is fk-stable for some integer k ≥ 2⇐⇒ ? is fn-stable for every integer n ≥ 2.

Proof. This follows from Corollary 2.2 and Proposition 2.5.

3. Stability properties (Semistar operation case)

We recall two types of integral domains. An integral domain D is called an
essential domain if there exists a family of prime ideals {Pλ | λ ∈ Λ} of D such that
every DPλ is a valuation overring of D and D = ∩λDPλ . Next, an integral domain D
is called a v-domain if each F ∈ Ff (D) is v-invertible, that is, (AA−1)v = D.
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Proposition 3.1. ([1, Theorem 7])

(1) If D is an essential domain, then v is fn-stable for every integer n ≥ 2,

(2) If D is an integrally closed domain such that v is fn-stable for every integer
n ≥ 2, then D is a v-domain.

It follows from Proposition 3.1 that if D is an integrally closed domain which is
not a v-domain, then v is not fn-stable for some integer n ≥ 2.

Proposition 3.2. ([9, Theorem 2]) If D is a v-domain, then v is fn-stable for every
integer n ≥ 2.

Proposition 3.3. Let D be a Prüfer domain. Then v is fn-stable for every integer
n ≥ 2.

Proof. By Proposition 2.5, D is a coherent domain and so by Proposition 2.4, it
suffices to show that v is f2-stable. To prove this, choose arbitrary elements A,B ∈
Ff (D). Then, by [6, Theorem 25.2 (g)], (A ∩ B)−1 = A−1 + B−1 and therefore
(A ∩ B)v = ((A ∩ B)−1)−1 = (A−1 + B−1)−1 = D : (A−1 + B−1) = (D : A−1) ∩ (D :
B−1) = Av ∩Bv as desired.

Remark 3.1. The proof of Proposition 3.3 can be also derived from tha fact that
every finitely generated fractional ideal of a Prüfer domain is invertible and so diviso-
rial.

There exists a Noetherian domain D such that the star operation v on D is not
f2-stable as shown in the following example.

Example 3.1. ([5, Example 1.8]) Let D = k[[X3, X4, X5]] with a field k. Then D
is a 1-dimensional Noetherian local domain with maximal ideal M = (X3, X4, X5).
If we set I = (X3, X4), J = (X3, X5), then Iv = Jv = M and I ∩ J = (X3) and so
(I ∩ J)v = (X3) $ Iv ∩ Jv = M . Thus v is not f2-stable.

Here we must say that this example is due to W. Heinzer as noted in [1, p.4].

In general, f2-stable does not imply g2-stable even for a Prüfer domain as seen in
the following example.

Example 3.2. If we choose a Prüfer domain D as constructed in [11, Example 3.1],
then it is shown that the star operation v on D is not g2-stable. But v is always
f2-stable by Proposition 3.3.

In [8, Example 3.16], Matsuda has provided a Prüfer domain with exactly two
maximal ideals such that there exist semistar operations on D which are fn-stable for
every integer n ≥ 2 and which are not g2-stable (see also [8, Note, p.7]). It was shown
in [7, Lemma 4] that every Prüfer domain with exactly two maximal ideals is a Bezout
domain. Thus it follows that in general, f2-stable does not imply g2-stable even for a
Bezout domain.

In general, g2-stable does not imply h2-stable as shown in the next example.
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Example 3.3. ([8, Example 3.2 (2)]) Let D = k[X,Y ] with a field k. We set
E? = E for every E ∈ F(D) and set E? = K(= k(X,Y )) for every E ∈ K(D) \ F(D).
Then ? is a semistar operation on D and is evidently g2-stable. But if we set E =
k[X,Y, 1

Y ,
1
Y 2 , · · · ] and F = k[Y,X, 1

X ,
1
X2 , · · · ], then (E ∩F )? = k[X,Y ] $ E? ∩F ? =

k(X,Y ). Hence ? is not h2-stable.

Proposition 3.4. ([8, Propositions 3.8 and 3.12]) Let ? be a semistar operation on
D. Then

(1) fg-stable =⇒ g2-stable.

(2) fh-stable =⇒ h2-stable.

Corollary 3.1. Let ? be a semistar operation on D. Then

(1) fg-stable ⇐⇒ g2-stable.

(2) fh-stable ⇐⇒ h2-stable.

Proof. This follows from Note 2.2 and Proposition 3.4.

