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Abstract

Let R™ be the n-dimensional Euclidean space. Let b € BMO(R™) and T be a
Calderéon-Zygmund singular integral operator. In 1976 Coifman, Rochberg and
Weiss proved that the commutator [b, '] = b1 — T'b is bounded on LP(R™) (1 < p <
o0), that is,

16, T f s = [67F = T e < Clbllmol fllzr-

where C' is a positive constant independent of b and f. For the fractional integral
operator I, Chanillo proved the boundedness of [b, I,,] in 1982. Coifman, Rochberg
and Weiss and Chanillo also gave the necessary conditions for the boundedness.
These results were extended to Orlicz spaces by Janson in 1978, and to Morrey
spaces by Di Fazio and Ragusa in 1991.

In this paper we consider the commutators [b,7] and [b, )], where T is a
Calderén-Zygmund operator, I, is a generalized fractional integral operator and
b is a function in generalized Campanato spaces. We consider the boundedness
of [b,T] and [b,I,] on Orlicz and Orlicz-Morrey spaces. Orlicz and Orlicz-Morrey
spaces unify several function spaces, and the Campanato spaces unify BMO and
Lipschitz spaces. Therefore, our results contain many previous results as corollaries.

Firstly, we consider generalized fractional integral operators I, on Orlicz spaces.
The operator I, was introduced by Nakai in 2000 to extend the Hardy-Littlewood-
Sobolev theorem to Orlicz spaces. We first investigate the commutator [b,1,] on

Orlicz spaces L*(R™). We prove the boundedness

116, Lol fllew < Clblle, Iz, f € Conp(R?),

and use the density of C° (R") in L®(R") to obtain the boundedness from L*(R")

comp

to LY(R"), where £ ,(R") is the generalized Campanato space. To prove the



boundedness, we need a generalizetion of Young functions. We give the definition
of generalizied Young functions and investigate their properties. We also prove that,
if [b,1,] is bounded from L®(R") to L¥(R™), then b is in £;,4(R") and the norm
6]z, , is dominated by the operator norm.

Next, we investigate [b,T] and [b, I,] on Orlicz-Morrey spaces. We prove the

boundedness

116 T1f ([ pever < COl 2y (1Nl oo
11b; L] f [ pever < ClOl 2y 1Nl 2o

under suitable assumptions. In this case, we need to show the well-definedness
of commutators carefully, since neither Cg,, (R") nor Lg,, (R") is always dense
in Orlicz-Morrey spaces. We also prove that, if [b, 7] or [b,1,] is bounded from
L@®9)(R") to L) (R"), then b is in £;,,(R") and the norm [|b]|, , is dominated
by the operator norm.

To prove the boundedness of the commutators we need the generalized frac-
tional maximal operator M, and the sharp maximal operator M . It is known
that the usual fractional maximal operator M, is dominated pointwise by the frac-
tional integral operator I, that is, M, f(z) < CI,|f|(z) for all z € R". Then the
boundedness of M, follows from one of I,. However, we need a better estimate
on M, than I, to prove the boundedness of the commutators. In this paper we
give a necessary and sufficient condition for the boundedness of M,. We also prove
the norm estimates of the commutators [b, T']f and [b, I,] f by their sharp maximal
operator M*([b,T]f) and M*([b,1,]f), respectively. To do this we investigate the
relation between Orlicz-Campanato and Orlicz-Morrey spaces. Moreover, we show
the pointwise estimates of the sharp maximal operators by the combinations of the
generalized fractional maximal operators. Finally, combining all of these results,

we prove the boundedness of the commutators.
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Chapter 1

Introduction

1.1 Introduction

Let R™ be the n-dimensional Euclidean space. Let b € BMO(R™) and T be a
Calderéon-Zygmund singular integral operator. In 1976 Coifman, Rochberg and
Weiss [5] proved that the commutator [b,7] = bT" — Tb is bounded on LP(R")
(1 < p < ), that is,

116, T]f|le = 10T f = T(Obf) 2 < CllbllBrO|If| 20,

where C' is a positive constant independent of b and f. For the fractional inte-
gral operator I, Chanillo [3] proved the boundedness of [b, I,] in 1982. Coifman,
Rochberg and Weiss [5] and Chanillo [3] also gave the necessary conditions for the
boundedness. These results were extended to Orlicz spaces by Janson [17] (1978)
and to Morrey spaces by Di Fazio and Ragusa [8] (1991). For other extensions and
generalization, see [1, 9, 11, 12, 14, 27, 25, 31, 42, 52, 53, 55, 56], etc.

In this paper we consider the commutators [b,7] and [b, )], where T is a
Calderén-Zygmund operator, I, is the generalized fractional integral operator and
b is a function in generalized Campanato spaces. We consider the boundedness of
[b,T] and [b, I,] on Orlicz and Orlicz-Morrey spaces. The Orlicz and Orlicz-Morrey
spaces unify several function spaces, and the Campanato spaces unify BMO and
Lipschitz spaces. Therefore, our results contain many previous results as corollaries.

This paper is a systematic reconstruction of all results in [50, 51] and some
results of [6]. Related results are in [19].

Firstly, we consider generalized fractional integral operators I, on Orlicz spaces

in Chapter 2. For a function p : (0,00) — (0, 00), the generalized functional integral

1



2 M. Shi

operator I, is defined by

(1.11) ni = [ A=W ay, e,

n |z =y

where we always assume that

(1.1.2) /1 2D 4 oo

t

Condition (1.1.2) is needed for the integral in (1.1.1) to converge for bounded mea-
surable functions f with compact support. See Lemma 2.6.1 also. In this paper we
also assume that there exist positive constants C', K; and Ky with K7 < K5 such
that, for all r > 0,

(1.1.3) sup p(t) <C o 40 dt.

r<t<2r Kyr

The condition above was considered in [46].
If p(r) =7r%, 0 < a <n, then I, is the usual fractional integral operator I, defined
by

Io[f(m):/]R &d(y, z € R".

n |z —ylre
It is known as the Hardy-Littlewood-Sobolev theorem that I, is bounded from
LP(R™) to LY(R"), if a € (0,n), p,g € (1,00) and —n/p + a = —n/q. This
boundedness was extended to Orlicz spaces by several authors, see [4, 10, 23, 43,
54, 57, 58], etc. Chanillo [3] considerd the commutator

[ba Ia]f = blaf - Ia(bf)a

with b € BMO and proved that [b, I,] has the same boundedness as I,. The result
was also extended to Orlicz spaces by Fu, Yang and Yuan [12] and Guliyev, Deringoz
and Hasanov [14].

The operator I, was introduced in [33] to extend the Hardy-Littlewood-Sobolev
theorem to Orlicz spaces whose partial results were announced in [32]. For example,
the generalized fractional integral I, is bounded from exp LP(R™) to exp LI(R"),

where

(1.1.4) a>0,

plr) = {1/ (log(1/r))"*1  for small

(log r)*t for large r,
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p,q € (0,00), —=1/p+ a = —1/q and exp LP(R") is the Orlicz space L®(R") with

(1.1.5) B(r) = 1/exp(1/r?)  for small r,
exp(rF) for large 7.

See also [34, 35, 36, 38, 41].
We first investigate the commutator [b, I,] on Orlicz spaces L?(R™). We prove

the boundedness

116; Lo fllew < Clblle, I Iy [ € Cognp(R?),

and use the density of C35  (R") in L*(R"), where L1,(R") is the generalized
Campanato space, see the next section for its definition. To prove the boundedness
we need a generalizetion of Young functions. We give the definition of generalzied
Young functions and investigate their properties. We also prove that, if [b,1,] is
bounded from L®(R") to LY(R"), then b is in £y 4(R") and the norm ||bl|z, , is
dominated by the operator norm.

Next, we investigate [b, T] and [b, I,] on Orlicz-Morrey spaces in Chapter 3. We

prove the boundedness

110, T]f| vy < Clbllzy 1 f Nl Lewer,s
116, L] fll Lowor < Cll0l 2y 1 @

under suitable assumptions. In this case, we need to show the well-definedness
of commutators carefully, since neither Cg5,, (R") nor L, (R") is always dense
in Orlicz-Morrey spaces. We also prove that, if [b, T or [b,1,] is bounded from
L®9)(R") to L) (R™), then b is in L£1,,(R") and the norm ||b]|, , is dominated
by the operator norm.

We denote by B(z,r) the open ball centered at x € R™ and of radius r, that is,
B(z,r)={y eR": |y — x| <r}.

For a measurable set G C R", we denote by |G| and x¢ the Lebesgue measure of G

and the characteristic function of G, respectively. For a function f € L{ _(R") and

loc
a ball B, let
1
fo=f 1= fdy= H/Bf(y)dy‘
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To prove the boundedness of commutators we need the sharp maximal opera-
tor M* and the generalized fractional integral operator M,. The sharp maximal

operator M* is defined by

(1.1.6) - Sup][ Fy) - foldy, = ER”

where the supremum is taken over all balls B containing z. For a function p :
(0,00) — (0,00), let

(1.1.7) M, () = MDM0ﬁ(”ﬂM%h$€RT

B(z,r)3x

where the supremum is taken over all balls B(z,r) containing . We do not assume
the condition (1.1.2) or (1.1.3) on the definition of M,. The operator M, was
studied in [48] on generalized Morrey spaces. If p(r) = |B(0,7)|*/", then M, is the
usual fractional maximal operator M,. If p =1, then M, is the Hardy-Littlewood

maximal operator M, that is,

Mf<4wfﬁ Jldy, R

B>z

It is known that the usual fractional maximal operator M, is dominated point-
wise by the fractional integral operator I, that is, M, f(x) < Cl,|f|(z) for all
x € R". Then the boundedness of M, follows from one of I,. However, we need a
better estimate on M, than I, to prove the boundedness of the commutators. In
this paper we give a necessary and sufficient condition of the boundedness of M,.

The organization of this paper is as follows. In the next section in this chapter
we give the definitions of the generalized Campanato spaces, generalized Young
functions and Orlicz and Orlicz-Morrey spaces.

In Chapter 2 we give a necessary and sufficient condition for the boundedness of
the commutator [b, I,] on Orlicz spaces. We first state the theorems and examples
in Section 2.1. Next, we investigate the properties on generalized Young functions
and Orlicz spaces in Section 2.2. Then we prove the boundedness of I, and M,
on Orlicz spaces in Sections 2.3 and 2.4, respectively. Moreover, we investigate
pointwise estimate by using the sharp maximal operator and the norm estimate
by the sharp maximal operator in Section 2.5. Finally, using generalized Young
functions and the results in Sections 2.2-2.5, we prove the necessary and sufficient

condition for the boundedness of [b, I,] in Section 2.6.
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In Chapter 3 we give necessary and sufficient conditions for the boundedness of
the commutators [b, T] and [b, I,] on Orlicz-Morrey spaces. We first state the theo-
rems in Section 3.1. Next we give basic properties on generalized Young functions
and Orlicz-Morrey spaces in Section 3.2. To prove the theorems we show the bound-
edness of the generalized fractional maximal operators on Orlicz-Morrey spaces in
Section 3.3. In Section 3.4 we investigate the relation between Orlicz-Campanato
and Orlicz-Morrey spaces and, using this relation, we show that, if fp,) — 0 as

r — 0o, then
(1-1-8) ||f||L(<I>»<P) < CHMﬁf”L(‘I’W-

In Section 3.5 we show the well-definedness of the commutators [b, 7] and [b, I,] for
functions in Orlicz-Morrey spaces. Finally, using all of them, we prove the theorems
in Sections 3.6, 3.7 and 3.8.

At the end of this section, we make some conventions. Throughout this paper,
we always use C to denote a positive constant that is independent of the main
parameters involved but whose value may differ from line to line. Constants with
subscripts, such as C),, are dependent on the subscripts. If f < Cg, we then write
f<Sgorgz fiandif f < g < f, we then write f ~ g.

1.2 Definitions

1.2.1 Generalized Campanato spaces

First we recall the definition of the generalized Campanato space.

Definition 1.2.1. For p € [1,00) and ¢ : (0,00) — (0, 00), let £, ,(R™) be the set

of all functions f such that the following functional is finite:
1 1/p
f ny = sup —(][fy—fpdy) )
” Hﬁp,w(R ) B—B(o.) w(r) B‘ ( ) B‘
where the supremum is taken over all balls B(z,r) in R™.
Then || f||z, ,®n is a norm modulo constant functions and thereby L, ,(R") is
a Banach space. If p = 1 and ¢ = 1, then £, ,(R") = BMO(R"). If p = 1 and
P(r) = r* (0 < o < 1), then £, ,(R") coincides with Lip,(R"™) with equivalent

1orms.
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Next, we say that a function 6 : (0, 00) — (0, 00) satisfies the doubling condition

if there exists a positive constant C' such that, for all r, s € (0, 00),

(1.2.1) Lol C, if

C =) =

w | =

<2

N —

We say that 6 is almost increasing (resp. almost decreasing) if there exists a positive
constant C' such that, for all r, s € (0, 00),

(1.2.2) O(r) < CO(s) (resp. O(s) < CH(r)), ifr <s.

It is known that, if ¢ is almost increasing, then L, ,(R™) = L, ,(R™) with
equivalent norms for every p € (1, 00), see [1, Corollary 4.3] and [40, Theorem 3.1].

1.2.2 Generalization of the Young function

We define a set @ of increasing functions @ : [0,00] — [0, 00] and give some prop-
erties of functions in .

For an increasing function ® : [0, 0o] — [0, o], let
(1.2.3) a(®) =sup{t > 0:®(t) =0}, b(P)=inf{t >0:P(t) = oo},

with convention sup® = 0 and inf ) = co. Then 0 < a(®) < b(®) < co. Let @ be

the set of all increasing functions ® : [0, 00] — [0, 0o] such that

(1.2.4) 0<a(P) <oo, 0<b(P)< o0,

(1.2.5) t£T0®(t) =®(0) =0,

(1.2.6) ® is left continuous on [0, b(P)),

(1.2.7) if b(®) = oo, then tlim O(t) = P(00) = o0,

(1.2.8) if b(®) < oo, then }}(gg OCD(t) =o(b(P)) (< 0).
t—b(D)—

In what follows, if an increasing and left continuous function @ : [0, 00) — [0, 00)
satisfies (1.2.5) and tlim ®(t) = oo, then it will be always tacitly understood that
—00
®(00) = oo and that ® € .

