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Abstract

Let Rn be the n-dimensional Euclidean space. Let b ∈ BMO(Rn) and T be a

Calderón-Zygmund singular integral operator. In 1976 Coifman, Rochberg and

Weiss proved that the commutator [b, T ] = bT −Tb is bounded on Lp(Rn) (1 < p <

∞), that is,

∥[b, T ]f∥Lp = ∥bTf − T (bf)∥Lp ≤ C∥b∥BMO∥f∥Lp ,

where C is a positive constant independent of b and f . For the fractional integral

operator Iα, Chanillo proved the boundedness of [b, Iα] in 1982. Coifman, Rochberg

and Weiss and Chanillo also gave the necessary conditions for the boundedness.

These results were extended to Orlicz spaces by Janson in 1978, and to Morrey

spaces by Di Fazio and Ragusa in 1991.

In this paper we consider the commutators [b, T ] and [b, Iρ], where T is a

Calderón-Zygmund operator, Iρ is a generalized fractional integral operator and

b is a function in generalized Campanato spaces. We consider the boundedness

of [b, T ] and [b, Iρ] on Orlicz and Orlicz-Morrey spaces. Orlicz and Orlicz-Morrey

spaces unify several function spaces, and the Campanato spaces unify BMO and

Lipschitz spaces. Therefore, our results contain many previous results as corollaries.

Firstly, we consider generalized fractional integral operators Iρ on Orlicz spaces.

The operator Iρ was introduced by Nakai in 2000 to extend the Hardy-Littlewood-

Sobolev theorem to Orlicz spaces. We first investigate the commutator [b, Iρ] on

Orlicz spaces LΦ(Rn). We prove the boundedness

∥[b, Iρ]f∥LΨ ≤ C∥b∥L1,ψ
∥f∥LΦ , f ∈ C∞

comp(Rn),

and use the density of C∞
comp(Rn) in LΦ(Rn) to obtain the boundedness from LΦ(Rn)

to LΨ(Rn), where L1,ψ(Rn) is the generalized Campanato space. To prove the
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boundedness, we need a generalizetion of Young functions. We give the definition

of generalizied Young functions and investigate their properties. We also prove that,

if [b, Iρ] is bounded from LΦ(Rn) to LΨ(Rn), then b is in L1,ψ(Rn) and the norm

∥b∥L1,ψ
is dominated by the operator norm.

Next, we investigate [b, T ] and [b, Iρ] on Orlicz-Morrey spaces. We prove the

boundedness

∥[b, T ]f∥L(Ψ,φ) ≤ C∥b∥L1,ψ
∥f∥L(Φ,φ) ,

∥[b, Iρ]f∥L(Ψ,φ) ≤ C∥b∥L1,ψ
∥f∥L(Φ,φ) ,

under suitable assumptions. In this case, we need to show the well-definedness

of commutators carefully, since neither C∞
comp(Rn) nor L∞

comp(Rn) is always dense

in Orlicz-Morrey spaces. We also prove that, if [b, T ] or [b, Iρ] is bounded from

L(Φ,φ)(Rn) to L(Ψ,φ)(Rn), then b is in L1,ψ(Rn) and the norm ∥b∥L1,ψ
is dominated

by the operator norm.

To prove the boundedness of the commutators we need the generalized frac-

tional maximal operator Mρ and the sharp maximal operator M ♯. It is known

that the usual fractional maximal operator Mα is dominated pointwise by the frac-

tional integral operator Iα, that is, Mαf(x) ≤ CIα|f |(x) for all x ∈ Rn. Then the

boundedness of Mα follows from one of Iα. However, we need a better estimate

on Mρ than Iρ to prove the boundedness of the commutators. In this paper we

give a necessary and sufficient condition for the boundedness of Mρ. We also prove

the norm estimates of the commutators [b, T ]f and [b, Iρ]f by their sharp maximal

operator M ♯([b, T ]f) and M ♯([b, Iρ]f), respectively. To do this we investigate the

relation between Orlicz-Campanato and Orlicz-Morrey spaces. Moreover, we show

the pointwise estimates of the sharp maximal operators by the combinations of the

generalized fractional maximal operators. Finally, combining all of these results,

we prove the boundedness of the commutators.
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Chapter 1

Introduction

1.1 Introduction

Let Rn be the n-dimensional Euclidean space. Let b ∈ BMO(Rn) and T be a

Calderón-Zygmund singular integral operator. In 1976 Coifman, Rochberg and

Weiss [5] proved that the commutator [b, T ] = bT − Tb is bounded on Lp(Rn)

(1 < p <∞), that is,

∥[b, T ]f∥Lp = ∥bTf − T (bf)∥Lp ≤ C∥b∥BMO∥f∥Lp ,

where C is a positive constant independent of b and f . For the fractional inte-

gral operator Iα, Chanillo [3] proved the boundedness of [b, Iα] in 1982. Coifman,

Rochberg and Weiss [5] and Chanillo [3] also gave the necessary conditions for the

boundedness. These results were extended to Orlicz spaces by Janson [17] (1978)

and to Morrey spaces by Di Fazio and Ragusa [8] (1991). For other extensions and

generalization, see [1, 9, 11, 12, 14, 27, 25, 31, 42, 52, 53, 55, 56], etc.

In this paper we consider the commutators [b, T ] and [b, Iρ], where T is a

Calderón-Zygmund operator, Iρ is the generalized fractional integral operator and

b is a function in generalized Campanato spaces. We consider the boundedness of

[b, T ] and [b, Iρ] on Orlicz and Orlicz-Morrey spaces. The Orlicz and Orlicz-Morrey

spaces unify several function spaces, and the Campanato spaces unify BMO and

Lipschitz spaces. Therefore, our results contain many previous results as corollaries.

This paper is a systematic reconstruction of all results in [50, 51] and some

results of [6]. Related results are in [19].

Firstly, we consider generalized fractional integral operators Iρ on Orlicz spaces

in Chapter 2. For a function ρ : (0,∞) → (0,∞), the generalized functional integral

1



2 M. Shi

operator Iρ is defined by

(1.1.1) Iρf(x) =

ˆ
Rn

ρ(|x− y|)
|x− y|n

f(y) dy, x ∈ Rn,

where we always assume that

(1.1.2)

ˆ 1

0

ρ(t)

t
dt <∞.

Condition (1.1.2) is needed for the integral in (1.1.1) to converge for bounded mea-

surable functions f with compact support. See Lemma 2.6.1 also. In this paper we

also assume that there exist positive constants C, K1 and K2 with K1 < K2 such

that, for all r > 0,

(1.1.3) sup
r≤t≤2r

ρ(t) ≤ C

ˆ K2r

K1r

ρ(t)

t
dt.

The condition above was considered in [46].

If ρ(r) = rα, 0 < α < n, then Iρ is the usual fractional integral operator Iα defined

by

Iαf(x) =

ˆ
Rn

f(y)

|x− y|n−α
dy, x ∈ Rn.

It is known as the Hardy-Littlewood-Sobolev theorem that Iα is bounded from

Lp(Rn) to Lq(Rn), if α ∈ (0, n), p, q ∈ (1,∞) and −n/p + α = −n/q. This

boundedness was extended to Orlicz spaces by several authors, see [4, 10, 23, 43,

54, 57, 58], etc. Chanillo [3] considerd the commutator

[b, Iα]f = bIαf − Iα(bf),

with b ∈ BMO and proved that [b, Iα] has the same boundedness as Iα. The result

was also extended to Orlicz spaces by Fu, Yang and Yuan [12] and Guliyev, Deringoz

and Hasanov [14].

The operator Iρ was introduced in [33] to extend the Hardy-Littlewood-Sobolev

theorem to Orlicz spaces whose partial results were announced in [32]. For example,

the generalized fractional integral Iρ is bounded from expLp(Rn) to expLq(Rn),

where

(1.1.4) ρ(r) =

{
1/(log(1/r))α+1 for small r,

(log r)α−1 for large r,
α > 0,
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p, q ∈ (0,∞), −1/p+ α = −1/q and expLp(Rn) is the Orlicz space LΦ(Rn) with

(1.1.5) Φ(r) =

{
1/ exp(1/rp) for small r,

exp(rp) for large r.

See also [34, 35, 36, 38, 41].

We first investigate the commutator [b, Iρ] on Orlicz spaces LΦ(Rn). We prove

the boundedness

∥[b, Iρ]f∥LΨ ≤ C∥b∥L1,ψ
∥f∥LΦ , f ∈ C∞

comp(Rn),

and use the density of C∞
comp(Rn) in LΦ(Rn), where L1,ψ(Rn) is the generalized

Campanato space, see the next section for its definition. To prove the boundedness

we need a generalizetion of Young functions. We give the definition of generalzied

Young functions and investigate their properties. We also prove that, if [b, Iρ] is

bounded from LΦ(Rn) to LΨ(Rn), then b is in L1,ψ(Rn) and the norm ∥b∥L1,ψ
is

dominated by the operator norm.

Next, we investigate [b, T ] and [b, Iρ] on Orlicz-Morrey spaces in Chapter 3. We

prove the boundedness

∥[b, T ]f∥L(Ψ,φ) ≤ C∥b∥L1,ψ
∥f∥L(Φ,φ) ,

∥[b, Iρ]f∥L(Ψ,φ) ≤ C∥b∥L1,ψ
∥f∥L(Φ,φ) ,

under suitable assumptions. In this case, we need to show the well-definedness

of commutators carefully, since neither C∞
comp(Rn) nor L∞

comp(Rn) is always dense

in Orlicz-Morrey spaces. We also prove that, if [b, T ] or [b, Iρ] is bounded from

L(Φ,φ)(Rn) to L(Ψ,φ)(Rn), then b is in L1,ψ(Rn) and the norm ∥b∥L1,ψ
is dominated

by the operator norm.

We denote by B(x, r) the open ball centered at x ∈ Rn and of radius r, that is,

B(x, r) = {y ∈ Rn : |y − x| < r}.

For a measurable set G ⊂ Rn, we denote by |G| and χG the Lebesgue measure of G

and the characteristic function of G, respectively. For a function f ∈ L1
loc(Rn) and

a ball B, let

fB =

 
B

f =

 
B

f(y) dy =
1

|B|

ˆ
B

f(y) dy.
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To prove the boundedness of commutators we need the sharp maximal opera-

tor M ♯ and the generalized fractional integral operator Mρ. The sharp maximal

operator M ♯ is defined by

(1.1.6) M ♯f(x) = sup
B∋x

 
B

|f(y)− fB| dy, x ∈ Rn,

where the supremum is taken over all balls B containing x. For a function ρ :

(0,∞) → (0,∞), let

(1.1.7) Mρf(x) = sup
B(z,r)∋x

ρ(r)

 
B(z,r)

|f(y)| dy, x ∈ Rn,

where the supremum is taken over all balls B(z, r) containing x. We do not assume

the condition (1.1.2) or (1.1.3) on the definition of Mρ. The operator Mρ was

studied in [48] on generalized Morrey spaces. If ρ(r) = |B(0, r)|α/n, then Mρ is the

usual fractional maximal operator Mα. If ρ ≡ 1, then Mρ is the Hardy-Littlewood

maximal operator M , that is,

Mf(x) = sup
B∋x

 
B

|f(y)| dy, x ∈ Rn.

It is known that the usual fractional maximal operator Mα is dominated point-

wise by the fractional integral operator Iα, that is, Mαf(x) ≤ CIα|f |(x) for all

x ∈ Rn. Then the boundedness of Mα follows from one of Iα. However, we need a

better estimate on Mρ than Iρ to prove the boundedness of the commutators. In

this paper we give a necessary and sufficient condition of the boundedness of Mρ.

