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Abstract

Let R™ be the n-dimensional Euclidean space. In this paper we consider the com-
mutators [b,T] and [b, I,], where T" is a Calderén-Zygmund operator, I, is a gen-
eralized fractional integral operator and b is a function in generalized Campanato
spaces L9 (R") with variable growth condition. We give necessary and sufficient
conditions for the boundedness and compactness of the commutators on generalized
Morrey spaces with variable growth condition.

It is well known that 7" is bounded on LP(R™) (1 < p < oo). Coifman, Rochberg
and Weiss (1976) proved that, for b € BMO(R"™), the commutator [b, 7] = bT — Tb
is also bounded on LP(R™) (1 < p < 00), that is,

116, T1f l|r = 0T f = T0f)l|e < Clbllaymol[ f] v,

where C' is a positive constant independent of b and f. They also gave a necessary
condition for the boundedness, that is, [b, 7] is bounded on LP(R") if and only
if b € BMO(R"™). For the fractional integral operator I,, Chanillo (1982) gave a
necessary and sufficient condition for the LP-L? boundedness of [b, I,]. These results
were extended to Morrey spaces by Di Fazio and Ragusa (1991).

On the other hand, Uchiyama (1978) gave a necessary and sufficient condition
for the compactness of commutator [b, 7] on LP(R™). Namely, he proved that [b, T]]
is compact on LP(R") if and only if b € CMO(R"), where CMO(R") is the closure
of C2 (R™) in BMO(R™). This result was extended to Morrey spaces by Sawano

comp

and Shirai (2008) and Chen, Ding and Wang (2009, 2012).



In this paper we further extend all above resuts to generalized Morrey spaces
with variable growth condition, by using Calderén-Zygmund operators T', general-
ized fractional integral operators I, and functions b € L9 (R") generalized Cam-
panato spaces with variable growth condition.

To prove the boundedness we show the norm estimates for the sharp maxi-
mal operators and the pointwise estimates for the sharp maximal operators of the
commutators by the generalized fractional maximal operators. Then we use the
boundedness of the generalized fractional maximal operators. Moreover, To prove
the compactness we give relations between generalized Morrey spaces with vari-
able growth condition and Musielak-Orlicz spaces. Then we give a criterion for
the compactness of integral operators on generalized Morrey spaces with variable
growth condition. We also extend the charactarization of CMO(R™) to the clo-
sure of C2° (R") in L19)(R") generalized Campanato spaces with variable growth

comp

condition.
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Chapter 1

Introduction

1.1 Introduction

Let R™ be the n-dimensional Euclidean space. Let b € BMO(R") and T be a
Calderéon-Zygmund singular integral operator. In 1976 Coifman, Rochberg and
Weiss [16] proved that the commutator [b,T] = 0T — Tb is bounded on LP(R")
(1 < p < ), that is,

116, T]fl|e = 10T f = TS < CllbllBMOIIf |20,

where C' is a positive constant independent of b and f, see Theorem 1.1.1. For
the fractional integral operator I,, Chanillo [8] proved the boundedness of [b, I,]
in 1982, see Theorem 1.1.2. Coifman, Rochberg and Weiss [16] and Chanillo [8]
also gave the necessary conditions for the boundedness, that is, if the commutator
[b,T] or [b,I,] is bounded, then b is in BMO(RR"). These results were extended to
Morrey and generalized Morrey spaces by Di Fazio and Ragusa [17] in 1991, and
Mizuhara [36] in 1999, respectively. In this paper we further extend these results
to generalized Morrey spaces L(®#)(R") with variable growth condition. That is,

under suitable assumptions, we have

11 T1f | Leasor ey < ClOI o @y [ 1| Lo ey
116, L] Fll Leaor ey < Clbll sy oy 1 F 1| o ),

where T is a Calderén-Zygmund operator, I, is a generalized fractional integral

operator and b is a function in Campanato spaces £1%)(R") with variable growth

1



condition. We also give necessary conditions for the boundedness. For other exten-
sions and generalization of [8, 16], see [21, 27, 53, 64, 65], etc.

Uchiyama [68] proved the compactness of commutator [b, 7] on LP(R™) in 1978.
This result was extended to the compactness on Morrey spaces by Sawano and Shi-
rai [61] in 2008. We also extend these results to generalized Morrey space L®#)(R")
with variable growth condition by using [b, T] and [b, I,] with b € LI¥)(R™). To do
this we extend the characterization of CMO to the closure of Cgs,,, (R™) in LE¥)(R™)
with variable growth condition.

This paper is a systematic reconstruction of all results in [2, 3, 4]. Related
results are in [63, 5, 6].

Next we state the previous researches and the organization of this paper.

For the commutators [b, T'| and [b, I,,], the following theorems are known.

Theorem 1.1.1 (Coifman, Rochberg and Weiss [16]). Let p € (1,00) and T be
Calderdn-Zygmund singular integral operator with smooth kernel. If b € BMO(R™),
then [b,T] is bounded on LP(R") and

116, T1f e < Cllbllsaoll fl o

where C' is a positive constant independent of b and f. Conversely, if [b, R;] are
bounded on LP(R") for the Riesz transforms R;, j =1,...,n, then b € BMO(R").

Theorem 1.1.2 (Chanillo [8]). Let a € (0,n), p,q € (1,00) and —n/p+a = —n/q.
If b € BMO(R™), then [b, 1,] is bounded from LP(R™) to LY(R") and

where C' is a positive constant independent of b and f. Conversely, if n — a is an

even integer and [b, I,] is bounded from LP(R™) to LY(R™), then b € BMO(R").

[b, Ia] flle < CllbllBrmol[ f] v,

Theorems 1.1.1 and 1.1.2 were extended to Morrey spaces by Di Fazio and
Ragusa [17] and Mizuhara [36]. In Chapter 2 we further extend these results to
the boundedness of [b,T] and [b, I,] on L®*)(R"™) for b € LE¥Y)(R™) with ¢, 1, p :
R™ x (0,00) — (0, 00), where we assume the almost increasingness on 1 and use the
equality L) (R") = LP¥")(R™) with equivalent norms, see (1.2.6) for the defini-
tion of the almost increasingness and decreasingness. We also give the boundedness

of [b,T] and [b, I,] in case that v is almost decreasing in a different way.
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To prove the results in Chapter 2 we use the sharp maximal operator M* and
generalized fractional maximal operators M,. It is known that the usual fractional
maximal operator M, is dominated pointwise by the fractional integral operator
I.,. That is, the boundedness of M, follows from the boundedness of I,. However,
for generalized fractional maximal operators M,, we need a better estimate than
I,. We prove the boundedness of M, without the assumption (1.2.3) or (1.2.4). We
also prove and use the boundedness of I, from LP(R™) to Musielak-Orlicz spaces.

The organization of Chapter 2 is as follows. We state notation and theorems in
Section 2.1. We give the boundednesss of the operators M, and I, in Section 2.2
and several lemmas in Section 2.3. Moreover, we investigate pointwise estimate
by using the sharp maximal operator in Section 2.4 and Morrey norm estimate
by the sharp maximal operator in Section 2.5. To estimate the Morrey norm by
the sharp maximal operator we use the relation between Campanato spaces and
Morrey spaces. Finally, using the results in Sections 2.2-2.5, we prove the theorems
in Section 2.6.

In Chapter 3 we discuss the compactness of the commutators [b, 7] and [b, [,]
on LP#)(R™) for b € LOY)(R™) with ¢, 4, p : R x (0,00) — (0,00). Sawano and
Shirai [61] treated commutators given by

b, Tf(z) = lim (b(x) = b(y)) K (, ) f(y) dy.

e——+0 |$—y‘>6

Using this expression, they proved the compactness of [b, T] on Morrey spaces when
b is a CMO function. We use their idea to prove our results. However, we need
Musielak-Orlicz spaces to prove the compactness of [b, 7] and [b, )] when b is in
generalized Campanato spaces L1%)(R") with variable growth condition. We show
the inclusion relation between Musielak-Orlicz spaces L®(R") and generalized Mor-
rey spaces L®#) (R™) with variable growth condition to prove the compactness of
the commutators.

The organization of Chapter 3 is as follows. We state notation and theorems
in Section 3.1. We give relations between generalized Morrey spaces L®#)(R")
with variable growth condition and Musielak-Orlicz spaces L®(R") in Section 3.2.
Next we give a criterion for the compactness of integral operators on generalized
Morrey spaces with variable growth condition in Section 3.3 and prepare lemmas

in Section 3.4. Then we prove the theorems in Section 3.5.



In Chapter 4 we extend the characterization of CMO to the closure of Cg5,,, (R™)
in £L¥)(R™). Uchiyama [68] considered the compactness of the commutator [b, T]
on LP(R™) in 1978, where T is a Calderén-Zygmund singular integral operator with
convolution type of smooth kernel K # 0. He proved that [b, T] is compact on
LP(R™) if and only if b € CMO(R"), where CMO(R") is the closure of C3,  (R") in

BMO(R™). In its proof he used the following characterization of CMO(R™), which
was mentioned by Neri [54, Remark 2.6] without proof.

Theorem 1.1.3 ([68]). Let f € BMO(R"™), and let MO(f, B(x,r)) be the mean
oscillation of f on the ball B(x,r) centered at x € R™ and of radius r > 0. Then
f € CMO(R"™) if and only if f satisfies the following three conditions:

(i) lim sup MO(f, B(x,r)) =0.

r—40 TER™

(ii) lim sup MO(f, B(z,r)) = 0.

r—00 TER™

(iii) lim MO(f, B(x +y,r)) =0 for each ball B(x,r).

ly|—o0

After that, using this characterization, many authors gave the characterization
of various compact commutators on several function spaces. For example, Chen,
Ding and Wang [10, 12] gave the characterization of the compact commutators [b, T']

and [b, I,] on Morrey spaces. For the others, see [7, 9, 11, 13, 14, 35], etc.
In Chapter 4 we extend Theorem 1.1.3 to W£I’¢(R )

comp which is the closure of

Comp(R™) in the generalized Campanato space Ly 4(IR™) with variable growth condi-
tion. To prove the extension of Theorem 1.1.3 we improve the proof of Uchiyama [68]
by using the mollifier and a smooth cut-off method. As a corollary we give a char-

HP®) Shich is the closure of C° (R™) in the

acterization of the space C (R") comp

comp
Lipschitz space Lip,(R™), 0 < a < 1. We state the theorem in Section 4.1 and
prove it in Section 4.3.

In Chapter 5, as an application of the extension of Theorem 1.1.3, we prove
that, if the commutator [b,T] or [b, I,] is compact, then b is in mﬁl’¢(Rn).
Actually, we show that, if b does not satisfy the characterization, then [b, 7] and
[b,1,] are not compact. To do this we construct counterexamples. In Section 5.1,
we state the theorems. Then we give lemmas in Section 5.2 and prove the theorems

in Section 5.3.



At the end of this section, we make some conventions. Throughout this paper,
we always use C' to denote a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. Constants with
subscripts, such as €, is dependent on the subscripts. If f < Cyg, we then write
f<Sgorg 2 fiand if f < g < f, we then write f ~ g.

1.2 Definitions

We denote by B(x,r) the open ball centered at x € R™ and of radius r, that is,
B(z,r)={yeR": |y —z| <r}.

For a measurable set G C R™, we denote by |G| and xg the Lebesgue measure of G

and the characteristic function of G, respectively. For a function f € L} _(R™) and

a ball B, let

(1.2.1) fs = ]if _ ][Bf(y) dy = ﬁ/}gﬂy) dy

In this paper we consider generalized Morrey spaces L®#)(R") with p € [1, 00)

loc

and variable growth function ¢ : R" x (0,00) — (0,00). For a ball B = B(z,r) we
write ¢(B) = p(z,T).
Definition 1.2.1. For p € [1,00) and ¢ : R" x (0,00) — (0,00), let L®¥)(R") be

the set of all functions f such that the following functional is finite:

1 » 1/P
[ — (WJZ ) dy) ,

where the supremum is taken over all balls B in R"™.

Then || f| 1w (gn) is @ norm and LP®)(R") is a Banach space. Let @y(z,7) = r

for A € [-n,0]. Then L®#)(R") is the classical Morrey space. That is,

1 1/p
P (RP) = Pd = )P d
Uhoonien =t (s froran) " = o (5 f irwran)”

If A\ = —n, then LP¥-2)(R") = LP(R"). If A = 0, then LP#0)(R™) = L>(R").
Generalized Morrey spaces L% (R") with variable growth function ¢ were in-
troduced in [38] and studied in [39, 43, 47], etc.

We also consider generalized Campanato spaces with variable growth condition.

b}



Definition 1.2.2. For p € [1,00) and ¢ : R" x (0,00) — (0, 00), let LP¥)(R") be

the set of all functions f such that the following functional is finite:

1 1/p
11l o0y = sup (@ ]i [f(y) = f5l" dy> ,

where the supremum is taken over all balls B in R".

Then || f|| 2oy ny 18 @ norm modulo constant functions and thereby LP#)(R™)
is a Banach space. If p =1 and ¢ = 1, then LP¥)(R") = BMO(R"). If p = 1 and
@(r) =r* (0 < a < 1), then LP#)(R") coincides with Lip,, (R").

Generalized Campanato spaces £P%)(R") with variable growth function ¢ were
introduced in [51] to characterize pointwise multipliers on BMO(R™) and studied
in [37, 43, 46], etc. Moreover, it has been proved that £P#)(R") is the dual space
of the Hardy space HP)(R") with variable exponent in [48].

In Chapters 4 and 5 we also use the following space and norm.

Definition 1.2.3. For p € [1,00) and ¢ : R" x (0,00) — (0,00), let £, ,(R") be

the set of all functions f such that the following functional is finite:

1 ) 1/p
1fllz, . @ = sup ) (]{9 |f(y) — B dy) ;

where the supremum is taken over all balls B in R".

Then L14(R") = L0V (R?) and [[fllz, @) = [ f]lcco @n)-

Next we recall Calderén-Zygmund operators and generalized fractional integral
operators.

A linear operator T from S(R™) to S'(R") is said to be a Calderén-Zygmund
operator if T is bounded on L?(R") and there exists a standard kernel K (see
Definition 2.1.1) such that, for f € L2 (R"),

comp

Tfx)= [ K(z,y)f(y)dy, = ¢&suppf.
Rn”
Observe that the Hilbert transform (n = 1, K(x,y) = (z — y)/|z — y|?) and the
Riesz transforms (n > 2, K(x,y) = (z; —y;)/|lz—y|"*, j = 1,...,n) are Calderén-

Zygmund operators. It is known that any Calderén-Zygmund operator 7" is bounded
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on LP(R™) for 1 < p < oo. This boundedness was extended to generalized Morrey
spaces LP#)(R"™) with variable growth function ¢ by [38].
Let I, be the fractional integral operator of order o € (0,n), that is,

I/ (x) = /R W)

n |z =yl

Then it is known as the Hardy-Littlewood-Sobolev theorem that I, is bounded
from LP(R") to LY(R"), if @ € (0,n), p,q € (1,00) and —n/p + o = —n/q. This
boundedness was extended to Morrey spaces by Adams [1] as follows: If « € (0,n),
p,q € (1,00), A € [-n,0) and A/p + a = \/q, then I, is bounded from L®#»)(R")
to L@ (R"). See also [58].

For a function p : R” x (0,00) — (0,00), we consider the generalized fractional

integral operator I, defined by

plz, |z —y
(122) Bi) = [ A g4
where we always assume that
1
t
(1.2.3) / p(ﬁ’ ) dt < oo for each z € R",
0

and that there exist positive constants C', K; and Ky with K; < K5 such that

2 p(x, )
(1.2.4) sup p(x,t) <C ——=dt forall z € R" and r > 0.
r<t<2r Kir

The condition (1.2.3) is needed for the integral in (1.2.2) to converge for bounded
functions f with compact support. The condition (1.2.4) was considered in [59].

If p(z,r) =r* 0 < a < n, then I, is the usual fractional integral operator I,.
If a(-) : R® = (0,n) and p(x,r) = r*®) then I, is a generalized fractional integral
operator I,y with variable order defined by

Loy fz) = /Rn %dy

Let 0 < a < n and

(r) re, 0<r<l,
T =
P e 1 <r < .

7



Then p satisfies (1.2.3) and (1.2.4). Other examples of more general p, see Corol-
laries 2.14 and 2.15 in [47]. The operators I, with p : (0,00) — (0,00) are
studied in [18, 19, 23, 24, 25, 40, 41, 42, 44, 62, 66|, etc. The boundedness of
I, with p : R" x (0,00) — (0,00) on generalized Morrey spaces L®#)(R") with
¢ :R" x (0,00) — (0,00) was given by [47]. See also [31, 32].

In this paper we investigate the commutators
b, T)f =bTf—T(bf) and [bI)]f =bl,f—I,(bf),

for b € LOY)I(R™) and f € L) (R™) with o, 1, p : R® x (0, 00) — (0, 00).
We say that a function 6 : R" x (0,00) — (0, 00) satisfies the doubling condition

if there exists a positive constant C' such that, for all z € R™ and r, s € (0, 00),

1
— <
o=

D
~—

(x,r

(1.2.5) <O, if =<

w | =

<2

e
SN—
N

(z,s

We say that 6 is almost increasing (resp. almost decreasing) if there exists a positive
constant C' such that, for all x € R" and r, s € (0, 00),

(1.2.6) O(x,r) < CO(x,s) (resp.O(x,s) < CO(x,r)), ifr<s.

We also consider the following condition; there exists a positive constant C' such
that, for all x,y € R™ and r € (0, 00),

1
<
oS

>

(z,7)
(y,r

(1.2.7) <C, if lz—y| <

D
~—

For two functions 0,k : R" x (0,00) — (0,00), we write 6 ~ k if there exists a

positive constant C' such that, for all x € R" and r € (0, 00),

1 (x,r)
c = K(z,T)

>

(1.2.8) <C.

Let 1 < p < ooand ¢, : R x (0,00) — (0,00). If ¢ ~ @, then LP#)(R") =
LP#)(R™) with equivalent norms. If lim ¢(x,7)r" = 0 for some x € R™, then
r—00

LP#)/(R™) = {0}, since

/B( : |f(y)[Pdy < QD(x,T’)T"||f||Iz(W)(Rn) —0 as r— 0.

8



If liné @(z,7) = 0 on a subset E C R”, then, for all f € LPY)(R"), f =0 ae. E,
r—>

since

1
W /B(w 7) |f(y)| dy 5 S0(1‘7T)||JC||L(JJ,&0)(]Rn) —0 as r—0.
In this paper we consider the following classes of ¢:

Definition 1.2.4. (i) Let G4 be the set of all functions ¢ : R™ x (0, 00) — (0, 00)
such that ¢ is almost decreasing and that r — @(x, r)r™ is almost increasing. That

is, there exists a positive constant C' such that, for all z € R™ and r, s € (0, 00),
Cole,r) > plz,s), pla,r)i" < Cpla,s)s", ifr <s.

(ii) Let G™° be the set of all functions ¢ : R™ x (0,00) — (0,00) such that ¢ is
almost increasing and that r — ¢(z,r)/r is almost decreasing. That is, there exists

a positive constant C' such that, for all z € R™ and 7, s € (0, 00),
olx,r) < Co(z,s), Colz,r)/r>p(r,s)/s, ifr<s.

If p € G or p € G, then ¢ satisfies the doubling condition (1.2.5).

Remark 1.2.1. Tt is known by [45] that, if ¢y € G and 1) satisfies (1.2.7), then
LEPY)(R") = LE¥)(R™) with equivalent norms for each p € [1,00), see Corol-
lary 2.3.3. In particular, LP¥")(R") = BMO(R") if ¢ = 1 and LP¥")(R?) =
Lip,(R") if ¢(z,7) = 7%, 0 < a < 1. For the relation between L£LP¥")(R") and
Holder (Lipschitz) spaces Ay, (R™), see [43]. It is also known by [43] that, if ¢ € G
and 1) satisfies (2.1.4) below, then, for every f € LP¥)(R"), IB(0,r) converges as

r— oo and ||fl s ~ || f — TILIEO IBom | Lo, see Lemma 2.3.5.