For ® € &, we recall the generalized inverse of ® in the sense of O’Neil [43,
Definition 1.2].
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Definition 1.2.2. For ® € ¢ and u € [0, 00}, let

inf{t >0:P(t) >u}, uel0o0),

00, U = 00.

(1.2.9) O (u) = {

Let ® € . Then ®! is finite, increasing and right continuous on [0, c0) and
positive on (0,00). If ® is bijective from [0, 00] to itself, then ®~! is the usual
inverse function of . Moreover, we have the following proposition, which is a
generalization of Property 1.3 in [43].

Let ® € ¢. Then

(1.2.10) PO Hu) <u< dH(P(u)) forall u € [0, 00].
For ®, ¥ € @, we write ® ~ U if there exists a positive constant C' such that
O(C™M) < U(t) < ®(Ct) for all t € [0, 00].

Meanwhile for functions P, Q : [0,00] — [0, 0], we write P ~ @ if there exists a

positive constant C' such that

C™'P(t) <Q(t) < CP(t) forallte[0,o00].
Then, for &, ¥ € &,
(1.2.11) PV & A uh

For the proof see Lemma 2.2.2.

Next we recall the definition of the Young function and give its generalization.

Definition 1.2.3. A function ® € @ is called a Young function (or sometimes also
called an Orlicz function) if ® is convex on [0, b(®P)). Let @y be the set of all Young
functions. Let @y be the set of all ® € @ such that ® ~ U for some U € Py

By the convexity, any Young function @ is continuous on [0,b(®P)) and strictly
increasing on [a(®),b(P)]. Hence @ is bijective from [a(P),b(P)] to [0, P(b(P))].
Moreover, ® is absolutely continuous on any closed subinterval in [0,b(®)). That

is, its derivative ®’ exists a.e. and

(1.2.12) (ID(t):/tCD’(s)ds, t € [0,b(®)).
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Definition 1.2.4. Let Y be the set of all Young functions such that a(®) = 0 and
b(P) = 0.

Definition 1.2.5. (i) A function ® € @ is said to satisfy the A,-condition, de-
noted by ® € A,, if there exists a constant C' > 0 such that

(1.2.13) O(2t) < CP(t) forallt>D0.

(ii) A function ® € @ is said to satisfy the Vy-condition, denoted by ® € Vs, if

there exists a constant & > 1 such that

1
(1.2.14) O(t) < %(I)(k’t) for all ¢ > 0.

(111) Let AQ = (py QZQ and VQ = @y ﬂVg
Remark 1.2.1. (i) Ay C Y and Vy C &y (23, Lemma 1.2.3)).

(ii) Let ® € &y. Then ® € A, if and only if ® ~ ¥ for some ¥ € A,, and,
d € V, if and only if & ~ ¥ for some ¥ € V,.

(iii) Let ® € @y. Then &' satisfies the doubling condition by its concavity, that
is,
O (u) <71 (2u) <207 (u) for all u € [0, ).

O(t
(iv) Let ® € @y. Then ® € A, if and only if ¢ — ®) is almost decreasing for

tp
some p € [1,00).
: : O(t) | : :
(v) Let ® € &y. Then ® € Vs if and only if t — el almost increasing for

some p € (1,00).

Definition 1.2.6. For a Young function ®, its complementary function is defined

by
B(1) - {sup{tu —®(u):ue0,00)}, te]0,00),

00, t = o0.

Then @ is also a Young function, and (P, &3) is called a complementary pair. For
example, if ®(t) =t /p, then ®(t) =t /p’ for p,p’ € (1,00) and 1/p+ 1/p' = 1. If
®(t) = t, then
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Let (P, 5) be a complementary pair of functions in @y. Then the following

inequality holds:
(1.2.15) t< OO N(t) <2t for t € 0,00],

which is [57, (1.3)].

1.2.3 Orlicz and Orlicz-Morrey spaces

We recall the definitions of Orlicz and Orlicz-Morrey spaces generalized by Young
functions. The Orlicz space L*(R") is introduced by [44, 45]. For the theory
of Orlicz spaces, see [22, 23, 26, 28, 47] for example. Orlicz-Morrey spaces were
investigated in [36, 38, 39], etc.

For ® € &y, we define the Orlicz space L®(R") and the weak Orlicz space

wL®(R"). Let L°(R™) be the set of all complex valued measurable functions on R™.

Definition 1.2.7 (Orlicz and weak Orlicz spaces). For a function ® € @y, let

L*(R") = {f € L°(R") : / (€| f(z)]) dr < oo for some € > 0} ,

Hﬂh¢:nﬁ{A>0:/;@(M%ﬂ>dx§1}7

wL®(R") = {f € L°(R™) : sup ®(t)m(ef,t) < oo for some € > O} )

te(0,00)
| fllwre =inf < A >0: sup @(t)m(i,t) <13,
te(0,00) A

where m(f,t) = [{x € R" : |f(z)| > t}].

Then || - ||ze and || - |lyze are quasi-norms and L®(R") C LL (R"). If ® € &y,
then || - ||z is a norm and thereby L®(R™) is a Banach space. For ®, ¥ € &y, if
® ~ ¥, then L*(R") = LY(R") and wL®(R") = wL¥(R") with equivalent quasi-
norms, respectively. Orlicz spaces are introduced by [44, 45]. For the theory of
Orlicz spaces, see [22, 23, 26, 28, 47] for example.

We note that, for any Young function ®, we have that

sup ®(t)m(f,t) = sup tm(®(|f]), 1),

te(0,00) te(0,00)
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and then

| fllwze :inf{/\ >0: sup @(t)m({,t) < 1}

te(0,00)

=inf<A>0: sup tm(@(m),t>§1 .
te(0,00) A

For the above equality, see [18, Proposition 4.2] for example.

The following theorem is known, see [23, Theorem 1.2.1] for example.

Theorem 1.2.1. Let ® € &y. Then M is bounded from L®(R") to wL®(R"), that
is, there exists a positive constant Cy such that, for all f € L®(R"),

(1.2.16) M fllwre < Collfllze-

Moreover, if ® € Vy, then M is bounded on L®(R"), that is, there exists a positive
constant Cy such that, for all f € L*(R"™),

(1.2.17) M fllze < Collflz=-

See also [4, 20, 21] for the Hardy-Littlewood maximal operator on Orlicz spaces.

Remark 1.2.2. Let ® € ®y. Then ® € A, if and only if Cg5,, (R") is dense in

L®(R"), and, ® € V, if and only if the Hardy-Littlewood maximal operator M is
bounded on L*(R™).

In this paper we consider the following class of ¢ : (0,00) — (0, 00).

Definition 1.2.8. (i) Let G4 be the set of all functions ¢ : (0,00) — (0, 00) such

n

that ¢ is almost decreasing and that r — @(r)r" is almost increasing. That is,

there exists a positive constant C' such that, for all r, s € (0, 00),
Cop(r) > ¢(s), or)r" < Cp(s)s™, ifr<s.

(i) Let G™ be the set of all functions ¢ : (0,00) — (0,00) such that ¢ is almost
increasing and that r — (r)/r is almost decreasing. That is, there exists a positive
constant C' such that, for all r, s € (0, 00),

p(r) < Cp(s), Co(r)/r=e¢(s)/s, ifr<s.
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If p € G¥ or ¢ € G, then ¢ satisfies the doubling condition (1.2.1). Let
¥ : (0,00) — (0,00). If 1 ~ ¢ for some ¢ € G4 (resp. G'"°), then ) € G4 (resp.
ginc)'

Remark 1.2.3. Let ¢ € G4, Then there exists ¢ € G4° such that ¢ ~ ¢ and that
¢ is continuous and strictly decreasing, see [38, Proposition 3.4]. Moreover, if
(1.2.18) 71}3% ©o(r) = oo, TILTO o(r) =0,

then ¢ is bijective from (0, c0) to itself.

Definition 1.2.9 (Orlicz-Morrey space). For a Young function ® : [0, co] — [0, oo},
a function ¢ : (0, 00) — (0,00) and a ball B = B(a,r), let

. 1 /()]
1.2.19 =infdA>0: —— 4| —=)dxr <1;.
(1219) Il =int {3 > 02— f o(HM ar <
For a ball B = B(a,r), let L(®%)(R") be the set of all functions f such that the

following functional is finite:

(1.2.20) 1fllz@o = sup [ flle.5.

where the supremum is taken over all balls B in R™.

Let ug = \lﬂd%' Then we have the following relation:

(1.2.21) 1oz = 1fll25,up)-

Because of the relation (1.2.21), ||-|| .. is a quasi-norm, and thereby L(®%)(R™) is
a quasi-Banach space. If ® € @y, then |||/ (@.») is a norm and thereby L(®%)(R") is
a Banach space. If ® ~ ¥ and ¢ ~ v, then L(®¥)(R") = L(¥*¥)(R") with equivalent
quasi-norms.

Then ||f||; (e is a norm and thereby L(®¥)(R") is a Banach space. If ¢(r) =
1/r", then L(®¥)(R"™) coincides with the Orlicz space L®(R") equipped with the

norm
| f] e =inf{A>0:/n<I> (&;ﬂ) dr < 1}.

If d(t) = 7, 1 < p < oo, then L(®¥)(R") coincides with the generalized Morrey
space LP¥)(R™) equipped with the norm

1 1/p
f (pp) =— SUup (—][ f X pdl’) .
e = s (o5 f 1)

The Orlicz-Morrey space L(®#)(R") was first studied in [36]. For other kinds of
Orlicz-Morrey spaces, see [6, 7, 15, 49], etc.






Chapter 2

Commutators on Orlicz spaces

2.1 Theorems and examples

The following theorem is an extension of the result in [33].

Theorem 2.1.1. Let p : (0,00) — (0,00) satisfy (1.1.2) and (1.1.3), and let o, ¥ €

Dy . Assume that there exists a positive constant A such that, for all r € (0, 00),

(2.1.1) / @dt O (1/r) + /Oo p(t) &~ (/1) dt < AU(1/r").

t t

Then, for any positive constant Cy, there exists a positive constant Cy such that,

for all f € L*(R") with f #0,

(2.12) v (M> <o (M> |
Cill £l Coll fl e
Consequently, 1, is bounded from L®(R") to wL¥(R"). Moreover, if ® € Vs, then
I, is bounded from L®(R") to LY (R").
Remark 2.1.1. We cannot replace [ @ dt by p(r) in (2.1.1), see [41, Section 5.

Here, we give some examples of the pair of (p,®, V) which satisfies the as-
sumptions in Theorem 2.1.1. For other examples, see [34]. See also [29] for the
boundedness of I, on the Orlicz space L*(€) with bounded domain Q C R".

Example 2.1.1. If p(r) = r*, ®(t) = t? and V(¢) = t? with p,q € [1,00) and
0 < a < n/p, then

/07’ @ dt 1 (1/r") ~ /TOO —p(t) (I)t (/1) dt ~ r® P and U H1/r) = rma,

13
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In this case,
“2.1.1)" & o< e (0,00) & a—n/p=-n/q.
Therefore, the Hardy-Littlewood-Sobolev theorem is a corollary of Theorem 2.1.1.

Example 2.1.2. Let p and ® be as in (1.1.4) and in (1.1.5), respectively, and let
U be as in (1.1.5) with ¢ instead of p. Assume that a,p,q € (0,00) and —1/p+a =
—1/q. Then
/T @dt N {(log(l/r))o‘ for small r > 0,

o ¢ (logr)* for large r > 0,
and
(2.1.3)

@_1(1/7“”) ~ {(bg(l/r))l/l’, \P_l(l/r”) - {(log(l/r))l/q for small » > 0,

(log )=/, (logr)~Y/4 for large r > 0.

In this case we have

"pt) a1 = p(t) @ 1(1/t")
/Opwab (1/7‘)~/T P dt

t

(log(1/r))=**/P  for small r > 0,
(log r)e—1/p for large r > 0.

Then the pair (p, ®, V) satisfies (2.1.1), that is, I, is bounded from exp L?(R") to
exp L1(R™).

Example 2.1.3. Let a € (0,n), p,q € [1,00) and —n/p+ a = —n/q. Let

p(r) =

T

r*  for small r > 0,
e~" for large r > 0.

Then

/T p(t) gt r® for small r > 0,
g t 1 for large r > 0.

(i) If ®(r) = r? and ¥(r) = max(r?,r9), then (2.1.1) holds. In this case L®(R") =
LP(R") and L¥(R™) = LP(R™) N LI(R™).

(ii) If ®(r) = max(0,r? — 1) and ¥(r) = max(0,r? — 1), then (2.1.1) holds, since

O () ~ 1 for small u > 0, S(1/rm) =P for small > 0,
ul’?  for large u > 0, 1 for large r > 0.

In this case L?(R") = LP(R") + L>®(R") and LY(R") = L¢(R") + L>(R").
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A function ® € Y is called an N-function if
o(t) o(t)

lim —= =0, lim — =
t—+0 ¢ t—oo

We say that a function 6 : (0,00) — (0,00) is almost increasing (resp. almost

decreasing) if there exists a positive constant C' such that, for all r, s € (0, 00),
(2.1.4) O(r) < CO(s) (resp. O(s) < CH(r)), ifr <s.
Then we have the following corollary.

Corollary 2.1.2. Let 1 < s < oo and p: (0,00) — (0,00). Assume that p satisfies
(1.1.2) and that r — p(r)/r™/*~¢ is almost decreasing for some positive constant e.

Then there exist an N-function VW and a positive constant C' such that, for all r > 0,

(2.1.5) c ! (i>§ ! /@dtgow—l (i>
rn /s ot rn

Moreover, 1, is bounded from L*(R™) to LY (R™).

In the above, (2.1.5) can be shown by the same way as the proof of [1, Theo-
rem 3.5]. The boundedness of I, from L*(R™) to LY(R") is proven by the following
way. First note that p satisfies (1.1.3) by Remark 2.1.2 below. Let ®(¢) = ¢*. Then

we have

[HO AT ) L
r r t r

t ~ pn/s—e tlte

rn/s ~opn/s [0t ) Jo ot

where we used (2.1.6) below for the last inequality. Combining this and (2.1.5), we

have (2.1.1). Then we have the conclusion by Theorem 2.1.1.