The organization of this paper is as follows. In the next section in this chapter

we give the definitions of the generalized Campanato spaces, generalized Young

functions and Orlicz and Orlicz-Morrey spaces.

In Chapter 2 we give a necessary and sufficient condition for the boundedness of

the commutator [b, Iρ] on Orlicz spaces. We first state the theorems and examples

in Section 2.1. Next, we investigate the properties on generalized Young functions

and Orlicz spaces in Section 2.2. Then we prove the boundedness of Iρ and Mρ

on Orlicz spaces in Sections 2.3 and 2.4, respectively. Moreover, we investigate

pointwise estimate by using the sharp maximal operator and the norm estimate

by the sharp maximal operator in Section 2.5. Finally, using generalized Young

functions and the results in Sections 2.2–2.5, we prove the necessary and sufficient

condition for the boundedness of [b, Iρ] in Section 2.6.
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In Chapter 3 we give necessary and sufficient conditions for the boundedness of

the commutators [b, T ] and [b, Iρ] on Orlicz-Morrey spaces. We first state the theo-

rems in Section 3.1. Next we give basic properties on generalized Young functions

and Orlicz-Morrey spaces in Section 3.2. To prove the theorems we show the bound-

edness of the generalized fractional maximal operators on Orlicz-Morrey spaces in

Section 3.3. In Section 3.4 we investigate the relation between Orlicz-Campanato

and Orlicz-Morrey spaces and, using this relation, we show that, if fB(0,r) → 0 as

r → ∞, then

(1.1.8) ∥f∥L(Φ,φ) ≤ C∥M ♯f∥L(Φ,φ) .

In Section 3.5 we show the well-definedness of the commutators [b, T ] and [b, Iρ] for

functions in Orlicz-Morrey spaces. Finally, using all of them, we prove the theorems

in Sections 3.6, 3.7 and 3.8.

At the end of this section, we make some conventions. Throughout this paper,

we always use C to denote a positive constant that is independent of the main

parameters involved but whose value may differ from line to line. Constants with

subscripts, such as Cp, are dependent on the subscripts. If f ≤ Cg, we then write

f ≲ g or g ≳ f ; and if f ≲ g ≲ f , we then write f ∼ g.

1.2 Definitions

1.2.1 Generalized Campanato spaces

First we recall the definition of the generalized Campanato space.

Definition 1.2.1. For p ∈ [1,∞) and ψ : (0,∞) → (0,∞), let Lp,ψ(Rn) be the set

of all functions f such that the following functional is finite:

∥f∥Lp,ψ(Rn) = sup
B=B(x,r)

1

ψ(r)

( 
B

|f(y)− fB|p dy
)1/p

,

where the supremum is taken over all balls B(x, r) in Rn.

Then ∥f∥Lp,ψ(Rn) is a norm modulo constant functions and thereby Lp,ψ(Rn) is

a Banach space. If p = 1 and ψ ≡ 1, then Lp,ψ(Rn) = BMO(Rn). If p = 1 and

ψ(r) = rα (0 < α ≤ 1), then Lp,ψ(Rn) coincides with Lipα(Rn) with equivalent

norms.
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Next, we say that a function θ : (0,∞) → (0,∞) satisfies the doubling condition

if there exists a positive constant C such that, for all r, s ∈ (0,∞),

(1.2.1)
1

C
≤ θ(r)

θ(s)
≤ C, if

1

2
≤ r

s
≤ 2.

We say that θ is almost increasing (resp. almost decreasing) if there exists a positive

constant C such that, for all r, s ∈ (0,∞),

(1.2.2) θ(r) ≤ Cθ(s) (resp. θ(s) ≤ Cθ(r)), if r < s.

It is known that, if ψ is almost increasing, then Lp,ψ(Rn) = L1,ψ(Rn) with

equivalent norms for every p ∈ (1,∞), see [1, Corollary 4.3] and [40, Theorem 3.1].

1.2.2 Generalization of the Young function

We define a set Φ of increasing functions Φ : [0,∞] → [0,∞] and give some prop-

erties of functions in Φ.

For an increasing function Φ : [0,∞] → [0,∞], let

(1.2.3) a(Φ) = sup{t ≥ 0 : Φ(t) = 0}, b(Φ) = inf{t ≥ 0 : Φ(t) = ∞},

with convention sup ∅ = 0 and inf ∅ = ∞. Then 0 ≤ a(Φ) ≤ b(Φ) ≤ ∞. Let Φ be

the set of all increasing functions Φ : [0,∞] → [0,∞] such that

0 ≤ a(Φ) <∞, 0 < b(Φ) ≤ ∞,(1.2.4)

lim
t→+0

Φ(t) = Φ(0) = 0,(1.2.5)

Φ is left continuous on [0, b(Φ)),(1.2.6)

if b(Φ) = ∞, then lim
t→∞

Φ(t) = Φ(∞) = ∞,(1.2.7)

if b(Φ) <∞, then lim
t→b(Φ)−0

Φ(t) = Φ(b(Φ)) (≤ ∞).(1.2.8)

In what follows, if an increasing and left continuous function Φ : [0,∞) → [0,∞)

satisfies (1.2.5) and lim
t→∞

Φ(t) = ∞, then it will be always tacitly understood that

Φ(∞) = ∞ and that Φ ∈ Φ.

For Φ ∈ Φ, we recall the generalized inverse of Φ in the sense of O’Neil [43,

Definition 1.2].
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Definition 1.2.2. For Φ ∈ Φ and u ∈ [0,∞], let

(1.2.9) Φ−1(u) =

{
inf{t ≥ 0 : Φ(t) > u}, u ∈ [0,∞),

∞, u = ∞.

Let Φ ∈ Φ. Then Φ−1 is finite, increasing and right continuous on [0,∞) and

positive on (0,∞). If Φ is bijective from [0,∞] to itself, then Φ−1 is the usual

inverse function of Φ. Moreover, we have the following proposition, which is a

generalization of Property 1.3 in [43].

Let Φ ∈ Φ. Then

(1.2.10) Φ(Φ−1(u)) ≤ u ≤ Φ−1(Φ(u)) for all u ∈ [0,∞].

For Φ,Ψ ∈ Φ, we write Φ ≈ Ψ if there exists a positive constant C such that

Φ(C−1t) ≤ Ψ(t) ≤ Φ(Ct) for all t ∈ [0,∞].

Meanwhile for functions P,Q : [0,∞] → [0,∞], we write P ∼ Q if there exists a

positive constant C such that

C−1P (t) ≤ Q(t) ≤ CP (t) for all t ∈ [0,∞].

Then, for Φ,Ψ ∈ Φ,

(1.2.11) Φ ≈ Ψ ⇔ Φ−1 ∼ Ψ−1.

For the proof see Lemma 2.2.2.

Next we recall the definition of the Young function and give its generalization.

Definition 1.2.3. A function Φ ∈ Φ is called a Young function (or sometimes also

called an Orlicz function) if Φ is convex on [0, b(Φ)). Let ΦY be the set of all Young

functions. Let ΦY be the set of all Φ ∈ Φ such that Φ ≈ Ψ for some Ψ ∈ ΦY .

By the convexity, any Young function Φ is continuous on [0, b(Φ)) and strictly

increasing on [a(Φ), b(Φ)]. Hence Φ is bijective from [a(Φ), b(Φ)] to [0,Φ(b(Φ))].

Moreover, Φ is absolutely continuous on any closed subinterval in [0, b(Φ)). That

is, its derivative Φ′ exists a.e. and

(1.2.12) Φ(t) =

ˆ t

0

Φ′(s) ds, t ∈ [0, b(Φ)).
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Definition 1.2.4. Let Y be the set of all Young functions such that a(Φ) = 0 and

b(Φ) = ∞.

Definition 1.2.5. (i) A function Φ ∈ Φ is said to satisfy the ∆2-condition, de-

noted by Φ ∈ ∆2, if there exists a constant C > 0 such that

(1.2.13) Φ(2t) ≤ CΦ(t) for all t > 0.

(ii) A function Φ ∈ Φ is said to satisfy the ∇2-condition, denoted by Φ ∈ ∇2, if

there exists a constant k > 1 such that

(1.2.14) Φ(t) ≤ 1

2k
Φ(kt) for all t > 0.

(iii) Let ∆2 = ΦY ∩∆2 and ∇2 = ΦY ∩∇2.

Remark 1.2.1. (i) ∆2 ⊂ Y and ∇2 ⊂ ΦY ([23, Lemma 1.2.3]).

(ii) Let Φ ∈ ΦY . Then Φ ∈ ∆2 if and only if Φ ≈ Ψ for some Ψ ∈ ∆2, and,

Φ ∈ ∇2 if and only if Φ ≈ Ψ for some Ψ ∈ ∇2.

(iii) Let Φ ∈ ΦY . Then Φ−1 satisfies the doubling condition by its concavity, that

is,

Φ−1(u) ≤ Φ−1(2u) ≤ 2Φ−1(u) for all u ∈ [0,∞].

(iv) Let Φ ∈ ΦY . Then Φ ∈ ∆2 if and only if t 7→ Φ(t)

tp
is almost decreasing for

some p ∈ [1,∞).

(v) Let Φ ∈ ΦY . Then Φ ∈ ∇2 if and only if t 7→ Φ(t)

tp
is almost increasing for

some p ∈ (1,∞).

Definition 1.2.6. For a Young function Φ, its complementary function is defined

by

Φ̃(t) =

{
sup{tu− Φ(u) : u ∈ [0,∞)}, t ∈ [0,∞),

∞, t = ∞.

Then Φ̃ is also a Young function, and (Φ, Φ̃) is called a complementary pair. For

example, if Φ(t) = tp/p, then Φ̃(t) = tp
′
/p′ for p, p′ ∈ (1,∞) and 1/p+ 1/p′ = 1. If

Φ(t) = t, then

Φ̃(t) =

{
0, t ∈ [0, 1],

∞, t ∈ (1,∞].
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Let (Φ, Φ̃) be a complementary pair of functions in ΦY . Then the following

inequality holds:

(1.2.15) t ≤ Φ−1(t)Φ̃−1(t) ≤ 2t for t ∈ [0,∞],

which is [57, (1.3)].

1.2.3 Orlicz and Orlicz-Morrey spaces

We recall the definitions of Orlicz and Orlicz-Morrey spaces generalized by Young

functions. The Orlicz space LΦ(Rn) is introduced by [44, 45]. For the theory

of Orlicz spaces, see [22, 23, 26, 28, 47] for example. Orlicz-Morrey spaces were

investigated in [36, 38, 39], etc.

For Φ ∈ ΦY , we define the Orlicz space LΦ(Rn) and the weak Orlicz space

wLΦ(Rn). Let L0(Rn) be the set of all complex valued measurable functions on Rn.

Definition 1.2.7 (Orlicz and weak Orlicz spaces). For a function Φ ∈ ΦY , let

LΦ(Rn) =

{
f ∈ L0(Rn) :

ˆ
Rn

Φ(ϵ|f(x)|) dx <∞ for some ϵ > 0

}
,

∥f∥LΦ = inf

{
λ > 0 :

ˆ
Rn
Φ

(
|f(x)|
λ

)
dx ≤ 1

}
,

wLΦ(Rn) =

{
f ∈ L0(Rn) : sup

t∈(0,∞)

Φ(t)m(ϵf, t) <∞ for some ϵ > 0

}
,

∥f∥wLΦ = inf

{
λ > 0 : sup

t∈(0,∞)

Φ(t)m

(
f

λ
, t

)
≤ 1

}
,

where m(f, t) = |{x ∈ Rn : |f(x)| > t}|.