Remark 1.2.2. Let o € G4, If ¢ satisfies

(1.2.9) lim p(z,7) =00, lim ¢(z,r) =0,

r—0 r—00
then there exists ¢ € G such that ¢ ~ @ and that o(z,-) is continuous, strictly
decreasing and bijective from (0, 0o) to itself for each x. This fact follows from [44,

Proposition 3.4].

Remark 1.2.3. We say that a function a(-) : R" — (—o0, 00) is log-H6lder continu-

ous if there exists a positive constant C,(.) such that

a(z) — afy)] < ——20

<———— for O<|z—y|<l1.
og(e/lz — ) v =l

9



Let a(-) : R" — (—o00,00) be log-Hdlder continuous and satisfy

—oo < inf a(z) < sup a(r) < oo, —oo < @, < o0,
zeR" rER"
and let
(z.7) re@ 0 <r <1,
x,T) =
7 o 1 <r <o0.

Then ¢ satisfies (1.2.5) and (1.2.7), see [46, Proposition 3.3].
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Chapter 2

Boundedness

2.1 Theorems and examples

First we recall the definition of Calderén-Zygmund operators following [69]. Let

Q2 be the set of all nonnegative nondecreasing functions w on (0,00) such that

1 w(?)

Definition 2.1.1 (standard kernel). Let w € Q. A continuous function K(z,y) on
R" x R™\ {(z,z) € R*} is said to be a standard kernel of type w if the following

conditions are satisfied;

C
2.1.1 K(z,y)| < for x #vy,
@11 K<

_ T,z x) — Z,T ¢ W ’y_z‘
|K(:p,y) K( ) >|+|K(y7 ) K( ) )|§ |x—y|n ( )

for 2y —z| < |z —y|.

(2.1.2)

Definition 2.1.2 (Calderén-Zygmund operator). Let w € Q. A linear operator T'
from S(R™) to S§’(R") is said to be a Calderén-Zygmund operator of type w, if T' is
bounded on L?(R") and there exists a standard kernel K of type w such that, for

f S Lgomp(Rn)’
(2.1.3) Tf(x) = . K(z,y)f(y)dy, x ¢ supp f.

Remark 2.1.1. If x ¢ supp f, then K (z,y) is continuous on supp f with respect to y.
Therefore, if (2.1.3) holds for f € L2 (R™), then (2.1.3) holds for f € L! (R").

comp comp
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It is known by [69, Theorem 2.4] that any Calderén-Zygmund operator of type
w € Q is bounded on LP(R™) for 1 < p < oo.

This result was extended to generalized Morrey spaces L®¥)(R™) with variable
growth function ¢ by [38] as the following: Assume that ¢ € G4 and that there

exists a positive constant C' such that, for all z € R™ and r € (0, 00),

(2.1.4) /oo ‘p(i’ D 4t < Copla, ).

For f € LP#)(R"), 1 < p < oo, we define T'f on each ball B by
@15 Tfe) = T(fen)) + [ LK@ zep
R™\2B

Then the first term in the right hand side is well defined, since fyx2p € LP(R™), and
the integral of the second term converges absolutely. Moreover, T'f(z) is indepen-
dent of the choice of the ball containing x. By this definition we can show that T is
a bounded operator on L®#)(R"). For the definition of T'f, see also [49, Section 5]
and [60].

For functions f in Morrey spaces, we define [b, T]f on each ball B by
2.10) B.TIf(@) =B TN Pan)(e) + [ () = by K (@) f(0) dy, 2 € B,

R*\2B

see Remark 2.3.2 for its well-definedness. Then we have the following theorem.

Theorem 2.1.1. Let 1 < p < g < o0 and ¢, : R" x (0,00) — (0,00). Assume
that p € G and v € G, Let T be a Calderén-Zygmund operator of type w € Q.

(i) Assume that ¢ satisfies (1.2.7), that ¢ satisfies (2.1.4), that fol w dt <

oo and that there exists a positive constant Cy such that, for all x € R™ and
r € (0,00),

(2.1.7) (. r)p(z, )P < Copla, ).

If b € LOVYN(R™), then [b,T|f in (2.1.6) is well defined for all f € LP#)(R™)

and there exists a positive constant C, independent of b and f, such that

110, T] f || Laser < CUB| e [| f] Lo -
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(ii) Conversely, assume that ¢ satisfies (1.2.7) and that there exists a positive
constant Cy such that, for all x € R™ and r € (0, 00),

(2.1.8) Cotp(, 1) p(, 1) > p(a,7) /1.
If T is a convolution type such that

(2.1.9) Tf(z)=p.o. . Kz —y)f(y)dy

with homogeneous kernel K satisfying K(x) = |z| " K(z/|z|), [0t K =0,
K € C>*(8") and K 7—é 0, and if [b,T] is bounded from LP#)(R") to
L@#)(R™), then b € LOY)(R™) and there exists a positive constant C, in-
dependent of b, such that

1bll car < CIb, T o) s Lo

where ||[b, T)|| L) 1@ 35 the operator norm of [b,T) from L®P¥*)(R™) to
L@#)(R™),

In the above theorem, if 1 = 1 and ¢(x,r) = 77", then LI¥)(R") = BMO(R")
and L®¥)(R") = LP(R") with p = ¢. This is the case of Theorem 1.1.1.

If Y(z,7) = 7%, 0 < a < 1, and @(z,7) = 7", then LI¥)(R") = Lip,(R"),
LP#)(R™) = LP(R™) and L9 (R") = LI(R") with —n/p + a = —n/q. That is,

116 T]f e < N0l ip I 1] 22

This is the case of Janson [28, Lemma 12].

Example 2.1.1. Let 1 < p < ¢ < oo and f(:), A(:) : R* — (—00,00). Assume that

0< inf f(z) < sup fz) <1, 0< B, <1,

zEeR™ zER™
—n < inf A(z) < sup Mz) <0, —n <A\ <O0.
IER” CIZERn

Let



Let T be a Calderén-Zygmund operator of type w €  with fol w dt < oo.
If 5(-) is log-Hélder continuous and

B(x) +Ax)/p > Mx)/q, B+ M/p < A/g,

then
110, T f || ooy < OBz [ f | Lo

since 1 satisfies (1.2.7) (see Remark 1.2.3), ¢ satisfies (2.1.4), and (2.1.7) holds.

Conversely, if A(+) is log-Hélder continuous and

B(x) +Ax)/p < Mx)/q, B+ A/ > N/g,

and if T is a convolution type with homogeneous kernel K satisfying K(z) =
2| " K (z/|z]), [¢or K =0, K € C®(S"") and K # 0, then

16/ 2wy < CN[b, T L) - ae) -

We also take the cases

pary = [T ogle/m), 0 < <1,
z,r)=
B (log(er))ﬁ**, 1 <r < oo,

etc.

Next, we consider generalized fractional integral operators I,. Assume that p
satisfies (1.2.3) and (1.2.4). Let 1 < p < co and ¢ € G4, Then, for f € LP?)(R"),
under some suitable condition, the integral in (1.2.2) converges absolutely and we
can show that I, is a bounded operator from L") (R"™) to L@¥)(R"), see Theo-
rem 2.2.2 for details.

For the commutator [b, I,] we have the following theorem.

Theorem 2.1.2. Let 1 <p < q < oo and p,p,7 : R" x (0,00) — (0,00). Assume
that p € GI°¢ and ¢ € G™°. Assume also that p satisfies (1.2.3) and (1.2.4). Let

p(x,r) = [ —p(f’t) dt.
(i) Assume that p, p* and ¢ satisfy (1.2.7), that ¢ satisfies (2.1.4) and that there
ezist positive constants €, C,, Cy, Cy and an exponent p € (p, q| such that, for

14



all z,y € R™ and r, s € (0, 00),

(2110) ¢, 280 S P@8)
/ran

—€ - Sn—e

p*(z,r)
pntl ’

plz,r)  ply.s)
rn s™

(2.1.11) ‘ < Cp(Ir = s+ [z —yl)

1 T
— < -<2and|lx—yl<r/2
5 <5 <2an |z —yl <r/2,
t)p(x, t)1/P

if
' p(l’,t) 1/p ~ p(x,

(2.1.12) /0 Tdtgp(x,r) +/T
(2.1.13)  ¥(z,r)p(x, )P < Cro(x, )Y,

dt < Cop(z,7)?,

~+~

Ifb e LEY(R™), then [b,I,)f is well defined for all f € L™ (R") and there

exists a positive constant C', independent of b and f, such that

|0, Ll fll oo < Clbllcanr [ Fll e

(ii) Conwversely, assume that ¢ satisfies (1.2.7), that p(x,r) =r*, 0 < a < n, and
that

(2.1.14) Cotb(z,)r* p(z, )P > @(z, )M,

If [b,1,] is bounded from L®#)(R™) to L@)(R"), then b € LIV (R™) and

there exists a positive constant C', independent of b, such that

16]| cawy < C|[0, L]l L) s Lo

where ||[b, 1.]|| Low) - r@e 15 the operator norm of [b,1,] from L®P#)(R™) to
L@#)(R™),

In the above theorem, if p(z,7) =r* 0 < a <n, ¥ =1 and p(z,r) =", then
I, = 1,, LH)(R") = BMO(R"), L®#¥)(R") = LP(R") and L9 (R") = LI(R").
This is the case of Theorem 1.1.2. See also [34]. For the well-definedness of [b, I,] f

under the assumption in Theorem 2.1.2 (i), see Remark 2.3.3.
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Example 2.1.2. Let 1 < p < p < g < o0 and af:), B(:),A(:) : R" — (—o0, 00).

Assume that

0 < inf a(z) <sup a(z) <n, 0<oa <n,

zeR? rER™
0< inf B(z) < sup B(z) <1, 0< B <1,
zeR™ zER™
—n < inf A(z) < sup AMz) <0, —n <A <O0.
zeRn xeR”

Let

o 1 <r<oo.

a() B(a) M@ 1
T s T s r s <r< y
p(z,r) = { w | W(zr) = { p(x,r) = { \

If a(+) is Lipschitz continuous, §(-) is log-Holder continuous and

:;@(a(rr) + A(z)/p) <0,

a(z) + Mz)/p > M) /P,  aw+ M/p < A/Ds
B(x) + M) /p > Mx)/q, B+ N/D < A/g,

then
116 Lol f | Lo < ClI0l| zan | fl Lo

To confirm it we only check on (2.1.11). First we note that p satisfies (1.2.5) and
(1.2.7) by Remark 1.2.3 and that p ~ p*. If 0 < s/2 <r <s < 1land |z —y| <s,

then r*®) ~ @) ~ g% Hence

< ‘Ta(m)—n . 8a(x)—n| + ‘Sa(m)—n . Sa(y)—n‘

‘p(%?“) _py,s)

Tn Sn

S I = sl 4 Ja(z) — afy)| og sl
< Jr = sfr™ 7 4 gl — yls"

S (Ir = s+ |z — yro@
If1/2 <r <1<s<2, then r*® ~ 5% ~ 1. Hence

Qx—T

TTL STL

'p('ra T) p(y7 3) < ‘ra(w)—n . 1a(:v)—n‘ + ’]_a*—n — 3

Shr—1]+ 1= 5] S Ir = sl

16



If1<r<s<2r, then r* ~ s*. Hence

plx,r)  ply,s)
r" s

Ox—N Ax—N

= ‘7‘ —s ‘ < |r — sl h

Therefore, (2.1.11) holds. Conversely, if A(-) is log-Ho6lder continuous, « is constant

and
a+B(x) +AMx)/p < M) /g, a+ B+ A/p=AN/g,
then
16/l zar < CN\ [0, Lol L) —s L) -

We also take the cases

r*®@)(1/log(e/r)) ™), 0<r <1,
oy = {7701 o8(e/)
r® (log(er))*, 1<r<oo,

(2,7) ra(’”), 0<r<l,
T,r) =
P e 1 <r < o0,

ete.
At the end of this section we give the result in case 1) € Gde°.

Theorem 2.1.3. Let p,py,q € (1,00) and ¢,1 : R" x (0,00) — (0,00). Assume
that 1/p+1/py = 1/q and that both @ and 1 are in G4 and satisfy (2.1.4). Let T be
a Calderén-Zygmund operator of type w € Q. If b € LPY)(R™), then [b,T)f is well
defined for all f € L™?)(R™) and there exists a positive constant C, independent of
b and f, such that

116, T1f | ear < CIb o [1f ]| e

whe/,"e el/q — ¢1/p0¢1/p'

Theorem 2.1.4. Let p,po,p,q € (1,00) and p,p : R™ x (0,00) — (0,00). Assume
that p < P, 1/po + 1/p = 1/q and that ¢ is in G and satisfies (2.1.4). Assume
also (2.1.12). If b € LPoP)(R"), then [b,I,)f is well defined for all f € LP¥(R")

and there exists a positive constant C, independent of b and f, such that

116; To] fll Ltasor < ClIBI giwoor 1 f Nl o
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As a related result, we have the boundedness of [b,1,] on Orlicz spaces. A
function ® : [0,00) — [0, 00) is called a Young function if ® is increasing, continuous,
convex and bijective from [0, 00) to [0,00). A Young function ® is said to satisfy
the As-condition, denoted by ® € As, if there exists a constant C' > 0 such that
O(2t) < CP(t) for all t > 0. A Young function @ is said to satisfy the V,-condition,
denoted by ® € Vs, if there exists a constant k > 1 such that ®(t) < 5-®(kt) for

all £ > 0. Then we have the following theorem, whose proof is in [63]

Theorem 2.1.5 ([63, Theorem 3.13]). Let p, v : (0,00) — (0,00), and let & and
U be Young functions. Assume that p satisfies (1.2.3). Let b € L} (R™).

loc
(i) Let ®,U € Ay N Va. Assume that ¢ is almost increasing and that r —
p(r)/r"=¢ is almost decreasing for some ¢ € (0,n). Assume also that there
exists a positive constant A and © € Vy such that, for all r € (0,00),

/ P g g 1)) 4 / TANT) 4 < o711,

t

P(r)O~H(1/r") < AUTH(L/r"),
and that there exist a positive constant C, such that, for all r,s € (0,00),

A2 ool (2 yy<iso
0

rn s rntl t S

If b € L14(R"), then [b,1,] is bounded from L*(R™) to LY(R™) and there
exists a positive constant C' such that, for all f € L*(R"),

1o, L1 fllw < Clblle, I f ]z

(ii) Conwversely, assume that there exists a positive constant A such that, for all
r € (0,00),
U (L/r") < Arfy(r)@T (1),

If [b, 1] is well defined and bounded from L®(R™) to L¥(R"), then b is in
L1.4(R"™) and there exists a positive constant C, independent of b, such that

18ll, < CII1b, o]l o e,
where ||[b, I]||Le_ v is the operator norm of [b, I,] from L®(R™) to L¥(R™).

18



2.2 Boundedness of generalized fractional maxi-
mal and integral operators

For a function p : R™ x (0,00) — (0,00), let

(2.2.1) M, f(x) = sup p(B ][If )| dy,

B>x

where the supremum is taken over all balls B containing x.
If p(B) = |B|*/™, then M, is the usual fractional maximal operator M, defined
by

Mo f(@) = s e [ 17y

If p =1, then M, is the the Hardy-Littlewood maximal operator M, that is,

(2.2.2) = sup][ |f(y)| dy.

B>z

It is well known that M is bounded from LP(R") to itself if p € (1,00]. This
boundedness is extended to Morrey spaces LP#»)(R") by Chiarenza and Frasca
[15] in 1987 as the following: If p € (1,00) and A € [—n, 0], then the operator M is
bounded from L®#V)(R") to itself.

For generalized Morrey spaces L(®#)(R") with variable growth function ¢, the

following theorem is known.

Theorem 2.2.1 ([47, Theorem 2.3]). Let 1 < p < 0o and ¢ : R" % (0,00) — (0, 00).
Assume that ¢ is almost decreasing, that is, there exists a positive constant C' such
that

(2.2.3) Co(z,r) > p(z,s) for ze€R", 0<r<s.
Then the operator M is bounded from L™ (R™) to itself.

On the boundedness of I, the following theorem is known.

Theorem 2.2.2 ([47, Corollary 2.13]). Let 1 < p < g < o0 and p,p : R"x (0, 00) —
(0,00). Assume that p satisfies (1.2.3) and (1.2.4) and that ¢ is in G4 and satisfies
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(1.2.9). Assume also that there exists a positive constant C' such that, for all x € R"
and r € (0,00),

" o0 1/p
(2.2.4) / Mdt sﬁ(x,r)l/p+/ p(x,t)p(z,1) dt < Cgo(:v,v“)l/q.
0 r

t t

Then I, is bounded from LP#)(R") to L@#)(R™).
If p(z,r)/r" < Cp(x,s)/s" for 0 < s < r < oo, then
(2.2.5) M,f(z) < CL,|f|(z), xe€R"

Hence, the boundedness of M, follows from the boundedness of I,. For example,
the Hardy-Littlewood-Sobolev theorem yields that M, is bounded from L?(R™) to
LY(R"), if a € (0,n), p,q € (1,00) and —n/p + « = —n/q. However, if p(x,r) =
(log(e+1/r))7#, B > 1, for example, then it turns out that the boundedness of M,
is better than the boundedness of I, by the following theorem. Actually, (2.2.4)
cannot be replaced by (2.2.6), see [19, Theorem 1.1].

Theorem 2.2.3. Let 1 < p < g < o0 and p,p : R"x (0,00) — (0,00). Assume that
@ is in G and satisfies (1.2.9). Assume also that there exists a positive constant
Co such that, for all € R™ and r € (0,00),

(2.2.6) p(x, r)p(x, )P < Cop(, )1,
Then M, is bounded from LP®)(R™) to L&) (R™).

Proof. We may assume that ¢(x,-) is continuous, strictly decreasing and bijective
from (0, 00) to itself for each z € R™, see Remark 1.2.2.
We prove that, for f € L) (R") with £l Lo ®ny = 1,

(2.2.7) M, f(z) < CMf(z)P/1, x€R",

for some positive constant C' independent of f and x. Then we have the conclusion
by using Theorem 2.2.1. To prove (2.2.7) we show that, for any ball B = B(z,r),

(2.2.8) pB) f 111 < Cudtf (ol
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Choose u > 0 such that ¢(z,u) = M f(x)P. If r < u, then p(B) = p(x,r) > M f(x)?
and p(B)Y4Y/P < M f(x)P/771. By (2.2.6) we have

o(B) f ] < Cop(B)/57 f I < CoM f(a)la,

If r > u, then p(B) = ¢(x,7) < Mf(z)? and ¢(B)Y? < M f(x)?/9. By (2.2.6) we

have

1/p
oB) { 111 < 8) (ﬁ mp) < p(B)o(B)'? < Cop(B)V" < CoM f(x)".

Then we have (2.2.8) and the conclusion. O

Next we recall N-functions and Musielak-Orlicz spaces. A function @ : [0, c0) —
[0, 00) is called an N-function if ® is increasing, convex and bijective from [0, co) to

itself, and if

@:0, 1im%:oo

t—+0 ¢ t—soo
Then the function ¥ : [0, 00) — [0, 00) defined by
U(t) = sup{ts — ®(s) : s > 0}

is also an N-function, and (®, ¥) is called a complementary pair.
Let ® : R" x [0,00) — [0,00). In this paper we also call ® an N-function if
®(x,t) is an N-function with respect to ¢ for each x and it is a measurable function

with respect to z for each t. We define a function ¥ : R x [0,00) — [0, 00) by
U(x,t) = sup{ts — ®(z,s) : s > 0}.

Then W is also an N-function and we have Young’s inequality

(2.2.9) st < O(z,s) + ¥(z,t).