Remark 2.1.2. If r + p(r)/r* is almost decreasing for some positive constant k,
then p satisfies (1.1.3). Actually,

(2.1.6) sup p(t) ~r" sup 0] <P /T @dtw /T @dt.

r<t<2r r<t<or t th+l /2

Next we state the result on the operator M, defined by (1.1.7) in which we don’t
assume (1.1.2) or (1.1.3).

Theorem 2.1.3. Let p: (0,00) — (0,00), and let &,V € Dy .
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(i) Assume that there exists a positive constant A such that, for all r € (0,00),

(2.1.7) (Sup p(t)) O (1/rm) < AT /).

o<tr

Then, for any positive constant Cy, there exists a positive constant C7 such

that, for all f € L*(R™) with f # 0,

(2.18) v (G ) <o ().

Consequently, M, is bounded from L®(R™) to wL¥ (R™). Moreover, if ® € Vs,
then M, is bounded from L*(R™) to L¥(R™).

(ii) Conversely, if M, is bounded from L*(R™) to wL¥(R™), then (2.1.7) holds for
some A and all r € (0,00).

Remark 2.1.3. Let p: (0,00) — (0,00), and let ®, ¥ € @y .

(i) Let pi(r) = supys<, p(t). Then we conclude from the theorem above that
I, and I, have the same boundedness, that is, we may assume that p is

increasing.

(i) Since ®~! is pseudo-concave, u — ®!(u)/u is almost decreasing, and then

r— ®1(1/r")r™ is almost increasing. Therefore, from (2.1.7) it follows that
i1/

r+— p(r)/r™ is dominated by the almost decreasing function r — I

Example 2.1.4. If p(r) = r*, ®(t) = t? and ¥(t) = t? with p,q € [1,00) and
0 < a < n/p, then

p(r)® Y1/ ~ P and  UTY(1/rm) =
In this case,
“2.1.7) & o< e (0,00) & a—n/p=-—n/q

In this example, if o = 0, then M, is the Hardy-Littlewood maximal operator M
and “(2.1.7)" © p=gq. f « —n/p =0, then M, is the fractional maximal operator
M, and it is bounded from LP(R™) to L*>°(R™), since we can take

fi 1 1 f
(2.1.9)  U(r) = 0 forref0,1], and Wl(r) = or r € [0, 00),
oo for r € (1,00, oo for r = oo.
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Example 2.1.5. Let ® be as in (1.1.5), and let ¥ be as in (1.1.5) with ¢ instead
of p. Assume that « € [0,00) and p, q € (0,00). Let

o(r) = {(bg(l/r))_a for small r > 0,

(2.1.10)
(logr)® for large r > 0,

instead of (1.1.4). Here, we note that, if 0 < o < 1, then 01 @dt = oo, that
is, I, is not well-defined, while M, is well-defined. Actually, M, is bounded from
exp LP(R™) to exp LY(R"), if —1/p + a = —1/q for any a € [0, 00), see (2.1.3) for
the inverse functions of ® and ¥. Moreover, if —1/p + « = 0, then M, is bounded
from exp LP(R") to L>(R™), since we can take ¥ as in (2.1.9).

Example 2.1.6. Assume that «,q¢ € [0,00) and p € (1,00). Let p be as in
(2.1.10). Then M, is bounded from LP(R") to LP(log L)**(R™), if p1/p = «, where
Lr(log L)P*(R™) is the Orlicz space L*(R™) with

o(r) r?(log(1/r))~"* for small r > 0,
)=
r?(log )P for large r > 0.

In this case we have

r=/P(log(1/r))~#*/?  for small r > 0,
"7 (log )P /P for large r > 0.

(2.1.11) O (1/r") ~ {

In this example, if we take p = 1, then M, is bounded from L*(R") to wL'(log L)*(R™)
which is the weak space of L'(log L)*(R").

Finally, we state the result on the commutator [b, I,]. Let

(2.1.12) pr(r) = /OT pt) dt.

t

Theorem 2.1.4. Let p, 1 : (0,00) — (0,00), and let ®,¥ € dy. Assume that p
satisfies (1.1.2). Let b € LL _(R").

loc

(i) Let ®, ¥ € Ay, NV, Assume that ¥ be almost increasing and that v
p(r)/r"=¢ is almost decreasing for some ¢ € (0,n). Assume also that there

exists a positive constant A and © € Vy such that, for all r € (0,00),

(2.1.13) /T@dt o (1/rm) +/OO plt) q)_;(l/tn) dt < AO7Y(1/r"),

(2.1.14) ()0 (1/r") < AVTH1/r™),
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and that there exist a positive constant C, such that, for all r,s € (0,00),

p(r) _ p(s)

r

(2.1.15) < Cplr—s

Pt

S

If b € L14(R"), then [b,1,] is bounded from L*(R™) to LY(R™) and there
exists a positive constant C' such that, for all f € L*(R"),

(2.1.16) 106, L) fll v < Cllbllz, 1 f e

(ii) Conwversely, assume that there exists a positive constant A such that, for all
r € (0,00),
U (L/r") < Arvy(r)@T (1),

If [b, 1] is well-defined and bounded from L*(R") to LY(R™), then b is in
L1.4(R"™) and there exists a positive constant C, independent of b, such that

1bll2y,s < CNb, La]ll o,
where ||[b, 1,]||Le_ v is the operator norm of [b, I,] from L®(R™) to LY(R"™).
Example 2.1.7. Let a € (0,n), 5 € [0,1] and p,q € (1,0), and, let
p(r) =712 (r) =1 &(r)=1F, U(r)=1r?

Assume that —n/p + a + 8 = —n/q. Take O(r) = r? with —n/G = —n/p + a.
Then (2.1.13), (2.1.14) and (2.1.15) hold, that is, [b, I,] is bounded from LP(R™)
to LI(R"), where b € Lipg(R") if 8 € (0,1], and b € BMO(R") if = 0, which is
Chanillo’s result in [3].

Example 2.1.8. Let o € (0,n) and oy € (—00,00). Let § € (0,n) and 8, €
(—00,00), or, let =0 and f; € [0,00). Let

r*(log(1/r))~, r?(log(1/r))=#  for r € (0,1/e),
p(r) =< re, P(r) =491 for r € [1/e, €],
r*(log ), r?(log r)" for r € (e, 00).

Then p* ~ p and p'(t) ~ p(t)/t. In this case p satisfies (2.1.15), since p is Lipschitz
continuous on [1/(2e¢),2¢], and, for r,s € (0,1/e] U [e,00), there exists § € (0,1)

such that
M—@:V—ﬂi olt) <|r—s|p(r) if1<f<2
r 5" At \ " ) |—a—oyrros| L’ 27 s
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Let p,q € (1,00) and py, ¢ € (—00,00), and let

r?(log r)P*, ri(log r)® for large r > 0.

O(r) = {rp(log(l/r))m’ U(r) = {rq(log(l/r))ql for small r» > 0,

For the inverse functions of ® and ¥, see (2.1.11). If

—n/p+a+B=-n/p+B=-n/qg, p1/ptoar+Bi=p1/D+ b =aq/q

and
o) = rP(log(1/r))~P*  for small r > 0,
| P (log r)™ for large r > 0,
then : . e
/ P g 11 /em) N/ PO /) by L o1(em),
0 T
and

ron/pretB(log(1 /7))~ /prentB) for small r > 0,

pon/pretB (log p)pr/rterth for large r > 0.

YO~ (™) ~ T ~ {

In this case [b, I,] is bounded from LP(log L)' (R") to L9(log L)®(R™).

2.2 Properties on Young functions and Orlicz spaces

In this section we prepare some lemmas to prove our main results.

Proposition 2.2.1. Let ® € ¢. Then

(2.2.1) PO (u) <u< O HP(uw) forallu € [0, ).

Proof. First we show that, for all ¢,u € [0, o],

(2.2.2) d(t)<u = t < dH(u).

If &(t) < wu, then ®(s) > u= P(s) > ®(t) = s >t and
{s>0:D(s) >u} C{s>0:s>t}.

Hence,
O H(u) =inf{s >0:P(s) >u} >inf{s >0:5 >t} =t
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This shows (2.2.2). Now, letting ®(¢f) = u and using (2.2.2), we have that ¢t <
&~ (u) = & 1(P(t)), which is the second inequality in (2.2.1).
Next we show that, for all ¢ € (0, 00] and u € [0, o0,

(2.2.3)

P(t)>u = t>d (u),
(2.2.4) t<d(u) = O(t) <.

We only show (2.2.3), since (2.2.4) is the contraposition of (2.2.3), that is (2.2.4) is
equivalent to (2.2.3). If ®(¢) > u, then ®(s) > u for some s < t by the properties
(1.2.6)(1.2.8). By the definition of ®~! we have that s > & !(u). That is, t >
®~!(u), which shows (2.2.3). Now, if @ '(u) = 0, then the first inequality in
(2.2.1) is true by (1.2.5). If t = & !(u) > 0, then, using (2.2.4), we have that
O(d!(u)) = ®(t) < u, which is the first inequality in (2.2.1). O

Lemma 2.2.2. Let ®,¥ € @, and let C be a fized positive constant. Then
O(t) < U(Ct) forallt €0, x|

if and only if
U u) < CPHu) for all u € [0, 00].

Proof. As the conclusion can be obtained obviously if both ® and ¥ are bijective, we
prove it without the assumption. Let ®(¢) < W(Ct) for all t € [0, 00]. If t = U~ (u),
then by Proposition 2.2.1 we have that ¥(¢) = U(¥~!(u)) < u and that

U () /C = 1/C < 27N (B(t/C)) < 3N ((1) < B (u).

Conversely, let U= (u) < C®7!(u) for all u € [0,00]. If u = W¥(t), then by
Proposition 2.2.1 we have t < U1 (¥(¢)) = U (u) and

®(t/C) < (T (u)/C) < (7 (u))

IN

u=W(t). O

Lemma 2.2.3. Let ® € &y. For a measurable set G C R™ with finite measure,
(2.2 Ixellzs = Ixalhes = 5o
o-1(1/]GY)
From (1.2.15) it follows that, for the characteristic function xp of the ball B,
1

(2.2.6) x5l = 311/8) <[B|®(1/|B]).
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Lemma 2.2.4 ([1]). Let k > 0 and p : (0,00) — (0,00). Assume that p satisfies
(1.1.2). Let p* be as in (2.1.12). If r + p(r)/r* is almost decreasing, then r

p*(r)/r* is also almost decreasing.

Remark 2.2.1. Since p* is increasing with respect to r, if r — p(r)/r* is almost
decreasing for some k& > 0, then we see that p* satisfies the doubling condition, that

is, there exists a positive constant C' such that, for all r € (0, c0),
pr(r) < p*(2r) < Cp*(r).
Lemma 2.2.5. If & € A,, then its derivative &' satisfies
P'(2t) < Cp®'(t), a.e.t €]0,00),
where the constant Cy is independent of t.

Proof. From the convexity of ® and ®(0) = 0 it follows that its right derivative
P’ (t) exists for all ¢ € [0,00) and it is increasing. By (1.2.12) we have

o) = [ Wisds= [ @)

since @ = @' a.e. Then, for all ¢t € (0, 00),

3t

CI)/_F(Qt) < %/ (13/4_(8) ds < %@(3” < %@(t) < C@@Q_(t)

2t

This shows the conclusion. O]
Lemma 2.2.6. If ® € V,, then ®((-)%) € V, for some 6 € (0,1).

Proof. If ® € V,, then there exists a constant k& > 1 such that

1
O(t) < —P .
(1) < (k)
Take 6 € (0,1) such that £2/9=1) < 2. Then k? < (2k%)? and
1
(2k)?

1
o) < %é(kta) < (k%) <

That is, ®((-)?) € V. O
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Remark 2.2.2. There exists ® € V, such that ®((-)?) ¢ &y for any 0 € (0,1).
Actually, let

r? 0<r<1,
d(r) =max(r®,3r —2) =< 3r—2, 1<r<2,
r?, 2 <.

Then & is convex and satisfies (1.2.14) with k = 8. However, 3r? — 2 is not convex
for any 6 € (0,1).

Let (P, 213) be a complementary pair of functions in @y. For the Orlicz spaces

on a measure space (€2, 1) we have the following generalized Holder’s inequality;

(2.2.7) /Q|f(x)g(x)|du($) <2/ fllre@mllgll o g,

for fe L%, p), ge L*(Q,p).

See [43].

2.3 Proof of Theorem 2.1.1

To prove Theorem 2.1.1 we may assume that ®, U € &y instead of &, U € &y
Actually, if (2.1.1) holds for some ®, ¥ € @y, then take ®;, U, € ¢y with & ~ P,
and U =~ U;. Then, instead of ® and ¥, ®; and W, satisfy (2.1.1) for some positive
constant A" by (1.2.11).

We need a couple of auxilary estimates. The following lemma was proved in [2,

Lemma 2.1]:

Lemma 2.3.1. There exist a constant C' > 0 such that for all x € B(0,r/2) and
r >0,
r/2
p(t)
‘/Ov Tdt S C[pXB(O,T) (.T)
holds.

Proposition 2.3.2. Let p satisfy (1.1.3). Define

kor S
(2.3.1) p(r) = /k p(s)d— (r>0).

1 S
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Let 7 : (0,00) — (0,00) be a doubling function in the sense that 7(r) ~ 7(s) if
0<s<r<2s. Then, for each r > 0,

-1

(2.3.2) > a2 S /Ok @ds,

j=—o00

(2.3.3) Zﬁ(Qj’r’)T((er)*") S /:0 @T(S*”)ds.

17

Proof. We invoke the overlapping property in [49] and by the doubling condition of

7 we have
-1 2]k27“
S =3 [t
j=—o00 j=—o00 2Jk‘11"
har p(s)
< ; jz_:OOX[ijlr, 29 kar] (5) Tds
kor
< / P(s) 4
0 s
and

X[27kyr, 2‘7_’{271}(8)@7_((23‘76)—71)) ds

17

/kOO (Z X279k, 23k2r] )) p( ) ( _n)ds

Z:O;ﬁ@jr)f(@ - (>

17

5/ PL3) () g, =
k

1r s
To prove Theorem 2.1.1, we need the following estimate of Hedberg-type [16]:
Proposition 2.3.3. Under the assumption of Theorem 2.1.1, for any positive con-

stant Cy, there exists a positive constant Cy such that, for all nonnegative functions
f e L*(R") with f # 0,

(2.3.4) Lf(x) <Cillfllge¥ o @(%) (z € R™).