Then ∥ · ∥LΦ and ∥ · ∥wLΦ are quasi-norms and LΦ(Rn) ⊂ L1
loc(Rn). If Φ ∈ ΦY ,

then ∥ · ∥LΦ is a norm and thereby LΦ(Rn) is a Banach space. For Φ,Ψ ∈ ΦY , if

Φ ≈ Ψ, then LΦ(Rn) = LΨ(Rn) and wLΦ(Rn) = wLΨ(Rn) with equivalent quasi-

norms, respectively. Orlicz spaces are introduced by [44, 45]. For the theory of

Orlicz spaces, see [22, 23, 26, 28, 47] for example.

We note that, for any Young function Φ, we have that

sup
t∈(0,∞)

Φ(t)m(f, t) = sup
t∈(0,∞)

tm(Φ(|f |), t),
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and then

∥f∥wLΦ = inf

{
λ > 0 : sup

t∈(0,∞)

Φ(t)m

(
f

λ
, t

)
≤ 1

}

= inf

{
λ > 0 : sup

t∈(0,∞)

t m

(
Φ

(
|f |
λ

)
, t

)
≤ 1

}
.

For the above equality, see [18, Proposition 4.2] for example.

The following theorem is known, see [23, Theorem 1.2.1] for example.

Theorem 1.2.1. Let Φ ∈ ΦY . Then M is bounded from LΦ(Rn) to wLΦ(Rn), that

is, there exists a positive constant C0 such that, for all f ∈ LΦ(Rn),

(1.2.16) ∥Mf∥wLΦ ≤ C0∥f∥LΦ .

Moreover, if Φ ∈ ∇2, then M is bounded on LΦ(Rn), that is, there exists a positive

constant C0 such that, for all f ∈ LΦ(Rn),

(1.2.17) ∥Mf∥LΦ ≤ C0∥f∥LΦ .

See also [4, 20, 21] for the Hardy-Littlewood maximal operator on Orlicz spaces.

Remark 1.2.2. Let Φ ∈ ΦY . Then Φ ∈ ∆2 if and only if C∞
comp(Rn) is dense in

LΦ(Rn), and, Φ ∈ ∇2 if and only if the Hardy-Littlewood maximal operator M is

bounded on LΦ(Rn).

In this paper we consider the following class of φ : (0,∞) → (0,∞).

Definition 1.2.8. (i) Let Gdec be the set of all functions φ : (0,∞) → (0,∞) such

that φ is almost decreasing and that r 7→ φ(r)rn is almost increasing. That is,

there exists a positive constant C such that, for all r, s ∈ (0,∞),

Cφ(r) ≥ φ(s), φ(r)rn ≤ Cφ(s)sn, if r < s.

(ii) Let G inc be the set of all functions φ : (0,∞) → (0,∞) such that φ is almost

increasing and that r 7→ φ(r)/r is almost decreasing. That is, there exists a positive

constant C such that, for all r, s ∈ (0,∞),

φ(r) ≤ Cφ(s), Cφ(r)/r ≥ φ(s)/s, if r < s.
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If φ ∈ Gdec or φ ∈ G inc, then φ satisfies the doubling condition (1.2.1). Let

ψ : (0,∞) → (0,∞). If ψ ∼ φ for some φ ∈ Gdec (resp. G inc), then ψ ∈ Gdec (resp.

G inc).

Remark 1.2.3. Let φ ∈ Gdec. Then there exists φ̃ ∈ Gdec such that φ ∼ φ̃ and that

φ̃ is continuous and strictly decreasing, see [38, Proposition 3.4]. Moreover, if

(1.2.18) lim
r→0

φ(r) = ∞, lim
r→∞

φ(r) = 0,

then φ̃ is bijective from (0,∞) to itself.

Definition 1.2.9 (Orlicz-Morrey space). For a Young function Φ : [0,∞] → [0,∞],

a function φ : (0,∞) → (0,∞) and a ball B = B(a, r), let

(1.2.19) ∥f∥Φ,φ,B = inf

{
λ > 0 :

1

φ(r)

 
B

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

For a ball B = B(a, r), let L(Φ,φ)(Rn) be the set of all functions f such that the

following functional is finite:

(1.2.20) ∥f∥L(Φ,φ) = sup
B

∥f∥Φ,φ,B,

where the supremum is taken over all balls B in Rn.

Let µB = dx
|B|φ(r) . Then we have the following relation:

(1.2.21) ∥f∥Φ,φ,B = ∥f∥LΦ(B,µB).

Because of the relation (1.2.21), ∥ ·∥L(Φ,φ) is a quasi-norm, and thereby L(Φ,φ)(Rn) is

a quasi-Banach space. If Φ ∈ ΦY , then ∥·∥L(Φ,φ) is a norm and thereby L(Φ,φ)(Rn) is

a Banach space. If Φ ≈ Ψ and φ ∼ ψ, then L(Φ,φ)(Rn) = L(Ψ,ψ)(Rn) with equivalent

quasi-norms.

Then ∥f∥L(Φ,φ) is a norm and thereby L(Φ,φ)(Rn) is a Banach space. If φ(r) =

1/rn, then L(Φ,φ)(Rn) coincides with the Orlicz space LΦ(Rn) equipped with the

norm

∥f∥LΦ = inf

{
λ > 0 :

ˆ
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

If Φ(t) = tp, 1 ≤ p < ∞, then L(Φ,φ)(Rn) coincides with the generalized Morrey

space L(p,φ)(Rn) equipped with the norm

∥f∥L(p,φ) = sup
B=B(a,r)

(
1

φ(r)

 
B

|f(x)|p dx
)1/p

.

The Orlicz-Morrey space L(Φ,φ)(Rn) was first studied in [36]. For other kinds of

Orlicz-Morrey spaces, see [6, 7, 15, 49], etc.





Chapter 2

Commutators on Orlicz spaces

2.1 Theorems and examples

The following theorem is an extension of the result in [33].

Theorem 2.1.1. Let ρ : (0,∞) → (0,∞) satisfy (1.1.2) and (1.1.3), and let Φ,Ψ ∈
ΦY . Assume that there exists a positive constant A such that, for all r ∈ (0,∞),

(2.1.1)

ˆ r

0

ρ(t)

t
dt Φ−1(1/rn) +

ˆ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ≤ AΨ−1(1/rn).

Then, for any positive constant C0, there exists a positive constant C1 such that,

for all f ∈ LΦ(Rn) with f ̸≡ 0,

(2.1.2) Ψ

(
|Iρf(x)|
C1∥f∥LΦ

)
≤ Φ

(
Mf(x)

C0∥f∥LΦ

)
.

Consequently, Iρ is bounded from LΦ(Rn) to wLΨ(Rn). Moreover, if Φ ∈ ∇2, then

Iρ is bounded from LΦ(Rn) to LΨ(Rn).

Remark 2.1.1. We cannot replace
´ r
0
ρ(t)
t
dt by ρ(r) in (2.1.1), see [41, Section 5].

Here, we give some examples of the pair of (ρ,Φ,Ψ) which satisfies the as-

sumptions in Theorem 2.1.1. For other examples, see [34]. See also [29] for the

boundedness of Iρ on the Orlicz space LΦ(Ω) with bounded domain Ω ⊂ Rn.

Example 2.1.1. If ρ(r) = rα, Φ(t) = tp and Ψ(t) = tq with p, q ∈ [1,∞) and

0 < α < n/p, then

ˆ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

ˆ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ∼ rα−n/p and Ψ−1(1/rn) = r−n/q.

13
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In this case,

“(2.1.1)” ⇔ rα−n/p ≲ r−n/q, r ∈ (0,∞) ⇔ α− n/p = −n/q.

Therefore, the Hardy-Littlewood-Sobolev theorem is a corollary of Theorem 2.1.1.

Example 2.1.2. Let ρ and Φ be as in (1.1.4) and in (1.1.5), respectively, and let

Ψ be as in (1.1.5) with q instead of p. Assume that α, p, q ∈ (0,∞) and −1/p+α =

−1/q. Then ˆ r

0

ρ(t)

t
dt ∼

{
(log(1/r))−α for small r > 0,

(log r)α for large r > 0,

and

(2.1.3)

Φ−1(1/rn) ∼

{
(log(1/r))1/p,

(log r)−1/p,
Ψ−1(1/rn) ∼

{
(log(1/r))1/q for small r > 0,

(log r)−1/q for large r > 0.

In this case we haveˆ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

ˆ ∞

r

ρ(t) Φ−1(1/tn)

t
dt

∼

{
(log(1/r))−α+1/p for small r > 0,

(log r)α−1/p for large r > 0.

Then the pair (ρ,Φ,Ψ) satisfies (2.1.1), that is, Iρ is bounded from expLp(Rn) to

expLq(Rn).

Example 2.1.3. Let α ∈ (0, n), p, q ∈ [1,∞) and −n/p+ α = −n/q. Let

ρ(r) =

{
rα for small r > 0,

e−r for large r > 0.

Then ˆ r

0

ρ(t)

t
dt ∼

{
rα for small r > 0,

1 for large r > 0.

(i) If Φ(r) = rp and Ψ(r) = max(rp, rq), then (2.1.1) holds. In this case LΦ(Rn) =

Lp(Rn) and LΨ(Rn) = Lp(Rn) ∩ Lq(Rn).

(ii) If Φ(r) = max(0, rp − 1) and Ψ(r) = max(0, rq − 1), then (2.1.1) holds, since

Φ−1(u) ∼

{
1 for small u > 0,

u1/p for large u > 0,
Φ−1(1/rn) ∼

{
r−n/p for small r > 0,

1 for large r > 0.

In this case LΦ(Rn) = Lp(Rn) + L∞(Rn) and LΨ(Rn) = Lq(Rn) + L∞(Rn).
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A function Φ ∈ Y is called an N-function if

lim
t→+0

Φ(t)

t
= 0, lim

t→∞

Φ(t)

t
= ∞.

We say that a function θ : (0,∞) → (0,∞) is almost increasing (resp. almost

decreasing) if there exists a positive constant C such that, for all r, s ∈ (0,∞),

(2.1.4) θ(r) ≤ Cθ(s) (resp. θ(s) ≤ Cθ(r)), if r < s.

Then we have the following corollary.

Corollary 2.1.2. Let 1 < s <∞ and ρ : (0,∞) → (0,∞). Assume that ρ satisfies

(1.1.2) and that r 7→ ρ(r)/rn/s−ϵ is almost decreasing for some positive constant ϵ.

Then there exist an N-function Ψ and a positive constant C such that, for all r > 0,

(2.1.5) C−1Ψ−1

(
1

rn

)
≤ 1

rn/s

ˆ r

0

ρ(t)

t
dt ≤ CΨ−1

(
1

rn

)
.

Moreover, Iρ is bounded from Ls(Rn) to LΨ(Rn).

In the above, (2.1.5) can be shown by the same way as the proof of [1, Theo-

rem 3.5]. The boundedness of Iρ from Ls(Rn) to LΨ(Rn) is proven by the following

way. First note that ρ satisfies (1.1.3) by Remark 2.1.2 below. Let Φ(t) = ts. Then

we have
ˆ ∞

r

ρ(t)Φ−1(1/tn)

t
dt =

ˆ ∞

r

ρ(t)/tn/s

t
dt ≲ ρ(r)

rn/s−ϵ

ˆ ∞

r

1

t1+ϵ
dt

∼ ρ(r)

rn/s
≲ 1

rn/s

ˆ r

0

ρ(t)

t
dt = Φ−1

(
1

rn

) ˆ r

0

ρ(t)

t
dt,

where we used (2.1.6) below for the last inequality. Combining this and (2.1.5), we

have (2.1.1). Then we have the conclusion by Theorem 2.1.1.