For an N-function ® : R™ x [0, 00) — [0, 00), let

L*(R"™) = {f : /n O (z,e|f(x)])de < oo for some & > O},

||f||m=inf{A>0:/n<I><x,@) dxgl}.
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Then || - |[ze is a norm and thereby L®(R") is a Banach space. We note that
N-functions are special cases of Young functions and Orlicz and Musielak-Orlicz
spaces are usually defined by Young functions. In this paper, however, we need
only N-functions.

Let (®, V) be a complementary pair of N-functions from R" x [0, 00) to [0, 00).
Then it is known that

(2.2.10) t <Oz, ) U H(a,t) <2, >0,

where ®~1 and ¥~! are the inverse functions of ® and ¥ with respect to t, respec-

tively. It is also known that

(2.2.11) - [f(@)g()| de < 2[[ Lo llgl e

This generalized Holder’s inequality follows from Young’s inequality (2.2.9).

Lemma 2.2.4. Let k > 0 and p : R" x (0,00) — (0,00). Assume that p satisfies
(1.2.3). Let

(2.2.12) oz, r) = /0 p(“;’ D .

If r v p(xz,r)/r"* is almost decreasing, then r — p*(z,7)/r* is also almost decreas-

mg.

Proof. If r < s, then p(x, (s/r)t) < (s/r)*p(x,t). Hence,

/OSMdt:/Or—p(x,(:/r)t) dt < (EY[M&.

t T t

In the above implicit constants are independent of x and r. This shows the conclu-

sion. O

Remark 2.2.1. Since p* is increasing with respect to r, we see that p* satisfies the
doubling condition (1.2.5) if r — p(x,r)/r* is almost decreasing for some k > 0.
Moreover we see that p < p* if p satisfies (1.2.4).

The following theorem is a generalization of [50, Theorem 1.3].
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Theorem 2.2.5. Let 1 < s < 0o and p : R" x (0,00) — (0,00). Assume that p
satisfies (1.2.3) and (1.2.4) and that v — p(z,7)r™/*~¢ is almost decreasing for some
positive constant €. Then there exist an N-function ® and a positive constant C
such that, for all x € R™ and r > 0,

(2.2.13) c-lp! (a;,i)g ! /p(g’;’t) dt < Cp~! (a:i)
rn /s Jo rmn

Moreover, 1, is bounded from L*(R™) to L*(R").

Proof. Part 1. We first show (2.2.13) for some N-function ®. Let p* be as in
(2.2.12). Then p* satisfies the doubling condition (1.2.5), see Remark 2.2.1. Hence
we have

* 2r % 0o % * 00 *
P(%T)N/ p(x,t)dt</ p(x,t)dt<p(x,r)/ dt pr(ar)

rn/s {n/s+1 ~ {n/s+1 ~ pn/s—e tlte ~ rn/s

Let

h(z,r) = /00 CR)) dt and H(z,r)= /00 Mz, ) dt.

tn/s+1 t

Then H(z,r) ~ h(z,r) ~ 222 where implicit constants are independent of z and

rn/s )
r. In this case H(z,-) is in C?-class with respect to r and bijective from (0, 00) to

itself for each x, since H(z,7) — 0 as r — oo and ¢ x L2@r) s o as r — +0.

rn/s—e

Let H! be the inverse function of H with respect to r and let

0 =0
P(x,u) =<’ =
1/H  (z,u)™ u>0.
Then
1
¢! (:1:, —) = H(z,r), >0,
/'nn

and (2.2.13) holds. We show that ® is an N-function in the following.
Let u = H(x,r) and v = 1/r". Then v = ®(x,u) and

_Ov _dv [Oou n h(z,r)
0u2(0w) = 5 = ar 5—<—rn+1>/(— ; )

n 1

r*h(x,r) ~ rrenls pr(x,r)
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If w — 40, then r — oo and 9,P(x,u) — 0. If u — oo, then r — +0 and
Oy ®(x,u) — oco. Since

n R G w07 (,7)
87«(7' h(l',?“)) =nr 1/T Wdt-?“ ey

>~ 1 1
n—1 x
> " p*(x, ) (n/T tn/8+1dt_rn/8> >0,

we see that Jv/0u is decreasing with respect to r, that is, 9(0v/0u)/0r < 0. Hence

9%v 0 Ov ou
guv_ (L8 S S
ou? Or Ou or —

Then ® is an N-function.

Part 2. We show the boundedness of I, from L*(R™) to L®(R"). We use the method
by Hedberg [26]. Let f € L*(R") and write

T,|T — T,|T —
n= [ AWy, g [ ARy,
B(z,r) |z —yl R7\ B(z,r) |z — 9

Let M be the Hardy-Littlewood maximal operator. Then

(2.2.14) qu}l/ KEEJ%MNwMy
=0 Y B@27in)\B(z,27~ 1) lz -yl

N

( sw p(sc,w) f o Wl
j—0 \2777'r<t<27Jr B(z,2-ir)

© 2 _j_l’r' 27'/
j 0

K12*j*17“ t

AN

j=0

and
1/s’

plz, |z —y)\*
< ([ (M) ay) 1l
R™\ B(z,r) |:1: - yl

where 1/s+1/s' = 1. Since

B(z,29+11)\ B(z,2i7) |z —y|"

1 1/s
<( s sten)(f )
20r<t<2i+1p B(z,2it1r)\ B(x,2ir) |.T - y|ns

) K22j7‘ t K22j7‘ t
S <2ﬂr)—"/5/ o) )dtw/ o) g

. _ 1
K127 14 Ky TV

1/s
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we have

> plx,t x, Kir >~ 1
219) 1nl< [ Sl s 28D [T oLl
K

Kir tn/s+1 (Klr)n/s—e - tlte
p(x, Kir) 1 Kikar/2 (0 1)
R g = )|l
T r (K1)2r/2 t

By (2.2.14) and (2.2.15) we have

1 Kar
L@l <0 (b Il ) [ 25

where K3 = max(1, Ky/2, K1K,/2) and C” is independent of =, r and f. By the

boundedness of M on L*(R") there exists a positive constant C; such that

M f

Ls S Cs”f

LS.

Set r = (1/0)*™ and o = M f(x)/(Cs||f|lrs)- Then

M)+ Wl = (14 ) M),

and, by (2.2.13),

Kar —1 S
plx,t) Jse—1 1 /s -1 1 O (z,0%)
dt < C(Ksr)"*® — | S — ) =—.
/o t < Ofar) o (Ksr)" ) ™ ' "

Therefore

sl $ M0 2T - it (o (GHEL) Y s

|Ipf(:v)) (Mf(w)>s
q)(m’cffuf ) = \adfle)

where C” is independent of z and f. This shows
I
/ P (x,wi) der <1,
n C Hf Ls

Hofllze < CIIf

The proof is complete. O

that is,

and

LS.

25



Remark 2.2.2. We cannot replace [ p(‘i’t) dt by p(z,r) in (2.2.13), see [50, Section 5.

At the end of this section we give the Musielak-Orlicz norm of the characteristic

functions of balls B.

Lemma 2.2.6. Let 1 < s < o0 and p : R" x (0,00) — (0,00). Assume the same
condition as Theorem 2.2.5. Let ® be the N-function in Theorem 2.2.5 and ¥
be its complementary N-function. If p* satisfies (1.2.7), then, for all balls B, its

characteristic function xp is in LY (R") and
IxallL@n < Csp|BI'p"(B),
where Cs , is a positive constant independent of B.

Proof. Let B = B(x,r). Since p* satisfies (1.2.7), from (2.2.13) it follows that

e (x,1/|B)
o = 371(,.1/B))

where Cs is a positive constant independent of x,y € R™ and » > 0. Using the
condition (2.2.10), we have

IR (y cq)’mé‘ﬁi?, 1/18\)) w=[ (y’ A= 1/\Br>> W

</ (y’ TG 1/|B|>> W

< / W (4, 0 (3, 1/|B])) dy

_[L
5 | Bl

< (Cp forye B,

dy = 1.

Then
X8l Lo @y < ColB|®™ (2, 1/|B]) < |B['"*p"(B).

This is the conclusion. O]

2.3 Lemmas

In this section we give several lemmas to prove theorems.

Let
MO(f, B) = ]@ f(2) — ful de.
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Lemma 2.3.1 ([37, Corollary 2.4]). There exists a positive constant ¢, dependent
only on n such that, for all x € R™ and r,s € (0, 00),

> MO(f, B(x,t
’fB(ﬂ?,T‘) - fB(:C,s)l S Cn/ <f’ (l')

" ) dt, if r<s.
The following lemma is a corollary of the John-Nirenberg inequality ([29]).

Lemma 2.3.2. Let p € (1,00). Then there exists a positive constant c(n,p) such
that for all cubes Q in R™ and all functions f in L (R™), we have

1/p
(2.3.1) (]é |f(z) — fol? dx) <c sup][ |\f(z) — fr|dx,

where the supremum is taken over all cubes R in Q).

By Holder’s inequality and Lemma 2.3.2 we have the following corollary, which
is known by [45, Theorem 3.1] for spaces of homogeneous type. We give a proof for

readers’ convenience.

Corollary 2.3.3. Let p € (1,00) and ¢ € G™°. Assume that ¢ satisfies (1.2.7).
Then LPY")(R™) = LEY)(R™) with equivalent norms.

Proof. By Holder’s inequality we have || f|lza.e < || fllzwwr). Next we show the
reverse inequality. For any balls By and By, if By C Bs, then ¢(By) < ¢(Bsy), since

¥ is almost increasing and satisfies (1.2.7). For any ball B, take the cube @) such
that B C Q C v/nB. If f € LA¥)(R™), then, using Lemma 2.3.2, we have

(]éu(a:) —lepdx> < s f 17(0) - filds

S osup Y(B)fllcowr S OB fl o

B'C\/nB

Therefore, by the doubling condition of 1) we have the conclusion. [

Lemma 2.3.4 ([45, Lemma 7.1]). Let ¢ satisfy the doubling condition (1.2.5) and
(2.1.4), that is,

/Oogo(xt ) dt < Cop(z,71).

Then, for allp € (0,00), there exists a positive constant C, such that, for all x € R™
and r > 0,

[ t 1/p
(2.3.2) / % dt < C, p(a, )7
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Lemma 2.3.5 ([43, Theorem 2.1 and Remark 2.1]). Let p € [1,00) and ¢ satisfy
the doubling condition (1.2.5) and (2.1.4). Then, for every f € LPO(R™), fpo.n

converges as r — o0 and

2 flLewor < 1 = i a0 < (1+20082) ) o
where C,, is the constant in (2.3.2).

Lemma 2.3.6 ([39, Lemma 4.1]). Let p; € [1,00) and ¢; : R" x (0,00) — (0, 00),
i=1,2,3. If 1/p1 + 1/ps = 1/ps and gpi/mgpk})’/PS _ goé/m; then

1f9ll Loy < N Fllpwren 9l pwaes-

Lemma 2.3.7. Let p € (1,00) and ¢ € G™°. Assume that ¢ satisfies (1.2.7). Then
there exists a positive constant C' dependent only on n, p and v such that, for all
f € LOYNR™) and for all x € R™ and r,s € (0,00),

1/1’ s
x,t .
(£, 0= tooras) < [T a7 2r <
B(x,s r

Proof. By Lemma 2.3.1 and Corollary 2.3.3 we have

1/p
(][ 1f(y) = [B@n dy)
B(z,s)

1/p
<(f. 0 sl dr) " e o
B(z,s

2s w(x’ t)

S U@, 8)|[ fll paw + — dt [| f]l g

T

From the doubling condition (1.2.5) of ¢ it follows that

> ah(w, t) * Y(x,t) *(z,t)
Y(x,s) ~ 8 — = dt s/sztg/r — .

Then we have the conclusion. O]

Remark 2.3.1. In Lemma 2.3.7 we also have

1/p
S .
(][ |f(y) - fB(9677“)|p dy) <C <log2 _> ¢($7 3) H.f“ﬁ(l’w% if 2r <s,
B(z,s) r
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since

2i+1y
[ a g g
2ir t

for j =0,1,...,[log, 2] + 1.

Lemma 2.3.8. Let p € (1,00) and ¢ € G4°°. Let K be a standard kernel satisfying
(2.1.1). Then there exists a positive constant C such that, for all f € LP®)(R")
and all balls B = B(z,r),

o0 Z,t 1/p
[ sl <o [T EEZ a e, re s
\2 2r

Proof. If x € B and y ¢ 2B, then |z —y|/2 < |z —y| < (3/2)|z — y|. From (2.1.1)
it follows that |K(x,y)| S|e —y|™ ~ |z —y|™". Then

£ ()| . £ ()l
K dy < dy = d
/R"\QB| (= 9)ll7 )] yN/R"\2B |z —y|" Y Z/2j+1B\2J'B |z —y|" Y

J=1

By Holder’s inequality and the doubling condition of ¢ we have

1/ (y)] L /
dy < — f(y)ldy
/2j+1B\2jB |Z _ y|n (2]+17«)n 241 B\2 B | ( )|

(1)
S(f. vwra) s [ EE .
2i+2B 2ir

Therefore, we have the conclusion. O

Lemma 2.3.9. Let p € (1,00), p € G¥ and ¢ € G™°. Assume that ¢ satisfies
(1.2.7). Let K be a standard kernel satisfying (2.1.1). Then there exists a positive
constant C such that, for all b € LEY)(R™), all f € LP9)(R™) and all balls B =
B(z,r),

/RH\QB |(b(y) — bp) K (,y) f(y)| dy

OO Zat o Z,U 1/p
<c/ vle) (/ %du)dt||b||£<1,w>||f||L(p,ga), eB.
r t

29



Proof. If € B and y & 2B, then |z —y|/2 < |z —y| < (3/2)|z — y|. From (2.1.1)
it follows that |K(z —y)| S |z —y|™™ ~ |z —y|™™. Then

[ 10 - KWl < [ [(bly) = ba) W) 4,
R™\28B R™\2B

[z —y|"
_ / |(b(y) — b5)f(y)] dy
o1 J2HB\2iB |z —y|"

By Hélder’s inequality, Lemma 2.3.7 and the doubling condition of ¢ and ¢ we have

/ |(b(y) —bg) f(y)] g
2i+1B\2 B |z —y|"
1
R b —b d
ST [,y 00~ b))

1/p 1/p
< b—bgl” d oy
S(f. pvwa) (f 1rwra)
< / ’

2i+1,,
(z,t) o(z,u)t/P
s ([ e ) EE o
27

/RH\QB |(b(y) = bp) K (z,9) £ ()| dy

1/p
/ (/ vt dt) (z;) du [[bl zaw || fl Lo
/ vz t) (/ p(z,u)/? ) du>dt||b”.c<1w>||f\|uw)

This is the conclusion. O

Tw .
PED oz, 270 7 bl s

Therefore,

Remark 2.3.2. Under the assumption in Theorem 2.1.1 (i), let b € L3¥)(R") and
f € L®®)(R™). Then f is in L} (R") and bf is in LY (R") for all p; < p by
Corollary 2.3.3. Hence, T(fx2p) and T'(bfx2p) are well defined for any ball B =

B(z,r). By (2.1.4), (2.1.7) and Lemma 2.3.4 we have

[e'9) t 1/p
(2.3.3) / @ dt S oz, 1),
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and

(2.3.4) /TOO M’? ) (/too *O(Z’Tu)l/p du) dt

< [THGHeGE ) [T el ) (2 )V,
~ , t ~ , t ~ (70 )

Then, by Lemmas 2.3.8 and 2.3.9, the integrals

/ K(2,y)f(y)|dy and / K (2, )b(y) ()] dy
Rn\2B R"\2B

converge. That is, we can write

0. T1f(x) = [b. T)( f o) () + / (b(x) — b(y) K (2. 9)f (y) dy, = € B,

R"\2B

Moreover, if € By N By, then, taking B3 such that B; U By C B3, we have

([b, T(has)@) + [ (b) = b)) K01 dy)
R™\2B;
- ([b, Tl(Pras)@) + [ () =) K 010 dy)
R"™\2B3

b T](F o) (@) + / (b(x) — b)) K () F(y) dy = 0,

2B3\2B;
by (2.1.3). That is,
b TN )@+ [ 06) ~ b)) ) dy

— 0, T)(Prom) (@) + / (b(x) — b(y)K (x.9)f (y) dy, = € By Ba.

R"\2BQ

This shows that [b,T]f(z) in (2.1.6) is independent of the choice of the ball B

containing x.

Lemma 2.3.10. Under the assumption of Theorem 2.1.1 (i), there exists a positive
constant C such that, for all b € LEY)(R™), all f € LPY)(R™) and all balls B =
B(z,r),

]i (/Rn\ZB(b(x) = b)) K (z,y)f(y) dy) dz
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Proof. For x € B, let

Gi(z) = [b(z) — bg| - K (z,y)f(y)| dy,
Galz) = / (b(y) — bs) K (2,9)f ()] dy.
Rn\2B

Then

[ 040 = B ()15 | < Gt + o)
R™\2B
Using Lemmas 2.3.8 and 2.3.9, we have

< oz, )M
(2.35) / Ky S / P 1l € B

and

230 [ )~ bollK o)1)y

2 u)Y/P
/ o (/ a u) )dtHbHc(l,waHL(pw, r € B.

Then, using (2.3.5), (2.3.3) and (2.1.7), we have

f Gi(x) dz < f b(z) — bs| dz (2, ) L
B B

Sz, m)e(z2, ) P10 s || £l L
< oz, )bl s || F]] L -

Using (2.3.6) and (2.3.4), we also have

][ Ga(z) dz < o(z,7) )bl e | f ]| v -
B

Then we have the conclusion. O]

Lemma 2.3.11. Let p € (1,00) and ¢ € GI°°. Assume that p satisfies (1.2.3) and
(1.2.4). Then there exists a positive constant C such that, for all f € LP#)(R")
and all balls B(x,r),

€T, | —Y > z,t x’tl/p
[ AR yyay <o [T ARDERD D g,
R7\ B(z,r) | t

r— y|n Kir

where K is the constant in (1.2.4).
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Proof. Let B = B(x,r). Then

plz, |z — yl)
f)ldy = — ()| dy.
/]R”\B(x,r) |z — y|” | ) Z 2/+1B\2i B |95 - y|” 7)1

By (1.2.4), Hélder’s inequality and the doubling condition of ¢ we have

plx, |z —y|) SUP;,<p<aitiy P(T,1)
—[f(y)|dy < == Jf(y)ldy
/2j+lB\2jB |ZL‘ — yln | ( )| (QJ—HT)” 2J'+IB\2J'B | ( )|

K22j7" x’t 1/]3 K22j7" Qj,t I,t 1/17
s [T (f irwra) s [ A0 g,
2it2B

Kq2ir t K12ir t

Therefore, we have the conclusion. O

Lemma 2.3.12. Let p € (1,00), ¢ € G and ¢ € G"°. Assume that 1 satisfies
(1.2.7). Assume also that p satisfies (1.2.3) and (1.2.4). Then there exists a positive
constant C' such that, for allb € LYV (R™), all f € LP9)(R™) and all balls B(z,r),

plx, |z —y
/ 16(0) — by | 2ZE =2, )y
R™\ B(z,r) |37 y|

< a(x,t oz, w)p(x, u)/?
<o [T U ([T HEOASD L g )it ol
Kir t 3 u

where K, is the constant in (1.2.4).