Proof. Let x € R". Keeping in mind that M f(z) > 0, we may assume

M(2) ( M () ) |
0= Gl = =2\ G7s ) =
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otherwise there is nothing to prove. If
M
o(Jr0)
Coll fllze

<sup{u >0 : ®(u) =0} = d(0).

then
M f(z)
Coll fll e

In this case

0 < & 10) /OO @dt < CUH0).

Hence

i@ <o S B[ i)y

Jj=—00 ‘w_y‘<2j

gc(/om@)ww

vH0)
< C<I>—1(O) M f(z)
C

< O (‘I’ (oﬂﬂ"}ﬁﬂ)) M)
et (o (s ) ) e

So, this case the result is valid.

If
M f() )
? (co'nfu; >0,

=+ (@)

choose 1 € (0, 00) so that

We have

-1

If(r) <C LZ +3 ot L s

= C(1+11)

for given x € R™ and r > 0.

M. Shi
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Then from Proposition 2.3.2 with the doubling property of ®~! (Remark 1.2.1 (iii)),

S

1<C _Zl A Mf(z) < C (/Ok @d5> Mf(x)

j==o0

<O p2r)e " (2r) ™) flle (B
=0

<Ol o () s

1r
Consequently, we have
o0

i@ & (7w ) ar@ 4 il [0t )

1r

Thus, by (2.1.1) and the doubling property of ®~! and ¥, we obtain

S— | ~—
+
=
=
o
S
L
—~
ﬁ|
3
S~—

M
Recall that @~ 1(®(r)) =7 if 0 < ®(r) < co. Thus ¢~1(r™") = f(x) and

~ Collflle

Lf() SNl O ™) = [ e @7 (CD (%>) '

Therefore, we get (2.3.4). O
Now we move on to the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Let Cy be as in (1.2.16). Let f be a non-negative measur-
able function. Then by (1.2.16) and (2.3.4),

sup \I/(r)m< [of(z) 7“) = suprm(@(LW),r)

r>0 Cl”fHL‘I” >0 OleHL‘I’
Mf(x) M f(x)
< o ———~— < ) _ <
—i‘i‘grm< (COHfHL@)’T) =oup <T)m(]|MfHWL@’T> <1

1.e.
I, fllwee S N fllpe-
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Assume in addition that ® € Vs, so that we have (1.2.17), by which we have
/ @(M)dxg/ ¢<M>dx
ge \Cillfllze g \Collfle

M () )
= /Rn‘b (Hanm do < 1,

I flle S e-
The proof is complete. O

1.e.

2.4 Proof of Theorem 2.1.3

In this section we prove Theorem 2.1.3.

Proof of Theorem 2.1.3 (i). We may assume that &, U € &y by (1.2.11). Let f €
L*(R™). We may also assume that ||f]|;e = 1 then M f(x) > 0 for all z € R". For
any © € R" and any ball B = B(z,r) 3 z, if

(1) 1

then, by (2.2.7), || fl|ze = 1, (2.2.6), the doubling condition of ®~! and (2.1.7), we

have
ptr) £ 191 < 228 el o < 250 ()

S p(r)e! (i) <Av (i> sav (q) (Mé(x)» |

<

Conversely, if

then, choosing £, > r such that

p(r) < s p(t) < o <q) (Mf<x)>>
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which implies

o) f 111 Ao (0(*2)) } 1< acor (@ (M))) .

sz (o(14).

which shows (2.1.8) by (2.2.1). O

Hence, we have

To prove Theorem 2.1.3 (ii) we need the following lemma.

Lemma 2.4.1. Let p: (0,00) — (0,00). Then, for all x € R™ and r € (0,00),

2.41) (590 £(0) o0 (0) < (Wm0 0.

o<t<r

Proof. Let « € B(0,r). If t < r, then we can choose a ball B(z,t) such that
x € B(z,t) C B(0,7). Hence,

p(t) = p(t) ]{3 . X8 (Y) dy < (MyxBoxm)(2).

Therefore, we have (2.4.1). O

Proof of Theorem 2.1.3 (ii). By Lemma 2.4.1 and the boundedness of M, from
L®(R"™) to wLY(R"™) we have

(Sup p(t)) X80 lwer < IMpxBEnllvee S IXBO LS

o<t<r

Then, by Lemma 2.2.3 and the doubling condition of ®~! and ¥~! we have the

conclusion. O

2.5 Sharp maximal operators

In this section, to prove Theorem 2.1.4, we prove two propositions involving the
sharp maximal operator M* defined by (1.1.6).

First we state the John-Nirenberg type theorem for the Campanato space £, ,(R"),
which is known by [40, Theorem 3.1] for spaces of homogeneous type. See also [1]

for its proof in the case of R".
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Theorem 2.5.1. Letp € (1,00) and ¢ : (0,00) — (0,00). Assume that 1 is almost
increasing. Then L, ,(R") = Ly ,(R"™) with equivalent norms.

Proposition 2.5.2. Assume that p : (0,00) — (0,00) satisfies (1.1.2). Let p*(r)
be as in (2.1.12). Assume that ¢ is almost increasing, that r — p(r)/r"=¢ is almost
decreasing for some € > 0 and that the condition (2.1.15) holds. Then, for any
n € (1,00), there exists a positive constant C' such that, for all b € Ly ,(R"),
f€CHp(R") and x € R”,

MH([b, 1] f)(x) < C|blle., ((Mw(|fpf|">(rc))1/" + <M<M>n<|f|”><x>)“").

To prove the proposition we need the following known lemma, for its proof, see

Lemma 4.7 and Remark 4.1 in [1] for example.

Lemma 2.5.3 ([1, Lemma 4.7]). Let p € [1,00) and 1 € G™°. Then there exists a
positive constant C' dependent only on n, p and ¢ such that, for all f € L4 ,(R")
and for all x € R™ and r,s € (0,00),

1/p s
<][ |f<y) - fB(z,r)|p dy) S C/ @ dt HfHEqu Zf 2r <s.
B(z,s) r

Remark 2.5.1. In Lemma 2.5.3 we also have

1/p s
(£ 1700~ fmenPay) <€ (tom2) wlo) e,y if 2 <,
B(z,s) r

/j@dt,ﬁ/j@dt:ws)log;

Proof of Proposition 2.5.2. For any ball B = B(x,t), let f = f1+ f, with fi = fx2s,
and let

since

for y € B, where Cg = I,((b — bap) f2)(x) and

(0~ b)) = [ P =) ) (2 dzs y e B

re |y — 2|7
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Then we have
[b, Ip]f + CB - [b - bQB,[p]f + CB - F1 - F2 - F3.

We show that

(2.5.1) ]i F(y)| dy
< Clblle., ((Mw<|fpf|”><x>)”" + (M<M>n<|f|”><x>)”"), i=1,2,3

Then we have the conclusion.
Now, by Hoélder’s inequality with 1/n7+ 1/ = 1 and Theorem 2.5.1 we have

]élFl(yﬂdy < (]é\b(y) — bop|” dy)l/n' <]é|]pf(y)|n dy) »
= gt (f -t an)” " (s £ storan)”

S 10y, (Mg (1, £17) () .

Choose v € (1,7) such that n/v—¢/2 > n—e. Then by the almost decreasingness of
7+ p(r)/r"~¢ we have the almost decreasingness of 7 + p(r)/r"/*=</2. Hence, from
Corollary 2.1.2 it follows that there exists an N-function W such that I, is bounded
from LY(R") to LY(R™). Let ¥ be the complementary function of ¥. Then by the
generalized Holder’s inequality (2.2.7), (2.2.6), (2.1.5) and the boundedness of I,

we have
2
F IFw)dy < o el
B | Bl
“A/IBDIO = bap) full e ey
pr(t)
< ——||[(b—"0 v(2B)-
S |B|1/v“( 28)f || v 2B)
Let 1/v = 1/u + 1/n. Then by Holder’s inequality and Theorem 2.5.1 we have

£ 1Eay
0 (f, o0 st )" (, lsooman) "
N@/’Qt (][ oy _b2B|udy> u((p*(zt)tﬁ(%))”]éB!f(y)l”dy)l/n

<10y (Mg (| F17) () 7.
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Finally, using the relation

< =~
2_ |z — z|

and (2.1.15), we have
[F5(y)| = [, ((0 = bap) f2)(y) — L,((b = bap) f2) ()]
(p(|y - Z|) . p(|$ B Z|)> (b(Z) . bQB)fQ(Z) dz

[ N

<2 forye Band z ¢ 2B

[z —ylp*(lz — 2])
< b(z) —b d
~ /Rn\QB |I — Z|n+1 | (Z) 23||f(z)| z

->/ 2 = ylole =20y 5

= Jarepnp o2t

By the doubling condition of p* (see Remark 2.2.1), Holder’s inequality and Lemma 2.5.3

we have

z—y|lp(lr — 2z
/ I itk Gt Y PP
2i+2B\2i+1B

|£L’ _ Z|n+1

tp*(27121)
S (22t /2j+23\21+13 |b(2) — bagl| f(2)| dz

p*(2j+2t> ][ , 1/n f 1/n
< 7 — n n
SEEO (e —bal'as) (£ 1

]"’2 ) ) 1/n
< 22 Mle,. (@ sy f i)
2it2B
Then
j+2 . 1/77
) S ||b||sz 2 (wemgverr | irera:)

1
< ||b||/;w(M<p (1 @),
which shows

F IE dy 5 1Bl (e (117 0)

Therefore, we have (2.5.1) and the conclusion. O

Next we define the dyadic maximal operator M. We denote by Q% the set of
all dyadic cubes, that is,

n

oY — {ka _ H[Q_jki,Q_j(ki +1):5€Z, k= (ky,...,ky) € Zn} )

=1
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Then we define

MYf(z) =  sup frf<y>|dy, T ER",
ReQ¥ Rz JR

where the supremum is taken over all R € Q% containing .

Next we prove the following proposition.
Proposition 2.5.4. Let ® € Ay. If MY f € L*(R"™), then
(2.5.2) IMY flle < ClIMFf| o
where C' 1s a positive constant which is dependent only on n and .

The following lemma is well known as the good lambda inequality, see [13,

Theorem 3.4.4.] for example.

Lemma 2.5.5. For all v > 0, all A > 0, and all locally integrable functions f on
R™, the following estimate holds.

(o € R - MY f(x) > 20, MFf(x) < 4A} < 2 {x € R - MY f(z) > A},
Proof of Proposition 2.5.4. For a positive real number N we set
Iy = /ON N {z € R™ : MY f(z) > A} d\.
We note that Iy < [, (MY f(z)) dz < co. By Lemma 2.2.5 we have

N/2
Iy = 2/ d'2N)|{xr € R" : MY f(x) > 2\}| d)
0

N/2
< 20@/ N {z € R™ : MY f(z) > 2\}| dA.
0

Then, using the good lambda inequality, we obtain the following sequence of in-

equalities:

N/2
Iy < zc:p/ BN [{z € R : MY f(z) > 20, MEf(x) < A\ H dA
" N/2
+ 2@;/ &) [{z € R" : MEf(z) > A} dA
N/2 "
< 2 Oy / (N [{x € R : MY f(z) > A} dA
’ N/2
+ 2%/ ' (N){x € R™ : M*f(z) > yA}| dA
0

1 N~/2
< 2”+10<1>7]N + 20@;/ D'(N/7){r € R": Mﬁf(:p) > A} dA.
0
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At this point we choose v such that 2"™'Cgy = 1/2. Since Iy is finite, we can
substract from both sides of the inequality the quantity Iy /2 to obtain

N/(2"1+3Cg)
Iy < 27HC2 / B2 \)|{z € R” : MEf(z) > A} dA
0

< C'n,cb/ ' (N){r e R": Mﬁf(m) > A} dA,
0
where (), ¢ is a constant dependent only on n and @, from which we obtain

/ DM f(2) dr < Crp / B(M f(z)) da.

n

This shows (2.5.2). O

2.6 Proof of Theorem 2.1.4

We first note that, for 6 € (0, c0),

0
(2.6.1) 1191°llze = (llgll Lacn)” -

Lemma 2.6.1. Under the assumption in Theorem 2.1.4 (i), if f € L35, (R™), then
If € LY(R).

Proof. If f € L, ,(R™), then f € L*(R"), since L, (R") C L*(R™). By (2.1.13)
and Theorem 2.1.1 I, is bounded from L®(R") to L°(R"). Then I,f is in L®(R").
On the other hand, since r +— p(r)/r"~¢ is almost decreasing, if the support of f is

in B(0, R), then

— R
nf@l <l [ A gy g [T < o

B(O,R) | e e

Then I,f is in LO(R™) N L>®(R").
Next, by (2.1.14) and the almost increasingness of 1) we have
U1 /rm) < U1 /rm)

O UM ST R T

for r>1,

and then
O Mu) U u) for u<l.

Hence, we conclude that

<
o) < {@((Jt), t<1,
00, t>1,

which shows that L®(R") N L>®(R") C LY(R"). O
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Proof of Theorem 2.1.4 (i). We may assume that &, ¥ € AyNV, and © € V,. We
may also assume that b is real valued, since the commutator [b, I,]f is linear with
respect to b and H%(b)nﬁhw ||%(b)”ﬁ1,¢ < ||b||ﬁ1,qp‘ Let

ko ifb(x) > k,
bp(x) = ¢ b(x), if —k <b(x) <k,
—k, ifb(z) < —k.

Then b, € L*(R") and [|bi|lz,, < (9/4)]0llz,,- For f € Co5yp(R?), b f lies in
Lo (R™), thus I,(byf) lies in LY (R") by Lemma 2.6.1. Likewise, byI,f also lies

comp

in LY(R"). Since U € Vy, MY ([b,1,]f) is also in L¥(R™). From this fact and
Propositions 2.5.2 and 2.5.4 it follows that

e L flle < 120 (b, L) o S I, L) oo
< Wl (| o))+ |t ),

here, we can choose 7 € (1,00) such that ®((-)'/7), ¥((-)*/") and ©((-)}/") are in
Vs by Lemma 2.2.6. We show that

[t 19|+ [| im0

Lo S,

where we note that " and (p*i)" are almost increasing.