4. Stability properties (Presemistar operation case)

For each nonzero integral ideal I of D, we set Eλ(I) = E : I for each E ∈ K(D).
Then, by [14, Proposition 3.1], the self-map λ(I) of K(D) is a presemistar operation
on D.

Proposition 4.1. For each nonzero integral ideal I, λ(I) is hn-stable for every in-
teger n ≥ 2.

Proof. By definition, λ(I) is h2-stable and hence, by Proposition 2.2 (2), λ(I) is also
hn-stable for every integer n ≥ 2.

Let F be a family of nonzero ideals of D with D ∈ F . Then

(1) F is called a semifilter of D if, for all I, J ∈ I(D), I ⊇ J ∈ F implies I ∈ F .

(2) F is called a filter of D if it is a semifilter and A,B ∈ F implies A ∩B ∈ F .

(3) F is said to be monoidal if A,B ∈ F implies AB ∈ F .

As in [14], for each presemistar operation ?, we set F? = {I ∈ I(D) | I? = D?}.
Then we have the following

Proposition 4.2. ([14, Lemma 4.1]) Let ? be a presemistar operation on D. If ? is
h2-stable, then F? is a filter of D.

For each filter F of D, we set E?F = ∪{E : J | J ∈ F} for every E ∈ K(D). Then
we have the following

Proposition 4.3. ([14, Lemma 4.2]) For each filter F of D, ?F is an h2-stable
presemistar operation on D.
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A presemistar operation ? on D is said to be strong if E?F ? ⊆ (EF )? for all
E,F ∈ K(D) (see [14, Definition 4.1]) and ? is said to be proper if ? is not a semistar
operation on D (see [14, p.34]).

Proposition 4.4. ([14, Theorem 4.1])

(1) If F is a monoidal filter of D, then ?F is h2-stable and strong.

(2) If ? is an h2-stable and strong presemistar operation on D, then F? is a monoidal
filter of D.

Proposition 4.5. ([14, Proposition 4.4]) Let ? be a presemistar operation on D. If
? is h2-stable and strong, then ? = ?F? .

Let I be an element of K(D) such that D ⊆ I. If we set Eµ(I) = EI for all
E ∈ K(D), then µ(I) is a presemistar operation on D by [14, Proposition 3.2 (1)].

Example 4.1. Let k be a field and let D = k[[X5, X6]]. If we set I = D + XD,
then I2 = D + XD + X2D 6= I and so by [14, Proposition 3.2 (3)], µ(I) is a proper
presemistar operation on D.

Proposition 4.6. Let 0 6= d be a nonunit of D.and let I = 1
dD. Then µ(I) is a

proper presemistar operation on D and is hn-stable for every integer n ≥ 2.

Proof. Since I = 1
dD ⊇

1
ddD = D and I 6= I2, it follows from [14, Proposition 3.2]

that µ(I) is a proper presemistar operation on D. Moreover, for arbitrary two elements

E1, E2 ∈ K(D), we have (E1∩E2)µ(I) = (E1∩E2) 1
dD = E1

1
dD∩E2

1
dD = E

µ(I)
1 ∩Eµ(I)

2

and so µ(I) is h2-stable. Then µ(I) is hn-stable for every integer n ≥ 2 by Corollary
2.1 as we wanted.

We shall now construct a presemistar operation of new type on D.

Theorem 4.1. Let I be a nonzero integral ideal of D. We set

Ep(I) =

{
E : I for all E ∈ F(D)
K for all E ∈ K(D) \ F(D)

Then

(1) p(I) is a presemistar operation on D.

(2) If I is an invertible integral ideal of D, then p(I) is a proper presemistar operation
on D.

(3) p(I) is always g2-stable.

(4) If I = I2, then p(I) is a semistar operation on D.
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Proof.

(1) Evidently E ⊆ Ep(I) for all E ∈ K(D) and so p(I) satisfies condition (E). Next we
shall show taht p(I) satisfies condition (OP). Let E ⊆ F in K(D). If F ∈ F(D),
then E ∈ F(D) and so Ep(I) = E : I ⊆ F : I = F p(I). Next assume that
E ∈ F(D) and F /∈ F(D). Then Ep(I) = E : I ⊆ K = F p(I). Lastly assume that
E /∈ F(D) and F /∈ F(D). Then Ep(I) = K = F p(I). Thus condition (OP) holds.
Choose an element 0 6= x ∈ K. If E ∈ F(D), then xE ∈ F(D) and therefore
(xE)p(I) = (xE) : I = x(E : I) = xEp(I). If E /∈ F(D), then xE /∈ F(D) and
hence (xE)p(I) = K = xK = xEp(I). Thus p(I) satisfies condition (T). Hence
p(I) is a presemistar operation on D.