Proof. Let B = B(x,r). Then

[ ot s )y
R™\ B(z,r) |z —y|"

> [ b~ b ILyf/le(yﬂdy-

2 Joiprn 4]

By (1.2.4), Holder’s inequality, Lemma 2.3.7 and the doubling condition of ¢ and
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© we have

x, | —
[ o(y) — bl 22T, )1 gy
2/+1B\2i B [z =y

SUPgjp<y<2itly p(xa 'LL)

< . by) — b d
T IO IL

K22j7‘ 1/P/ ]-/p
T, U /
5/ | L >du(f_ |b—bB|pdy) (f |f(y)|pdy>
K129r U 2i+1B 2i+1R

Ko2ir 2i+1y
T, U z,t ,
5 / p( ) du/ w(t ) dt(p(x, QJ—HT)I/p ||b||£(17¢) ||f||L(p7¢>)

Kq2ir U
K229y voah(x,t x,u)p(x,u 1/p

< / ( e dt) A e Ly, 16l co | fll oo -
K297 Kir t u

Therefore,

L, 1 bl g

|z —y

o0 u z,t €T, u T, u L/
S,/ < ¢(t >dt> p( )9‘;( ) du ||| caw || f | oo

Kir Kir

o0 x,t o Z,u T, u 1/P
_ Y(z,t) (/ P >S0u( ) du> dt 10]| zao || f1 e -
t

Kir t

This is the conclusion. O]

Remark 2.3.3. Under the assumption in Theorem 2.1.2 (i), let b € L&¥)(R") and
f € L®¥)(R™). Then f is in LY _(R™) and bf is in LI’ (R™) for all p; < p by Corol-
lary 2.3.3. Since % is integrable near the origin with respect to y, I,(|f|x25)

and I,(|bf|x2p) are well defined for any ball B = B(z,r). By (2.1.12) and (2.1.13)

we have

0 1/p . B
(23.7) [ AR < ol K S o)
and
[e%e) o8] 1/p
(23.8) / Y(z,t) (/ plz, up(z, u) du)dt
Kir t t U
B Ll CY) LU
~Y t ~J t ~J SO 7
Kir Kir
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Then, by Lemmas 2.3.11 and 2.3.12, the integrals

plz, |z —yl) plz, |z —y|)
Lo ey [P ) () dy

converge. That is, the integrals

[ A gy [ A=y ),

|z —y| |z —y|"

converge absolutely a.e. x and we can write

b1 = [ o) - b ) dy. - ace

Lemma 2.3.13. Under the assumption of Theorem 2.1.2 (i), there ezists a positive
constant C such that, for all b € LEY)(R™), all f € LP9(R") and all balls B =
B(z, 1),

(b(w) — b)) 2= )y ) a
B \JrR"\2B |z —yl

Proof. For x € B, let

< Co(B)Ybl| o | £l o

Gi(a) = i) =l [ L )y

- ez —yl)
Gato)= [ bt = bal T )y

Then

/Rn\QB(b(x) — b(y))%f(y) dy‘ < Gi(z) + Go(2).

Ifx € Band y € 2B, then |z — z| < |[r —y| and |z —y|/2 < |z — y| < (3/2)|z — y]|.
By the properties (1.2.7) and (1.2.4) of p we have

p(x, |z —yl|) ~ p(z,|r —y[) < sup p(z,t),
|5yl /2<t<(3/2)] 2~y
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and

/ Mv(y” dy
sep\itip [T —y["

Sup z— 2<t<(3/2)|z— p(Z,t)
5/ |z—yl/2<t<(3/2)]2—y] £ ()| dy
20+2B\2i+1B

|z =y

SUDgi,<t<3.2i+1, P(2, 1)

: d
e RO

3-27 Kor 2t 1/p
s[ TS (f )
21 Kyr 2i+2B

Using this estimate and a similar way to Lemmas 2.3.11 and 2.3.12, we have that,
for all x € B,

* o(z,t)p(z, 1)/
Gu(e) S o) — bl [ PEDEEDE gy,
Kir

o ’t o b ) 1/p
G <o [ Y&l (/ Pz “W;(z w) du)dt 18]l 20 || £ | oo -
t

Kir t

Then, using (2.3.7) and (2.3.8) also, we have

f Gi(x) dr < f 1b(@) — bl dr oz )| ] o
B B

S (2,2, ) 2|10 cow || £l Lo

< (2, )Y b|| s || Fll Lo

and
][ Go(z) dx < (2, )bl e [Lf | Lo -
B

Then we have the conclusion. O

2.4 Sharp maximal operator and pointwise esti-
mate

For f € L .(R"), let

loc

(2.4.1) M#f(x) = sup 7@ F(y) — faldy, xR,

B>z

where the supremum is taken over all balls B containing x.

36



Proposition 2.4.1. Let p,n € (1,00), ¢ € G4 and ¢ € G*°. Let T be a Calderdn-
Zygmund operator of type w. Assume that 1) satisfies (1.2.7), that ¢ satisfies (2.1.4),
that fol wdt < oo and that [~ wdt < oo for each x € R" and
r > 0. Then there exists a positive constant C such that, for all b € LO¥)(R™),
f € LPO(R") and x € R™,

(24.2) M, T]f(x) < C|lb]l caw ((Mw(lel”)(fU))l/n + (Mw(lf!")(fc))l/")-

Proof of Proposition 2.4.1. We first note that T'f is well defined as mentioned after
Remark 2.1.1 and that [b,T]f is well defined by (2.1.6) as seen in Remark 2.3.2
under the assumption that f > M dt < oo for each x € R™ and r > 0.

For any ball B = B(z,r), let f = fi + fo with fi = fxap, and let

Fi(y) = (b(y) — bap)T'f(y),
Fy(y) = T((b— ba2p) f1)(),
FS(ZU) = T((b - sz)f2)(y) - Cp,

for y € B, where Cp = T((b — bep) f2)(x) and

T((b—bap)f)(y) = | K(y,2)(b(z) —bap) f2(2)dz, yE€E B.
Rn
Then, observing Remark 2.3.2, we have

[b,T]f+CB - [b—bgB,T]f+OB - F1 _F2 —Fg.

We show that

(2.4.3) ]i Fi(y)ldy

< O8]l ((Mw(le\”)(x))l/" " (Mw(lfln)(x))l/"), 1,23

Then we have the conclusion.

Now, by Hélder’s inequality and Corollary 2.3.3 we have

Firlas < o (F 1) busl” a) " (vir f \Tf(y)\"dy)lm

S 11l o (M (1T £7) (2)) ",
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Choose v € (1,7n), and let 1/v = 1/u + 1/n. Then by the boundedness of 7' on
L?(R™) and Holder’s inequality we have

frirwias (finera)” |
< (g [ 10w - bwﬁKwP@)w
(fwo-sare)”

S bl s (Myn (1 £17) ()"

Finally, for y € B,

|F5(y)| = [T((b = b2p) f2)(y) = T((b — ba2p) f2) (2)]
| @02) = K(2,2) 0) ~ bus) () =

1 I-’r—y|)
5 W( b(z) —b fZ dz
/R"\zB |lx — z|" |z — 2| 1b(2) — bag]| f(2)]

>/ s =2 1) — busll 12
j= 2i+2B\2/+1 B |ZIZ' — Z‘ |£Ij’ — Z|

0

If 2 € 2772B\ 277 B, then

() <ot

’l’ _ Z|n ’Q? _ Z| |2j+1B‘ .

> 1/925+1
B0 S S GE [,y ) Bl

S w1/2) (., 1) = s ) " (£, 11 ) "
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By Lemma 2.3.7 and Remark 2.3.1 we have

o0 1/n
R S G+ 200/220@8) (£ 17rds) bl

i+2B

< [ (10w ) 22t (0170 ol
< (Myn (1)) " 1B £ -
Therefore,
]i By dy < (M (£ @) "6 200

Then we have (2.4.3) and the conclusion. O

Proposition 2.4.2. Let p,n € (1,00), ¢ € G¥ and ¢ € G"°. Assume that
p: R" x (0,00) = (0,00) satisfies (1.2.3) and (1.2.4). Let p*(z,r) = [ ’”;t dt.
Assume that p, p* and 1 satisfy (1.2.7), that ¢ satisfies (2.1.4) and that there exist
positive constants €, C, such that (2.1.10) and (2.1.11) hold. Assume also that

(2.4.4)

[ ettt W . ["YeD (/ plos il ' du)dt < oo,

for each x € R™ and r > 0. Then there exists a positive constant C' such that, for
all b € LAIV(R™Y), f € L9 (R") and v € R",

(2.4.5) MA([b, L] f)(x) < ClIb]| ccror ((Mw(|Ipf|")(x))1/"+(M<p o (|F") >)””).

Proof of Proposition 2.4.2. We first note that I,f and [b,I,]f are well defined as
seen in Remark 2.3.3 under the assumption (2.4.4). For any ball B = B(z,r), let

f=fi+ fowith fi = fxop, and let

Fi(y) = (b(y) — bap) L, f (),
Fy(y) = L,((b = bap) f1) (),
(?J) =1 ((b - bQB)fQ)(y) - Cp,

for y € B, where Cz = I,((b — ba) f2)(x) and

I,((b—bap) f2)(y) = /n %(b(z) —bog) fa(2)dz, y € B.
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Then, observing Remark 2.3.3, we have
[b, Ip]f + CB == [b - bQB, Ip]f + CB == F1 - FQ - Fg.

We show that
(2.4.6) f Fi(y)ldy
B

< O ((Mw(lfpfl”)(fv))l/" " (M<M>n<|f|”><x>)”"), 1,2,

Then we have the conclusion.

Now, by Hélder’s inequality we have

firwiars o (fww —val?ar) " (vimr £ s a)
S0 e (Mo (|1, 17 ()7

Choose v € (1,n) such that n/v —€/2 > n — e. Then by (2.1.10) we have

1/n

pat) | ol

P njv—e/2 — gnfv—e/2’ if t<s.

Hence, from Theorem 2.2.5 it follows that there exists an N-function ® such that
I, is bounded from LY(R") to L®(R"). Let ¥ be the complementary function of
®. Then by the generalized Hélder’s inequality (2.2.11), Lemma 2.2.6 and the

boundedness of I, we have

2
F 1Bl dy < T lcllovan | Follogee
> 5]

p'(B)
S Wﬂ(b — bag) fll v 2B)-

Let 1/v = 1/u+ 1/n. Then by Holder’s inequality we have

AL
<) ()~ bunl* ) " (1) "

_1 u Ve * n n
S 02B) (]éB b(y) = basl dy) <(P (2B)¥(2B)) ]fB ()] dy)
S 180z (Mo (1117 (@) .

1/n
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Finally, for y € B, using (2.1.11), we have
[F5(y)| = [1,((b = b2p) f2)(y) — 1,((b — ba2p) f2) ()]
_ / (p(yv |y—2‘) _p(l‘, |x_2’)> (b(Z)—bQB)fQ(Z)dZ

ly — 2| |z — 2

z—y|lptz,|r— 2
< / e = ylp@ e = 20y 42
R"\2B

‘$ _ Z’nJrl

[e.e]

|z —ylp*(z, |z — 2[)
S 42) — busll )]
i—0 J J

|z — 2|+

Since p* satisfies the doubling condition (see Remark 2.2.1), we have

z—ylp'le,|r— 2
/ 2= = Do) — bl )
2i+2B\2/+1B

‘l’ _ Z’n—i—l

rp* (2772 B)
S TG gy M)~ P8l ] 2

* 2j+2B , /7 1/n
SCCEE(f  wo-valar) (£ )
2i+2B 2i+2B

By Lemma 2.3.7 and Remark 2.3.1 we have
1/n
)

+1 |
1F5(y)] < 110l zaw Z ‘7%2 (272 B)(2772B) (][
2

i+2 3

< Bl (MW (1F17) (@) "
Therefore,
1 IRy S 10l (M (7))
Then we have (2.4.6) and the conclusion. O

2.5 Estimate by the sharp maximal operator

In this section we prove the following proposition and its corollary.

Proposition 2.5.1. Let 1 < p < 0o and ¢ : R" x (0,00) — (0,00). Then, for
f € Lloc(Rn)7

(2.5.1) 11l oer < CIM fl| o,

where C' is a positive constant independent of f.
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Corollary 2.5.2. Let 1 < p < o0 and ¢ : R" x (0,00) — (0,00). Assume that
¢ € G%° and that ¢ satisfies (2.1.4). For f € L{ (R"), if im fpe,) =0, then
r—00

(2.5.2) 1l Lwer < CIUMEF Lo

where C' 1s a positive constant independent of f.

The condition lim fpe,y = 0 was considered by Fujii [20] in 1989. We first
r—r00
prove Corollary 2.5.2 by using Proposition 2.5.1.

Proof of Corollary 2.5.2. By Lemma 2.3.5 we have that, for every f € L£P#)(R"),
IB(0,r) converges as r — 0o and ||f—rliﬁr£1O IBonlLee S| fllzee- Since TlLrgO IBoOr) =

0 by the assumption, using Proposition 2.5.1, we have the conclusion. O

To prove Proposition 2.5.1 we define local versions of the dyadic maximal op-
erator and the dyadic sharp maximal operator. For any cube ) C R™ centered at
a € R™ and with sidelength 2r > 0, we denote by Q¥ (Q) the set of all dyadic cubes
with respect to @), that is,

QY (Q) = {Qj,k =a+ [[27kr 27 (ki + D) 1 j €L, k= (ky, ... k) € Z"} :

=1

For any cube @ C R", let

MYf)=  sup fu )] dy.
ReQ¥(Q),zeRCQ

MEY ()= sup fﬁ ~ Faldy.
ReO¥(Q),zeRCQ

Lemma 2.5.3 (Tsutsui [67], Komori-Furuya [33]). Let Q be a cube and f € L*(Q).
Then, for any 0 < v <1 and X > |f|g,

(2.5.3) {z € Q: MY f(z) > 2X\, M5Y f(x) < yA}
<2z € Q: MY f(x) > A}

Using Lemma 2.5.3, we have the following lemma, which is a special case of [52,

Lemma 4.4]. We give a proof for readers’ convenience.
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Lemma 2.5.4. There exists a positive constant C, for any cube Q) and any function

ferLlQ),
(2.5.4) I1f = follr@) < CIME® fllir)-

Proof. By the good M\ inequality (2.5.3) and the standard argument we have the
following boundedness: There exists a positive constant ', for any cube ) and any

function f € LY(Q),

(2.5.5) 1M Fllisiay < C (IME Fllzei) +1Q171fla)

Actually, for any L > 2|f|o,
L
/ PN o € Q: MY f(x) > A} dA
0
2|f‘Q d
:/ pN Uz € Q: M f(x) > A} dA
0

L
+/ N {z € Q: MG f(x) > A} dA
2|flq
L/2

< @If1o)IQ] + 27 /|f V(€ Q: MY (@) > A} A
Q

By the good A inequality (2.5.3) we have

L2
2p/ PNz € Q - MY f(x) > 22} dA
Ifle

L/2
< 2”+p7/ Nz e ngf(:v) > A} dA
Iflo

L/2
+ 2P/ Nz € @ MEY f(z) > A} dA
Iflo

L
<27y [Tpn (e € Q: M f(a) > A} )
0

oy / PN € Q1 MEY f(x) > A} dA.
0

Then, for small v > 0,
L
(1=29) [ p3 il € QM f(a) > A}
0

< (2|f1@)"1Q] + 2%?/0 PNz € Q: MEY f(x) > A} dA.
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Letting L — oo, we have (2.5.5).
Now, substitute f — fo for f in (2.5.5). Then

If = fallr) < 1M (f = fo)llr@
suMywmm»+@Wﬂév—ﬂﬂ

< |MEY fllpo) + Q17 inf MEY f(x).
zeQ

Since
, o o P 1/p o
P inf MEY = / f M5™ }d) < || M5 fllr o),
Q] inf Mg f(x) (Q|;1172Q f@)| dy | < |M5™ fllee)
we have the conclusion. O]

Proof of Proposition 2.5.1. For any ball B = B(z, ), take the cube @) centered at
x and with sidelength 2r. Then B C ). By Lemma 2.5.4 we have

(@]élf—fmp)l < 1 ;g:][w fQ|p>
S(j§é<wwﬁ
SNIMEF | oior @y -

This shows the conclusion. O]

2.6 Proofs of the theorems

We first note that, for 0 < 6 < oo, we have

(2.6.1) gl N0 = (llgllpona)’

Proof of Theorem 2.1.1 (1). By the assumption we have that 7" is bounded on
LP®)(R"), see [38, Theorem 2]. Let 1 < < p. Then, from (2.1.7) it follows
that

V() 1) < Cyp(a, )",
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By Theorem 2.2.3 with this condition we have the boundedness of My» from
L®/M@)(R™) to L@/7¢)(R™). Using this boundedness and (2.6.1), we have

1/ 1/
1My (1T FI"NY " paer = (1M (IT 1) parner) " S (NTF P orner) "
= [Tflroer S N fllwe,

and

1/ 1/
(M ([ F1") | paor = IMgn (L) | parme) " S (NF M imer) "
= [ fllrwe -

Then, using Proposition 2.4.1, we have

(2.6.2) IME([b, T) )| paer S bl [LF ]l i

Therefore, if we show that, for B, = B(0,r),

(2.6.3) ][ b, T]f -0 as r— oo,

r

then we have

(2.6.4) 116, 71 f Ml eaor S N0l casr [ Fll o

by Corollary 2.5.2.

In the following we show (2.6.3).
Case 1: First we show (2.6.3) for all f € L®¥)(R") with compact support. Let
supp f C Bs = B(0,s) with s > 1. Then f € LP(R™) and b € L}? (R™) for all
po € [1,00). Since T is bounded on Lebesgue spaces, we see that (b7 f)xp,, and
T(bf)XB,. are in L'(R™) and that

][ (T f)xB,. — 0, ][ T(bf)xp,, — 0 asr — oo.

If ¢ Bys and y € B(0,s), then |z|/2 < |z — y| < (3/2)|z]. By (2.1.1) and (2.1.3)

we have

(2.6.5) (@) < @Hfum TO)@)| S —[bfll. @ & Do,

™ el
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which yields

ngsf (T~ xps) =0, ][ (TN~ Xpr) =0 857 — oo

T T

Next, we show

(2.6.6) f (b— b, J(TF)(1 = x5,,) =0 asr— oo

T

Then we have (2.6.3) for all f € L®¥)(R") with compact support.
To show (2.6.6), take € € (0,1) such that 1+1/g—1/p > ¢, and let v = 1/(1—¢).

Then
1/v
<(f 1 )
By

From Lemma 2.3.7, Remark 2.3.1 and (2.1.7) it follows that, for r > 4s > 4,

1/ r
’ O,t
(2.6.7) <][ \b—b323|”> 5/ wdtHbHc(l,w
- 2s

S ¢(0,7) logr b caw S @(0,7) 4" P logr [|b]] -

‘) " ( 100 - o)

][ (b— b )(TH)(1 - x5)

r

From (2.6.5) it follows that

1/v 1 v 1/v
v < — 1 < 1.

By (2.6.7) and (2.6.8) we have

]é (b— b )(TF)(1 - X5.)

1

< (0,7 P logr ||b||c<w>m 1f Iz

log r 1 1/p=1/q
- rn(14+1/q—1/p—e) (TnSD(O,T)> ||b||£(1,¢)

—0 asr— oo,

fllz

since r"(0,7) is almost increasing. Therefore, we have (2.6.3) and (2.6.4) for all
f € LP¥)(R") with compact support.
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Case 2: For general f € L(P¥)(R"), using Case 1, we have

116, T xB2 ) paer S Wbl [ x B, lLwer < N0l cow [ fll o

Then

][ [b, T](fXB%)‘ < @(0,7) Y9, TV x B | aer S (0, 7)Y I0]l i | f | oo

T

Combining this and Lemma 2.3.10, we have

£, .11 S 0.0 00

which implies (2.6.3). Therefore, we have (2.6.4) for all f € L®#)(R"™). The proof

is complete. O

Proof of Theorem 2.1.1 (ii). We use the method by Janson [28]. Since 1/K(z) is
infinitely differentiable in an open set, we may choose zy # 0 and § > 0 such
that 1/K(z) can be expressed in the neighborhood |z — 29| < 2§ as an absolutely
convergent Fourier series, 1/K(z) = > a;e™i*. (The exact form of the vectors v,
is irrelevant.)