Remark 2.1.2. If r 7→ ρ(r)/rk is almost decreasing for some positive constant k,

then ρ satisfies (1.1.3). Actually,

(2.1.6) sup
r≤t≤2r

ρ(t) ∼ rk sup
r≤t≤2r

ρ(t)

tk
≲ rk

ˆ r

r/2

ρ(t)

tk+1
dt ∼

ˆ r

r/2

ρ(t)

t
dt.

Next we state the result on the operatorMρ defined by (1.1.7) in which we don’t

assume (1.1.2) or (1.1.3).

Theorem 2.1.3. Let ρ : (0,∞) → (0,∞), and let Φ,Ψ ∈ ΦY .
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(i) Assume that there exists a positive constant A such that, for all r ∈ (0,∞),

(2.1.7)

(
sup
0<t≤r

ρ(t)

)
Φ−1(1/rn) ≤ AΨ−1(1/rn).

Then, for any positive constant C0, there exists a positive constant C1 such

that, for all f ∈ LΦ(Rn) with f ̸≡ 0,

(2.1.8) Ψ

(
Mρf(x)

C1∥f∥LΦ

)
≤ Φ

(
Mf(x)

C0∥f∥LΦ

)
.

Consequently, Mρ is bounded from LΦ(Rn) to wLΨ(Rn). Moreover, if Φ ∈ ∇2,

then Mρ is bounded from LΦ(Rn) to LΨ(Rn).

(ii) Conversely, if Mρ is bounded from LΦ(Rn) to wLΨ(Rn), then (2.1.7) holds for

some A and all r ∈ (0,∞).

Remark 2.1.3. Let ρ : (0,∞) → (0,∞), and let Φ,Ψ ∈ ΦY .

(i) Let ρ1(r) = sup0<t≤r ρ(t). Then we conclude from the theorem above that

Iρ and Iρ1 have the same boundedness, that is, we may assume that ρ is

increasing.

(ii) Since Φ−1 is pseudo-concave, u 7→ Φ−1(u)/u is almost decreasing, and then

r 7→ Φ−1(1/rn)rn is almost increasing. Therefore, from (2.1.7) it follows that

r 7→ ρ(r)/rn is dominated by the almost decreasing function r 7→ Ψ−1(1/rn)
Φ−1(1/rn)rn

.

Example 2.1.4. If ρ(r) = rα, Φ(t) = tp and Ψ(t) = tq with p, q ∈ [1,∞) and

0 ≤ α ≤ n/p, then

ρ(r)Φ−1(1/rn) ∼ rα−n/p and Ψ−1(1/rn) = r−n/q.

In this case,

“(2.1.7)” ⇔ rα−n/p ≲ r−n/q, r ∈ (0,∞) ⇔ α− n/p = −n/q.

In this example, if α = 0, then Mρ is the Hardy-Littlewood maximal operator M

and “(2.1.7)” ⇔ p = q. If α− n/p = 0, then Mρ is the fractional maximal operator

Mα and it is bounded from Lp(Rn) to L∞(Rn), since we can take

(2.1.9) Ψ(r) =

{
0 for r ∈ [0, 1],

∞ for r ∈ (1,∞],
and Ψ−1(r) =

{
1 for r ∈ [0,∞),

∞ for r = ∞.
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Example 2.1.5. Let Φ be as in (1.1.5), and let Ψ be as in (1.1.5) with q instead

of p. Assume that α ∈ [0,∞) and p, q ∈ (0,∞). Let

(2.1.10) ρ(r) =

{
(log(1/r))−α for small r > 0,

(log r)α for large r > 0,

instead of (1.1.4). Here, we note that, if 0 ≤ α ≤ 1, then
´ 1

0
ρ(t)
t
dt = ∞, that

is, Iρ is not well-defined, while Mρ is well-defined. Actually, Mρ is bounded from

expLp(Rn) to expLq(Rn), if −1/p + α = −1/q for any α ∈ [0,∞), see (2.1.3) for

the inverse functions of Φ and Ψ. Moreover, if −1/p+ α = 0, then Mρ is bounded

from expLp(Rn) to L∞(Rn), since we can take Ψ as in (2.1.9).

Example 2.1.6. Assume that α, q ∈ [0,∞) and p ∈ (1,∞). Let ρ be as in

(2.1.10). Then Mρ is bounded from Lp(Rn) to Lp(logL)p1(Rn), if p1/p = α, where

Lp(logL)p1(Rn) is the Orlicz space LΦ(Rn) with

Φ(r) =

{
rp(log(1/r))−p1 for small r > 0,

rp(log r)p1 for large r > 0.

In this case we have

(2.1.11) Φ−1(1/rn) ∼

{
r−n/p(log(1/r))−p1/p for small r > 0,

r−n/p(log r)p1/p for large r > 0.

In this example, if we take p = 1, thenMρ is bounded from L1(Rn) to wL1(logL)α(Rn)

which is the weak space of L1(logL)α(Rn).

Finally, we state the result on the commutator [b, Iρ]. Let

(2.1.12) ρ∗(r) =

ˆ r

0

ρ(t)

t
dt.

Theorem 2.1.4. Let ρ, ψ : (0,∞) → (0,∞), and let Φ,Ψ ∈ ΦY . Assume that ρ

satisfies (1.1.2). Let b ∈ L1
loc(Rn).

(i) Let Φ,Ψ ∈ ∆2 ∩ ∇2. Assume that ψ be almost increasing and that r 7→
ρ(r)/rn−ϵ is almost decreasing for some ϵ ∈ (0, n). Assume also that there

exists a positive constant A and Θ ∈ ∇2 such that, for all r ∈ (0,∞),
ˆ r

0

ρ(t)

t
dt Φ−1(1/rn) +

ˆ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ≤ AΘ−1(1/rn),(2.1.13)

ψ(r)Θ−1(1/rn) ≤ AΨ−1(1/rn),(2.1.14)
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and that there exist a positive constant Cρ such that, for all r, s ∈ (0,∞),

(2.1.15)

∣∣∣∣ρ(r)rn
− ρ(s)

sn

∣∣∣∣ ≤ Cρ |r − s|ρ
∗(r)

rn+1
, if

1

2
≤ r

s
≤ 2.

If b ∈ L1,ψ(Rn), then [b, Iρ] is bounded from LΦ(Rn) to LΨ(Rn) and there

exists a positive constant C such that, for all f ∈ LΦ(Rn),

(2.1.16) ∥[b, Iρ]f∥LΨ ≤ C∥b∥L1,ψ
∥f∥LΦ .

(ii) Conversely, assume that there exists a positive constant A such that, for all

r ∈ (0,∞),

Ψ−1(1/rn) ≤ Arαψ(r)Φ−1(1/rn).

If [b, Iα] is well-defined and bounded from LΦ(Rn) to LΨ(Rn), then b is in

L1,ψ(Rn) and there exists a positive constant C, independent of b, such that

∥b∥L1,ψ
≤ C∥[b, Iα]∥LΦ→LΨ ,

where ∥[b, Iα]∥LΦ→LΨ is the operator norm of [b, Iα] from LΦ(Rn) to LΨ(Rn).

Example 2.1.7. Let α ∈ (0, n), β ∈ [0, 1] and p, q ∈ (1,∞), and, let

ρ(r) = rα, ψ(r) = rβ, Φ(r) = rp, Ψ(r) = rq.

Assume that −n/p + α + β = −n/q. Take Θ(r) = rq̃ with −n/q̃ = −n/p + α.

Then (2.1.13), (2.1.14) and (2.1.15) hold, that is, [b, Iα] is bounded from Lp(Rn)

to Lq(Rn), where b ∈ Lipβ(Rn) if β ∈ (0, 1], and b ∈ BMO(Rn) if β = 0, which is

Chanillo’s result in [3].

Example 2.1.8. Let α ∈ (0, n) and α1 ∈ (−∞,∞). Let β ∈ (0, n) and β1 ∈
(−∞,∞), or, let β = 0 and β1 ∈ [0,∞). Let

ρ(r) =


rα(log(1/r))−α1 ,

rα,

rα(log r)α1 ,

ψ(r) =


rβ(log(1/r))−β1 for r ∈ (0, 1/e),

rβ for r ∈ [1/e, e],

rβ(log r)β1 for r ∈ (e,∞).

Then ρ∗ ∼ ρ and ρ′(t) ∼ ρ(t)/t. In this case ρ satisfies (2.1.15), since ρ is Lipschitz

continuous on [1/(2e), 2e], and, for r, s ∈ (0, 1/e] ∪ [e,∞), there exists θ ∈ (0, 1)

such that∣∣∣∣ρ(r)rn
− ρ(s)

sn

∣∣∣∣ = |r − s|

∣∣∣∣∣ ddt
(
ρ(t)

tn

)∣∣∣∣
t=(1−θ)r+θs

∣∣∣∣∣ ≲ |r − s| ρ(r)
rn+1

, if
1

2
≤ r

s
≤ 2.
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Let p, q ∈ (1,∞) and p1, q1 ∈ (−∞,∞), and let

Φ(r) =

{
rp(log(1/r))−p1 ,

rp(log r)p1 ,
Ψ(r) =

{
rq(log(1/r))−q1 for small r > 0,

rq(log r)q1 for large r > 0.

For the inverse functions of Φ and Ψ, see (2.1.11). If

−n/p+ α + β = −n/p̃+ β = −n/q, p1/p+ α1 + β1 = p̃1/p̃+ β1 = q1/q,

and

Θ(r) =

{
rp̃(log(1/r))−p̃1 for small r > 0,

rp̃(log r)p̃1 for large r > 0,

then ˆ r

0

ρ(t)

t
dt Φ−1(1/rn) ∼

ˆ ∞

r

ρ(t) Φ−1(1/tn)

t
dt ∼ Θ−1(r−n),

and

ψ(r)Θ−1(r−n) ∼ Ψ−1(r−n) ∼

{
r−n/p+α+β(log(1/r))−(p1/p+α1+β1) for small r > 0,

r−n/p+α+β(log r)p1/p+α1+β1 for large r > 0.

In this case [b, Iρ] is bounded from Lp(logL)p1(Rn) to Lq(logL)q1(Rn).

2.2 Properties on Young functions and Orlicz spaces

In this section we prepare some lemmas to prove our main results.

Proposition 2.2.1. Let Φ ∈ Φ. Then

(2.2.1) Φ(Φ−1(u)) ≤ u ≤ Φ−1(Φ(u)) for all u ∈ [0,∞].

Proof. First we show that, for all t, u ∈ [0,∞],

(2.2.2) Φ(t) ≤ u ⇒ t ≤ Φ−1(u).

If Φ(t) ≤ u, then Φ(s) > u⇒ Φ(s) > Φ(t) ⇒ s > t and

{s ≥ 0 : Φ(s) > u} ⊂ {s ≥ 0 : s > t}.

Hence,

Φ−1(u) = inf{s ≥ 0 : Φ(s) > u} ≥ inf{s ≥ 0 : s > t} = t.
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This shows (2.2.2). Now, letting Φ(t) = u and using (2.2.2), we have that t ≤
Φ−1(u) = Φ−1(Φ(t)), which is the second inequality in (2.2.1).