By Theorems 2.1.1 and 2.1.3 we see that I, is bounded from L®(R") to L®(R"™)
and My, is bounded from LOOY(R?) to LY (R"), respectively. Then, using
(2.6.1), we have

|,

1/
v - (||Mw(|fpf\")||Lw<<.>1/n>) !
1
< (L1 oorm) " = o fllze < I1f 2o
From (2.1.13) and (2.1.14) it follows that
(" () (r)" (@71 (1/r™))" < A% (w1 (1/r™)".

By using Theorem 2.1.3, we have the boundedness of M,-y)» from L2OY) o
LYOY) | That is,

[ 1) ]| = 10 0 )

1/
5 (l||f|nHL¢<<»>1/’7)) T = HfHL<I>-

LY
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Therefore, we obtain

1Tk, Lol fllew S [bllzy Wl flle for all fe CF,, (R™).

By the standard argument (see [13, p. 240] for example) we deduce that, for some
subsequence of integers kj, [bx;,1,]f — [b,1,]f a.e. Letting j — oo and using

we hav
Fatou’s lemma, we have

116, Ll Flle S Wblley I fllpe for all fe CF,, (R™).

Since C2° (R") is dense in L®(R") (see Remark 1.2.2), it follows that the commu-

comp

tator admits a bounded extension on L?(R") that satisfies (2.1.16). O

Proof of Theorem 2.1.4 (ii). We use the method by Janson [17]. Since |z[""¢ is
infinitely differentiable in an open set, we may choose zy # 0 and § > 0 such
that |z|"~* can be expressed in the neighborhood |z — z9| < 26 as an absolutely
convergent Fourier series, |2|"~* = > a;e™*. (The exact form of the vectors v; is
irrelevant.)

Set z1 = z/60. If |z — 21| < 2, we have the expansion
|Z|n—oc _ 5—n+a|52|n—a — §nta Zajez’vj.éz‘

Choose now any ball B = B(zg, 7). Set yo = xg — rz; and B’ = B(yo,r). Then, if
r€Bandye B,

-y
T

T — o Y=Y

r

—z| < < 2.

r

‘

Denote sgn(f(x) — fg') by s(z). Then

[ bt =bwldz = [ (@) ~b)stoyae = [ [ vlo) = b)ste) dy o

1 pna | 2=y |0
= o / / (b(z) — b(y))|—’"n‘_a8(m)><3(x)><3f(y) dy dx
| B'| Jen Jgn |$ |
- 045 n+a Jp—
YT |x— |n 2> aye T s(a)xs (@) xe (y) dy da.
Here, we set C'= 6 "**|B(0,1)|~! and

9;(y) = e xpi(y), hy(z) =0 s(x)yp(x).
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Then
/|b ) — bpr|daw = Cr—® Zaj/n/n |x_ |n - j( )hj(x) dy dx
Za]/ ([b, 1n)g;)(x)hj(x) dx
e S lal [ 1 Llas) @)l o) o
e Yl [ 10 lg) @)l da

<20 allxsl o b, Lalgil oo
< 2Cr7|[b, Lol o oo | BI®TH(IBI7) Y laglllgsllze-
Since llgsllze = il = 1/ (1B/71) ~ 1/87(—), we have
UL(rm)
(B (-

That is, ||b]| 2000 S ||[b, La]|lze— v and we have the conclusion.

1
o 1, @) = bl do S 110, Lo
5]

n) S H[b7 [oz]H[fi’_)L\I'.
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Chapter 3

Commutators on Orlicz-Morrey
spaces

3.1 Theorems

First we recall the definition of Calderén-Zygmund operators following [61]. Let Q

be the set of all increasing functions w : (0,00) — (0, 00) such that fol @dt < 00.

Definition 3.1.1 (standard kernel). Let w € . A continuous function K (z,y) on
R" x R™ \ {(z,z) € R*} is said to be a standard kernel of type w if the following

conditions are satisfied:

C
3.1.1 K(z,y)| < ——— for x #y,
(3.10) Kl <

—_ T,z T)— 2, T ¢ w ’y_z‘
|K<$,y) K( ) )|+|K(y7 ) K( ) )|§ |;1:—y|" ( )

for 2y —z| < |z —y|.

(3.1.2)

Definition 3.1.2 (Calderén-Zygmund operator). Let w € Q. A linear operator T'
from S(R™) to S’(R™) is said to be a Calderén-Zygmund operator of type w, if T is
bounded on L?(R") and there exists a standard kernel K of type w such that, for
f € Co5p(®),

C

(3.1.3) Tf(x)= | K(x,y)f(y)dy, =z ¢suppf.

Rn

Remark 3.1.1. If z ¢ supp f, then K (x,y) is continuous on supp f with respect to y.
Therefore, if (3.1.3) holds for f € Cg,,,(R"), then (3.1.3) holds for f € L{,,,,(R™).

37
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It was known by [61, Theorem 2.4] that any Calderén-Zygmund operator of
type w € Q is bounded on LP(R"™) for 1 < p < oco. This result was extended to
Orlicz-Morrey spaces L®#)(R™) by [39] as the following: Assume that ¢ € G9°° and

that there exists a positive constant C' such that, for all r € (0, 00),

> ot
(3.1.4) / @ dt < Co(r).
Let ® € Ay NV, For f € L®¥)(R"), we define T'f on each ball B by

(3.15)  Tf()=T(fres)(z) + / K(z.9)f(y)dy, =€ B.

R™\2B

Then the first term in the right hand side is well-defined, since fx.p € L®(R™), and
the integral of the second term converges absolutely. Moreover, T f(z) is indepen-
dent of the choice of the ball containing x. By this definition we can show that T
is a bounded operator on L(®#)(R"™), see [39].

For functions f in Orlicz-Morrey spaces, we define [b, T|f on each ball B by

(3.1.6) [b,T1f(x) = [b, T)(fx28)(x) + /Rn\QB(b(x) —b(y)) K (z,y)f(y)dy, x€ B,

see Remark 3.5.1 for its well-definedness. Then we have the following theorem.

Theorem 3.1.1. Let &,V € &y, v € G¥ and ¢ € G™. Let T be a Calderdn-
Zygmund operator of type w € ).

(i) Let @,V € AyNV, and fol w dt < 0o. Assume that ¢ satisfies (3.1.4)

and that there exists a positive constant Cy such that, for all r € (0,00),

(3.1.7) ()@ p(r)) < Co¥™ (p(r)).

If b € L14(R"), then [b,T]f in (3.1.6) is well-defined for all f € L(®¥)(R")

and there exists a positive constant C, independent of b and f, such that
10, T f | Levor < CUbN 2y | fl] -

(ii) Conversely, assume that there exists a positive constant Cy such that, for all

r € (0,00),

(3.1.8) Cotb(r) @~ (p(r)) = ¥~ (p(r)).
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If T is a convolution type such that

Tf(z)=pov. | K(x—y)f(y)dy

R
with homogeneous kernel K satisfying K(x) = |z|"K(z/|z]), [qu1 K =0,
K € C®(S"™) and K # 0, and if [b,T] is bounded from L(*¥)(R") to
L) (R™), then b is in L1.4(R") and there exists a positive constant C, inde-
pendent of b, such that

16l 2., < Cl[b, T p@or—s 0w

where ||[b, T)|| L@ e is the operator norm of [b,T] from L®¥)(R") to
LT9)(R™).

Remark 3.1.2. From the theorem above we have the following several corollaries.

(i) Take ®(¢) = t?. Then we have the result for generalized Morrey spaces
LP#)(R™). This case is known by [1, Theorem 2.1], which is an extension

of Di Fazio and Ragusa [8, Theorem 1].

(ii) Take ¢(r) = 1/r". Then we have the result for Orlicz spaces L®(R"). This

case is an extension of Janson [17, Theorem].

(iii) Take ®(t) = W(t) = t*, ¢(r) = 1/r" and ¥ = 1. Then L®¥)(R") =
LA (R™) = LP(R") and £;,(R") = BMO(R"). This case is the result
by Coifman, Rochberg and Weiss [5].

To state the result on the commutator [b, I,] we first recall the boundedness of
I, on the Orlicz-Morrey spaces. Let ®, W € @y and ¢ € G¥. If & € V; and

/O 2D gy o) + / A g v i)

holds for all 7 € (0,00), then I, is bounded from L(®#)(R") to L¥¥)(R"), see [38,
Theorem 7.3]. More precisely, in [38, Theorem 7.3] the author assumed that ® and
W are bijective, but it can be extended to ®, ¥ € @y by the boundedness of I, from
L®(R") to LY(R") with ® € V; as we did in Theorem 2.1.1.

Now we state the result on the commutator [b,I,]. For the well-definedness of
[b, 1,] on L(®¥)(R™), see Remark 3.5.2.
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Theorem 3.1.2. Let &,V € &y, p € G4 o) € G and p : (0,00) — (0,00).
Assume that p satisfies (1.1.2) and (1.1.3).

(i)

Let ®, ¥ € Ay N'Vy. Assume that o satisfies (3.1.4) and that v+ p(r)/r"—c
is almost decreasing for some € € (0,n). Assume also that there exist positive
constants C,, Cy, Cy and a function © € Vs such that, for allr,s € (0, 00),

(3.1.9) C, plr) > '0<S), if r < s,

pn—€ — gn—e
p(r)  p(s) " p(t) 1 _r
(3110) 7"_”_ o SCP‘T_S‘M-H —dt, Zf§ S ; SQ,

Tt
(3.1.12)  ¥(r)© H(p(r)) < CL¥(p(r)).

t
(3.1.11) / P iy 1 (o)) +/°°Mdt < GO (p(r)),

If b € L1,(R"), then [b,1,)f is well-defined for all f € LI®¥)(R") and there

exists a positive constant C', independent of b and f, such that
(3.1.13) 1[0, L) fll vy < ClIbl 2y 1| -

Conversely, assume that 0 < o < n and that there exists a positive constant
Co such that, for all r € (0, 00),

T p(r)) < Cor®d(r)@ " (p(r)).

If [b, 1] is bounded from L®¥)(R") to LY¥)(R™), then b is in L14(R"™) and

there exists a positive constant C', independent of b, such that

16l 2., < CNb, L]l L@ v,

where ||[b, L] || o) v 5 the operator norm of [b, I,] from L(®¥)(R") to
LY9)(R™).

Remark 3.1.3. From the theorem above we have the following several corollaries.

(i)

(i)

Take ®(t) = t?. Then we have the result for generalized Morrey spaces
LP®)(R™). This case is known by [1, Theorem 2.2].

Take o(r) = 1/r". Then we have the result for Orlicz spaces L*(R"). This

case is known by Theorem 2.1.4.
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(iii) Take p(r) = r*, ®(t) = 7, U(t) = t9, ¢(r) = 1/r™ and ¢ = 1. Then
L@9)(R") = LP(R"), L9 (R™) = LI(R"™) and L, 4(R") = BMO(R"). This
case is the result by Chanillo [3].

For the case ¥ € G4, we have the following theorems.

Theorem 3.1.3. Let ®, ¥ € V,, &y € Ay and p,v,0 € G, Assume that
(3.1.14) O (t(r) 27 (tp(r)) S T (t0(r))

for all r,t € (0,00). Assume also that p, 1,0 satisfy (3.1.4). Let T be a Calderdn-
Zygmund operator of type w € Q. If b € LIPV)(R™), then [b,T)f is well-defined for
all f € L®9)(R™) and there exists a positive constant C, independent of b and f,
such that

116, T1f | vy < Clbll cwom [ fll oo

Theorem 3.1.4. Let ® € V,y, &g € Ay, ¥ € Dy and ¢ € G, Assume that
p satisfies (1.1.2) and (1.1.3) and that ¢ satisfies (3.1.4). Assume also that there
exist Uy € Vy and © € @y such that 10, ~ Uy, &;'0 T <UL and (3.1.11).
Ifb € L&0O)(R™), then [b, L) f is well-defined for all f € L(®9)(R™) and there exists

a positive constant C, independent of b and f, such that

116, To) f L cwor < ClIb oo [Lf | oo

At the end of this section we note that, to prove the theorems, we may assume
that ®, U € &y instead of ®, ¥ € &y. For example, if ® and ¥ satisfy (3.1.7)
and & ~ ¢, ¥ = ¥y, then ®; and ¥, also satisfy (3.1.7) by the relation (1.2.11).
Moreover, L(®#)(R") = L(®1¥)(R") and L) (R") = L(Y19)(R") with equivalent

quasi-norms.

3.2 Properties on Young functions and Orlicz-
Morrey spaces

Let & € &y, ¢ : (0,00) — (0,00) and B = B(a,7) C R", and let pup =
dx/(|Bl¢(r)). Then by the relation (1.2.21) and (2.2.5) we have

1 1

IXBlie g = lxs o = gm0 = 3160)

(3.2.1)
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Moreover, by the relation (1.2.21) and (2.2.7) we have

(3.22) le / F@)9(@)|dr < 2] fllopsllglls,0 0

Lemma 3.2.1. Let ® € &y and ¢ € G¥°. Then there exists a constant C > 1
such that, for any ball B = B(a,r),

_ IxBl L@ < ¢
O-Y(p(r) T o (p(r))

Proof. Fix a ball B = B(a,r). By (3.2.1) we have

(3.2.3)

1
R ) |
B (p(r)) IxBllows < x5l L@e

To show the second inequality in (3.2.3), let A = 1/®"!(¢(r)). Then it is enough
to show that, for some C' > 1 and for all balls B’ = B(b,r’) with BN B’ # 0,

(3.2.4) Soéa/) ][ P (ng)) de < 1.
If B' C 3B, then ¢(1’) 2 o(3r) ~ (r). Hence
syt (57 = e () 550 (5) =

In the above we used (2.2.1) for the last inequality. If B'N(3B)¢ # 0 and B'NB # 0,
then 38" D B. Hence ()| B’| ~ ¢(3r")|3B'| Z ¢(r)|B]| and

m B,(D(XB)Ex)) ’B| ( )dx<1.