Set z1 = z9/6. If |z — 21| < 2, we have the expansion

1 5—71 -n ;02
K& Kpo) ° D aet™

Choose now any ball B = B(zg, 7). Set yo = xg — rz; and B’ = B(yo,r). Then, if
r€Bandye B,

T —y T — g

r

—z1| <
,

i

Denote sgn(f(x) — fp/) by s(x). Then

[ W) =tz = [ o) =bmstayde = 7 [ [ (v6e) = bsta) g

— ﬁ/n /n(b($) — b(y))%s(x)XB(x)XB,<y) dy dx

IB’I /n /n VK (z—y) > a;e™ " s(w)xp(x)xp (y) dy de.
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Here, we set C' = §"|B(0,1)|"! and

9;(y) = e xpi(y), hy(z) = 0 s(x)yp(x).

Then
/B b(z) — by de =C) / /n(b(x) —b(Y) K (x — y)g;(y)hy(x) dy dx
_CZCL]/ b, T)g;)(2)h;(x) dz
SCZNMAJ@IMWWM@Mx
=C Yoyl [ 1. Tlgp) ) o

<O a;|IBle(B)) b, T)g; | poe
< CN[b, Tl ooy e | Blo(B)Y 4> a5 oo -

Since ¢ is in G4 and satisfies (1.2.7), by [39, Lemma 4.2] we can conclude that

il ooy = X8 || Liwier ~ W We also see that ¢(B’) ~ ¢(B), since |xg — yo| =
r|z1]. Then

/ |b(I) B bB'| dx 5 || [b7 T]||L(p,</’)_>L(q,<p) |B|Q0(B)1/q_1/p,
B

By (2.1.8) we have

1 2
— b(x) —bpg|dr < ——— b(z) — bg|dx < ||[b, T|| o, 0.0) -
57 1100 = ol de < = f (o) = bl e S 1B T
That is, [|0]| e S [0, TN Loe) - 1ae) and we have the conclusion. O

Proof of Theorem 2.1.2 (i). By Theorem 2.2.2 with the assumption (2.1.12) we
have the boundedness of I, from L®#)(R") to LP¥)(R"). Let 1 < n < p and
pr(x,r) =[5 ° ft dt. Then, from (2.1.12) and (2.1.13) it follows that

(,0* (x, r)@b(x, T))n(p(l” 7»)?7/1? < COUQD(SB, r)n/q’
w(l‘, T)mp(xa 7«)7]/;5 < 017730(:67 T)n/q,

By Theorem 2.2.3 with these conditions we have the boundedness of M«y)» from
L@} (R™) to L@/79)(R") and of My, from LP/m9)(R™) to L@/7)(R™). Using
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these boundedness and (2.6.1), we have

1/ 1/
(Mo (I L F ) 00 = (M (o f D | amer) " S (o f "l zomn) "
=L fllzeer S N fllwe,

and

1/ 1/
(M gy (LFDY " paser = (1M ey (LF M o) S (I pwimenr) ™"

= [|fll .-

Then, using Proposition 2.4.2, we have

(2.6.9) IME([b, L) D)l wer S bl 1 F Lo

Therefore, if we show that, for B, = B(0,r),

(2.6.10) ][ b, I,]f =0 as r— oo,

r

then we have

(2.6.11) 116 L f Nl o S Wbl cam [ £l Lo,

by Corollary 2.5.2.
In the following we show (2.6.10).
Case 1: First we show (2.6.10) for all f € L®#)(R") with compact support. Let

supp f C Bs; = B(0,s) with s > 1. Then f € LP(R") and b € LY (R"™) for
all po € [1,00). Since % is locally integrable with respect to y, we see that

(bI,f)XB,, and L,(bf)xp,, are in L*(R™) and that

][ (b1,f)xBy, — 0, ][ L,(bf)xp,, =0 asr— oo.

If © € Bys and y € B(0,s), then |y| < |x —y| and |z|/2 < |z — y| < (3/2)]z|. Since

p satisfies (1.2.7),

(2.6.12)  plz, |z —yl) ~ ply, | —yl) ~ p(0, lz —y[) < sup  p(0,1).
|lz|/2<t<(3/2)]x]

Then we have

p(x, |z —yl) < SUP || /2<t<(3/2)x] p(0,t) N sup p(0,1)
|z —y|" [ jal/2<t</2)el

~
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and

p(0,t p(0,t
@S sup (tn >||f||L1, LeN@ls s P00y,
|z]/2<t<(3/2)|=] |z|/2<t<(3/2)|=]
From (2.1.10) it follows that 2% — 0 as ¢ — oo, which yields

bs,. f (1)1 — xn) — 0. f (L)1 = xp,) =0 asr— oo

Next, we show

(2.6.13) ][ (b= b, V(L F)(1 = xm) — 0 asr — oo,

Then we have (2.6.10) for all f € L®¥)(R") with compact support.
To show (2.6.13), take € € (0,1) such that 1+1/¢—1/p > €, and let v = 1/(1—¢).

Then
1/ 1/v
s(f |b—b325”) ( |<fpf><1—xB23>”) |
T B"‘

f (b= b, )L F)(1 = X5,.)

From Lemma 2.3.7, Remark 2.3.1 and (2.1.13) it follows that

1/1// T
, 0,¢
”) S Mt’ ) ar 101l )
2s

S (0,7) log 7 |[bl| sy S (0, 7)YV P log r ||b]| o)

(2.6.14) ( b — bp,,
Br

For j =0,1,2,..., from (2.6.12) and (1.2.4) it follows that

l/u
(f L) i)
2i+2B,\2i+1B,
SUP|z|/2<t<(3/2)|z (0,1
5(/ | ( petsrmn P00, o)
2i+2 B\ 2i+1 B, ||
0.t

) 323Kgs p(
<@ sup p(0,6) 11l < /
2

27 s<t<3.2it1s JK1s

t)

dt || f]lzr,

since s > 1. Take the integer jy such that r < 27025 < 2r. Then, by (2.1.12),

1/v 1 Jo 1/v
2619 (f 1000 -xel ) < S ([ )

Jj=0

1 3Kor/2 O t
s [ B lann s
0

~ pnjv

1 ~,
p(0,) /PP |l

rn/v

20



By (2.6.14) and (2.6.15) we have

F o= be )11~ s,
™ ) ~ 1 .

S (0147 P Log 10,0 ] v

logr 1 1/p=1/a
= 8T 1]l o | | 2o
rn(1+1/q—1/p—e) T"@(O’r)

—0 asr— o0,

since 7™¢(0,r) is almost increasing. Therefore, we have (2.6.10) and (2.6.11) for all
f € L@»#)(R") with compact support.
Case 2: For general f € L(P%)(R"), using Case 1, we have

116, L) (fX o) I @y S 0N o | FX Byl 2oer < MBI 2 [Lf | oo
Then

][ (b, L) (FxBar) < (0, 1) N [b, LI(fxma) lniwer S @(0,7) 9Bl cown | f 1l oo

r

Combining this and Lemma 2.3.13, we have

f[@Hf§¢®WYMWMwMﬂmwn

which implies (2.6.10). Therefore, we have (2.6.11) for all f € LP¥)(R"). The proof

is complete. O

Proof of Theorem 2.1.2 (ii). In a similar way to the proof of Theorem 2.1.1 (ii), we
can conclude that ||b]| .00 S [0, Lol Le)— L@, Dy calculating |z|™~“ instead of
1/K(2). O

Proof of Theorem 2.1.3. By Lemma 2.3.5 we have that, for every b € L£Po¥)(R™),
bp(o, converges as 7 — oo and |[|b — T,h_fgobB(O,r)HL(Pow ~ |Ib]] pwowr - Let by =
b— Tli_>r(r>10 bp(o,r)- Then ||boll Lwo.wr ~ ||bl| oy and [b,T|f = boT f — T(bof). Since ¢
and 9 satisfy (2.1.4), by Lemma 2.3.4 we have

OOth > ah(z, t)Pop(x, t)e/P
dt
tq/potq/p

([ 2ty ([ 250

Sz r)q/pogo(:c r)q/p =0(x,r).

dt
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Hence T is bounded on L®¥)(R") and on L% (R"). By these boundedness and

Lemma 2.3.6 we have

110, T) fll paor < 0T S| oy + [ T(bo.f)] 1caor
S ool Lo 1T fl Loy + [100.f || Lo

S ool pwor L f 1wy ~ 1Bl 2o || f || oo -

This is the conclusion. O]

Proof of Theorem 2.1.4. We use the same method as the proof of Theorem 2.1.3.

For b € LPo#)(R"), let by = b — lim bpo,). Then [|bollwoer ~ bl 2w and
r—00

[b, L)f = bol,f — L,(bof). Let 1/p+ 1/py = 1/qo. Then @YPpl/Po = pl/® and

/PP = o1/, Since ¢'/Po is almost decreasing, from (2.1.12) it follows that

T o0 l/qo
/ _p(a;, 2 dt ()" +/ p@’t)@ix’ﬂ dt
0 r

T t S t t 1/p
S (/ p(i—’ ) it o, )0 + / = )i(x’ : dt) pla, )P S ()M,
0 A

Hence I, is bounded from L®#)(R") to L% (R") and from L@¥)(R") to L&) (R").

By these boundedness and Lemma 2.3.6 we have

110, L) fll aer < 1bodpfll Leaer + [11p(bof)] Lo
5 ||bO||L(poﬁs0>||Ipf||L(ﬁ,v>) + ||bOf||L(f10,v>)

S lbollzeoo [[fll e ~ 110l cwoor [Lf | Lo

This is the conclusion. O]
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Chapter 3

Compactness — Sufficiency

3.1 Theorems

— L ¢ W) IE Y1
First, we state our main results in this chapter. We denote by Cg5,,, (]R”)£ " the
closure of C25,(R™) with respect to LE¥)/(R™). If ¢ = 1, then L) (R") = BMO
and Cog, (R 00 = CMO(R™),

For the compactness of the commutators [b, 7] and [b, I,], we consider the fol-
lowing condition on : There exists a positive constant C' such that, for all x € R”

and r € (0, 00),

(3.1.1) /OO w(;’ )

Then our main results are the following:

at < cP@®1).

r

Theorem 3.1.1. Let 1 < p < g < 00 and ¢,1 : R" x (0,00) — (0,00). Assume

the same condition as Theorem 2.1.1. Assume also that, for all f € Cgs,, (R™),

(3.1.2) Tf(x)= lim K(z,y)f(y)dy, a.e.x € R",

e——+0 |{L'7y|26

S R
and that ¢ and ¢ satisfy (1.2.7) and (3.1.1), respectively. If b € ngmp(R”)L * ),

then the commutator [b,T] is compact from L®#)(R") to L@%)(R").

Observe that the Hilbert transform (n = 1, K(z,y) = (z — y)/|z — y|*) and
the Riesz transforms (n > 2, K(z,y) = (z; — y;)/|lz — y["™, j = 1,...,n) are
Calderdn-Zygmund operators satisfying (3.1.2).
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Remark 3.1.1. Tt is known by [69] that, if T is a Calderén-Zygmund operator of
type w € 2, then the truncated maximal operator T, of T is bounded from LP(R™)
to itself and L*(R") to wL'(R™) (weak-L' space), where

T.f(x) = sup

>0 /m_ybeK(%y)f(y) dy| .

Consequently, (3.1.2) holds for all f € LP(R"), 1 < p < oo. Moreover, by Re-
mark 2.3.2, we see that the equality

(3.1.3) b, T)f(x) = lim (b(x) = b(y)K(x,y)f(y)dy a.e.xeR"

e—+40 \z—y\>e
holds for all f € L) (R") under the assumption of Theorem 3.1.1.

Remark 3.1.2. Tt is known that a Calderon-Zygmund operator is equal to a Calderén-
Zygmund singular integral operator plus a bounded function times the identity op-
erator, see Grafakos [22, p. 221]. A Calderén-Zygmund operator satisfying (3.1.2)

is one of Calderén-Zygmund singular integral operators.

Theorem 3.1.2. Let 1 <p < g < oo and p,p,9 : R" x (0,00) — (0,00). Assume
the same condition as Theorem 2.1.2. Assume also that ¢ and v satisfy (1.2.7)
and (3.1.1), respectively. If b € mﬁ(lvw)(w)
compact from LP#)(R") to L@¥)(R").

, then the commutator [b,1,] is

Remark 3.1.3. By Remark 2.3.3, we see that the equality

(3.1.4) [b,1,))f(x) = lim (b(z) — b(y))wf(y) dy a.e.xeR"

THO oyl |z =yl

holds for all f € L) (R") under the assumption of Theorem 3.1.2.

3.2 Musielak-Orlicz spaces

To prove the main results we recall Young functions and Musielak-Orlicz spaces. In
this section we show the inclusion relation between generalized Morrey spaces with
variable growth condition and Musielak-Orlicz spaces.

Let @ be the set of all functions ® : [0, c0] — [0, o] such that
tl_l)I_I‘rlO(I)(t) =®(0)=0 and tlglog O(t) = P(o0) = o0,

where the second statement means one of the following properties:
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(i) ®(t) € ]0,00) for all t € [0,00) and lim ®(t) = oco.

t—o00

(ii) There exists b € (0, 00) such that ®(t) = oo for all ¢t € (b, 00].

In what follows, if a function ® : [0,00) — [0, 00) satisfies tlir_’r_lo@(t) = ®0) =0
—
and tlim ®(t) = oo, then we always regards that ®(0co0) = oo and that ® € &. Let
—00

a(®) =sup{t >0: ®(t) =0}, b(P)=inf{t >0:P(t) = oo}.

Definition 3.2.1 (Young function). A function ® € @ is called a Young function
(or sometimes also called an Orlicz function) if @ is increasing on [0, co] and convex
on [0,b(P)). Moreover, if b(P) < oo, then

lim  ®(t) = (b(P)) (< 00).

t—b(®)—0
Let @y be the set of all Young functions.
If & € ¢y satisfies a(P) = 0 and b(P) = oo, then ¢ is continuous on [0, co) and
bijective from [0, co] to itself.

Next we recall the generalized inverse in the sense of O’'Neil [56]. For a Young

function P, let

() — {inf{t >0:3(t) >u}, uel0,00),

0, U = 0.

If @ is bijective from [0,00] to itself, then ®~! is the usual inverse function of
®. We have the following property of the Young function ® and its inverse ([56,
Property 1.3]):

(3.2.1) D(@71(t)) <t < d7H(P(t)) for all t € [0, 00].
For a Young function @, its complementary function is defined by

B(1) = {sup{tu —®(u) :ue0,00)}, te]0,00),

00, t = oo.

Then @ is also a Young function, and (P, &)) is called a complementary pair. For

example, ®(t) = ¢, then



Definition 3.2.2. Let &} be the set of all & : R™ x [0,00] — [0, 00] such that
®(x,-) is a Young function for every x € R", and that ®(-,¢) is measurable on R”

for every t € [0, o0].

For ® € &}, and z € R", let

&1 (2, u) = {inf{t >0:®P(x,t) >u}, wuel0o00),

00, u = 00.
We also define the complementary function ® : R x [0, 0o] — [0, o] by

o) = {sup{tu — ®(z,u) sue0,00)}, tel0,00),

00, t = o0.

Definition 3.2.3 (Musielak-Orlicz space). For a function ® € &7, let

L*(R") = {f : / O(z,e|f(x)]) de < oo for some e > O},

||f||m=inf{k>0:/n<1>(x,@) da;§1}.

Then |||/ e is a norm, which is called the Luxemburg-Nakano norm, and thereby
L®(R") is a Banach space.

Let (@, EI;) be a complementary pair of functions in @3,. Then it is known that
(3.2.2) t< O Na, t)D Y, t) <2, te[0,00].
It is also known that

(3.2.3) . |f(z)g(@)|dz < 2[|f|[12]lg]l 5

We first prove the following proposition:

Proposition 3.2.1. Let ¢ : R" x (0,00) — (0,00). Assume that ¢ is in G3 and
satisfies (1.2.7) and (1.2.9). Then there ezists a Young function ®, : R™ x [0, co] —
[0, 00] and a positive constant C' such that, for all balls B = B(x,r),

(3:2.4) C0(B) < ®3'(,1/|B]) < Co(B).
Moreover, there exist positive constants C' and C" such that, for all balls B,

(3.2.5) IxBlle. < C' Ixsll,5, < C"|Ble(B),

1
p(B)’
where 5¢ is the complementary function of ®..
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To prove the above proposition we need the notion of pseudo-concavity. We
say that a function h : (0,00) — (0, 00) is pseudo-concave if there exist a concave

function hg and a positive constant C' such that, for all u € (0, c0).
h(u) < ho(u) < Ch(u).
Then the following characterization is known by Peetre [57]:

Lemma 3.2.2 ([57]). Let h : (0,00) — (0,00). Then h is pseudo-concave if and

only if there exists a positive constant C' such that, for all u,v € (0, 00),
(3.2.6) h(v) < C'max(1,v/u)h(u).

Remark 3.2.1. If (3.2.6) holds for some constant C', then hy defined by

(3.2.7) ho(u) = sup {Z a;h(u;) @ a; >0, Zai =1l,u= Z a;u; (finite sum)}
is concave and the relation
h(u) < ho(u) < 2Ch(u)
holds for all u € (0, 00), see [57]. Note that, if h is continuous, then
ho(u)

= sup {Z aih(w;) @ oz ui/u € Qo >0, Zai =1l,u= Zaiui (finite sum)} )

Proof of Proposition 3.2.1. First note that we always assume that ¢(z,t) is mea-
surable with respect to = and ¢. By Remark 1.2.2 we may assume that o(z,t) is
continuous with respect to t for each x. Let h,(u) = h(z,u) = @(z,u”"/"). First
we show that h, is pseudo-concave. Let u,v € (0,00). If u > v, then, by the almost

decreasingness of ¢, we have
ha(v) = @(a,0") S pla,u™") = hy(u).
If u < v, then, by the almost increasingness of r — o (z,7)r", we have
he(v) = vo(z, v Vo™t Svp(z,u YV )u™t = %hx(u)
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In the above two inequalities the implicit constants are independent of x. That is,

there exists a positive constant C' such that, for all x € R™ and u, v € (0, 00),
hy(v) < Cmax(1l,v/u)h;(u).

Then by Lemma 3.2.2 and Remark 3.2.1 there exists a function hg(z,u) which is
measurable with respect to x and concave with respect to u such that, for all x and
u7

oz, u ") < ho(z,u) < 2C¢(x, u=/").

Moreover, by (1.2.9) and the concavity we see that

ulgilo ho(x,u) = 0, 1}1_)1210 ho(x,u) = oo

and that ho(x,-) is strictly increasing and bijective from (0, c0) to itself. Let

0, t=0,
Dy (z,t) =< hy'(z,t), t€(0,00),
00, t = 00,

where hy' is the inverse function with respect to t for each x. Then ®, € ¢% and
satisfies

ol ) < @71 (1, 8) < 200 (1), € (0,00)
This shows (3.2.4). In this case ®,(z,-) is bijective from [0, o0o] to itself for every
x € R".

Next we show (3.2.5). Let B = B(z,r). Since ¢ satisfies (1.2.7), we have that,
for y € B, p(z,7) ~ ¢y, r) S ' (y, 1/|B]), that is, o(B)/C" < &7 (y,1/]B]) for
some positive constant C’. Then

xs(y) ~1
) ——— ) dy< | ® d 1/|B|))dy = 1.
/n o (y C’/QO(B)) y < /B oy, @ (y, 1/|B|)) dy
This shows that ||xs|| 2. < C'/@(B). Similarly, from (3.2.2) it follows that
1
.M (y, 1/1Bl)

that is, 1/(C"|Ble(B)) < ®_'(y,1/|B]) for some positive constant C”. Then

[ o (0 gats) avs [ @ /i ay < 1

o8

<|B|2, (y,1/|B) < |Ble(y.7) < |Ble(z,r),

NS
~



where we use (3.2.1) at the last inequality. This shows that ||x5||,s, < C"|B|o(B).