(2) Assume that I is an invertible integral ideal of D. Then I 6= I2 and so we have
(Dp(I))p(I) = D : I2 6= D : I = Dp(I). Hence p(I) is not a semistar operation on
D.

(3) For every E,F ∈ F(D), we have (E ∩ F )p(I) = (E ∩ F ) : I = (E : I) ∩ (F : I) =
Ep(I) ∩ F p(I) and therefore p(I) is g2-stable.

(4) If E ∈ F(D), then Ep(I) = E : I ∈ F(D) and so, by hypothesis, (Ep(I))p(I) =
(E : I) : I = E : I2 = E : I = Ep(I). Next, if E /∈ F(D), then Ep(I) = K /∈ F(D)
and hence (Ep(I))p(I) = K = Ep(I). Thus p(I) satisfies condition (I).

Now we shall consider the following condition:

Definition 4.1.

(NI) There exist F ∈ F(D) and E ∈ K(D) \ F(D) such that F * E and E 6= K.

We say that an integral domain D has Noninclusion Property if D satisfies the
above condition (NI).

Theorem 4.2. Assume that D satisfies condition (NI). Then p(I) is not gh-stable
for each invertible integral ideal I of D.

Proof. By hypothesis, there exist F ∈ F(D) and E ∈ K(D) \ F(D) such that F * E
and E 6= K. Then F p(I) = F : I = FI−1 and Ep(I) = K and therefore F p(I) ∩Ep(I) =
FI−1. Now, since F ∩E ⊆ F , we have F ∩E ∈ F(D) and so (F ∩E)p(I) = (F ∩E)I−1.
Suppose that (F∩E)p(I) = F p(I)∩Ep(I). Then (F∩E)I−1 = FI−1 and hence F = F∩E
which implies F ⊆ E, a contradiction. Hence we have (F ∩ E)p(I) 6= F p(I) ∩ Ep(I).
Thus p(I) is not gh-stable as we wanted.

Proposition 4.7. Assume that an integral domain D satisfies condition (NI). Then
there exists a proper presemistar operation ? which is g2-stable but is not gh-stable.

Proof. It follows from Theorems 4.1 and 4.2 that ? = p(I) is g2-stable but is not
gh-stable for every invertible integral ideal I of D.
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Corollary 4.1. Let D be a Noetherian domain which satisfies condition (NI). Then
there exists a proper presemistar operation ? which is f2-stable but is not fh-stable.

Proof. Since D is a Noetherian domain, we get f = g and so our assertion follows
from Proposition 4.7.

Now we shall show that there exists an integral domain D which satisfies condition
(NI) in Definition 4.1.

Example 4.2. Let k be a field and let D = k[X,Y1,Y2, · · · ]. Set I = D + 1
XD ∈

F(D) and set J =
∑∞
n=1D

1
X+Yn

∈ K(D) \ F(D). Then I * J and J 6= K =
k(X,Y1,Y2, · · · ), where K is the quotient field of D. Therefore D satisfies condition
(NI). Evidently D is not a Noetherian domain. If we take J ′ =

∑∞
n=1D

1
Yn
∈ K(D) \

F(D), then we also have I * J ′ and J ′ 6= K = k(X,Y1,Y2, · · · ).

The integral domain D constructed in Example 4.2 is not a Noetherian domain.
But we can show that there exists a Noetherian domain D which satisfies condition
(NI) in Definition 4.1.

Example 4.3. Let k be a field and let D = k[X,Y]. Set I = D + 1
XD ∈ F(D)

and J =
∑∞
m=1D

1
X+Ym ∈ K(D) \ F(D). Then I * J and J 6= K = k(X,Y ), where

K = k(X,Y ) is the quotient field of D = k[X,Y ]. Hence D satisfies condition (NI).
Evidently D is a Noetherian domain.

In [4], an integral domain D is called a conducive domain if D : R = {x ∈ K |
xR ⊆ D} 6= (0) for each overring R of D other than K. It is well known that D is a
conducive domain if and only if K(D) = F(D) ∪ {K} ( see [13, Proposition 43]).