Next we show that, for all t ∈ (0,∞] and u ∈ [0,∞],

Φ(t) > u ⇒ t > Φ−1(u),(2.2.3)

t ≤ Φ−1(u) ⇒ Φ(t) ≤ u.(2.2.4)

We only show (2.2.3), since (2.2.4) is the contraposition of (2.2.3), that is (2.2.4) is

equivalent to (2.2.3). If Φ(t) > u, then Φ(s) > u for some s < t by the properties

(1.2.6)–(1.2.8). By the definition of Φ−1 we have that s ≥ Φ−1(u). That is, t >

Φ−1(u), which shows (2.2.3). Now, if Φ−1(u) = 0, then the first inequality in

(2.2.1) is true by (1.2.5). If t = Φ−1(u) > 0, then, using (2.2.4), we have that

Φ(Φ−1(u)) = Φ(t) ≤ u, which is the first inequality in (2.2.1).

Lemma 2.2.2. Let Φ,Ψ ∈ Φ, and let C be a fixed positive constant. Then

Φ(t) ≤ Ψ(Ct) for all t ∈ [0,∞]

if and only if

Ψ−1(u) ≤ CΦ−1(u) for all u ∈ [0,∞].

Proof. As the conclusion can be obtained obviously if both Φ and Ψ are bijective, we

prove it without the assumption. Let Φ(t) ≤ Ψ(Ct) for all t ∈ [0,∞]. If t = Ψ−1(u),

then by Proposition 2.2.1 we have that Ψ(t) = Ψ(Ψ−1(u)) ≤ u and that

Ψ−1(u)/C = t/C ≤ Φ−1(Φ(t/C)) ≤ Φ−1(Ψ(t)) ≤ Φ−1(u).

Conversely, let Ψ−1(u) ≤ CΦ−1(u) for all u ∈ [0,∞]. If u = Ψ(t), then by

Proposition 2.2.1 we have t ≤ Ψ−1(Ψ(t)) = Ψ−1(u) and

Φ(t/C) ≤ Φ(Ψ−1(u)/C) ≤ Φ(Φ−1(u)) ≤ u = Ψ(t).

Lemma 2.2.3. Let Φ ∈ ΦY . For a measurable set G ⊂ Rn with finite measure,

(2.2.5) ∥χG∥LΦ = ∥χG∥wLΦ =
1

Φ−1(1/|G|)
.

From (1.2.15) it follows that, for the characteristic function χB of the ball B,

(2.2.6) ∥χB∥LΦ̃ =
1

Φ̃−1(1/|B|)
≤ |B|Φ−1(1/|B|).
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Lemma 2.2.4 ([1]). Let k > 0 and ρ : (0,∞) → (0,∞). Assume that ρ satisfies

(1.1.2). Let ρ∗ be as in (2.1.12). If r 7→ ρ(r)/rk is almost decreasing, then r 7→
ρ∗(r)/rk is also almost decreasing.

Remark 2.2.1. Since ρ∗ is increasing with respect to r, if r 7→ ρ(r)/rk is almost

decreasing for some k > 0, then we see that ρ∗ satisfies the doubling condition, that

is, there exists a positive constant C such that, for all r ∈ (0,∞),

ρ∗(r) ≤ ρ∗(2r) ≤ Cρ∗(r).

Lemma 2.2.5. If Φ ∈ ∆2, then its derivative Φ′ satisfies

Φ′(2t) ≤ CΦΦ
′(t), a.e. t ∈ [0,∞),

where the constant CΦ is independent of t.

Proof. From the convexity of Φ and Φ(0) = 0 it follows that its right derivative

Φ′
+(t) exists for all t ∈ [0,∞) and it is increasing. By (1.2.12) we have

Φ(t) =

ˆ t

0

Φ′(s) ds =

ˆ t

0

Φ′
+(s) ds,

since Φ′ = Φ′
+ a.e. Then, for all t ∈ (0,∞),

Φ′
+(2t) ≤

1

t

ˆ 3t

2t

Φ′
+(s) ds ≤

1

t
Φ(3t) ≤ CΦ

t
Φ(t) ≤ CΦΦ

′
+(t).

This shows the conclusion.

Lemma 2.2.6. If Φ ∈ ∇2, then Φ((·)θ) ∈ ∇2 for some θ ∈ (0, 1).

Proof. If Φ ∈ ∇2, then there exists a constant k > 1 such that

Φ(t) ≤ 1

2k
Φ(kt).

Take θ ∈ (0, 1) such that k2(1/θ−1) ≤ 2. Then k2 ≤ (2k2)θ and

Φ(tθ) ≤ 1

2k
Φ(ktθ) ≤ 1

(2k)2
Φ(k2tθ) ≤ 1

2(2k2)
Φ((2k2t)θ).

That is, Φ((·)θ) ∈ ∇2.
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Remark 2.2.2. There exists Φ ∈ ∇2 such that Φ((·)θ) /∈ ΦY for any θ ∈ (0, 1).

Actually, let

Φ(r) = max(r2, 3r − 2) =


r2, 0 ≤ r ≤ 1,

3r − 2, 1 < r < 2,

r2, 2 ≤ r.

Then Φ is convex and satisfies (1.2.14) with k = 8. However, 3rθ − 2 is not convex

for any θ ∈ (0, 1).

Let (Φ, Φ̃) be a complementary pair of functions in ΦY . For the Orlicz spaces

on a measure space (Ω, µ) we have the following generalized Hölder’s inequality;

(2.2.7)

ˆ
Ω

|f(x)g(x)| dµ(x) ≤ 2∥f∥LΦ(Ω,µ)∥g∥LΦ̃(Ω,µ)

for f ∈ LΦ(Ω, µ), g ∈ LΦ̃(Ω, µ).

See [43].

2.3 Proof of Theorem 2.1.1

To prove Theorem 2.1.1 we may assume that Φ,Ψ ∈ ΦY instead of Φ,Ψ ∈ ΦY .

Actually, if (2.1.1) holds for some Φ,Ψ ∈ ΦY , then take Φ1,Ψ1 ∈ ΦY with Φ ≈ Φ1

and Ψ ≈ Ψ1. Then, instead of Φ and Ψ, Φ1 and Ψ1 satisfy (2.1.1) for some positive

constant A′ by (1.2.11).

We need a couple of auxilary estimates. The following lemma was proved in [2,

Lemma 2.1]:

Lemma 2.3.1. There exist a constant C > 0 such that for all x ∈ B(0, r/2) and

r > 0, ˆ r/2

0

ρ(t)

t
dt ≤ CIρχB(0,r)(x)

holds.

Proposition 2.3.2. Let ρ satisfy (1.1.3). Define

(2.3.1) ρ̃(r) =

ˆ k2r

k1r

ρ(s)
ds

s
(r > 0).
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Let τ : (0,∞) → (0,∞) be a doubling function in the sense that τ(r) ∼ τ(s) if

0 < s ≤ r ≤ 2s. Then, for each r > 0,

−1∑
j=−∞

ρ̃(2jr) ≲
ˆ k2r

0

ρ(s)

s
ds,(2.3.2)

∞∑
j=0

ρ̃(2jr)τ
(
(2jr)−n

)
≲
ˆ ∞

k1r

ρ(s)

s
τ
(
s−n
)
ds.(2.3.3)

Proof. We invoke the overlapping property in [49] and by the doubling condition of

τ we have

−1∑
j=−∞

ρ̃(2jr) =
−1∑

j=−∞

ˆ 2jk2r

2jk1r

ρ(s)
ds

s

≤
ˆ k2r

0

(
−1∑

j=−∞

χ[2jk1r, 2jk2r](s)

)
ρ(s)

s
ds

≲
ˆ k2r

0

ρ(s)

s
ds

and

∞∑
j=0

ρ̃(2jr)τ
(
(2jr)−n

)
=

ˆ ∞

k1r

(
∞∑
j=0

χ[2jk1r, 2jk2r](s)
ρ(s)

s
τ
(
(2jr)−n

))
ds

≲
ˆ ∞

k1r

(
∞∑
j=0

χ[2jk1r, 2jk2r](s)

)
ρ(s)

s
τ
(
s−n
)
ds

≲
ˆ ∞

k1r

ρ(s)

s
τ
(
s−n
)
ds.

To prove Theorem 2.1.1, we need the following estimate of Hedberg-type [16]:

Proposition 2.3.3. Under the assumption of Theorem 2.1.1, for any positive con-

stant C0, there exists a positive constant C1 such that, for all nonnegative functions

f ∈ LΦ(Rn) with f ̸= 0,

(2.3.4) Iρf(x) ≤ C1∥f∥LΦΨ−1 ◦ Φ
( Mf(x)

C0∥f∥LΦ

)
(x ∈ Rn).

Proof. Let x ∈ Rn. Keeping in mind that Mf(x) > 0, we may assume

0 <
Mf(x)

C0∥f∥LΦ

<∞, 0 ≤ Φ

(
Mf(x)

C0∥f∥LΦ

)
<∞;
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otherwise there is nothing to prove. If

Φ

(
Mf(x)

C0∥f∥LΦ

)
= 0,

then
Mf(x)

C0∥f∥LΦ

≤ sup{u ≥ 0 : Φ(u) = 0} = Φ−1(0).

In this case

0 < Φ−1(0)

ˆ ∞

0

ρ(t)

t
dt ≤ CΨ−1(0).

Hence

Iρf(x) ≤ C
∞∑

j=−∞

ρ̃(2j)

2jn

ˆ
|x−y|<2j

|f(y)| dy

≤ C

(ˆ ∞

0

ρ(s)

s

)
Mf(x)

≤ C
Ψ−1(0)

Φ−1(0)
Mf(x)

≤ C
1

Φ−1(0)
Ψ−1

(
Φ

(
Mf(x)

C0∥f∥LΦ

))
Mf(x)

≤ CΨ−1

(
Φ

(
Mf(x)

C0∥f∥LΦ

))
∥f∥LΦ .

So, this case the result is valid.

If

Φ

(
Mf(x)

C0∥f∥LΦ

)
> 0,

choose r ∈ (0,∞) so that

r−n = Φ

(
Mf(x)

C0∥f∥LΦ

)
.

We have

Iρf(x) ≤ C

[
−1∑

j=−∞

+
∞∑
j=0

ρ̃(2jr)

(2jr)n

ˆ
|x−y|<2jr

f(y)dy

]
= C(I + II)

for given x ∈ Rn and r > 0.
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Then from Proposition 2.3.2 with the doubling property of Φ−1 (Remark 1.2.1 (iii)),

I ≤ C

−1∑
j=−∞

ρ̃(2jr)Mf(x) ≤ C

(ˆ k2r

0

ρ(s)

s
ds

)
Mf(x)

II ≤ C
∞∑
j=0

ρ̃(2jr)Φ−1
(
(2jr)−n

)
∥f∥LΦ(B(x,2jr))

≤ C∥f∥LΦ

ˆ ∞

k1r

Φ−1
(
s−n
)ρ(s)
s
ds.

Consequently, we have

Iρf(x) ≲
(ˆ k2r

0

ρ(s)

s
ds

)
Mf(x) + ∥f∥LΦ

ˆ ∞

k1r

Φ−1
(
s−n
)ρ(s)
s
ds.

Thus, by (2.1.1) and the doubling property of Φ−1 and Ψ−1, we obtain

Iρf(x) ≲Mf(x)
Ψ−1((k2r)

−n)

Φ−1((k2r)−n)
+ ∥f∥LΦ Ψ−1((k1r)

−n)

≲Mf(x)
Ψ−1(r−n)

Φ−1(r−n)
+ ∥f∥LΦ Ψ−1(r−n).

Recall that Φ−1(Φ(r)) = r if 0 < Φ(r) <∞. Thus Φ−1(r−n) =
Mf(x)

C0∥f∥LΦ

and

Iρf(x) ≲ ∥f∥LΦ Ψ−1(r−n) = ∥f∥LΦ Ψ−1

(
Φ

(
Mf(x)

C0∥f∥LΦ

))
.