Then, by the convexity of ® we have (3.2.4). O

Lemma 3.2.2. Let ® € &y, ¢ : (0,00) = (0,00) and B = B(a,r) C R™. Then
(3.2.5) F 1f@ds <207 ()] oo
B

Moreover, if & € Vs, then there exists p € (1,00) such that

1/p
( g \f(y)!pdy) < 00 (o) /oot

where the constant C' is independent of f and B = B(a,r).
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Proof. By (3.2.2), (3.2.1) and (1.2.15) we have

]ilf(l’)l dx < 2¢(r) || flle..8llx5l5 4.5

_2p(r)
p(r))
() fllee.s-

Next we assume that & € V,. Then by Lemma 2.2.6 we can take 6 € (0,1) such
that ®((-)?) € V. Let @y € V5 such that @5 ~ @ ((-)). Then &5~ " ~ (©1)1/7.
Let p=1/6. Then |||f|P|lep.0.8 ~ (|| fllee5)". Using (3.2.5), we have

= =————|flleesn

2(r
(

1/p
(]ilf(y)lpdy) < (220 (@) Pllapos) " ~ 7 o) | flops O

Lemma 3.2.3. Let ® € A, and o € G, If ¢ satisfies (3.1.4), then there exists a
positive constant C' such that, for all r € (0,00),

0o (I)—l t
(3.2.6) / w dt < CO(ip(r)).
o'(t)
Proof. By Remark 1.2.1 (iv) we see that ¢t — m is almost increasing for some

€ (0,1]. From (3.1.4) it follows that
[ 8 < oty

for some C), > 0, see [40, Lemma 7.1]. Then
[e’e) (I)_l [e'e) P
[ <wmﬁ:/‘¢<wmwwﬁ
r t PPt

t
) [ e .
S5 [ AR a < g )

This shows the conclusion. O]

Lemma 3.2.4 ([38, Theorem 4.1]). Let ®; € &y and p; € G4, i =1,2,3. Assume
that

O (tpr (1) @5 (tps(r)) < CDy (tpa(r))
for all r,t € (0,00). Then

||fg||L(<I>2,v>2> < 2C||f||L(‘I’17‘P1)”gHL(‘I’Bv‘Pa)'



44 M. Shi

3.3 Fractional maximal operators

It is well known that the Hardy-Littlewood maximal operator M is bounded on
LP(R™) if 1 < p < oco. This boundedness was extended to Orlicz-Morrey spaces
by [38, Theorem 6.1]. Namely, if ® is bijective and in Vy and ¢ € G4, then M
is bounded on L(®#)(R"). This result is valid for any ® € V, by the modular
inequality

[ ausais < [ ecisw)ds

in [23, Theorem 1.2.1].

For the operator M, we prove the following theorem.

Theorem 3.3.1. Let &, ¥ € &y, ¢ € G4 and p : (0,00) — (0,00). Assume that
lim ¢(r) = 0 or that W=1(t)/®71(t) is almost decreasing on (0,00). If there exists
r—00

a positive constant A such that, for all r € (0, 00),

3:31) (500 p(0)) 07 (p(r) < AVl

then, for any positive constant Cy, there exists a positive constant Cy such that, for
all f € L&) (RY) with f #0,
M, f () ) ( Mf(x) )
3.3.2 U(—L27 | <P|—"—], xe&R™
(3:3:2) (atnees) <2 (aias
Consequently, if ® € Vy, then M, is bounded from L) (R™) to LY#)(R™).

Remark 3.3.1. If p is almost increasing or if U=1(¢)/®~1(¢) is almost decreasing,
then the inequality p(r)®*(¢(r)) < ¥ (p(r)) implies (3.3.1).

Proof of Theorem 3.3.1. We may assume that &, ¥ € &y. We may also assume
that ¢ is continuous and strictly decreasing, see Remark 1.2.3. Let f € L(®%)(R"),
and fix x € R". To prove (3.3.2) we may assume that ||f|| @ = 1 and that
0< Mf(x) < oo.

We show that, for any ball B = B(a,r) containing x,

(3.3.3) o(r) ]{5 < Cyot <q> (%é“’)» |

Then we have the pointwise estimate

(44) (4.
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which is the conclusion.

To show (3.3.3), we consider two cases:

o (M({i(”f)) > o(r) or ® (Mg@) < ().

I @ (2£2) > (1), then by (3:2.5) and |flla s < 1, we have

() £ 111 < 20000 (o).
B
Combining this inequality with (3.3.1) we have

plr) f 171 < 2497 () < 240 (@ (%”)) |

Conversely, let ® (Méém)> < @(r). If lim ¢(r) = 0 then we can choose t; € [r, 00)
r—00
such that

Using (3.3.1) and (2.2.1), we have

1 vl (@ (M) v (@ (M)
< g < g - RN < LD

If U=1(¢)/®~1(t) is almost decreasing, then ® (Mééz)> < ¢(r) implies that

-1 M/ () -1 M f(x)
Jvre(ar)) v (e ()
N(pi

) - Mf(z)

p(r) <A

11}7
@_

— —
—~ |
SUAS
—~ |
==
SN~— [ ~—
N~— [ ~—

Co

In any way we have

p(r) ]i /1< ACo\IJ_1 (x(042) ]i [f] < AGU™ ((D (Mf(x))) '

Mf(x)

Then we have (3.3.3) and the proof is complete. ]
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3.4 Orlicz-Campanato spaces and relations to Orlicz-
Morrey spaces

In this section we define Orlicz-Campanato spaces and investigate their relations to

Orlicz-Morrey spaces.

Definition 3.4.1 (Orlicz-Campanato space). For ® € &y and ¢ : (0,00) — (0, 00),
let

LR = {f € Lo (R") || fll s <00},

Hch@»w = S%p Hf - fBHq>,¢,B,
where the supremum is taken over all balls B in R™ and || f||¢,,, 5 is as in (1.2.19).

Then ||| z(e.¢) is & quasi-norm modulo constant functions and thereby £(®%)(R™)
is a quasi-Banach space. If ® € @y, then || - || @.¢)(gn) is @ norm modulo constant
functions and thereby £(®%#)(R") is a Banach space. If ® ~ ¥ and ¢ ~ v, then
L®2)(RY) = LIVY)(R™) with equivalent quasi-norms.

If ®(r) = 77 (1 < p < o0), then we denote £(®¥)(R") by LP¥)(R"), which
coincides with £, .»(R") defined by Definition 1.2.1.

In this section we prove the following two theorems. Let C be the set of all
constant functions. The first theorem is an extension of [30, Theorem 2.1 and [37,
Theorem 2.1].

Theorem 3.4.1. Let ® € &y and ¢ € G¥°. Assume that ® € A, and that ¢
satisfies (3.1.4). Then

LOARY/C= LR and |fllewe ~ |f ~ I foo|geo0.

More precisely, for every f € L®#)(R"), IBo,) converges as r — oo, and the
mapping f — f — lim fp,) is bijective and bicontinuous from L®¥)(R™)/C to
r—00
L) (R™). In this case lim IBay) = 1im fpe. for all a € R™.
r—00 r—00

Theorem 3.4.2. Let ® € &y and ¢ € GI°. If ® € A,, then there exists a positive
constant C' such that, for all f € L .(R"),

(3.4.1) 1 fllc@o < CIMEf|l -

Moreover, if ® € Vy and ¢ satisfies (3.1.4), then

(3.4.2) C U S zwe < IMFf|lp@er < Cllf| pe-
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By Theorems 3.4.1 and 3.4.2 we have the following corollary.

Corollary 3.4.3. Let ® € &y and ¢ € G¥°. Assume that ® € Ay and that ¢
satisfies (3.1.4). Then there exist a positive constant C such that, for any f €
L®#)(R") satisfying lim fpm) = 0,

r—00

(3.4.3) @) < CIMEF Lo
Moreover, if ® € Vs, then
CHN Nl pwer < UM fllp@e < Clfllr@e-

To prove the theorems we prepare several lemmas.

Lemma 3.4.4. Let ® € &y and ¢ : (0,00) — (0,00). Then, for any two balls By
and By such that By C B,

(3.4.4) i = il < 2210 plra) e,
where 1o is the radius of Bs.
Proof. By (3.2.5) we have
|y — fBu] < |31’ !f(ﬂU) — fB,|dx
<1 10 = foldo
I 0

Lemma 3.4.5. Let ® € @y and ¢ : (0,00) — (0,00). Assume that ¢ satisfies
the doubling condition. Then there exists a positive constant C' such that, for any
f € L®9)(R™) and for any two balls B(a,r) and B(b, s) satisfying B(a,r) C B(b, s),

(1))

2s @—1
(3.4.5) [t = ol <€ [ Z 2t e

t

Proof. Let f € LI®¥)(R"). Take balls B; = B(a;j,2'r), j =0,1,2,..., such that

B(a,r) =By C By C By C--- C By_1 C B(b,s) C By.
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Then, by (3.4.4) and the doubling condition of ®~!(x(-)) we have

| [Bar)—[B1,5)| < |fBo — [+ 1B = fBol + -+ [ fBey — B

B(b, s
<i?”1224> @)l + 21T ) e
k12“@<<» 2 o 1(p(1))
/1————ﬁwmww/‘—7f—awmw
j= 21— 1p S
2s (I)—l t
5/'—%%ﬁwwmw»
This shows the conclusion. ]

Lemma 3.4.6. Let ® € &y and p € G, If [[* wdt < 00, then, for every

f € LEP(R"), there exists a constant o(f) such that o(f) = lm fp(..) for all
T—00

a e R".

Proof. Let f € LI®¥)(R"). By (3.4.5) we see that

= (p(t)

; dt || fllz@e — 0 asr,s— oo with r < s.

|fB0.r) — [BOs)] < C'/

T

Hence fp(o,r) converges as r tends to infinity by Cauchy’s test. Let o(f) = lim fp(.
r—00
If |a| < r, then B(a,r) C B(0,2r). From (3.4.4) it follows that

|fB(a,7“) - J(f)l < |fB(a,7’) - fB(O,Zr)' + |fB(0727") - U(f>|
< 2| fll @ @ (2r) + [ fB02n) — o (f)| = 0 as T — oo,

since ®~!(p(2r)) — 0 as r — oo by the assumption. O

Remark 3.4.1. If & € A, and ¢ satisfies (3.1.4), then OO(I’I(—‘pt)dt < oo by
Lemma 3.2.3.

Proof of Theorem 3.4.1. We may assume that ® € A,. Let f € L®¥)(R").
Then by the definition of £(*¥)(R"), for any ball B = B(a,r),

ﬁ][ ® (%f\?mw |> o=t

Letting s — 0o in (3.4.5) and using Lemma 3.4.6 with Remark 3.4.1, we have

fa-o0l5 [ 7O 41 £l o

t
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By Lemma 3.2.3 we have

[f5 = o ()] < COp(r) | £l oo
for some C' > 1 independent of f. Then by (2.2.1) we have

\f5 —a(f)]
o (LB ZVJ
(CHmew

By the convexity of ® we have
|f(x) —U(f)l)
51,2 (o) @
B A If(I)—fBI) (|fB_U(f)|>}
Fol A {‘I’ (cufuﬁ@,m BT Pl S

This means that f — o(f) € L(®*)(R") and that

) <@ ' (p(r)) < (r).

IN ﬁ‘H

Hf - U(f)HL(‘I’,w) < 20‘|f”£(<1>,@.
Conversely, let [ € L(¢,¢)(Rn), Then by (3.2.5) we have, for any ball B =
B(a,r),

(3.4.6) fal < 7{3 @) dr < 287 ()| | oo

Since ®71(p(r)) — 0 as r — oo by the assumption, we conclude that o(f) =
lim fp(,) =0 by Lemma 3.4.6. Moreover, from (3.4.6) and (3.2.1) it follows that
r—00

1

— -1 —
I /lleen = [f5ll[1]ees < 20 (SO(T))IImewW = 2[[fll @

Then
If = fellews < fllees + I fBlleen <3| flli@e-

This shows that f € £(®¥)(R") and

[ fllz@er <3| fllp@e =3|f —o(f)lln@en.

The proof is complete. O

To prove Theorem 3.4.2 we define local versions of the dyadic maximal operator

and the dyadic sharp maximal operator. For any cube ) C R" centered at a € R”
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and with side length 2r > 0, we denote by Q% (Q) the set of all dyadic cubes with
respect to (), that is,

QY (Q) = {QM =a+[Jl27kr, 27 (ki + 1)r) G € Ly k= (ky,- - k) € Z”} .

i=1
For any cube @Q C R", let

MIf(#)=  sup ][ @)l dy,
ReQ¥(Q),zeRCQ
MEYS@) = s f ) — Fal dy.
ReQ¥(Q),zeRCQ

Then we have the following lemma.