Note 4.1. If an integral domain D satisfies condition (NI), then D is not a conducive
domain.

Proposition 4.8. Let D be a non-conducive integral domain and let I ∈ K(D) \
F(D) such that D ( I ( K. We set

Eq(I) =

{
EI for all E ∈ F(D)
K for all E ∈ K(D) \ F(D)

Then

(1) q(I) is a proper presemistar operation on D.

(2) If D ( I ( J ( K with J ∈ K(D), then q(I) � q(J).

Proof.

(1) By definition, E ⊆ Eq(I) for all E ∈ K(D). Next let E ⊆ F in K(D). If
F ∈ F(D), then E ∈ F(D) and so Eq(I) = EI ⊆ FI = F q(I). If E ∈ F(D), F /∈
F(D), then Eq(I) = EI ⊆ K = F q(I). If E /∈ F(D), F /∈ F(D), then Eq(I) =
K = F q(I). Thus condition (OP) holds. Now, let E ∈ K(D) and x 6= 0 ∈ K. If
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E ∈ F(D), then xE ∈ F(D) and hence (xE)q(I) = xEI = xEq(I). If E /∈ F(D),
then xE /∈ F(D) and so (xE)q(I) = K = xK = xEq(I). Thus condition (T)
also holds. Therefore q(I) is a presemistar operation on D. Now we shall show
that q(I) is not a semistar operation on D. By definition, we have Dq(I) = I
and Iq(I) = K, because I /∈ F(D). Hence (Dq(I))q(I) = Iq(I) = K and so
Dq(I) 6= (Dq(I))q(I) which implies that q(I) is not a semistar operation on D.

(2) Since J ∈ K(D) \ F(D), q(J) is also a proper presemistar operation on D by
(1) and Eq(I) ⊆ Eq(J) for all E ∈ K(D). Hence q(I) ≤ q(J) and furthermore
Dq(I) = I ( J = Dq(J). Thus we have q(I) � q(J) as we wanted.

Proposition 4.9. Let D be a non-conducive integral domain and let T be a flat
overring of D such that T 6= K and T /∈ F(D). We set

Eq(T) =

{
ET for all E ∈ F(D)
K for all E ∈ K(D) \ F(D)

Then

(1) q(T) is a proper presemistar operation on D.

(2) q(T) is a g2-stable presemistar operation on D.

Proof.

(1) This easily follows from (1) of Proposition 4.8.

(2) It follows from [10, (3.H) (1)] that E1T ∩E2T = (E1∩E2)T holds for all E1, E2 ∈
F(D) and hence q(T) is g2-stable.

In the following example, we shall show that there exists an integral domain D
that has a proper presemistar operation ? on D which is g2-stable but is not h2-stable.

Example 4.4. Let k be a field and let D = k[X,Y ]. Set S1 = {Xn | n = 0, 1, 2, · · · }
and S2 = {Y m | m = 0, 1, 2, · · · }. Then DS1

and DS2
are flat overrings of D such

that DS1
, DS2

∈ K(D) \ F(D). Furthermore D is not a conducive domain. To see
this, let J be a K-fractional ideal of D defined in Example 4.3, then J /∈ F(D) and
J 6= K = k(X,Y ) and so D is not a conducive domain by [13,Proposition 43]. Thus
there exists a non-conducive integral domain D such that D has a flat overring T
which satisfes the conditions in Proposition 4.9. Hence q(DSi) is g2-stable for each
i ∈ {1, 2} by Proposition 4.9. Now we set E1 =

∑∞
n=1D

1
Xn and E2 =

∑∞
n=1D

1
Y n .

Then it is easily seen that E1, E2 ∈ K(D) \ F(D) and E1 ∩ E2 = D. If we set
? = q(DSi

) for some i ∈ {1, 2}, then, by definition, (E1 ∩ E2)? = D? = DSi 6= K but
(E1)?∩(E2)? = K∩K = K and so (E1∩E2)? 6= (E1)?∩(E2)?. Thus ? is not h2-stable
but is g2-stable by Proposition 4.9.
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Note 4.2. It will be seen that in general, f2-stable does not imply h2-stable. Let D =
k[X,Y ] with a field k and let Si be a multiplicatively closed subset of D constructed
in Example 4.4 for each i ∈ {1, 2}. Then q(DSi) is a proper presemistar operation on
D which is f2-stable but not h2-stable for each i ∈ {1, 2} as shown in Example 4.4,
because D is a Noetherian domain.