The proof is complete. [
Now we show the following inclusion relation:

Proposition 3.2.3. Let 1 < ¢ < oo and ¢ : R" x (0,00) — (0,00). Assume that ¢
is in G4°° and satisfies (1.2.7) and (1.2.9). Then there exists a Young function ®,,
such that

LP#(R") € LSR")  and ||fl| e < Ol fll 20,

where C'is a positive constant independent of f € L+ (R™).
Proof. For ¢, take a Young function @, as in Proposition 3.2.1, and set ®, ,(z,t) =

P, (z,t?). Then @, is also a Young function. By generalized Hélder’s inequality
(3.2.3) and Proposition 3.2.1 we have that, for all balls B,

1 2
S5 1 S el S WS = 1,

where &)@ is the complementary function of ®,. This shows the conclusion. O

Remark 3.2.2. By Proposition 3.2.1 we see that, for all balls B,

1
< -
||XB||L<I>%<P ~ SO(B>1/q

3.3 Compactness criterion on generalized Morrey
spaces

We consider the integral operator

(3.3.1) Tof(z)= | Kolz,y)f(y)dy, =€R",

Rn

for a kernel function K, : R" x R® — C. In this section we prove the following

proposition:

Proposition 3.3.1. Let 1 < p < ¢ < 0o and ¢ : R" x (0,00) — (0,00). Assume
that o is in G4 and satisfies (1.2.7) and (1.2.9). If Ky € L2, (R" x R"). then Ty

comp

defined by (3.3.1) is a compact operator from LP®)(R") to L(@%)(R™).
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To prove Proposition 3.3.1 we use Proposition 3.2.3 and the following lemma
whose proof method is known, see for example [30] or [61]. We give the proof for

readers’ convenience.

Lemma 3.3.2. Let ® € &Y, and p,p’ € (1,00) with 1/p+1/p'. If

1/p’
HKOHL(I’(]R",LPI(]R")) = H (/R ‘KO(??J)‘p dy)

< 00,
L®
then Ty is compact from LP(R™) to L®(R™) and
(3.3.2) 1 Toll oo ze < 1Kol po men 1ot @)
where || - || oz is the operator norm from LP(R™) to L*(R").

Proof. By Hélder’s inequality we have

1/p
Tof ()] < |Ko<x,y>||f<y>|dys( |Ko<x,y>v’dy) T

Rn Rn

(/R Ko y)l” dy) "

This shows (3.3.2). Next we show the compactness. For any € > 0, there ex-

Then
|Tofllze <

[l
o

L

ist a finite number of bounded measurable sets Ey, Es, ..., Ey, F1, Fs, ..., F, and

21,22, .. .,2 € C such that

k
[ Ko — KO,eHLq’(R";LP’(R")) <€, Koe(r,y) = szXEj (@)xF, (y)-
j=1
This shows that 7j can be approximated by a finite rank operator Tj . whose kernel
is Ko.. Therefore, Tj is compact. O]

Proof of Propositon 3.3.1. For g and ¢, take a Young function ®,, as in Proposi-
tion 3.2.3. Then we see that || Kol peq.e gn.p @n)) < 00 by Remark 3.2.2. Let By be
a ball in R" such that supp Ky C By x By. Then Ty : LP#)(R") — L@¥)(R") can

be factorized as
Ty : L9 @R B Lp(R™) B L2 (R™) B L09)(R),
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where
Tl:fHXBofa T2:f'_>Tf7 T3:f'_>XBofa

since

Tof(z) = xBo(7) | K(x,y)xs,()f(y)dy, xR

RTL
The operator T} is clearly bounded and 75 is compact by Lemma 3.3.2. The operator
T35 is also bounded by Proposition 3.2.3. Thus Ty = 13751} is compact. O

3.4 Lemmas

We first recall the definition of generalized fractional maximal operators and a

theorem. For a function p : R" x (0,00) — (0, 00), let

M, f(x) = sup p(B ][If ) dy,

B>z

where the supremum is taken over all balls B containing x. If p(B) = |B|*/™,
then M, is the usual fractional maximal operator M, If p = 1, then M, is the
Hardy-Littlewood maximal operator M, that is,

— sup f ()] dy.
B>x

Then the following boundedness of M, is proven in Chapter 2.

Theorem 3.4.1 (Theorem 2.2.3). Let 1 < p < ¢ < o0 and p,¢ : R" x (0,00) —
(0,00). Assume that ¢ is in GI° and satisfies (1.2.9). Assume also that there exists
a positive constant Cy such that, for all x € R™ and r € (0,00),

p<x7 T)QO(;Q T)l/p < 0090<x7 r)l/q'
Then M, is bounded from L®¥)(R") to L(@¥)(R").
We also use the following lemmas:

Lemma 3.4.2 ([38, Lemma 2], [45, Lemma 7.1]). Let ¢ satisfy the doubling condi-
tion (1.2.5) and (2.1.4), that is,

/ go(ﬂg,t) dt < Co(x,r).
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Then there exists positive constants € and C, such that, for all x € R" and r €
(0, 00),
> t)te
/ @ dt < Cep(z,7)re.

Moreover, for all p € (0,00), there exists a positive constant C, such that, for all

xr €R" andr >0,
00 tﬁUp
/ % dt <C, (p(xﬂ«)l/p'

Remark 3.4.1. If ¢ is in G4 and satisfies (2.1.4), then ¢ satisfies (1.2.9). Actually,

© satisfies the doubling condition and the following inequalities hold:
2r o0
t t
o s [ Ea e [TARD g g o)

Then we see that lim ¢(z,7) = co and that lim ¢(z,7) = 0.
r—+0 r—00

Lemma 3.4.3. If ¢ satisfies (3.1.1), then there exist constants 6 € (0,1) and
C € [1,00) such that, for allb € C, (R™) and all x,y € R™ with |z —y| < 1,

comp
[b(x) = b(y)| < CIVb]lr< |z — yl"v (@, |z — yl).
Proof. By the assumption (3.1.1) and Lemma 3.4.2 we see that there exists a con-

stant 6 € (0, 1) such that

* (. ) (a,r)
g dt < Com T

T

On the other hand, by the almost increasingness of 1,

2r 2r [ele
U)o gty [T s [TUED g [TYED

r1—9 t2—9 t2—6

r

This shows that

prl-6

/r"‘” @Z)t(iet) gt o @)

and that r — % is almost decreasing, that is,
(3.4.1) rt =0 <ap(x,r) for re(0,1].
Then, for |z —y| < 1,

[b(a) = b(y)] < [IVBllze |z =yl S VDIl |z — y|"¢(x, |2 — y]). 0
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3.5 Proofs of the theorems

Now we prove Theorem 3.1.1. For 0 < e < R < 00, let

= [ K@, T = [ ke

e<|lz—y|<R

From Remark 3.1.1 and Remark 2.3.2, it follows that

b, T)f(z) = lim [b, T.]f(x), [b,T:]f(z) = I%i_rgo[b, T.rlf(x) ae.xeR",

e—40

for all f € L»®)(R™). Since T. r is compact by Proposition 3.3.1 and Remark 3.4.1,

it is enough to show the following proposition to prove Theorem 3.1.1.
Proposition 3.5.1. Under the assumption in Theorem 3.1.1, we have
() tim [, T = [0, Tl o s paer = 0,
(if) lim |[[b, Tc ] = [b, Tl L) pae) = 0,
R—o0
where || - || Lo @ 5 the operator norm from LP®)(R™) to L@#)(R™).
We first state a lemma.

Lemma 3.5.2. Let 0 € (0,1]. Assume that ¢ satisfies the doubling condition
(1.2.5). Then there exists a positive constant C such that, for all x € R™ and
e € (0,1],

/B( | 77/)(1‘, |l‘ _y|)|f(y)| dy < C€0M¢f<$>.

|z —y[*?
Proof. Since 1) satisfies the doubling condition, we have

[ i,
B(z,e€)

|z — y|n?

o0

Uz, |z —y)If ()l dy

o /B(x,z—je)\B(x,z—f—le) |z —y["?

o0

Y(x,27 7€) /
v |f(y)] dy
Z (2772)" 0 [ p(wo-iep\Bw2-i-1e)

J=0

2

< Z(rf%)eMw f(x) ~ My f(x). O

=0

B
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Proof of Proposition 3.5.1. (i) Let f € L®»¥)(R") and € € (0, 1]. Then, from (3.1.3)
it follows that

BT/ (x) — b, T f(z) = lim / o G@) =) ¢y gy aen

70 |z —y|"

By Lemmas 3.4.3 and 3.5.2 we have

/B( )M‘f(y”dyg/ Mﬁ(y)]dyﬁeeMwﬂ@’

|.I’ - y|n B(xz,e) |l’ - yln—Q
for some 6 € (0,1). Hence, by Theorem 2.2.3 with the assumption (2.1.7) we have
16, 71 = [0, T fll oo S € 1My flliwo S €l oo
This shows (i).
(ii) Let suppb C By = B(0, Ry). Then

|[b, Te] f () = [b, Te.rlf ()]

|b(x) — b(y)|
SAy>Rw|f(y)|dy

S Rl § 2 IIE

=y

_ /O /R ) X{R<x—y|<t}(y,t)(><30(x)+><Bo(y))ﬁ%|f(y)|dydt

: / OO </B<x,t)<XB° (@) + x5, W) f(v)] dy) "

R

Let

a) = [ ([ i) g
- (/ Xl )

|0, Te f () = [b, Terl f(2)] S Er(2) + Ea().

Then

By the inequality

1/p
/ |f<y>|dy§|B<x,t>|(f |f(y)|pdy) < ol )7 Fll o
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Lemma 3.4.2 and (1.2.7) of ¢ we have that, for large R,

00 Tt 1/p
@ S @ [ 2 )l
R

< x50 (@) (2, BV fll civor S X8 (2)2(0, B)P | f | oo

Then
1Bl e S ||XBo||L(q1<P)90(O7R)l/prHL(zw)'
Next we estimate || Esl| @ . If y € By N B(x,t) and ¢ is large, then

1/q 1 < 1
||XB(3,/,15)||L‘1>L1»<A7 ||XB (y,t) ||L<I><p ~ Sﬁ(y,t)l/q ~ S0(0715)1/(]7

where @, and @, are as in Propositions 3.2.1 and 3.2.3, respectively. Hence

o 1
1ol e S X80 W) pao X8, W f (W) dy | = dt
R Rn et
& 1
< [ s Iagolen ([ xn@lrwldy) e
Rn

R y€DBo
> 1
5/ sup “XB(yt HL‘I’thH dt (/ |f(y)] dy>
R y€DBo By
> 1
S —_— 1/p
~ /R S0y 4@ Bo) P IBol £ 0.

By the almost increasingness of r — (0, 7)r™ we have

— g WS dt < :
w20, 07 S o0 RYR g e S (a0, R) R VAR
Therefore,
1[0, Te) f(z) = [b, Te.p) f || Liae

o(B0)"|By
S (Il (0, 80+ E I

1
(0(0, R)Rr)V/a /4

Next we prove Theorem 3.1.2. For 0 < e < R < 00, let

Lot = [ )iy

|z —y|"

Since ¢(0, R) — 0 and — 0 as R — oo, we have (ii).

— p(x> ’37 B y’)
Loerf(x) = /6<|m Sk Wf(y) dy.
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From Remark 2.3.3, it follows that

b, 1, f(x) = lim [b, I, ]f(x), [b,1,¢f(x)= lim[b, 1, rlf(z) aexecR",

e—+40 R—00

for all f € L®¥)(R"). Since I,. g is compact by Proposition 3.3.1 and Remark 3.4.1,

it is enough to show the following proposition to prove Theorem 3.1.2.

Proposition 3.5.3. Under the assumption in Theorem 3.1.2, we have

) tm [[b, L] = b L)l oo s 0 = 0,
(11) }%gr;o ||[b, ]p,e,R] - [b, Ip,e]HL(P,w)_)L(q,w) = 0;
where || - || Lww) @ 05 the operator norm from LP#)(R™) to L@¥)(R™).

We need a lemma to prove the above proposition.

Lemma 3.5.4. Let 0 € (0,1]. Assume that iy and p* satisfy the doubling condition
(1.2.5). Then there exists a positive constant C' such that, for all x € R™ and
€ (0,1],

Y(x, |z —y))p* (@, |z — yD|f(y)] 0
/B(:r €) ‘1' — y‘nie @ = O wa*f(x)‘

Proof. Since ¥ and p* satisfies the doubling condition, we have

/ Y, |z —yDer (e, Jz —yDIf Wl
B(x,e€)

|z — y|n?

_Z/ U(z, |z —yl)p*(z, |z — y)|f ()] dy
B(x,29€)\B(x,2=7~1¢) ‘w_y‘nie
P(z,277€)p*(x,2” ]e)/
fy)ldy
Z 2 i—le n o B(x,?*je)\B(x,Q*jfle)’ ( )‘

Z 2 7le wa ( )Neewa*f(x)‘ L

Jj=0

Proof of Proposition 3.5.5. (i) Let f € L®»¥)(R") and € € (0, 1]. Then, from (3.1.4)
it follows that

b, 1) f(2) = [b, 1, £ () = lim (b(z) = b)) TV f(y) dy, ez,

170 Jn<la—y|<e o =yl
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By Remark 2.2.1 and Lemmas 3.4.3 and 3.5.4 we have

[ ) = 2 )y
B(xz,e€) |JI y|

</ U(z, |z —y)p*(z, |z — yl)
~ B(x,e€)

|z —y|"?

[F(y)l dy
5 Eewa*f(I‘)’

for some 6 € (0,1). Hence, by Theorem 2.2.3 with the assumptions (2.1.12) and
(2.1.13) we have

H[ba Ip]f - [67 [px]f”ﬂq,w) N EQHwa*f”LWW S 69‘|fHL(Pv<P)-
This shows (i).
(ii) Let suppb C By = B(0, Ry). Using the relation
Kor Kor [e’e)
plz,r) _ Q/ pl.t) ., N/ pl,t) < / p(z,t) n

— 1 1
rh rh Kir 13 Kir tn-l— Kir tn-l—

we have

b? Ip,ﬁ]f(x) - [b7 Ip,e,R]f<I>|

pla, |z — 1))
< / PLCRLOIE e O

< @ +xn®) ([ 22D ) 1) dy
/x—y|>R (/ |t

Ki|z—y

~—

- /0 /R” X{R<|z—y|<t/K1}(y7 t) (XBO (CIZ) + XB, <y))p§f—:—f ’f(y)l dy dt

> p(,t)
< [ (L o) e xmlmlar) 42 ar

Let

= [ ([ i) S
Ba- [ (] Rt a) 8D

[0 Lo (@) = b, Lo r]f(2)] S En () + Es(z).

Then
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By the inequality

1/p
/ |f<y>|dysrB<x,t/Kl>|(][ \f(y)|pdy) < o, )28 fll oo
B(z,t/K1) B(z,t/K1)

and the assumptions (2.1.12) and (1.2.7) on ¢ we have that, for large R,

oz, t)p(x, t)/P
Bo) Sxmfe) [ HEDEED gy
KiR

< xso (@)@, R fllsoer S X0 (@)0(0, R)Y4| f || Lo
Then

||E1||L<w) f, ||XB0||L<W>‘P(07R)l/q”fHL(PW-

Next we estimate ||Esl/pwe. If y € BoN B(x,t/K;) and R < t is large, then
p(x,t) ~ p(y,t) ~ p(0,t) and

_ g « 1 < 1
Psamollires = ool S 2o reym S G

where @, and @, , are as in Propositions 3.2.1 and 3.2.3, respectively. From (1.2.4),
(2.1.12) and (2.1.13) it follows that

far :0(07 t)90<05 t>1/p 1/p < 90(07 r)l/q

0,r 0,7“1/’75/ dt < (0,7 S—— r>0,
p(0,7)p(0,7) - ; ©(0,7) 00,7
which implies
1 1
< <
||XB(Z/¢/K1)||L‘I>1L<P ~ S0<0’t>1/q ~ p(O,t)gO(O,t)l/pw(O,t)
Hence
= p(0,1)
Balien S [ ([ IacamyOlwoxa ol £l ) Ao
KiR n
* p(0,t
N / sup (| XB.t/k1) [l L@e ( / XBo(y)If(y)Idy> t(nﬂ)dt
KlRyGBo n
> p(0,t
< [ sup ol st ([ 1560140)
KlRyEBo Bog
o0 1
< dt o(By)"/?|B pip) -
N/K1R ©(0,1)1/Py)(0, )+ 2Bl Bol [ e
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Since r — (0, 7)r™ and 1) are almost increasing,

> 1
dt
/KlR ©(0,)! /P (0, t)tm+!

S : / Tl g
~ (¢(0, R)YR™)VPyp(0, R) J e, g tm"/PH1

< 1

~ (¢(0, R)R™)\/»p(0, R)Rn—"/p"

Therefore,

H [b7 Ip,e]f(x) - [ba ]p,s,R]fHL(q,w)

< (r|xBouL<qW<ovR>”q n

(9(0, R)R™)1/Pyp(0, R)Rn—n/p

1
(¢(0, RYR™)Y/)(0, R)Rn—n/v

Since (0, R) — 0 and

The proof is complete.
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Chapter 4

A generalizetion of the
characterization of CMO

4.1 Theorem and Corollaries

For a function f € L (R") and a ball B C R", we denote by MO(f, B) the mean

loc
oscillation of f on B, that is,

(411) MO(. B) = 1 1) = fal dy.
B
Then our main results in this chapter are the following:

Theorem 4.1.1. Let ¢ be in G and satisfy (1.2.7). Assume that

(4.1.2) lim inf o, r) =00, lim inf r"¢(z,r) = co.
r—+0 zeRn? r r—o0 xeR"

Ly,4(R"

Let f € L14(R™). Then f € C,,,(R™) ) if and only if [ satisfies the following

three conditions:

MO(f, B(x,r))

0 Jig, up S <0
(ii) lim sup MO(/, Bz, r) =0.

=00 R ¢($, T)

o MO(f, B(, 7))
(i) \xlﬂfio o(x,r)

=0 for eachr > 0.
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Remark 4.1.1. We do not need (4.1.2) to prove that, if f satisfies (i)—(iii), then f €
O (ray-re® - O (RrayFre®
CSmp(R™) . We do not need (1.2.7) to prove that, if f € Cg5, (R") ,
then f satisfies (1)—(iii).

If ¢ = 1, then the theorem above is the same as Theorem 1.1.3. If ¢(z,7) = r*,
then we have the following corollary.

Corollary 4.1.2 ([55]). Let f € Lip,(R"), 0 < o < 1. Then f € mmpa(w)

if and only iof f satisfies the following three conditions:
MO(f, B(x,7))

i) li =0.
g
M B
(i) lim sup O Blz,r)) _ 0.

T—00 pcRn re

(iii) lim MO(f, B(z,7)) =0 for each r > 0.

|z|—o00
As another corollary, we consider the Lipschitz (Ho6lder) space with variable
exponent. For a(-) : R" — [0,00) and o € [0, 00), let Lip;7(R") be the set of all
functions f such that the following functional is finite:

2 — _
gy, =] s 2 SOLC ) WSO,
" o<le—yl<1 [T = Y|* + |z —y[oW T ys o=yl

see [46, Definition 2.1 and Remark 2.2]. For these a(-) and a., let

re@ 0<r<1
4.1.3 xT,r) = ’ ’
( ) oz, 7) {T“*, 1<r <oo.
If
(4.1.4) 0< inf a(z) <sup a(z) <1, 0<a, <1,
zeR™ xeR™

then ¢ is in G and satisfies (4.1.2). If a(-) is log-Holder continuous also, that is,

there exists a positive constant C' such that, for all x,y € R”,

< ¢
~ log(e/|z —yl)

then ¢ satisfies (1.2.7), see [46, Proposition 3.3]. Moreover, if inf,cgn a(z) > 0 and

a, > 0, then £; 4(R") = Lipj;(R") with equivalent norms, see [46, Corollary 3.5].

la(z) — a(y) if 0<|z—yl<1,

Hence we have the following corollary.
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Corollary 4.1.3. Let ¢ : R" x (0,00) — (0,00) be defined by (4.1.3). Assume that
al(-) and o, satisfy (4.1.4) and that o(-) is log-Hélder continuous. Let f € Ly 4»(R™).
Then f € mﬁl’d’(w) if and only if f satisfies the following three conditions:
MO(f, B(x,r))

O D = e =0
MO(f, B

(ii) lim sup /, Bz, 1)) =0.
T—00 pcR™ o

(iii) lm MO(f, B(z,r)) =0 for each r > 0.

|z|—o0

Lipt ) (R™

Moreover, if inf,egn a(z) > 0 and o, > 0, then f € Cg,,,(R™) ) if and only

if [ satisfies the above three conditions.