Lemma 3.4.7. Let ® € Ay and ®(2t) < Co®(t) for all t € [0,00] and some
Co > 1. Then there exists a positive constant C,, o such that, for any f € Li.(R™)
and any cube @,

aan) [ o (M) dr< oo [ @ (M5 1) e +2000 (f10) Q)

and

(3.4.8) /Q @ (M (f(x) = fa)) d < (Cua +2Cs) /Q @ (M5 f(x)) da
To prove Lemma 3.4.7 we use the following local version good A inequality:

Lemma 3.4.8 (Tsutsui [59], Komori-Furuya [24]). Let f € L\ _(R™). Then, for
any cube Q, 0 <y <1 and XA > |f|g, we have

(3.4.9) Hx €Q: MY f(x) > 2\, MEY f(2) < m}‘
< 2”7’{95 €Q: ngf(x) > )\H :
Proof of Lemma 3.4.7. For N > 0, let
N !
Iy = / o'(\) Hm €Q: MY f(x)> )\H d).
0
If N > 2|f|q, then

= [ [ w o s > o]

N/2

< (21f]0) Q] +2 /

, o' (2)) ){x €Q: MY f(z) > 2)\}‘ d).
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By the doubling conditions of ® and &’ and the good-\ inequality (3.4.9), we have

N2
Iy < 20y (2"7 /If o' () ‘{x €Q: MY f(z) > )\}‘ d
Q

N/2 . id
+ /fl (N ‘{m €Q: M;¥ fz) > vA}\ dA) + Co® (|f]@) Q]
Q

2Cy

Nv/2 d
< PN Co Iy + / ® <;> ‘{x €Q: Mg Yf(x) > /\}‘ d\
0

+ Co® ([ flo) |€QI-
At this point we pick a 7 such that 2""1yCg = 1/2, then

Iy < [ 8 0)|{r € @ MEVF() > A} | dh+ 2Cu (o) Q)
0
Letting N — oo, we deduce (3.4.7). Next, substitute f — fg for f in (3.4.7). Then
[ @ (35 (@) - o)) do
Q
< Cun [ @ (5" () do 200 1f ~ fola) @)
< Chro /Q ® (Mgdy f(a;)) dz + 205® (%1 MEY f@)) Q|

S (Cm(p + 20@)/ ) (Mgd}’f(x)) dl’,
Q
which is (3.4.8). O

Proof of Theorem 3.4.2. To prove (3.4.1) we may assume that ||M?*f|| @ = 1.
Then it is enough to prove that there exists a positive constant C’ such that, for
all balls B = B(a,r),

1 |f(z) — fB|)
3.4.10 / P (— dr <1.
(3:4:10) EEGY AR
Take the cube @ such that B C Q C y/nB. By Jensen’s inequality we have

¥(fo— fal) <@ (f 170) - foltr) < f @ (170 - fol)

Then

ay [o(HOZBy o< 2 [ (050 - fob) + @00 fo ) o

S/B<I><\f(fv)—fcz!)d:v§/QCD(!f(:v)—fQ\)dsv-
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By (3.4.8) and the fact that Mgdyf < C,M"f for some positive constant C,, we

have

[ 205 ~ falydr < | @ (g7 - fo)) do
< (Cop +2Cs) /Q o (Mgdyf(gg)> da

(3.4.12) < (Cpa +20p) / ® (C, M f(2)) da.
v/nB

Take C,,, > 1 such that |\/nB|o(y/nr) < C, 4|Ble(r). Then, from (3.4.11) and
(3.4.12) it follows that

1 /(@) = 18l ;. o Cne(Cro +2Ca) (o)) i
B J, 2 (T ) s St [ p @t @) an

which shows that
1 |f(x) — [B] )
) dz
e L oo e
1

: s a .
< VRBIAV op ® T @) e <1

Therefore we have (3.4.10).
Next, we add the assumptions that ® € A, and that ¢ satisfies (3.1.4). Then
the Hardy-Littlewood maximal operator M is bounded on L(®%)(R") and then

(3.4.13) IMF fll ooy < 2 M fllp@ier < Cllfll o
To prove the second inequality in (3.4.2) we may assume that f € £(®¥)(R"). By

Theorem 3.4.1 we see that fp(,) converges as r — oo. Setting o(f) = lim fg,
r—00

we have || f — o(f)||p@e < C|f|lz@. Substituting f — o(f) for f into (3.4.13),

we have

IMFfll @ < CULF = ()l < Cllfll e,

which shows the conclusion. O]

3.5 Well-definedness of the commutators

In this section we prove that the commutators [b, 7] f and [b, I,]f are well-defined
for all b € £; 4(R") and f € LI®¥(R").
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Lemma 3.5.1. Let ® € &y and ¢ € G¥°. Let K be a standard kernel satisfying
(3.1.1). Then there exists a positive constant C such that, for all f € L(®%)(R")
and all balls B = B(z,r),

00(1)71
[ weoswiase [T D wyp, cen
R™\2B 2r

Proof. If € B and y € 2B, then |z —y|/2 < |z — y| < 3|z — y|/2. From (3.1.1) it
follows that |K(z,y)| S |e —y| ™ ~ |z —y|™™. Then

y)|
Kallfoldy s [ / dy.
/R"\ZB R™\2B |Z - y|” Z 2i+1B\2 B |Z - yl”

By (3.2.5), Holder’s inequality and the doubling condition of ¢ we have

fly _
Lo Ao f s £ o7 (6@ ) Il
2i+1B\29 B |z =y 2i+1B
2i+ly o ]
) t
s [ e
27y t
Therefore, we have the conclusion. O

Lemma 3.5.2. Let ® € V,, ¢ € G¥, ¢ € G™ and K be a standard kernel
satisfying (3.1.1). Then there ezists a positive constant C' such that, for all b €
L14(R"Y), all f € L®9(R") and all balls B = B(z,r),

/Rn\23 |(0(y) = bp) K () f(y)] dy
= C/Oo w </OO wdu) dt Hbuﬁl,wa”L@wP), xr € B.

t
Proof. If v € B and y € 2B, then |z —y|/2 < |x — y| < 3|z — y|/2. From (3.1.1) it
follows that |K(x —y)| S|z —y|™ ~ |z —y|™". Then

[ low) -wrepswla s [ 0=,
R7\2B R™\2B |z =y

N / (0y) = be)f WL

‘=1 JatiB\iB |z —y|"

By Lemma 3.2.2 we can find p € (1,00) such that

(£, (”’pdy)l/pﬁq’ (o)) | fll e
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By Holder’s inequality, Lemma 2.5.3 and the doubling condition of ¢) and ¢ we have

/ [(b(y) — bB)f ()] dy
2i+1B\2 B |z —y[
1

G g 00~ ) W

1/p 1/p
(][ b byl dy) (f F)P dy)
21+1B 2i+1B

9i+1,
20 gy g He@ ) [1bll 2y [l fll e

(/¢ dt) (;M))d“Hbllcl,waHm,w.

/QM
<.

Therefore,
|(b(y) — bp) K (2,y) f(y)| dy
R™\2B
> “ 1/1 o (p(u
<[ (/ D o oo
00 1/} t o] q)—l o(u
-/ % LD Yt bl 0
r t u
This is the conclusion. O

Remark 3.5.1. Under the assumption in Theorem 3.1.1 (i), let b € £y 4(R™) and
f € L®¥)(R"). Since ® € A,, there exists p € (1,00) such that 7 < ®(t) for
t > 1, see Remark 1.2.1 (v). Then L®®)(R") c L (R") C L (R"), which
implies f € L} (R") and bf € L} (R") for all p; € (1,p) by Theorem 2.5.1. Hence,

T(fx2p) and T'(bfx2p) are well-defined for any ball B = B(z,r). By (3.1.4), (3.1.7)

and Lemma 3.2.3 we have

(3.5.1) /w@ </tmww>dt

s /roo ﬂJ(t)@:((p(t)) dt s /roo \Ijil(sp(t)) dt 5 \I/_l(§0<r))'

loc

t

Then, by Lemmas 3.5.1 and 3.5.2, the integrals

[ K@ fldy and [ G )b )] dy
R™\2B R™\2B
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are finite. That is, we can write

0. T)f(x) = [b. T)( fam) () + / (b(x) — b(y)K (v, 9)f (y) dy, = € B,

R"\2B

Moreover, if € By N By, then, taking B3 such that B; U By C B3, we have

([b, Txas)@) + [ (b) = b)) ) dy)
R™\2B;
- ([b, T(Pas)(e)+ [ 0) = W) K.l dy)
R"\QBg

b T](fxamaa,) (@) + / (b(x) — b(y)) K (2, 9)  (y) dy = O,

2B35\2B;
by (3.1.3). That is,
b, T)(f xom ) (@) + / (b(x) — b)) K (x,) () dy

R"\QBl

= b, T)(fxam) (@) + / (b(x) — b(y))K (x.9)f (y) dy, = € By Ba.

R"\ZBQ

This shows that [b, T|f(z) in (3.1.6) is independent of the choice of the ball B

containing x.

Lemma 3.5.3. Under the assumption of Theorem 3.1.1 (i), there exists a positive
constant C' such that, for all b € L1,(R"), all f € L&) (R™) and all balls B =
B(z, 1),

£ (L, 00 = MK ) ) ) de < €O o) e
Proof. For x € B, let

Gr(x) = [b(x) — bs] - K (2, y)f (y)| dy,

Galw) = [ 106) ~ b)) 5] dy

Then

[, 046~ KK ()5 | < Gt + o)

Using Lemmas 3.5.1 and 3.5.2, we have

852 [ kel |

2r

o p(t))

; dt||fllp@w, =€ B,



o6 M. Shi

and
(35.3) /\ o(y) = bl |5 (2, 9)][ £ (9)  dy
5 /OO w (/too w du)dt ||b||£1,w||f||L(‘1>m), r € B.

t

Then, using (3.5.2), (3.2.6) and (3.1.7), we have

]i G(x) dr < ]{3 Ib(x) — bs| dz & (p(r))|| /]| o

S Y@ )by o 1 flpe
ST Dby I | pae.

Using (3.5.3) and (3.5.1), we also have

]fg Galz) dz < U (o () Bl 2s 1l oo

Then we have the conclusion. O]

Lemma 3.5.4. Let ® € &y and ¢ € G¥°. Assume that p satisfies (1.1.2) and
(1.1.3). Then there exists a positive constant C such that, for all f € L(®%)(R")
and all balls B(x,r),

[ gy <o [ EOTED g,

n\ B(z,r) ‘LC - y‘n Kir

where K, is the constant in (1.1.3).

Proof. Let B = B(z,r). Then

/R"\B (z,r) |x_y|n |f< )’ Z/J+IB\2]B |.£U—y|n |f< )’

7=0

By (1.1.3), (3.2.5), Hélder’s inequality and the doubling condition of ¢ we have

<|$ yl) SUPgs,<y<2it1, P(E)
f(y) ¥ fy)| dy
/2”13\273 |z —yl|" )l dy (27+tr)" 2j+lB\2jB‘ )l
K229y Ko2ir -1
p(t _ , p(t)P (p(t
S [ waplilen g [ A ED g,
Kq2ir Kq2ir

Therefore, we have the conclusion. O
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Lemma 3.5.5. Let ® € Vs, ¢ € G4 and ¢ € G°. Assume that p satisfies (1.1.2)
and (1.1.3). Then there exists a positive constant C' such that, for allb € Ly ,(R"),
all f € L®)(R") and all balls B(z,7),

[ - by 2, )1y
R7\ B(z,r) ‘ ‘

<o [T U ([T AT XD 0Nt e, o

Kir t

where K is the constant in (1.1.3).
Proof. Let B = B(z,r). Then

/ b(y) — bl 2=, )1y
R7\B(z,r) | |
ollz — y)

[ om0
2it1B\27 B ’ ’

By Lemma 3.2.2 we can find p € (1,00) such that

Mg

=0

(£, <y>'pdy)1/p5‘1" (02" 1)) | fllcw.r

By (1.1.3), (3.2.5), Hélder’s inequality, Lemma 2.5.3 and the doubling condition of
v and ¢ we have

/[ e ol 2 )y

SUDP9j <y <2i+1r p(u) /
< == bly) —b d
() 2j+1B\27'B| (y) = bsllf(y)| dy

Ko29r " , 1/p 1/p
<[ (7[ b~ byl? dy) (][ |f(y)|pdy>
Kq2ir 2i+1B 21+1B

Kﬂ” 20+ W(t .
/ o o / ( ) dt d~ (90(21+1r)) HbHEwa”L@W

K229y -1
/K12J7~ (/ ) u> u<g0<u>) du HbHﬁl,qufHL(‘P,w)-
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Therefore,
[ )= 0l 2=
R™\B |z —y|
00 u CI)_I
S /K( Kﬂ,wi)dt) AL g g, e
oo " 00 (I)_l
:/K@(/t plu) u(so<u>> du)dtHb\lgl’wa|]L<q>,q,>.
This is the conclusion. 0

Remark 3.5.2. Under the assumption in Theorem 3.1.2 (i), let b € £4,(R") and
f € L®¥(R"). Then f is in LY (R") and bf is in LI (R™) for all p; < p by the
‘(||yn‘) is integrable near the origin with respect

to v, I,(|flx2p) and I,(|bf|x2p) are well-defined for any ball B = B(x,r). By
(3.1.11) and (3.1.12) we have

same way as in Remark 3.5.1. Since

o) [ HO g g ot ptin) £ 07 el
and
pse) [ U0 ([ ),
S e s L)

Then, by Lemmas 3.5.4 and 3.5.5, the integrals

/R <|$ |)|f< )]dy and /R Mw(y)f(yﬂdy

mop [T —y[" mep T =y

converge. That is, the integrals

[ A=y aa [ A=) s 4y

converge absolutely a.e. x and we can write

pllz —yl)

dy, a.e.x.
P—T f(y) dy

b.1,)f(@) = [ 0a) b))
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Lemma 3.5.6. Under the assumption of Theorem 3.1.2 (i), there ezists a positive
constant C' such that, for all b € L1,(R"), all f € L®9)(R™) and all balls B =
B(z,r),

£ =0 T 1) ) e < 0030 e
Proof. For z € B, let
Gr(a) = b~ bl [ )y
Gala)= [ bt = bal R 0y

Then

[, 00 = L ) | < Gato) + Gatr)

[z —y|"
Using this estimate and a similar way to Lemmas 3.5.4 and 3.5.5, we have, for
all x € B,

Gr(e) < [b(a) — bal [ LX) gyypy

Y
Kir t

Ga) 50 [ U0 ([T AT ar o, e

Kir 13

Then, using (3.5.4) and (3.5.5) also, we have

]i Gr(x) i < ]i b(x) — b de 0 (0 ()|l oo

S V(O (@)Dl 2y I F 1l oo
S DIl 2y 1 f |,

and

} Galo)do S U o) Bl e

Then we have the conclusion. O]

3.6 Proof of Theorem 3.1.1

We use the following proposition. We omit its proof because the proof method is

almost the same as [1, Proposition 5.1].
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Proposition 3.6.1. Let T be a Calderdn-Zygmund operator of type w. Let ) € GMC,
Assume that w and 1 satisfy the same assumption in Theorem 3.1.1. Then, for any
n € (1,00), there exists a positive constant C such that, for all b € Ly4(R"),
f € L®9)(R") and x € R,

(3.6.1)  M¥([b,T1f)(x) < Clblle,, ((Mwn(ITfI”)(ﬂﬁ))l/?7 + (Mw(lf|")($))1/”),

where Myn s the fractional mazimal operator defined by

My f(a)= sup o(r)" ]i( Ny R

B(a,r)3x

Next, we note that, for § € (0, 00),

0
(3.6.2) H|g|9”L<‘I’#’> = (|’9|’L<¢<<->@>,¢>>) .

Proof of Theorem 3.1.1 (i). First note that 7" is bounded on L(®**)(R") as we
state just before Theorem 3.1.1. We can take € (1,00) such that ®((-)'/") € V,
by Lemma 2.2.6. Then, from (3.1.7) it follows that

Y(r)"2 7 (1)) < G (ip(r))".