We shall show that there exists a proper presemistar operation which is not f2-
stable.

Example 4.5. Let k be a field and let D = k[[X3, X4, X5]]. Then D is a Noetherian
local domain with maximal ideal M = (X3, X4, X5). Choose a nonunit a 6= 0 of D.
Then the presemistar operation v[aD] defined in [15, Proposition 3.1] is a proper
presemistar operation on D by [15, Proposition 3.2 (1)]. If we take I = (X3, X4) and
J = (X3, X5), then I v̄ = J v̄ = M and (I∩J)v̄ = (X3). Hence, by [15, Lemma 3.1], we
have Iv[aD] = 1

aI
v̄ = 1

aM,Jv[aD] = 1
aJ

v̄ = 1
aM and (I ∩ J)v[aD] = 1

a (I ∩ J)v̄ = 1
a (X3)

and so (I ∩ J)v[aD] = 1
a (X3) ( 1

aM = Iv[aD] ∩ Jv[aD]. Thus v[aD] is not f2-stable.

We can also construct a proper presemistar operation which is not fh-stable.

Example 4.6. Let k be a field and let D = k[X,Y ]. Then D is a non-conducive
domain as shown in Example 4.4. We set I = D + D 1

X ∈ Ff (D) and J = D +∑∞
m=1D

1
X+Ym ∈ K(D) \ F(D). Then, since D ( J ( K, q(J) is defined and is a

proper presemistar operation on D. It is easy to see that I ∩ J = D and hence we
get Iq(J) ∩ Jq(J) = IJ ∩ K = IJ 6= J = Dq(J) = (I ∩ J)q(J). Therefore q(J) is not
fh-stable.

Let D be an integral domain and let ? be a presemistar operation on D. Let S1

(resp. S2, S3) be the set of properties {fn-stable | n ≥ 2} ( resp. the set of properties
{gn-stable | n ≥ 2}, the set of properties {hn-stable | n ≥ 2}), let S4 (resp. S5, S6)
be the set of properties {fngm-stable | n ≥ 1,m ≥ 1} (resp. the set of properties
{fnhm-stable | n ≥ 1,m ≥ 1}, the set of properties {gnhm-stable | n ≥ 1,m ≥ 1})
and let S7 be the set of properties {fagbhn-stable | a+ b ≥ 1, n ≥ 1}. We shall study
implications of these properties in {Si | i = 1, 2, · · · , 7}.

First, the following implications are derived from results in Section 2 and the
definition of stability.

Theorem 4.3. Let D be an integral domain and let ? be a presemistar operation
on D. Then

(i) If D is a coherent domain, then every two properties in S1 are equivalent.

(ii) Every two properties in S2 are equivalent.

(iii) Every two properties in S3 are equivalent.

(iv) If ? satisfies some property in S2, then ? satisfies every property in S4.

(v) If ? satisfies some property in S3, then ? satisfies every property in S5, S6 and S7.
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(vi) If ? satisfies every (resp., some) property in S6, then ? satisfies every (resp., some)
property in S5.

(vii) If ? satisfies every (resp., some) property in S5, then ? satisfies every (resp.,
some) property in S4.

(viii) If ? satisfies every (resp., some) property in S6, then ? satisfies every (resp.,
some) property in S7.

Proof.

(i) This follows from Propositions 2.1 and 2.4.

(ii) This follows from Corollary 2.1.

(iii) This follows from Corollary 2.1.

(iv) This follows from Propositions 2.1 and 2.2.

(v) This follows from Propositions 2.1 and 2.2.

(vi) This follows from the fact that gnhm-stable =⇒ fnhm-stable for all n,m ∈ N.

(vii) This follows from the fact that fnhm-stable =⇒ fngm-stable for all n,m ∈ N.

(viii) This follows from the fact that gnhm-stable =⇒ fagbhm-stable for all n,m ∈ N
and all a, b ∈ N0 such that a+ b = n.

Now we shall give a presemistar operation of new type which is g2-stable.

Theorem 4.4. Let D be an integral domain and let I ∈ K(D) \ F(D) such that
D ( I ( K. We set

Er(I) =

{
E for all E ∈ F(D)
EI for all E ∈ K(D) \ F(D)

Then

(1) r(I) is a g2-stable presemistar operation on D.

(2) If I ( I2 ( I3, then r(I) is a proper presemistar operation on D.