4.2 Lemmas and a proposition

In this section we show three lemmas and one proposition to prove Theorem 4.1.1.

First, let n be a function on R™ such that

(4.2.1) suppn C B(0,1), 0<n<2 and /( )n(y) dy = [B(0,1)],
B(0,1

and let 7, (z) = |B(0,7)|"'n(x/r). Then, for f € L] _(R"),

loc

(42.2) 7 # f(z) = ]i =) )y

If n = X, then 9, x f(x) = fpar. U n€ C,,(R"), then (4.2.2) is a mollifier.
We can choose n € C22(R™) which satisfies (4.2.1) and

comp

(4.2.3) VL. < cp

for some positive constant ¢, dependent only on n.

For two balls B; and Bs, if By C B,, then

(1.2 o — Il < Pnios, By),
| By |
and
(4.2.5) MO(f, B,) < 2:%2‘:1\40@2 By).
1

The first lemma is an extension of (4.2.4).
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Lemma 4.2.1. If B; = B(x,r) C By, then

(126) i F0) ~ fl < 2

Proof. From (4.2.1) and (4.2.2) it follows that

]in((w—y)/r)f(y)dy—fm
o=/ >—f32)dy]

Mo(f7 B2)

7% f(x) =[] =

ol B2l 2\ _ B 2!

Lemma 4.2.2. For any ball B(x,r),

(4.2.7) ]{3 ) =% Sl dy < 2°72NOU, B, 20)

Proof. Let B = B(z,r). From Lemma 4.2.1 it follows that

f F) = 7 # Sy |dy<f () = fosl + foz — i, * F()]) dy

][ F(y) — fapl dy +27FMO(f,2B)
< 2"P2MO(f, 2B).

Lemma 4.2.3. Let n be in C°

comp

(128) e f) 7 £ <20 Vnlle L0, Bl 20).
Proof. Letting f(x) = f(2) — fB(ear, we have

% F) = 7% £ = 170 % Fy) = 70 % F(2)]
- 5o /. [ty = ) (e = ) )

ggn][(m)un((y_w)/r)_ n((z — w)/r)) f(w)] dw

nlYy — %2 r
<=y, ||wa( )]
B(x,2r

which shows the conclusion.

4

(R™) and satisfy (4.2.1). If y,z € B(x,r), then

O

]



Proposition 4.2.4. Let n be in C2 (R™) and satisfy (4.2.1) and (4.2.3). Let ¢ be

comp

in G and satisfy (1.2.7). Then there exists a positive constant C, dependent only
onn and ¢, such that, for all r > 0,

(4.2.9) 1f =% flle, <C - sup MO(f, B(m,t))'

z€R™, 0<t<2r o(x,t)

Before we prove Proposition 4.2.4 we state its corollary, which is a variant of
Theorem 4.1.1.

Corollary 4.2.5. Let n be in C25 (R™) and satisfy (4.2.1) and (4.2.3). Let ¢ be

comp

in G and satisfy (1.2.7). Then there exists a positive constant C, dependent only
onn and ¢, such that, for all f € L1 4,(R") and r >0,

(4.2.10) 17 % fllz, o < ClSllzs -
Moreover, if f satisfies (1) in Theorem 4.1.1, then i, f — f in L1 ,(R™) asr — +0.

Proof of Proposition 4.2.4. We show that

O(f B 777“ * f,B([L',t))
¢(z,t)

is dominated by the right hand side of (4.2.9) for each ball B(z,1).
Case 1. 0 <t <r: From Lemma 4.2.3 it follows that

1

o ]imm*f() (s * ) gon| dy

< o) ][M)][“ 7 f(y) — T f(2)] dz dy
< ST 2n”V"“L°° (][ " ][ - y> MO(f, B(z, 2r))

MO(f, B(z,2r))

=% C"m(:c,t)
MO(f, B(x,2r))

<
< Cnom i 2n)

In the above we used the almost decreasingness of r +— ¢(z,r)/r for the last in-
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equality. Hence

O(f B ﬁr * f7B($7t))
¢(z,1)

= 5 o, ) =52 50 = (o D
< 508 fou, 1)~ ol
* 50 o 1110 = e Pl
MO((Z(,;?IS;SJ)) N Cn,¢MO(j{;}§f; 2r))

Case 2. t > r: Take balls {B(z;,r)}; such that

B(z,t) | JB(xj,r) € B(x,2t), Y |B(xj,r)| < ColBlx,1)],

J J

where C,, is a positive constant depending only on n. Then, using Lemma 4.2.2, we

have
MO(f — 7 * f, B(x,1))
m/m — 7% f(y)|dy
< B > / W = sl dy
2

T nt2 T, 2r
< B |Z|B 5 1)[27EMO(S, B(x;,2r)

< 230, sup MO(f, B(x;,2r)).
J

By the almost increasingness of ¢, (1.2.7) and the doubling condition of ¢ we have

¢(xj7 QT) S Qb(ﬂfj, 2t) ~ ¢(I7 Qt) S Qb(l’,t)
Therefore,

O(f_ﬁr*va(x7t)) MO(f,B(.T]727’))
o(z,t) o(xj,2r)

The proof is complete. O

< O ysup
J
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4.3 Proof of the theorem

Proof of Theorem 4.1.1. Part 1. Let f € Cg,, (R™). Then, from the inequality

f W) fuldy < 20|V ]|
B(z,r)

and (4.1.2) it follows that

: MO(f, B(x,r)) :
<
EEO xseu]RBL o(x,r) - TIEEO xseullg“‘ o(x,r)

2r

IV fllze= = 0.

On the other hand, from the inequality

2| supp fI|| f ||z
— d

and (4.1.2) it follows that

lim sup MO B@r) 2l supp Sl =
70 zeRn Qb(l’, T) 00 peRn Qb(l', T‘)|B(CL’, 7”)|

= 0.

For each r > 0, take € R™ such that supp f N B(x,r) = (). Then

MO(f, B(x,r))
¢(x,7)
That is, f satisfies (i), (ii) and (iii).
Let f € mh@(ﬂ%n)' Then, for any € > 0, there exists g € Cg5,,, (R™) such
that, sup MO(/ — 9, Bz, 1)
TER™, r>0 ¢(z,7)
Part 2. Let f satisty (i), (ii) and (iii). For any € > 0, from (i) and (ii) there
exist integers i, and k. (i < k.) such that

- MO(f, B(x,r))
p{ o(a,7)

=0.

< €. Therefore, f satisfies (i), (ii) and (iii).

cx € R, 0<r§2"€}<e

and

sup {MO(Q{(’fS’T» creRY r> 2"35} < €.

From (iii) it follows that
MO(f, B(x,2"))
¢(z,2°)

lim max {

|z| =00

:£=¢6,¢6+1,...,k6}:0.
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By (4.2.5) and the doubling condition of ¢ we have

MO(f, B(x,r)) MO(f, B(x, 25))
2252«)322 o(x,7) = o(x,2") 7

where the positive constant C' is dependent only on n and ¢. Consequently,

(=i i +1,... k.,

=0.

lim  sup MO(/, B(z,r))

|z =00 gic < p<oke ¢(z,7)

Then there exists an integer j. such that j. > k.(> i.) and

MO(f, B(z,7)) o Je) — €

Using i, k. and j., we set

By ={B(z,r):z€R", 0<r <2},

By = {B(m,r) cr eR™ r> 2’“6},

Bs = {B(z,r): B(z,r) N B(0,27) = 0}.
Then MO(f,B)/¢(B) < € if B € B U By U Bs.

We define a C>°-function f as follows: Let 7 be in C, (R") and satisfy (4.2.1)
and (4.2.3), and let

fl:ﬁrl*fa Tl:2i6_1-
Then, from Proposition 4.2.4 it follows that

MO(f, B)
¢(B)

where the positive constant C), 4 is dependent only on n and ¢, and independent of

(4.3.1) If = fillz,, < Chg sup < Cno6
BeB;

r1. This also shows that

MO(f1, B)
(4.3.2) B = If = Ffille,, +

MO(f, B)

¢(B)
< (Cpge+1)e for Be B UByUBs.

S

Next we define a C*°-function f, as follows: Let h € C22  (R™) satisfy

comp

xB01) < h < XBo2), |IVh|re <2,
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and let

Jo= (i = (1) Boar) vy + (J1) B0y, Py () = W2 /1), 10 = 2,

Then fo — (f1)B(0.4r2) € Cogmp(R™), that is,

comp

4.3.3 — =0.
( ) ec?olm(w) Hf2 9H51,¢

omp

In the following, using (4.3.2), we will show that there exists a positive constant

6n,¢>7 dependent only on n and ¢, such that

(4.3.4) Ifi = foller, < Cuge.

Once we show (4.3.4), combining this with (4.3.1) and (4.3.3), we obtain that
—nﬁw(R")
f e COmp(R ) °
Now, take a ball B = B(z,r) arbitrarily.
Case 1. r > ry/2: In this case B € B,.
Case 1-1. If BNB(0,2r,) = 0, then fo = (f1)B(0,4r,) o0 B, that is, MO( f2, B) = 0.
Hence, by (4.3.2) we have

O(f1 — fa, B) _ MO(f1, B
¢(B) ¢(B)

Case 1-2. If BN B(0,2ry) # (), then, using the almost increasingness, the nearness
condition (1.2.7) and the doubling condition (1.2.5) of ¢, we have

) < (Chp+ e

¢(O 4T2) (b(o 87") ¢(Z,87’) ~ ¢(B)? |B(0,47’2)‘ < 8n‘B’7

and then

O(f2, B) _ MO((f1 = (f1)B(0.ars)) trs; B)
¢(B) ¢(B)

] ][ (i (5) ~ ()0 Vv dy

MO 1,B 0 47‘2))

< Cb( (0 47’2))
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Since both B and B(0,4r3) are in By, from (4.3.2) it follows that

O(fi — 2 B) _ MO(f1,B) MO(fsB) _ .
oB) = e T am) "

where (7, ; is dependent only on n and ¢.
Case 2. r < ry/2:
Case 2-1. If B C B(0,r3), then MO(f; — fo, B) = 0, since

Ji— fa= (fl - (fl)B(OArg)) (1 - hr2) =0 on B(O,Tz)-
Case 2-2. If BN B(0,2ry) =0, then B € Bs and f> = (f1)5(0.4r,) o0 B. Hence

MO(fy — f»,B) _ MO(f,, B
¢(B) ~ 9(B)

Case 2-3. If BN (B(0,2r3) \ B(0,73)) # 0, then B C B(0,4r3) \ B(0,73/2), since
7 < 1y/2, and hence B € Bs. Choose a sequence of balls { B,}"t! such that

) < (Chp+ e

(B(0,4r5) = By > By D +++ D By D Byt = B,

B| = 2"| Byl 0=0,....m—1,
9 |Bm| < 2n|Bm-i-1|a

By € By, (=0,1,2,3,

| Br € Bs, (=4,.... m+1.

Note that the balls above are not concentric. Then, using (4.2.4) and (4.3.2), we

have

|(£1) B(0.4rs) — < 1A)B — (F1) B |

(=0

§2"Z¢(Bg)max{% :E:(),l,...,m}

z:o
Since ¢ is in G"¢ and satisfies the nearness condition (1.2.7), the inequalities

¢(Bg>/(227£7'2) <Cypp(B)/r, £=0,1,...,m,
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hold for some positive constant Cj; dependent only on ¢. Then

- =S, (2%7'r)¢(B) 30 7"2¢( )
¢(B) <) C < 2°C .
Hence,
(] B
(4.3.5) () ptosnn — (sl < 0, 20E)

where C) , = 2"3(C,, 4 4 1)Cy. Next, let

Cr, = ((f1)B — (f1)B04rs)) (1 = (hey)B).

Then

(f1(y) = fo(y)) — Cp,
= (i) = (1) Boary)) (1 = hey (1)) = ((f1)B — (f1)Bo4rs)) (1 = (hry)B)
= ((A) = 8) (= b)) + (s (0) = (rr2)8) (P00 = ()8) ).

and then, for y € B = B(z, 1),

Mﬁ@—h@»—ql

<|AW) = (A)s] + 27Vl || < | (1) Bo.4rs) — (f1) B
< |) — (o] +2r 2 x o, 2B

where we used (4.3.5) in the last inequality. Hence,

MO(fl,B) 1" "
][ | f1 _Cf’dySW_FQZCn@GSCn@E,

where C; is dependent only on n and ¢, which shows

MO(f1 — f2, B)
¢(B)

<20y €.

The proof is complete.
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Chapter 5

Compactness — Necessity

5.1 Theorems

In this section, as an application of Theorem 4.1.1, we give a characterization of
compact commutators [b, 7] and [b, I,] with b € L4 4(R") on generalized Morrey
spaces L(P#)(R") with variable growth condition.

In Theorems 3.1.1, 3.1.2, we state sufficient conditions for the compactness of
the commutators [b,T] and [b, I,] on L®#)(R™). In this section, to characterize
the compactness, we give necessary conditions. To prove the results we apply

Theorem 4.1.1 in the final section.

Theorem 5.1.1. Let 1 < p < g < oo and ¢,¢ : R" x (0,00) — (0,00). Let T be
a Calderén-Zygmund operator of convolution type with kernel K : R™\ {0} — R.
Assume the same condition on @, ¥ and T as Theorem 2.1.1 (ii). Assume also that

there exists a positive constant g such that

(5.1.1)
limsup sup @(z, )Pz, r)rT < o inf (@, r) P, )/,
r—++0 zeR® zeR™, re(0,1]
(5.1.2)

sup o(z, ) /P(x, )™ < pig lim inf inf oz, )P, r)rm/,
zE€R™, 7‘6[1,00) r—oo xz€R

(5.1.3) lim sup @(x, 7)YPip(z, ) < o 1|1r|n inf @(z,7)YPe(z, ) for every r > 0.
|x|—00 T| =00

Let b be a real valued function in Li (R™). If [b,T] is well defined on LP¥)(R")

and compact from LP#)(R") to L&) (R™), then b is in C% (IR”)EW(]R !

comp
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We note that the Riesz transforms fall under the scope of Theorem 5.1.1.

Remark 5.1.1. If ¢ and 1 satisfy
I 1/p nla _ g
Jim, sup oz, ) PY(z,r)r ,

(5.1.4) lim inf @(z,7)YP(z,r)r™? = oo,

r—o0 z€R™

‘xllznoogp(x, r)YPip(z, ) exists for every r > 0,
or
(5.1.5) gt < oz, r)YP(x, r)r/1 < pg for all z € R™,r € (0, 00),
then the conditions (5.1.1), (5.1.2) and (5.1.3) hold.
Example 5.1.1. Let 1 < p < ¢ < oo and f(:), A(:) : R* — (—00,00). Assume that

0< inf B(z) < sup B(z) <1, 0< B <1,

IGR” IER"
—n < inf A(z) < sup AMz) <0, —n <A <O0.
Q?ER" :EERTL

Let

B, @0 <r <1,
77/)($,’l“) = { 90(1'77‘) = A

rv, 1 <r <oo.

Assume that A(+) is log-Holder continuous, that lim S(z) and lim A(z) exist and

that

inf (B(z) +A(@)/p) > —n/q, B+ A/p > —n/q,
Bx) + AMz)/p < A@)/q, Be+A/p = A/q

Then ¢ satisfies (1.2.7) and ¢ and 1) satisfy (2.1.8) and (5.1.4). Let b € L} _(R"™).
If a Calderon-Zygmund operator T satisfies the assumption in Theorem 5.1.1, and
if [b,T] is compact from L) (R") to L(@¥)(R™), then b is in C° (R”)Cl’w(R !

comp

We also take the cases

wary = [T ogle/m) 0, 0 < <1,
z,r)=
B (log(er))ﬁ**, 1 <r < oo,

ete.
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Theorem 5.1.2. Let 1 <p<qg<o00,0<a<n and g, :R"x (0,00) — (0,00).
Assume the same condition on @, 1 and « as Theorem 2.1.2 (ii). Assume also that

there exists a positive constant g such that

(5.1.6)
lim sup sup oz, )P, I < g int ol r) VP, P,
r—++0 zcR” zeR™, re(0,1]
(5.1.7)
sup gp(x7r)1/pw(x,r)ra+”/q < pp liminf inf (x,r)l/pw(x,r)rwr"/q’
z€R", rell,00) r—oo zER?
(5.1.8) lim sup @(x, 7)Pp(z, ) < po 1‘11|n inf (z, ) YP(z, ) for every r > 0.
Tr|—00

|z|—o00

Let b be a real valued function in Ll (R™). If [b,1,] is well defined on LP*)(R")
and compact from LP¥)(R") to L@ (R™), then b is in CX (R”)KWOR !

comp

We can take similar examples to Example 5.1.1 for the compactness of [b, I,].
We will prove Theorems 5.1.1 and 5.1.2 in the following sections by using The-

orem 4.1.1.

5.2 Lemmas

In this section we show several lemmas to prove Theorems 5.1.1 and 5.1.2 in Sec-
tion 5.3.

Lemma 5.2.1 ([37, Corollary 2.4]). There exists a positive constant ¢, dependent
only on n such that, for all x € R™ and r, s € (0, 00),

2 MO(f, B(x,t))
t

’fB(x,r) - fB(x,s)l < Cn/ dta Zf r<s.

r

The next lemma is well known as the John-Nirenberg inequality.
Lemma 5.2.2 ([29]). For all cubes Qo and all t > 0,

H{z € Qo: |f(x) = faol > 1} < e|Qol exp (=At/sup {MO(f, Q) : Q C Qo}),
with A = (2"e)~ L.

For the constants e and A in the above lemma, see [22, Theorem 3.1.6].
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Corollary 5.2.3. Assume that v € G™. Let v > 1 and f € L1 4(R™) with
| fllz,, = 1. Then, for all balls By and all t > 0,

o € vBo: |f(x) = fi| > t + Aw(Bo)H < 41| Byl exp (—Ast/(vi(Bo))
where the constants Ay, Ay and As are dependent only on n and 1.

Proof. We denote by v,, the volume of the unit ball. Let @y be the smallest cube

containing vBy. Then

2v)"
VB(]CQOC\/EVBO, %:(U).

By this relation, Lemma 5.2.1 and || f[[¢, , = 1 we have

|fBo - fQ0| < |fBo - f\/ﬁuBo| + |f\/ﬁuB0 - fQo'

2v/nv
< Cn/ wdt_,_W—VBOlMO(f’ VnvBy)
1

t Qol
= cn / B g (g2 (i By)

t
S A0V¢(BO)7

where the constant Ay is dependent only on n and . Since

|f(x) = fBo| >t + Aovip(Bo)
= |f(@) = ol >t +1fB, — faul = |f(2) = fq,l >,

we have

Hz e vBy : |f(x) = fBy| >t 4 Agri(Bo)}|

< w € vBy: /(@) — fao] > )]

<{r € Qo 1)~ faul > 1)

< e|Qo] exp (—At/sup {MO(£, Q) : @ € Qo})

— 2 B exp (— At/ sup MO(£,Q) - @ € Qo)) with A = (")

In the above the third inequality follows from the John-Nirenberg inequality. For
any cube Q) C (g, take the smallest ball B containing ). Then

@— n/2)"v

36
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Hence
2|B|

0] —5r MO(f, B) = 2(v/n/2)"v,MO(f, B).