By Theorem 3.3.1 with this condition we have the boundedness of My, from
LEOYD2) (R to LEOY)2)(R™). Using this boundedness and (3.6.2), we have

|t )™ = (M (TS i)

1/
S (||\Tf|’7\|L(q,<<,)1/,7)’w)) !
= Tfllp@e Sflln@e,

L(¥,p)

and

1/
M (L) pwer = (IMn (LFID o)

1/
S (“|f|n||L<<I><<->1/">,«p)) = ||f||L<<I>,¢>-

Then, using Proposition 3.6.1, we have

(3.6.3) 1M (B, TN wower S 18l g Ll Lo

Therefore, once we show that, for B, = B(0,r),

(3.6.4) ][ BT)f >0 as r— oo
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then by Corollary 3.4.3 we have

(3.6.5) 116, T]fl| wor SNy Il f Nl e,

which is the conclusion.

In the following we show (3.6.4).
Case 1: First we show (3.6.4) for all f € L(®¥)(R") with compact support. Let
supp f C Bs; = B(0,s) with s > 1. Then f € LP(R") and bf € LP*(R") for some
1 < p1 <p< o (see Remark 3.5.1). Since T is bounded on Lebesgue spaces, we
see that both (0T f)xs,, and T(bf)xs,, are in L'(R") and that

f (T f)xBy. — O, ][ T(f)xp,, =0 asr— oo.

If © € Bys and y € B(0, s), then |z|/2 < |z —y| < 3|x|/2. By (3.1.1) and (3.1.3) we

have

366) 1@ S pplfle, TON@IS Clbflo. o f B,
which yields

bon, f (N0 =X >0, f TEN1~x5,) 0 257 o0
Next, we show

(3.6.7) ][ (b—bp, )(Tf)(1—xpB,) >0 asr— .

Then we have (3.6.4) for all f € L(®%)(R") with compact support.
Now, since U € Ay, there exists p € (1,00) such that ' (u) < u'/? (u < 1).
Let v = . Then

f (b— s )T — x5

' 1/v 1/v
<(f p-vmr) (f 1Enn-smr)

From Lemma 2.5.3, Remark 2.5.1 and (3.1.7) it follows that

(3.6.8) <B\b—b > /w dt |[bllz,,,
' T (p(r)

S v()logr ble,., S 5

log r HbHﬁw.
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From (3.6.6) it follows that

1/v 1 v 1/v
v < 1 < 1.
(3.6.9) (/BT\BQS 1)l dx) ~ </BT\BQS <|$|””f“L ) dm) < Il

By (3.6.8) and (3.6.9) we have

:P‘l(so(r)) 1 logr U (e(r))

< = P ortbll, — _ b

~ @,1(80(7,.)) ogr || ||£17¢Tn/y ||f||L1 Tn/y @,1(@(7’)) || ||Cl,¢||f||L1
log r o(r)t/? log r

S 10/l c, [ fllr = — 0l 2y LIl 22
v o(r) R L rﬁ(rnga(r))l_E R L

Therefore, we have (3.6.4) and (3.6.5) for all f € L(®%)(R") with compact support.
Case 2: For general f € L(®%)(R"), using Case 1, we have

1B, T X o M pevor S MOly X 8o pcwir < N0l LNl oo

Then, by (3.2.5),

116, T X, )| < O (B, T X o) Lo

B,
S U @)l 2y 1Nl -

Combining this with Lemma 3.5.3, we have

16, T S = e rDIbl ey 1 f | o,

By

which implies (3.6.4). Therefore, we have (3.6.5) for all f € L(®%)(R"). The proof

is complete. O]

Proof of Theorem 3.1.1 (ii). We use the method by Janson [17] as same as the
proof of Theorem 2.1.4 (ii). Since 1/K(z) is many times infinitely differentiable in
an open set, we may choose zg # 0 and 0 > 0 such that 1/K(z) can be expressed in
the neighborhood |z —zg| < 26 as an absolutely convergent Fourier series, 1/K(z) =
> a;e™i#. (The exact form of the vectors v; is irrelevant. For example, if the cube
centered at zp of side length 46 is contained in the open set, then we can take
v; =2mj/(40), j € Z".)
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Set z1 = z0/0. If |z — 21| < 2, we have the expansion
1

o —n -0z .
K(Z)_K(5Z)_5 Ej:a]e : Z|aj|<oo

jezn

Choose now any ball B = B(xg,r). Set yo = x¢ — rz; and B’ = B(yp,r). Then, if
r€ Bandye B,

r—y
r

Denote sgn(f(x) — fg') by s(z). Then

/ |b —bB/|dl'

— [ (00 = b st
]B’|//, )s(x) dy dx
"K(ﬂf—y)
|B | /n /n K<$T‘y) s(z)xs(x)xp (y) dy dx
|g/| /n /n(b(ﬁf) _b(y))K@_y)Z@jewj'é%s(ﬁﬁ)XB(x)XB/(y) dy da.

Here, we set C' = §"|B(0,1)|~! and

9i(y) = e xp(y), hyj(z) =07 s(z)xp(x).

/B b(z) — by | da

—C3 0 [ [ (b)) K@~y by (a) dy d
—cY /anz), Tlg;)(@)hy () da

<ol [ 1B Tig) @l ds

¢ oyl [ 1 Tlgy)(a)l do

<Oy laslI BIE ()l [b, T]gjllm o)
< Ol Tl oo BT o) D sl gill oo

Then
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By Lemma 3.2.1 we have that ||g;||;@.«) = ||xB|| 1@ ~ —q,,l(;(B,)). Then
U~(p(B))
b(x) — by | dz < |[[b. || coumr 1 oy | Bl o 2N
/B| ( ) B| ~ H[ ]HL(‘I> ®) — (¥ “’)| |(I)_1(QO<B))

By (3.1.8) we have

2
f (@) = byl < ]i b(x) — byl dz < (1o, T w00 v

That is, ||bHLw S b, T o) s v and we have the conclusion. O

3.7 Proof of Theorem 3.1.2

We use the following proposition. We omit its proof because the proof methods are

almost the same as [1, Proposition 5.2] and Theorem 2.5.2.

Proposition 3.7.1. Assume that p : (0,00) — (0,00) satisfies (1.1.2). Let p*(r)
be as in (2.1.12). Assume that the condition (3.1.10) holds and that r +— p(r)/r™=*

is almost decreasing for some € > 0. Assume also that

(3.7.1) /Too PO (e(t) 40 00, /TOO v(t) (/too p(u)2” (i (u)) du)dt < o0,

t t U

Then, for any n € (1,00), there exists a positive constant C' such that, for all
be Ly 4(RY), feL®PR) and z € R",

ME([b, L)) (x) < Cbllc,., ((Mm L") (@) " + (M(pww(|f\")(fv))1/”>

where M,-yyn is the fractional mazimal operator defined by

Mgy f(2) = sup (0" (r)(r))" ]{9( 1y, R

B(a,r)>x
We note that the condition (3.7.1) is used to prove the well-definedness of [b, )] f.

Proof of Theorem 3.1.2 (i). We may assume that &, ¥ € Ay NV, and © € V.
We can choose 1 € (1,00) such that ®((-)1/7), ¥((-)¥/") and O((-)}/") are in V, by
Lemma 2.2.6. Then from (3.1.12) it follows that

Y(r)"0 (p(r))" < CYU (o(r))".
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Hence, by Theorem 3.3.1 we see that My, is bounded from L(G((-)l/nw)(R") to
L(‘I’((')l/")’@)(R”) Moreover, as we mentioned just before Theorem 3.1.2, I, is

bounded from L(®#)(R") to L(®¥)(R") by (3.1.11). Then, using (3.6.2), we have

1/
(||Mwn |Ipf’ || (‘1’(()1/”)@)) !

1/
(Hl f| ”L(@(()l/")so)) "= || f”L(@ ©) A~ S ”f”L(‘I> #)-

| (12, 51)

L(¥,0)

From (3.1.11) and (3.1.12) it follows that

(0" () ()" (7)) < (CoCr)" (I (2(r)))"

By using Theorem 3.3.1, we have the boundedness of M-y, from L®OY)9)/(R )
to L(F(OYM9) That is,

(||M(p*w)"(|f|n)HL(wc)l/"),w))l/n

1/
S (H’fWHL(@((»)l/’i),@)) "= Hf”L(‘PW-

Therefore, if we show that, for B, = B(0,r),

| Mare1rm) ™|

(3.7.2) ][ b, 1,]f =0 as r— o0,

r

then we have

(3.7.3) 11, L1 Nl pever S N0l 1 Nl oo

by Corollary 3.4.3.

In the following we show (3.7.2).
Case 1: First we show (3.7.2) for all f € L(®¥)(R") with compact support. Let
supp f C Bs; = B(0,s) with s > 1. Then f € LP(R™) and bf € LP*(R"™) for some
1 < p1 <p< oo (see Remark 3.5.2). Since % is locally integrable with respect

to y, we see that (bl,f)xp,, and I,(bf)xp,, are in L*(R™) and that

][ (b1,f)xBs, — 0, ][ L,(bf)xp,, =0 asr— oo.
If x ¢ Bys and y € B(0,s), then |y| < |z —y| and |z|/2 < |z — y| < 3|z|/2,

(3.7.4) plle—y) < sup  p().

jol/2<t <3/l /2
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Then we have
— supy, . t t
ple = ul) o SWppsisaept) 0 plt)
|z —y|" |z[" 2| /2<t<3lz|/2 "

and

L@ s P, Lep@is s 2D

jol/2<t<3lal/2 1" lal/2<t<3el/2 1"

1S 1]

From the almost decreasingness of ¢t +— p(t)/t" for some € € (0,n), it follows that

% — 0 as t — oo, which yields

bp,, ]i (I,f)(1 = xB,,) — 0, ][ (L)1 —xB,,) =0 asr — oo.

r

Next, we show

(3.7.5) ][ (b—0bp,, )L, f)(1 —xB,,) =0 asr — oo.

T

Then we have (3.7.2) for all f € L(®#)(R") with compact support.
Now, since ¥ € A,, there exists p € (1,00) such that ¥~(u) < u'/? (u < 1).

2
Let v = va then

f (b= b )L (1~ Xs.)

' 1/v
< ( b, ) (f 10,0 = x5

From Lemma 2.5.3, Remark 2.5.1 and (3.1.12) it follows that

, ]./l// T’d](t)
Vs [ bl
—1

T
SY(r)logrblc,., S 61 (o)

For j =0,1,2,..., from (3.7.4) and (1.1.3) it follows that

1/v
( / |1pf<x>|”dx)
2342 B,\2i+1 B,

v 1/v
SUD|,| j2<t<3zl /2 P(t)
<(/ (PP ) o
2i+2B,\2i+1 B, 7]

' 3-21Kss p(t)
S@Y s p0lfles [ PP,
27 5<t<3.20t1g

21K1s t

)1/1/

(3.7.6) ( b — b,
Br

logr|[bllz, -
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since s > 1. Take the integer jo such that r < 20725 < 2r. Then, by (3.1.11),

1/v 1 Jo Ly
3.7.7 ][ L,F)(1 = XB,, V) = (/ Ify)
( ) ( BT|( S )( Ba,) WV; 2j+2BS\2j+1BS| o]

LR ) )
Sor [ sl s o e a1l

By (3.7.6) and (3.7.7), we have

f (b= b, )1, F)(1 = X5,.)

T

< I (e(r) og 1 0 ' (p(r))
~ O p(r)) /v &= (p(r))
_logr ¥ (p(r)) 1
- rn/v (I)_1<g0<7’)) HbuﬂuprHL
< log r o(r)'/?
~ornp(r)

1811 2y, [1F 1 1

logr
1Bl ey [ fllzr = —= o llblley g [ fllze
e (rp(r)) e

—0 asr— oo.

Therefore, we have (3.7.2) and (3.7.3) for all f € L(®#)(R") with compact support.
Case 2: For general f € L(®%)(R"), using Case 1, we have

116, L) (fx B ) | vy SNy o 1 X B | @y < By LIl e -

Then, by (3.2.5),

f [b, L) (fxBa,) < O ()b, L) (fXBo )l o

Sl 1 f |-

Combining this with Lemma 3.5.6, we have

f AR ORI

T

which implies (3.7.2). Therefore, we have (3.7.3) for all f € L(®*¥)(R"). The proof

is complete. O

Proof of Theorem 3.1.2 (ii). In a similar way to the proof of Theorem 3.1.1 (ii),

we can conclude that ||b|z, , < [/[b, I]|| L) pv.e, by calculating |z|"~ instead of

1/K(z). O



68 M. Shi

3.8 Proofs of Theorems 3.1.3 and 3.1.4

Finally, we prove Theorems 3.1.3 and 3.1.4.

Proof of Theorem 3.1.3. Let B, = B(0,r). By Theorem 3.4.1 we have that,
for every b € L®0¥)(R"), bg converges as r — oo and ||b — hm b, || L@ow) ~
1]l ccoor- Let by = b— lim b, . Then [[bol| oo ~ [ zcean and [, T)f = boT'f —

T(bof). Using the boundedness of T on L®#)(R") and on L% (R") and generalized
Holder’s inequality (Lemma 3.2.4) with the assumption (3.1.14), we have

116, TV £l Lowor < N[0oT f | pewer + 1T (0o f)|| vy
S ool p@oy | T f || L@ + ||bo.f || ooy

S ool o | fll Loy ~ (1Bl oo [| fl L@
This is the conclusion. O]

Proof of Theorem 3.1.4. We use the same method as the proof of Theorem 3.1.3.
For b € L(®09)(R"), let by = b_rli—>nol<> bp,. Then ||bo|| @) ~ ||b] c@o.) and [b, I,]f =
bol,f — 1,(bof). As we mentioned just before Theorem 3.1.2 I, is bounded from
L®9)(R™) to L®¥)(R™) by the assumption (3.1.11). Moreover, we see that I, is
bounded from L(¥0#)(R™) to L) (R"), since

/T@dt \IIO_I(QO(T)) + /oo P(t)q’al(SO(t)) dt

t

N

t
. / D) G (o) (o) +
CH

N

1 o ((r) ST (e(r)).

In the above we use the almost decreasingness of r — ®;'(¢(r)). Then, using these

boundedness of I, and generalized Holder’s inequality (Lemma 3.2.4), we have

110, Lo} fl| neveer < 0oy fll powier + [ 1p(Dof) || v
5 “bOHL(@O#’)“]pf“L(@W) + ||bOf||L(\Ifo,w)

S bollpeoo [ fl L@ ~ 116l o [ fll oo

This is the conclusion. O]
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