Proof.

(1) First, E ⊆ Er(I) for all E ∈ K(D). Next, let E1 ⊆ E2 with E1, E2 ∈ K(D). If

E2 ∈ F(D), then E1 ∈ F(D) and so E
r(I)
1 = E1 ⊆ E2 = E

r(I)
2 . If E1 ∈ F(D)

and E2 /∈ F(D), then E
r(I)
1 = E1 ⊆ E2 ⊆ E2I = E

r(I)
2 . If E1, E2 /∈ F(D),

then E
r(I)
1 = E1I ⊆ E2I = E

r(I)
2 . Hence E

r(I)
1 ⊆ E

r(I)
2 for all E1 ⊆ E2 in

K(D). Let 0 6= x ∈ K and E ∈ K(D). If E ∈ F(D), then xE ∈ F(D).
Hence (xE)r(I) = xE = xEr(I). Next, if E /∈ F(D), then xE /∈ F(D) and then
(xE)r(I) = xEI = xEr(I). Thus (xE)r(I) = xEr(I) for all 0 6= x ∈ K and all
E ∈ K(D). Therefore the map r(I) is a presemistar operation on D. It is evident
that r(I) is g2-stable.
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(2) We have Ir(I) = I2 and (Ir(I))r(I) = I2I = I3 6= I2 = Ir(I) and so r(I) is a proper
presemistar operation on D.

Proposition 4.10.

(1) Let k be a field and let D = k[X1, X2, · · · ] be a polynomial ring with infinite
variables {Xn}n∈N. If we set I = D + D 1

X1
+ D 1

X2
+ D 1

X3
+ D 1

X4
+ · · · , then

r(I) is proper and is not h2-stable.

(2) Let k be a field and let D = k[X,X1, X2, X3, · · · ] with infinite variables {X} ∪
{Xn}n∈N. If we set I = D + D 1

X + D 1
X1

+ D 1
X2

+ · · · , then r(I) is proper and
is not fh-stable.

Proof.

(1) We set J1 = D+D 1
X1

+D 1
X3

+D 1
X5

+· · · and J2 = D+D 1
X2

+D 1
X4

+D 1
X6

+· · · .
Then J1, J2 /∈ F(D), J1 ( I, J2 ( I, and D ( I ( I2 ( I3. Now it is easy to
see that D = J1 ∩ J2 and 1

X1X2
/∈ D. But 1

X1X2
∈ J1J2 ⊆ J1I ∩ J2I. Then

(J1 ∩ J2)r(I) = Dr(I) = D ( J1J2 ⊆ J1I ∩ J2I = J
r(I)
1 ∩ J r(I)

2 and therefore r(I) is
not h2-stable. Moreover it follows from Theorem 4.4 (2) that r(I) is proper.

(2) We set A = D + D 1
XX1

∈ Ff (D) and J = D + D 1
X1

+ D 1
X2

+ · · · . Then it

is easy to see that D = A ∩ J, 1
XX1

/∈ D and 1
XX1

∈ JI ∩ A.. Hence we have

(A ∩ J)r(I) = Dr(I) = D ( A ∩ JI = Ar(I) ∩ J r(I) which implies that r(I) is not
fh-stable. It also follows from Theorem 4.4 (2) that r(I) is proper.

Furthermore we can also show that there exist infinitely many proper presemistar
operations which are not fh-stable.

Proposition 4.11. Let k be a field and let D = k[X,Y ]. We set Jk = D +∑∞
m=1D

1
Xk+Ym

∈ K(D) \ F(D) for each integer k ≥ 1. Then q(Jk) is a proper
presemistar operation on D and is not fh-stable for each integer k ≥ 1.

Proof. If we set Ik = D+D 1
Xk
∈ Ff (D) for each integer k ≥ 1, then (Ik ∩Jk)q(Jk) =

Jk 6= IkJk = (Ik)q(Jk) ∩ (Jk)q(Jk) for each integer k ≥ 1 as in Example 4.6. Thus q(Jk)
is not fh-stable for each integer k ≥ 1.

Theorem 4.5. Let D be an integral domain and let ? be a presemistar operation
on D. Then

(i) If ? satisfies every property in S2, then ? need not satisfy a property in S6.

(ii) If ? satisfies every property in S1, then ? need not satisfy a property in S5.

(iii) If ? satisfies every property in S2, then ? need not satisfy a property in S3.
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(iv) ? need not satisfy a property in S1.