O(f.Q) <
That is,
sup {MO(f,Q) : Q C Qo} < 2(v/n/2)"v, sup {MO(f, B):BC \/EVBO}
< 2(v//2) v sup {6(B) : B C VaivBy)
< App(By),

where the constant A} is dependent only on n and v. Letting A; = €2" /v, and
Ay = AJAL, we have the conclusion. O

In the following lemma we used the idea in [10].

Lemma 5.2.4. Let b be a real valued function in L (R™). For any ball B, let
(5.2.1)

fB(2) = go(B)l/P <sgn(b(z) —bg) — CO>XB(2), where ¢y = ][ sgn(b(z) — bp) dz.

5
Then

(5.2.2) supp f? C B, fB(z)dz =0,

(523 F)bE) — ba) > 0,

(5.2.4) FP(2)(b(2) — bg) dz = ¢(B)"/?| B]MO(b, B),
(5.2.5) ||f;||up,w <C,

where C' is a constant dependent only on n and .

Proof. The first assertion (5.2.2) is clear. Since [,(b(z) — bp)dz = 0, it is easy to
check |cy| < 1. Then we have

FP()0(=) — bs) = @(B)([b(2) — bs| — cofb(=) — b)) xs(z) 2 0

and

/n B(2)(b(2) — bp)dz = (B)l/p/ (|b( ) —bp| — co(b(2) — bB)> dz

1/”/\6 ) — bg|dz

©(B)Y?|BIMO(b, B).
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Finally, let B = B(z,r). We show that, for any B' = B(z/, 1),
1
o(B) /i
If BN B # 0 and v <r, then p(z,7) ~ p(x,2r) ~ o(a',2r) < o', r") by (1.2.5),
(1.2.7) and the almost decreasingness of ¢. Hence

B(\IP 4z ©(B)
firre< fo<c

PPz <

p(B')

If BNB # 0 and v > r, then o(x,r)r"™ < @(z,2r")(2r")" ~ o', 2r")(2r")" ~
2@ (a2, r")(r")" by the almost increasingness of ¢ — p(z,t)t", (1.2.7) and (1.2.5).
Hence

s < EBIE
W= i =© -

Lemma 5.2.5. Let p,q € (1,00). Let T be a convolution type singular integral

operator such that

(5.2.6) Tf(z)=pv. | K(x—y)f(y)dy

R”

with homogeneous kernel K : R™ \ {0} — R satisfying K(z) = |z| " K(z/|z|),
fsrbfl K =0, K € C®(S"™1) and K # 0, Assume that ¢ € G and ¢ € G™°.
Assume also that ¢ satisfies (3.1.1). Let b be a real valued function and ||b]|¢, , = 1.
For any ball B, define fP by (5.2.1). Then, for any constants g, jio € (0,00), there
exist constants vy, vy € [2,00) (11 < 13), v3 € (0,00) and vy € (0,1) such that, for
all balls B satisfying MO(b, B) /1(B) > €, the following three inequalities hold:

1 1/q
N e ) e e !
’B‘ V2B\V1B
(5:2.:8) (L/ 16717 () quy) < s
’B‘ R7\vo B - 4/.1,0 ’
and, for any measurable set E C voB \ 11 B satisfying |E|/|B| < v4,

1/q Uy .
(5.29) (5 [T @l ar) < 2om o)

The Riesz transforms fall under the scope of Lemma 5.2.5
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Proof. Step 1. Since K € C*(S"1) and K # 0, by normalization we may assume
that |[K(y') — K(2')| < |y — 2| for all i/, 2" € S"! and that

o({z' € S" 1 K(2') >2¢}) >0
for some constant ¢; € (0,1), where o is the area measure on S"1. Let
AN={2" €S : K(z')> 26}
Then
(5.2.10) yeN eSS Tand |y — [ <e = K()>e,

since K(y') > 2¢; and |K(y) — K(2')| < |y — 2| < €. Set £ =2/¢; > 2.
Step 2. Let B = B(xz,r) satisfy MO(b, B)/¢(B) > €. We show that

(5.2.11) |T((b—bp)f")(y)| > @(B)l/pqp(BHB’eleo for y ¢ (B and

€A,
Q2ly — =) Iy—ﬂ
1/p
59.12) [T((b— bg)f2) ()| < 22 ZBV VBBl ¢ g op.
ly — [
b(y) — bp|p(B)Y?|B
(5:2.13) |(b(y) — bp)T(P) ()] < Cx 1Y) - _B’;T,SH) Bl tor y ¢ 08,
where the constant C is dependent only on the kernel K.
Now, for y ¢ ¢B and z € B, we have
y—r Y-z ‘ Y — y—z 212 —a| _2 .
|y — = w—2| Iy—ﬂ Iy—ﬂ w—xl ly—z[| = ly—=] ~ ¢

<|y Z|) > €1 by (5.2.10), and then

€1 €1

In this case, i |

K(y—=z)> > .
ly — 2" = (2ly — =|)"

Hence, from (5.2.3) and (5.2.4) it follows that, for y ¢ /B and == € A,

ly— wl

o(B)P[BIMO(b, B)
(2ly — x|

which shows (5.2.11), since MO(b, B) > 9(B)¢y. On the other hand, for y ¢ (B

and z € B, we have

€1,

IT«b—bwf%@DF=A¥ﬁy—ZXM@—WBVB@ﬂkZ

Ck 2"Ck

|K(y—2)| < < :
ly — 2" = |y — x|
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Then, from (5.2.3) and (5.2.4) it follows that, for y ¢ (B,

(B)Y?|B]MO(b, B)
ly — x|

IT((b—bp) f7)(y)] < 2°Cic 2

9

which shows (5.2.12), since ||b||z, , = 1. Finally, from (5.2.2) and (5.2.5) it follows
that, for y ¢ (B,

((y) - ba)T(P) ()] = \(b( )=tw) [ (Kly=2)7() = Kly =)/ (2) d
< 1b00) = bal [ 7)1 s

r|b(y) — bsle(B)"7| B

< Ck
ly — a|*+!

b

which is (5.2.13).

Step 3. Let Kk = n —n/q > 0. From the condition (3.1.1) it follows that ¢ —
Y(x,t)/t'% is almost decreasing for some constant 6 € (0, 1), see [38, Lemma 2| or
[45, Lemma 7.1]. In this step, using (5.2.13), we show

sz ([ 0w - wr )

< C1(2°) " o(B)"?| BV (B),

where the constant (' is independent of B and jy € Z satisfying jo > log, ¢

By Lemma 5.2.1 and [[b||z, , = 1 we have

1/q 1/q
<][ b(y) — bB|qdy) < <][ 1b(y) — b2j+13\qdfl/) + |bgj+15 — bp]
9+l R 2i+1B

2, t)

/
gcn/ j dt, j=1,2,....
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Then, for jo > log, ¢, by (5.2.13),

(/Rn\%B [(b(y) — be)T(fB)(y)|? dy) 1/q

s by) — bpl” "
< Cxro(B)/?|B Y (/2 _ | (_)m‘q(n]i‘l) dy)

i+1B\2i B ly

2i+2y

— |21 B|/ Y(z,1)
§T<P(B)1/p|B|ZW : dt

< re(B)Y7|B] g~ ntn/a—2 (/ —w(i’t) dt) ds.

2i07

Recall that Kk =n —n/q > 0, and let

o9 200 [e'S) s
I = / s ( / C) dt) ds, I, = / §r2 ( / Yl ) dt) ds.
2907 r t 200y 2907 13

Then

1/q
5219 ([ i) =TI y) o5 BN + 1)

Using the almost decreasingness of ¢ +— ¢(x,t)/t1% we have

9joypy—K—1 p2lor ¢ ' 2707
Il — ( T) ¢(ma ) dt < (2307,>—n—1 770(1'77“) t—@ dt
k+1 /. t ~ ri=0  J

S (2]'070)7&71'(#(1’77’) (2jor)1—9 ~ (2]0) K— Gw( )‘B’ 1+1/q

and
(e%e] t o) —Kk—1
L= [ YD </ e 2ds) at— [ @D,
gioy 1t ¢ gior L KA1
< ¢<$a2]0r)/ tr 60— 1dt < w(x’r) (2]0 ) (2]0) K— 9w( )|B| 1+1/‘I'
2907

~(2dor)1-0

Hence, combining (5.2.15) with the estimates of [; and I, we have (5.2.14).
Step 4. Recall that Kk =n —n/q > 0. We show (5.2.7) and (5.2.8). From (5.2.11)
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and (5.2.14) it follows that, for j; > jo,

(/QhB\%B I[b, T1£5 ()¢ dy) /g
> (/zle\QjoB IT((b(y) — bg)f2)(y)|? dy> 1/q

_ (/R"\2j0B |(b(y) — bp)T(fB)(y)|? dy) 1/q

1/q
1
> o(B)/7y(B)|B / @y )
(B)""(B)|B] 1 B By {yi=zen} (2ly — x]) 1€0

ly—=|
- (2]6)* (B

1Bl (B)
> ( )1/p|B’1/qw(B ( ((2]0)— —(2j1)_”q)1/q6160—Cl(2j0)_”_9>,

where the constant Cy is independent of B, jo and j;. From (5.2.12) and (5.2.14)

it follows that
1/q
([ enrey)
Rn\2/1 B

<repwyree ([ ) v

n\2i1 B ]y — l-’nq

+ CL(2) T (B) 7| BV 1(B)
< @(B)"7|B1p(B) (C3(27) ™ + C1(2) ™) |

)
)

where the constant Cj is independent of B, jo and j;. Therefore, we can choose
vy = 20 vy = 271 and v3 > 0 such that (5.2.7) and (5.2.8) hold.

Step 5. We show (5.2.9). Let E C 5B\ 11 B. From (5.2.12) and (5.2.13) it follows
that

(5.2.16) (/ b, T f |qdy> v

1 1/q
< 2"Cro(B)YP)(B)|B (/—d)
< 2"Cg(B)/")(B)|B| Ty =l Yy

_ q 1/q
+ Crerp(m i) ([ P05 ay)

g |y — x|t

< Crnlvn) "o(B) Py (B)| BV
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 Caaton 513 ( [ ) ~bulta)
Let b =b— bg, and let
Mw)=|{z € E:|b(z)] >w} and b*(t) =inf{w >0:\w) < t}.
Since E C v»B, by Corollary 5.2.3 we have
Aw + Agrap(B)) < Arwy"| Bl exp (= Asw/ (129(B))) -

Hence
AMw) < A11s"|Blexp (—Az(w — Aorot)(B))/ (129(B))) -

Since

t = Aivy"|Blexp (—Az(w — Aoat)(B))/(120(B)))
1 A1V2n|B|>

= w = VQ¢(B) (AO + A_2 lOg /

we see that

b'(t) < vau(B) (A0+Ailogw> < Agi(B) (1 | log Awi |B\)7
2

with A3 = max(1, Ap)/ min(1, A2). Then

(5.2.17)

2l _
[Elb(rc)—bgwda:g/o (b*(t))? dt

|E| A n| B q
< (Agmoip(B))" / (1 +log %") it
0

|E|/(A1v2™|Bl) 1\ ¢
< (Asweh(B))1A11," | B| / (1 + log ;) dt.
0

1+1 —1 q<2— t11+1 —1 ' 0<t<€2q
(0] O,
gt — lt gt ) = )

if |E]/(A1n"|B|) < €724, then

|E|/(A1v2™|B]) 1\ ¢ 2|E] Aﬂ/g”]B\ q
5.2.18 1+ 1o —) dt < ——— (1 +lo —) .
( ) /0 ( % Ay B & E|
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Combining (5.2.16), (5.2.17) and (5.2.18), we have

(o)’

ENY Aw"|B
< cpm et (1) (1),

where C' is dependent only on n, Ag, A, 1 and vy. Therefore, we can choose vy €
(0,1) such that (5.2.9) holds whenever |E|/|B| < vy. O

Lemma 5.2.6. Let p,q € (1,00) and o € (0,n). Assume that o € G¥ and
P € G, Assume also that ) satisfies (3.1.1) and that n —a —n/q > 0. Let b be a
real valued function and |||z, , = 1. For any ball B, define f¥ by (5.2.1). Then,
for any constants €y, 1o € (0,00), there exist constants vi,vy € [2,00) (11 < va),
v3 € (0,00) and vy € (0,1) such that, for all balls B satisfying MO(b, B) /1(B) > o,
the following three inequalities hold:

1 . 1/q
(5.2.19) <®/B\ B|[b L)fP ()| dy) > vyp(B)VP|B|*"p(B),

1 B . 1/q Uy .
(5.2.20) (E /Rn\ N |16, L] f5( | dy) < 4—ILL0§0(B) /7| B|*/"y(B),

and, for any measurable set E C vsB \ 11 B satisfying |E|/|B| < vy,

. 1/q Vs .
(5.2.21) <|B|/ |16, L] fP (v)| dy) < ¢(B) /P| B|*/"(B).

Proof. Let B = B(x,r) satisfy MO(b, B)/¥(B) > ¢. For y ¢ 2B and z € B, we

have
1 1 1

< < .
2ly — a7y =z 7 (Jy —«|/2)m
From (5.2.3), (5.2.4), [[bllz,, = 1 and MO(b, B) > 9(B)e it follows that, for
y ¢ 2B,

2) —bg) fB(z 1/p
(5‘2‘22) |]a((b_bB)fB)(y)| :/B(b( ) b )f ( )dz< SO(B) ¢(B)|B|

ly — [ = (ly —=|/2)r
2) —bg)fB(z 1/p
5223)  [L(0-bn) ")) - [ LI g S ONE,
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From (5.2.2) and (5.2.5) it follows that, for y ¢ 2B,

(5.2.24) |(b(y)—b3)]a(f3)(y)|:‘(b(y)_bB) Bﬁ%@‘

:‘(b(y)—bB) / < ) fB(”,?a) dz

ly — ="y
rb(y) — bg|
~ (n—a)(ly — z|/2)nett / fP(2)] d=
rlb(y) — bsle(B)"7|B|
~ (n—a)(ly — z|/2)nert

Next, let kK = n —a —n/q > 0. Then in a similar way to Step 3 in the proof of
Lemma 5.2.5, instead of (5.2.14), we have that

1/q
22 ([ 106) b ()0 )
< Cu(2P) (B VF B B),

for some 6 € (0, 1), where the constant C} is independent of B and j,. Moreover, in
a similar way to Steps 4 and 5 in the proof of Lemma 5.2.5, using (5.2.22)—(5.2.25),
we have (5.2.19), (5.2.20) and (5.2.21). O

5.3 Proofs of the theorems

In this section, we prove Theorem 5.1.1 by using Theorem 4.1.1 and Lemma 5.2.5.
We omit the proof of Theorem 5.1.2, since we can prove it in the same way as

Theorem 5.1.1 by using Lemma 5.2.6 instead of Lemma 5.2.5.

Proof of Theorem 5.1.1. Since [b, T] is compact from L®#)(R") to L(@%)(R"), then
b € L14(R") by Theorem 2.1.1 (ii). We may assume that [|b[|z, , = 1. Below we
show that b must satisfy the conditions (i), (ii) and (iii) in Theorem 4.1.1.

Part 1. Firstly, we show that, if b does not satisfy the condition (i), then [b, T is
not compact. Since b does not satisfy the condition (i), there exist ¢ > 0 and a

sequence of balls {B;}32, = {B(x;,7;)}52, with lim r; = 0 such that, for every j,
j—00

MO(b, B)
¥(B))
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For every B;, we define f; = f% by (5.2.1). Then

sup || fjll Lo < C
J

by Lemma 5.2.4. If we can choose a subsequence { f;) }72, such that {[b, T'] f;x) }72,

has no any convergence subsequence in L(@¥)(R"), then we have the conclusion.
Now, for the constant €y in (5.3.1), let v; (i = 1,2, 3,4) be the constants defined

by Lemma 5.2.5. By ]1i_>n010 r; = 0 and the assumption (5.1.1) we may choose a

subsequence {B;)} such that

(5.3.2) [Biwsnl _ va
Biw|  »2"

and
(5.3.3)  ©(Bjer1) PY(Bi1) | Bjgeany |4 < o (B )P0 (Bja) | By |19

Then the subsequence {fju)} associated with {Bju} is just what we request.
Namely, there exists a positive constant 0 such that, for any £,/ € N with k < ¢,

(5.3.4) 1[0, T]fie) = [0: T fi0)l| Lawr = 0
In fact, for fixed k,¢ € N with k < ¢, denote

G =wBjwy \ iBju), E =G N 1aBjy).
Then by (5.3.2) we have

Bl _ »Biol _
|Biw| —  [Bjwl

From the relation G\ E = G \ 1o B C 2By N (VQBM))C it follows that

(5.3.5)

( [T - [ 1o, T]fj<k>\qu) - ( [ T]fﬂk)er:c)
G E G\v2Bj(p)
< (/ [0, T] fie) — [0 T]fj(z)|qd$> + (/ |0, T]fj(z)|qdf)
v2Bj k) (v2Bj())"
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By (5.2.7), (5.2.8), (5.2.9) and (5.3.3) we have

(5.3.6) /Gl[b, T) fium|* dz > (vso(Bjw) " (Bjw)" 1Bjwl.
a 1%
(5.3.7) / b, T fjpldz | < 4—390(Bj<e))1/p¢(3j(6))|Bj(6)|1/q
(Vsz(z))B Fo
1%
= ZS<P(Bj(k>)1/p¢(Bj<k>)|Bj<k>|1/q7
V- q
(5.3.8) /E![b,T]fj(k>lqd:c§ <f¢(3j<k>)1/”¢(3j<k>)) | B

Combining (5.3.5)—(5.3.8), we have

q g\ Y4 1/p 1/q
<y3 - (1/3/4)) P(Bjw) U (Bj) | B

“
< (/B Hb,T]fj(k)—[b7T]fj(/z>\qd93> +f@(Bj(k))l/W(Bj(k))IBj<k>\1/‘1,
V25(k)

which shows

q

S0 ©(Bjy) P (Bjay) | Biw |9 < ( / |6, T f) — [b, T]fj<z)|qu) ,

2B (k)

1/
where 0p = (1/3‘1 - (V3/4)q) o v3/4 > 0. Thus, using (2.1.8) and the almost
decreasingness of , we have

1 ][ !
|[b>T]fk —[b,T]fg|qu? 267
(QO(WBj(k)) vaBjk) o 70

where ¢ is independent on m and ¢, which shows (5.3.4).
Part 2. Secondly, we show that, if b does not satisfy the condition (ii), then [b, T]]
is not compact. Since b does not satisfy the condition (ii), there exist ¢, > 0 and a

sequence of balls {B;}52, = {B(z;,r;)}32, with lim r; = oo such that, for every j,
j—oo

MO(b, B))
U(B;)
For every B;, we define f; = f% by (5.2.1). Then

> €.

sup [ fill oo < C
J
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by Lemma 5.2.4. By limr; = oo and the assumption (5.1.2) we may choose a
1=
subsequence {Bjx)}72, such that

Bjw| _ va

|Bj(k:+1)| 2%

and

@(Bj) (B | B | < pow(Bjges) P (Bjws1)) | By |2

Then, in a similar way to Step 1 we conclude that there exists a positive constant
0 such that, for all £,/ € N with k& < ¢,

1 Oy
((1/2—3(@)]{23 )Hb’T]fj(f)_[va]fj(k)l dx) > 4.

That is, [b, T is not compact.

Part 3. Finally, we show that, if b does not satisfy the condition (iii), then [b,T]

is not compact. Since b does not satisfy the condition (iii), there exist ¢y > 0 and a

sequence of balls {B;}22, = {B(x;,7)}32, with ]ll)rglo |z;| = oo such that, for every

. MO(b, B;)
»(B;)

By lim |z;] = oo and the assumption (5.1.3) we may choose a subsequence { Bjx) }72;

such that Vo Bjky N 1o Bjk+1y = 0 and

> €.

@(Bjor1)PUO(Bjs) | By M < poe(Biiy )P0 (B )| By |9

Then, in a similar way to Step 1 we conclude that [b, T] is not compact. [
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