Therefore, we get (2.3.4).

Now we move on to the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Let C0 be as in (1.2.16). Let f be a non-negative measur-

able function. Then by (1.2.16) and (2.3.4),

sup
r>0

Ψ(r)m
( Iρf(x)

C1∥f∥LΦ

, r
)
= sup

r>0
rm
(
Ψ
( Iρf(x)

C1∥f∥LΦ

)
, r
)

≤ sup
r>0

rm
(
Φ
( Mf(x)

C0∥f∥LΦ

)
, r
)
≤ sup

r>0
Φ(r)m

( Mf(x)

∥Mf∥WLΦ

, r
)
≤ 1,

i.e.

∥Iρf∥WLΨ ≲ ∥f∥LΦ .
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Assume in addition that Φ ∈ ∇2, so that we have (1.2.17), by which we have
ˆ
Rn

Ψ

(
Iρf(x)

C1∥f∥LΦ

)
dx ≤

ˆ
Rn

Φ

(
Mf(x)

C0∥f∥LΦ

)
dx

≤
ˆ
Rn

Φ

(
Mf(x)

∥Mf∥LΦ

)
dx ≤ 1,

i.e.

∥Iρf∥LΨ ≲ ∥f∥LΦ .

The proof is complete.

2.4 Proof of Theorem 2.1.3

In this section we prove Theorem 2.1.3.

Proof of Theorem 2.1.3 (i). We may assume that Φ,Ψ ∈ ΦY by (1.2.11). Let f ∈
LΦ(Rn). We may also assume that ∥f∥LΦ = 1 then Mf(x) > 0 for all x ∈ Rn. For

any x ∈ Rn and any ball B = B(z, r) ∋ x, if

Φ

(
Mf(x)

C0

)
≥ 1

rn
,

then, by (2.2.7), ∥f∥LΦ = 1, (2.2.6), the doubling condition of Φ−1 and (2.1.7), we

have

ρ(r)

 
B

|f | ≤ 2
ρ(r)

|B|
∥χB∥LΦ̃ ≤ 2

ρ(r)

|B|
|B|Φ−1

(
1

|B|

)
≲ ρ(r)Φ−1

(
1

rn

)
≤ AΨ−1

(
1

rn

)
≤ AΨ−1

(
Φ

(
Mf(x)

C0

))
.

Conversely, if

Φ

(
Mf(x)

C0

)
≤ 1

rn
,

then, choosing t0 ≥ r such that

Φ

(
Mf(x)

C0

)
=

1

t0
n
,

and using (2.1.7) and (2.2.1), we have

ρ(r) ≤ sup
0<t≤t0

ρ(t) ≤ A
Ψ−1

(
Φ
(
Mf(x)
C0

))
Φ−1

(
Φ
(
Mf(x)
C0

)) ≤ A
Ψ−1

(
Φ
(
Mf(x)
C0

))
Mf(x)
C0

,
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which implies

ρ(r)

 
B

|f | ≤ AC0

Ψ−1
(
Φ
(
Mf(x)
C0

))
Mf(x)

 
B

|f | ≤ AC0Ψ
−1

(
Φ

(
Mf(x)

C0

))
.

Hence, we have

Mρf(x) ≤ C1Ψ
−1

(
Φ

(
Mf(x)

C0

))
,

which shows (2.1.8) by (2.2.1).

To prove Theorem 2.1.3 (ii) we need the following lemma.

Lemma 2.4.1. Let ρ : (0,∞) → (0,∞). Then, for all x ∈ Rn and r ∈ (0,∞),

(2.4.1)

(
sup
0<t≤r

ρ(t)

)
χB(0,r)(x) ≤ (MρχB(0,r))(x).

Proof. Let x ∈ B(0, r). If t ≤ r, then we can choose a ball B(z, t) such that

x ∈ B(z, t) ⊂ B(0, r). Hence,

ρ(t) = ρ(t)

 
B(z,t)

χB(0,r)(y) dy ≤ (MρχB(0,r))(x).

Therefore, we have (2.4.1).

Proof of Theorem 2.1.3 (ii). By Lemma 2.4.1 and the boundedness of Mρ from

LΦ(Rn) to wLΨ(Rn) we have(
sup
0<t≤r

ρ(t)

)
∥χB(0,r)∥wLΨ ≤ ∥MρχB(0,r)∥wLΨ ≲ ∥χB(0,r)∥LΦ .

Then, by Lemma 2.2.3 and the doubling condition of Φ−1 and Ψ−1 we have the

conclusion.

2.5 Sharp maximal operators

In this section, to prove Theorem 2.1.4, we prove two propositions involving the

sharp maximal operator M ♯ defined by (1.1.6).

First we state the John-Nirenberg type theorem for the Campanato space Lp,ψ(Rn),

which is known by [40, Theorem 3.1] for spaces of homogeneous type. See also [1]

for its proof in the case of Rn.
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Theorem 2.5.1. Let p ∈ (1,∞) and ψ : (0,∞) → (0,∞). Assume that ψ is almost

increasing. Then Lp,ψ(Rn) = L1,ψ(Rn) with equivalent norms.

Proposition 2.5.2. Assume that ρ : (0,∞) → (0,∞) satisfies (1.1.2). Let ρ∗(r)

be as in (2.1.12). Assume that ψ is almost increasing, that r 7→ ρ(r)/rn−ϵ is almost

decreasing for some ϵ > 0 and that the condition (2.1.15) holds. Then, for any

η ∈ (1,∞), there exists a positive constant C such that, for all b ∈ L1,ψ(Rn),

f ∈ C∞
comp(Rn) and x ∈ Rn,

M ♯([b, Iρ]f)(x) ≤ C∥b∥L1,ψ

((
Mψη(|Iρf |η)(x)

)1/η
+
(
M(ρ∗ψ)η(|f |η)(x)

)1/η)
.

To prove the proposition we need the following known lemma, for its proof, see

Lemma 4.7 and Remark 4.1 in [1] for example.

Lemma 2.5.3 ([1, Lemma 4.7]). Let p ∈ [1,∞) and ψ ∈ G inc. Then there exists a

positive constant C dependent only on n, p and ψ such that, for all f ∈ L1,ψ(Rn)

and for all x ∈ Rn and r, s ∈ (0,∞),( 
B(x,s)

|f(y)− fB(x,r)|p dy
)1/p

≤ C

ˆ s

r

ψ(t)

t
dt ∥f∥L1,ψ

, if 2r < s.

Remark 2.5.1. In Lemma 2.5.3 we also have( 
B(x,s)

|f(y)− fB(x,r)|p dy
)1/p

≤ C
(
log2

s

r

)
ψ(s) ∥f∥L1,ψ

, if 2r < s,

since ˆ s

r

ψ(t)

t
dt ≲

ˆ s

r

ψ(s)

t
dt = ψ(s) log

s

r
.

Proof of Proposition 2.5.2. For any ball B = B(x, t), let f = f1+f2 with f1 = fχ2B,

and let

F1(y) = (b(y)− b2B)Iρf(y),

F2(y) = Iρ((b− b2B)f1)(y),

F3(y) = Iρ((b− b2B)f2)(y)− CB,

for y ∈ B, where CB = Iρ((b− b2B)f2)(x) and

Iρ((b− b2B)f2)(y) =

ˆ
Rn

ρ(|y − z|)
|y − z|n

(b(z)− b2B)f2(z) dz, y ∈ B.
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Then we have

[b, Iρ]f + CB = [b− b2B, Iρ]f + CB = F1 − F2 − F3.

We show that

(2.5.1)

 
B

|Fi(y)| dy

≤ C∥b∥L1,ψ

((
Mψη(|Iρf |η)(x)

)1/η
+
(
M(ρ∗ψ)η(|f |η)(x)

)1/η)
, i = 1, 2, 3.

Then we have the conclusion.

Now, by Hölder’s inequality with 1/η + 1/η′ = 1 and Theorem 2.5.1 we have

 
B

|F1(y)| dy ≤
( 

B

|b(y)− b2B|η
′
dy

)1/η′ ( 
B

|Iρf(y)|η dy
)1/η

=
1

ψ(t)

( 
B

|b(y)− b2B|η
′
dy

)1/η′ (
ψ(t)η −

ˆ
B

|Iρf(y)|η dy
)1/η

≲ ∥b∥L1,ψ

(
Mψη(|Iρf |η)(x)

)1/η
.

Choose v ∈ (1, η) such that n/v−ϵ/2 ≥ n−ϵ. Then by the almost decreasingness of

r 7→ ρ(r)/rn−ϵ we have the almost decreasingness of r 7→ ρ(r)/rn/v−ϵ/2. Hence, from

Corollary 2.1.2 it follows that there exists an N-function Ψ such that Iρ is bounded

from Lv(Rn) to LΨ(Rn). Let Ψ̃ be the complementary function of Ψ. Then by the

generalized Hölder’s inequality (2.2.7), (2.2.6), (2.1.5) and the boundedness of Iρ

we have  
B

|F2(y)| dy ≤ 2

|B|
∥χB∥LΨ̃(Rn)∥F2∥LΨ(Rn)

≲ Ψ−1(1/|B|)∥(b− b2B)f1∥Lv(Rn)

≲ ρ∗(t)

|B|1/v
∥(b− b2B)f∥Lv(2B).

Let 1/v = 1/u+ 1/η. Then by Hölder’s inequality and Theorem 2.5.1 we have 
B

|F2(y)| dy

≲ ρ∗(t)

( 
2B

|b(y)− b2B|u dy
)1/u( 

2B

|f(y)|η dy
)1/η

≲ 1

ψ(2t)

( 
2B

|b(y)− b2B|u dy
)1/u(

(ρ∗(2t)ψ(2t))η
 
2B

|f(y)|η dy
)1/η

≲ ∥b∥L1,ψ

(
M(ρ∗ψ)η(|f |η)(x)

)1/η
.
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Finally, using the relation

1

2
≤ |y − z|

|x− z|
≤ 2 for y ∈ B and z /∈ 2B

and (2.1.15), we have

|F3(y)| = |Iρ((b− b2B)f2)(y)− Iρ((b− b2B)f2)(x)|

=

∣∣∣∣ˆ
Rn

(
ρ(|y − z|)
|y − z|n

− ρ(|x− z|)
|x− z|n

)
(b(z)− b2B)f2(z) dz

∣∣∣∣
≲
ˆ
Rn\2B

|x− y|ρ∗(|x− z|)
|x− z|n+1

|b(z)− b2B||f(z)| dz

=
∞∑
j=0

ˆ
2j+2B\2j+1B

|x− y|ρ∗(|x− z|)
|x− z|n+1

|b(z)− b2B||f(z)| dz.

By the doubling condition of ρ∗ (see Remark 2.2.1), Hölder’s inequality and Lemma 2.5.3

we have ˆ
2j+2B\2j+1B

|x− y|ρ∗(|x− z|)
|x− z|n+1

|b(z)− b2B||f(z)| dz

≲ tρ∗(2j+2t)

(2j+2t)n+1

ˆ
2j+2B\2j+1B

|b(z)− b2B||f(z)| dz

≲ ρ∗(2j+2t)

2j+2

( 
2j+2B

|b(z)− b2B|η
′
dz

)1/η′ ( 
2j+2B

|f(z)|η dz
)1/η

≤ j + 2

2j+2
∥b∥L1,ψ

(
(ρ∗(2j+2t)ψ(2j+2t))η −

ˆ
2j+2B

|f(z)|η dz
)1/η

.