(v) ? need not satisfy a property in S5.

Proof.

(i) Assume that D satisfies condition (NI). If we choose an invertible integral ideal I
of D, then ? = p(I) is g2-stable by Theorem 4.1 but is not gh-stable by Theorem
4.2 and therefore our assertion is valid.

(ii) Assume that D is a Noetherian domain which satisfies condition (NI). Then, for
each invertible integral ideal I, ? = p(I) is f2-stable but is not fh-stable by
Proposition 4.7.

(iii) In Example 4.4, it was shown that there exists a proper presemistar operation ?
which is g2-stable but is not h2-stable.

(iv) This was shown in Example 4.5.

(v) This was shown in Example 4.6 for a Noetherian domain D and in Proposition
4.10 (2) for a non-Noetherian domain D.

Note 4.3.

(1) If we take D and I as in Proposition 4.10 (2), then we obtain that r(I) is fn-
stable for each integer n ≥ 2 by Theorem 4.4 but is not fh-stable. Hence this
presemistar operation r(I) would be a concrete example which satisfies Theorem
4.5 (ii).

(2) If we take D and I as in Proposition 4.10 (1), then we obtain that r(I) is gn-
stable for each integer n ≥ 2 by Theorem 4.4 but is not h2-stable. Hence this
presemistar operation r(I) would be a concrete example which satisfies Theorem
4.5 (iii).

We shall now show that every presemistar operation on a valuation domain V is
h2-stable. First, we shall recall that each valuation domain is a conducive domain and
so we have K(V ) = F(V )∪ {K} by [13, Proposition 43], where K is the quotient field
of V .

Proposition 4.12. Let V be a valuation domain. Then every presemistar operation
on V is h2-stable.

Proof. Let E1 and E2 be arbitrary elements in F(V ). Then dE1 ⊆ V and dE2 ⊆ V
for some 0 6= d ∈ V and so dE1 ⊆ dE2 or dE2 ⊆ dE1. Hence we have E1 ⊆ E2 or
E2 ⊆ E1. Thus K(V ) is linearly ordered with respect to the inclusion relation and
therefore our assertion is valid.

As in [14], we denote the set of all presemistar operations on D by PS(D).



Note on the stability of a presemistar operation 49

Note 4.4. Suppose that V is a DVR with maximal idealM . Then we can give a direct
proof of Proposition 4.12. First, we recall that we proved PS(V ) = {d, e} ∪ {λ(Mn) |
n ∈ N} in [14, Theorem 3.1]. Next, by Proposition 4.1, λ(Mn) is h2-stable for each
n ∈ N. Hence every presemistar operation on a DVR V is h2-stable.

Proposition 4.13. Let D be a conducive domain and let ? be a presemistar oper-
ation on D. Then

(1) If ? is g2-stable, then ? is h2-stable.

(2) If ? satisfies some property in S2, then ? satisfies every property in S3.

Proof.

(1) For each E ∈ F(D), we have (E∩K)? = E? = E?∩K = E?∩K? and therefore,
if ? is g2-stable, then ? is evidently h2-stable, because K(D) = F(D)∪{K} holds.

(2) This follows from (1) and Theorem 4.3 (ii) and (iii).

5. The ascent and the descent of stability

We recall from [14] the definition of both the ascent and the descent of a presemis-
tar operation.

Definition 5.1. Let T be an overring of D. Then

(1) For each ? ∈ PS(D). we set EαT (?) = E? for all E ∈ K(T ). Then αT (?) is a
presemistar operation on T .

(2) For each ? ∈ PS(T ). we set EδT (?) = (ET )? for all E ∈ K(D). Then δT (?) is a
presemistar operation on D.

The presemistar operation αT (?) (resp. δT (?)) in Definition 5.1 is called the as-
cent of ? (from D to T ) (resp. the descent of ? ( from T to D)).

For each overring T of D, we set X1(T ) = Ff (T ), X2(T ) = F(T ) and X3(T ) =
K(T ).

Remark 5.1. Let T be an overring of D. Then it easily follows that X3(T ) ⊆
X3, ET ∈ X2(T ) for all E ∈ X2, and ET ∈ X1(T ) for all E ∈ X1.