Then

|F3(y)| ≲ ∥b∥L1,ψ

∞∑
j=0

j + 2

2j+2

(
(ρ∗(2j+2t)ψ(2j+2t))η −

ˆ
2j+2B

|f(z)|η dz
)1/η

≲ ∥b∥L1,ψ

(
M(ρ∗ψ)η(|f |η)(x)

)1/η
,

which shows  
B

|F3(y)| dy ≲ ∥b∥L1,ψ

(
M(ρ∗ψ)η(|f |η)(x)

)1/η
.

Therefore, we have (2.5.1) and the conclusion.

Next we define the dyadic maximal operator Mdy. We denote by Qdy the set of

all dyadic cubes, that is,

Qdy =

{
Qj,k =

n∏
i=1

[2−jki, 2
−j(ki + 1)) : j ∈ Z, k = (k1, . . . , kn) ∈ Zn

}
.
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Then we define

Mdyf(x) = sup
R∈Qdy, R∋x

 
R

|f(y)| dy, x ∈ Rn,

where the supremum is taken over all R ∈ Qdy containing x.

Next we prove the following proposition.

Proposition 2.5.4. Let Φ ∈ ∆2. If M
dyf ∈ LΦ(Rn), then

(2.5.2) ∥Mdyf∥LΦ ≤ C∥M ♯f∥LΦ .

where C is a positive constant which is dependent only on n and Φ.

The following lemma is well known as the good lambda inequality, see [13,

Theorem 3.4.4.] for example.

Lemma 2.5.5. For all γ > 0, all λ > 0, and all locally integrable functions f on

Rn, the following estimate holds.

|{x ∈ Rn :Mdyf(x) > 2λ,M ♯f(x) ≤ γλ}| ≤ 2nγ|{x ∈ Rn :Mdyf(x) > λ}|.

Proof of Proposition 2.5.4. For a positive real number N we set

IN =

ˆ N

0

Φ′(λ)|{x ∈ Rn :Mdyf(x) > λ}| dλ.

We note that IN ≤
´
Rn Φ(M

dyf(x)) dx <∞. By Lemma 2.2.5 we have

IN = 2

ˆ N/2

0

Φ′(2λ)|{x ∈ Rn :Mdyf(x) > 2λ}| dλ

≤ 2CΦ

ˆ N/2

0

Φ′(λ)|{x ∈ Rn :Mdyf(x) > 2λ}| dλ.

Then, using the good lambda inequality, we obtain the following sequence of in-

equalities:

IN ≤ 2CΦ

ˆ N/2

0

Φ′(λ)|{x ∈ Rn :Mdyf(x) > 2λ ,M ♯f(x) ≤ γλ }| dλ

+ 2CΦ

ˆ N/2

0

Φ′(λ)|{x ∈ Rn :M ♯f(x) > γλ}| dλ

≤ 2n+1CΦγ

ˆ N/2

0

Φ′(λ)|{x ∈ Rn :Mdyf(x) > λ}| dλ

+ 2CΦ

ˆ N/2

0

Φ′(λ)|{x ∈ Rn :M ♯f(x) > γλ}| dλ

≤ 2n+1CΦγIN + 2CΦ
1

γ

ˆ Nγ/2

0

Φ′(λ/γ)|{x ∈ Rn :M ♯f(x) > λ}| dλ.
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At this point we choose γ such that 2n+1CΦγ = 1/2. Since IN is finite, we can

substract from both sides of the inequality the quantity IN/2 to obtain

IN ≤ 2n+4C2
Φ

ˆ N/(2n+3CΦ)

0

Φ′(2n+2CΦλ)|{x ∈ Rn :M ♯f(x) > λ}| dλ

≤ Cn,Φ

ˆ ∞

0

Φ′(λ)|{x ∈ Rn :M ♯f(x) > λ}| dλ,

where Cn,Φ is a constant dependent only on n and Φ, from which we obtainˆ
Rn

Φ(Mdyf(x)) dx ≤ Cn,Φ

ˆ
Rn

Φ(M ♯f(x)) dx.

This shows (2.5.2).

2.6 Proof of Theorem 2.1.4

We first note that, for θ ∈ (0,∞),

(2.6.1) ∥|g|θ∥LΦ =
(
∥g∥

LΦ((·)θ)

)θ
.

Lemma 2.6.1. Under the assumption in Theorem 2.1.4 (i), if f ∈ L∞
comp(Rn), then

Iρf ∈ LΨ(Rn).

Proof. If f ∈ L∞
comp(Rn), then f ∈ LΦ(Rn), since L∞

comp(Rn) ⊂ LΦ(Rn). By (2.1.13)

and Theorem 2.1.1 Iρ is bounded from LΦ(Rn) to LΘ(Rn). Then Iρf is in LΘ(Rn).

On the other hand, since r 7→ ρ(r)/rn−ϵ is almost decreasing, if the support of f is

in B(0, R), then

|Iρf(x)| ≤ ∥f∥L∞

ˆ
B(0,R)

ρ(|x− y|)
|x− y|n−ϵ

dy ≲ ∥f∥L∞

ˆ R

0

ρ(t)

t1−ϵ
dt <∞.

Then Iρf is in LΘ(Rn) ∩ L∞(Rn).

Next, by (2.1.14) and the almost increasingness of ψ we have

Θ−1(1/rn) ≲ Ψ−1(1/rn)

ψ(r)
≲ Ψ−1(1/rn)

ψ(1)
for r ≥ 1,

and then

Θ−1(u) ≲ Ψ−1(u) for u ≤ 1.

Hence, we conclude that

Ψ(t) ≤

{
Θ(Ct), t ≤ 1,

∞, t > 1,

which shows that LΘ(Rn) ∩ L∞(Rn) ⊂ LΨ(Rn).
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Proof of Theorem 2.1.4 (i). We may assume that Φ,Ψ ∈ ∆2 ∩∇2 and Θ ∈ ∇2. We

may also assume that b is real valued, since the commutator [b, Iρ]f is linear with

respect to b and ∥ℜ(b)∥L1,ψ
, ∥ℑ(b)∥L1,ψ

≤ ∥b∥L1,ψ
. Let

bk(x) =


k, if b(x) > k,

b(x), if − k ≤ b(x) ≤ k,

−k, if b(x) < −k.

Then bk ∈ L∞(Rn) and ∥bk∥L1,ψ
≤ (9/4)∥b∥L1,ψ

. For f ∈ C∞
comp(Rn), bkf lies in

L∞
comp(Rn), thus Iρ(bkf) lies in LΨ(Rn) by Lemma 2.6.1. Likewise, bkIρf also lies

in LΨ(Rn). Since Ψ ∈ ∇2, M
dy ([b, Iρ]f) is also in LΨ(Rn). From this fact and

Propositions 2.5.2 and 2.5.4 it follows that

∥[bk, Iρ]f∥LΨ ≤ ∥Mdy([bk, Iρ]f)∥LΨ ≲ ∥M ♯([bk, Iρ]f)∥LΨ

≲ ∥b∥L1,ψ

(∥∥∥(Mψη(|Iρf |η)
)1/η∥∥∥

LΨ
+
∥∥∥(M(ρ∗ψ)η(|f |η)

)1/η∥∥∥
LΨ

)
,

here, we can choose η ∈ (1,∞) such that Φ((·)1/η), Ψ((·)1/η) and Θ((·)1/η) are in

∇2 by Lemma 2.2.6. We show that∥∥∥(Mψη(|Iρf |η)
)1/η∥∥∥

LΨ
+
∥∥∥(M(ρ∗ψ)η(|f |η)

)1/η∥∥∥
LΨ

≲ ∥f∥LΦ ,

where we note that ψη and (ρ∗ψ)η are almost increasing.

By Theorems 2.1.1 and 2.1.3 we see that Iρ is bounded from LΦ(Rn) to LΘ(Rn)

and Mψη is bounded from LΘ((·)1/η)(Rn) to LΨ((·)1/η)(Rn), respectively. Then, using

(2.6.1), we have∥∥∥(Mψη(|Iρf |η)
)1/η∥∥∥

LΨ
=
(
∥Mψη(|Iρf |η)∥LΨ((·)1/η)

)1/η
≲
(
∥|Iρf |η∥LΘ((·)1/η)

)1/η
= ∥Iρf∥LΘ ≲ ∥f∥LΦ .

From (2.1.13) and (2.1.14) it follows that

(ρ∗(r)ψ(r))η
(
Φ−1(1/rn)

)η ≤ A2η
(
Ψ−1(1/rn)

)η
.

By using Theorem 2.1.3, we have the boundedness of M(ρ∗ψ)η from LΦ((·)1/η) to

LΨ((·)1/η). That is,∥∥∥(M(ρ∗ψ)η(|f |η)
)1/η∥∥∥

LΨ
=
(∥∥M(ρ∗ψ)η(|f |η)

∥∥
LΨ((·)1/η)

)1/η
≲
(
∥|f |η∥

LΦ((·)1/η)

)1/η
= ∥f∥LΦ .
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Therefore, we obtain

∥[bk, Iρ]f∥LΨ ≲ ∥b∥L1,ψ
∥f∥LΦ for all f ∈ C∞

comp(Rn).

By the standard argument (see [13, p. 240] for example) we deduce that, for some

subsequence of integers kj, [bkj , Iρ]f → [b, Iρ]f a.e. Letting j → ∞ and using

Fatou’s lemma, we have

∥[b, Iρ]f∥LΨ ≲ ∥b∥L1,ψ
∥f∥LΦ for all f ∈ C∞

comp(Rn).

Since C∞
comp(Rn) is dense in LΦ(Rn) (see Remark 1.2.2), it follows that the commu-

tator admits a bounded extension on LΦ(Rn) that satisfies (2.1.16).

Proof of Theorem 2.1.4 (ii). We use the method by Janson [17]. Since |z|n−α is

infinitely differentiable in an open set, we may choose z0 ̸= 0 and δ > 0 such

that |z|n−α can be expressed in the neighborhood |z − z0| < 2δ as an absolutely

convergent Fourier series, |z|n−α =
∑
aje

ivj ·z. (The exact form of the vectors vj is

irrelevant.)

Set z1 = z0/δ. If |z − z1| < 2, we have the expansion

|z|n−α = δ−n+α|δz|n−α = δ−n+α
∑

aje
ivj ·δz.

Choose now any ball B = B(x0, r). Set y0 = x0 − rz1 and B′ = B(y0, r). Then, if

x ∈ B and y ∈ B′, ∣∣∣∣x− y

r
− z1

∣∣∣∣ ≤ ∣∣∣∣x− x0
r

∣∣∣∣+ ∣∣∣∣y − y0
r

∣∣∣∣ < 2.

Denote sgn(f(x)− fB′) by s(x). Then

ˆ
B

|b(x)− bB′ | dx =

ˆ
B

(b(x)− bB′)s(x) dx =
1

|B′|

ˆ
B

ˆ
B′
(b(x)− b(y))s(x) dy dx

=
1

|B′|

ˆ
Rn

ˆ
Rn
(b(x)− b(y))

rn−α
∣∣x−y

r

∣∣n−α
|x− y|n−α

s(x)χB(x)χB′(y) dy dx

=
rn−αδ−n+α

|B′|

ˆ
Rn

ˆ
Rn

b(x)− b(y)

|x− y|n−α
∑

aje
ivj ·δ x−yr s(x)χB(x)χB′(y) dy dx.

Here, we set C = δ−n+α|B(0, 1)|−1 and

gj(y) = e−ivj ·δ
y
rχB′(y), hj(x) = eivj ·δ

x
r s(x)χB(x).