A presemistar operation ? on T is called an fT
agT

bhT
c-stable presemistar opera-

tion on T or ? is said to be fT
agT

bhT
c-stable, if ? satisfies the following condition

(ST) (F0 ∩ · · · ∩Fa ∩G0 ∩ · · · ∩Gb ∩H0 ∩ · · · ∩Hc)
? = F ?0 ∩ · · · ∩F ?a ∩G?0 ∩ · · · ∩G?b ∩

H?
0 ∩ · · · ∩H?

c
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for all Fi(0 ≤ i ≤ a), Gj(0 ≤ j ≤ b), Hk(0 ≤ k ≤ c) where Fi ∈ X1(T ) for
i 6= 0, Gj ∈ X2(T ) for j 6= 0, Hk ∈ X3(T ) for k 6= 0 and F0 = G0 = H0 = K.

For simplicity, we shall also denote fT
a = fT

agT
0hT

0, gT
b = fT

0gT
bhT

0, · · · ,
fT

ahT
c = fT

agT
0hT

c, gT
bhT

c = fT
0gT

bhT
c as in Section 2.

Remark 5.2. Let T be an overring of D. If T ∈ F(D), then X2(T ) ⊆ X2 and if
T ∈ Ff (D), then X1(T ) ⊆ X1.

Note 5.1.

(1) If T is an overring of D such that T ∈ Ff (D), then T is integral over D.

(2) Let u1, u2, · · · , un be elements of K which are integral over D. If we set T =
D[u1, u2, · · · , un], then T is integral over D and T ∈ Ff (D).

Proof. For the proof of (1), see [16, Proposition 13.20] and for the proof of (2), see
[16, Corollary 13.21].

Proposition 5.1. ([14, Proposition 2.3 (A) (2) and (B) (2)]) Let T be an overring
of D.

(1) If ? ∈ PS(D) is h2-stable, then αT (?) is hT
2-stable.

(2) Assume that T is faithfully flat over D. If ? ∈ PS(T ) is hT
2-stable, then δT (?)

is h2-stable.

Proposition 5.2. Let T be an overring of D.

(1) Assume that T ∈ F(D). If ? ∈ PS(D) is g2-stable, then αT (?) is gT
2-stable.

(2) Assume that T is flat over D. If ? ∈ PS(T ) is gT
2-stable, then δT (?) is g2-stable.

Proof.

(1) Let E,F ∈ F(T ) = X2(T ). Then by Remark 5.2, E,F ∈ X2 = F(D) and then,
by assumption, (E ∩ F )αT (?) = (E ∩ F )? = E? ∩ F ? = EαT (?) ∩ FαT (?) and so
αT (?) is gT

2-stable.

(2) Let E,F ∈ F(D) = X2. Then ET, FT ∈ X2(T ) as stated in Remark 5.1.
Since T is flat over D, (E ∩ F )T = ET ∩ FT by [10, (3.H) (1)] and hence
(E ∩ F )δT (?) = ((E ∩ F )T )? = (ET ∩ FT )? = (ET )? ∩ (FT )? = EδT (?) ∩ F δT (?).
Thus δT (?) is g2-stable.

Proposition 5.3. Let T be an overring of D.

(1) Assume that T ∈ Ff (D). If ? ∈ PS(D) is f2-stable, then αT (?) is fT
2-stable.

(2) Assume that T is flat over D. If ? ∈ PS(T ) is fT
2-stable, then δT (?) is f2-stable.
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Proof. The proof is similar to that of Proposition 5.2.

Proposition 5.4. Let T be an overring of D.

(1) Assume that T ∈ Ff (D). If ? ∈ PS(D) is fg-stable, then αT (?) is fT gT -stable.

(2) Assume that T is flat over D. If ? ∈ PS(T ) is fT gT -stable, then δT (?) is fg-
stable.

Proof.

(1) Let E ∈ Ff (T ) and F ∈ F(T ). Then, since T ∈ Ff (D), E ∈ Ff (D) and
F ∈ F(D). Hence, by assumption, we have (E∩F )αT (?) = (E∩F )? = E?∩F ? =
EαT (?) ∩ FαT (?). Thus αT (?) is fT gT -stable.

(2) Let E ∈ X1 and F ∈ X2. Then ET ∈ X1(T ) and FT ∈ X2(T ) by Remark
5.1. Then, by assumption, (E ∩ F )δT (?) = ((E ∩ F )T )? = (ET ∩ FT )? =
(ET )? ∩ (FT )? = EδT (?) ∩ F δT (?). Hence δT (?) is fg-stable.
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