Commutators of integral operators with functions 35

Then
ˆ
B

|b(x)− bB′ | dx = Cr−α
∑

aj

ˆ
Rn

ˆ
Rn

b(x)− b(y)

|x− y|n−α
gj(y)hj(x) dy dx

= Cr−α
∑

aj

ˆ
Rn
([b, Iα]gj)(x)hj(x) dx

≤ Cr−α
∑

|aj|
ˆ
Rn

|([b, Iα]gj)(x)||hj(x)| dx

= Cr−α
∑

|aj|
ˆ
B

|([b, Iα]gj)(x)| dx

≤ 2Cr−α
∑

|aj|∥χB∥LΨ̃∥[b, Iα]gj∥LΨ

≤ 2Cr−α∥[b, Iα]∥LΦ→LΨ |B|Ψ−1(|B|−1)
∑

|aj|∥gj∥LΦ .

Since ∥gj∥LΦ = ∥χB′∥LΦ = 1/Φ−1(|B′|−1) ∼ 1/Φ−1(r−n), we have

1

ψ(B)

 
B

|b(x)− bB′ | dx ≲ ∥[b, Iα]∥LΦ→LΨ

Ψ−1(r−n)

rαψ(B)Φ−1(r−n)
≲ ∥[b, Iα]∥LΦ→LΨ .

That is, ∥b∥L(1,ψ) ≲ ∥[b, Iα]∥LΦ→LΨ and we have the conclusion.





Chapter 3

Commutators on Orlicz-Morrey
spaces

3.1 Theorems

First we recall the definition of Calderón-Zygmund operators following [61]. Let Ω

be the set of all increasing functions ω : (0,∞) → (0,∞) such that
´ 1

0
ω(t)
t
dt <∞.

Definition 3.1.1 (standard kernel). Let ω ∈ Ω. A continuous function K(x, y) on

Rn × Rn \ {(x, x) ∈ R2n} is said to be a standard kernel of type ω if the following

conditions are satisfied:

|K(x, y)| ≤ C

|x− y|n
for x ̸= y,(3.1.1)

|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)| ≤ C

|x− y|n
ω

(
|y − z|
|x− y|

)
for 2|y − z| < |x− y|.

(3.1.2)

Definition 3.1.2 (Calderón-Zygmund operator). Let ω ∈ Ω. A linear operator T

from S(Rn) to S ′(Rn) is said to be a Calderón-Zygmund operator of type ω, if T is

bounded on L2(Rn) and there exists a standard kernel K of type ω such that, for

f ∈ C∞
comp(Rn),

(3.1.3) Tf(x) =

ˆ
Rn
K(x, y)f(y) dy, x /∈ supp f.

Remark 3.1.1. If x /∈ supp f , then K(x, y) is continuous on supp f with respect to y.

Therefore, if (3.1.3) holds for f ∈ C∞
comp(Rn), then (3.1.3) holds for f ∈ L1

comp(Rn).

37
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It was known by [61, Theorem 2.4] that any Calderón-Zygmund operator of

type ω ∈ Ω is bounded on Lp(Rn) for 1 < p < ∞. This result was extended to

Orlicz-Morrey spaces L(Φ,φ)(Rn) by [39] as the following: Assume that φ ∈ Gdec and

that there exists a positive constant C such that, for all r ∈ (0,∞),

(3.1.4)

ˆ ∞

r

φ(t)

t
dt ≤ Cφ(r).

Let Φ ∈ ∆2 ∩∇2. For f ∈ L(Φ,φ)(Rn), we define Tf on each ball B by

(3.1.5) Tf(x) = T (fχ2B)(x) +

ˆ
Rn\2B

K(x, y)f(y) dy, x ∈ B.

Then the first term in the right hand side is well-defined, since fχ2B ∈ LΦ(Rn), and

the integral of the second term converges absolutely. Moreover, Tf(x) is indepen-

dent of the choice of the ball containing x. By this definition we can show that T

is a bounded operator on L(Φ,φ)(Rn), see [39].

For functions f in Orlicz-Morrey spaces, we define [b, T ]f on each ball B by

(3.1.6) [b, T ]f(x) = [b, T ](fχ2B)(x) +

ˆ
Rn\2B

(b(x)− b(y))K(x, y)f(y) dy, x ∈ B,

see Remark 3.5.1 for its well-definedness. Then we have the following theorem.

Theorem 3.1.1. Let Φ,Ψ ∈ ΦY , φ ∈ Gdec and ψ ∈ G inc. Let T be a Calderón-

Zygmund operator of type ω ∈ Ω.

(i) Let Φ,Ψ ∈ ∆2 ∩∇2 and
´ 1

0
ω(t) log(1/t)

t
dt <∞. Assume that φ satisfies (3.1.4)

and that there exists a positive constant C0 such that, for all r ∈ (0,∞),

(3.1.7) ψ(r)Φ−1(φ(r)) ≤ C0Ψ
−1(φ(r)).

If b ∈ L1,ψ(Rn), then [b, T ]f in (3.1.6) is well-defined for all f ∈ L(Φ,φ)(Rn)

and there exists a positive constant C, independent of b and f , such that

∥[b, T ]f∥L(Ψ,φ) ≤ C∥b∥L1,ψ
∥f∥L(Φ,φ) .

(ii) Conversely, assume that there exists a positive constant C0 such that, for all

r ∈ (0,∞),

(3.1.8) C0ψ(r)Φ
−1(φ(r)) ≥ Ψ−1(φ(r)).
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If T is a convolution type such that

Tf(x) = p.v.

ˆ
Rn
K(x− y)f(y) dy

with homogeneous kernel K satisfying K(x) = |x|−nK(x/|x|),
´
Sn−1 K = 0,

K ∈ C∞(Sn−1) and K ̸≡ 0, and if [b, T ] is bounded from L(Φ,φ)(Rn) to

L(Ψ,φ)(Rn), then b is in L1,ψ(Rn) and there exists a positive constant C, inde-

pendent of b, such that

∥b∥L1,ψ
≤ C∥[b, T ]∥L(Φ,φ)→L(Ψ,φ) ,

where ∥[b, T ]∥L(Φ,φ)→L(Ψ,φ) is the operator norm of [b, T ] from L(Φ,φ)(Rn) to

L(Ψ,φ)(Rn).

Remark 3.1.2. From the theorem above we have the following several corollaries.

(i) Take Φ(t) = tp. Then we have the result for generalized Morrey spaces

L(p,φ)(Rn). This case is known by [1, Theorem 2.1], which is an extension

of Di Fazio and Ragusa [8, Theorem 1].

(ii) Take φ(r) = 1/rn. Then we have the result for Orlicz spaces LΦ(Rn). This

case is an extension of Janson [17, Theorem].

(iii) Take Φ(t) = Ψ(t) = tp, φ(r) = 1/rn and ψ ≡ 1. Then L(Φ,φ)(Rn) =

L(Ψ,φ)(Rn) = Lp(Rn) and L1,ψ(Rn) = BMO(Rn). This case is the result

by Coifman, Rochberg and Weiss [5].

To state the result on the commutator [b, Iρ] we first recall the boundedness of

Iρ on the Orlicz-Morrey spaces. Let Φ,Ψ ∈ ΦY and φ ∈ Gdec. If Φ ∈ ∇2 and

ˆ r

0

ρ(t)

t
dt Φ−1(φ(r)) +

ˆ ∞

r

ρ(t) Φ−1(φ(t))

t
dt ≲ Ψ−1(φ(r))

holds for all r ∈ (0,∞), then Iρ is bounded from L(Φ,φ)(Rn) to L(Ψ,φ)(Rn), see [38,

Theorem 7.3]. More precisely, in [38, Theorem 7.3] the author assumed that Φ and

Ψ are bijective, but it can be extended to Φ,Ψ ∈ ΦY by the boundedness of Iρ from

LΦ(Rn) to LΨ(Rn) with Φ ∈ ∇2 as we did in Theorem 2.1.1.

Now we state the result on the commutator [b, Iρ]. For the well-definedness of

[b, Iρ] on L
(Φ,φ)(Rn), see Remark 3.5.2.
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Theorem 3.1.2. Let Φ,Ψ ∈ ΦY , φ ∈ Gdec, ψ ∈ G inc and ρ : (0,∞) → (0,∞).

Assume that ρ satisfies (1.1.2) and (1.1.3).

(i) Let Φ,Ψ ∈ ∆2 ∩ ∇2. Assume that φ satisfies (3.1.4) and that r 7→ ρ(r)/rn−ϵ

is almost decreasing for some ϵ ∈ (0, n). Assume also that there exist positive

constants Cρ, C0, C1 and a function Θ ∈ ∇2 such that, for all r, s ∈ (0,∞),

Cρ
ρ(r)

rn−ϵ
≥ ρ(s)

sn−ϵ
, if r < s,(3.1.9) ∣∣∣∣ρ(r)rn

− ρ(s)

sn

∣∣∣∣ ≤ Cρ |r − s| 1

rn+1

ˆ r

0

ρ(t)

t
dt, if

1

2
≤ r

s
≤ 2,(3.1.10)

ˆ r

0

ρ(t)

t
dt Φ−1(φ(r)) +

ˆ ∞

r

ρ(t) Φ−1(φ(t))

t
dt ≤ C0Θ

−1(φ(r)),(3.1.11)

ψ(r)Θ−1(φ(r)) ≤ C1Ψ
−1(φ(r)).(3.1.12)

If b ∈ L1,ψ(Rn), then [b, Iρ]f is well-defined for all f ∈ L(Φ,φ)(Rn) and there

exists a positive constant C, independent of b and f , such that

(3.1.13) ∥[b, Iρ]f∥L(Ψ,φ) ≤ C∥b∥L1,ψ
∥f∥L(Φ,φ) .

(ii) Conversely, assume that 0 < α < n and that there exists a positive constant

C0 such that, for all r ∈ (0,∞),

Ψ−1(φ(r)) ≤ C0r
αψ(r)Φ−1(φ(r)).

If [b, Iα] is bounded from L(Φ,φ)(Rn) to L(Ψ,φ)(Rn), then b is in L1,ψ(Rn) and

there exists a positive constant C, independent of b, such that

∥b∥L1,ψ
≤ C∥[b, Iα]∥L(Φ,φ)→L(Ψ,φ) ,

where ∥[b, Iα]∥L(Φ,φ)→L(Ψ,φ) is the operator norm of [b, Iα] from L(Φ,φ)(Rn) to

L(Ψ,φ)(Rn).

Remark 3.1.3. From the theorem above we have the following several corollaries.

(i) Take Φ(t) = tp. Then we have the result for generalized Morrey spaces

L(p,φ)(Rn). This case is known by [1, Theorem 2.2].

(ii) Take φ(r) = 1/rn. Then we have the result for Orlicz spaces LΦ(Rn). This

case is known by Theorem 2.1.4.
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(iii) Take ρ(r) = rα, Φ(t) = tp, Ψ(t) = tq, φ(r) = 1/rn and ψ ≡ 1. Then

L(Φ,φ)(Rn) = Lp(Rn), L(Ψ,φ)(Rn) = Lq(Rn) and L1,ψ(Rn) = BMO(Rn). This

case is the result by Chanillo [3].

For the case ψ ∈ Gdec, we have the following theorems.

Theorem 3.1.3. Let Φ,Ψ ∈ ∇2, Φ0 ∈ ∆2 and φ, ψ, θ ∈ Gdec. Assume that

(3.1.14) Φ−1
0 (tψ(r))Φ−1(tφ(r)) ≲ Ψ−1(tθ(r))

for all r, t ∈ (0,∞). Assume also that φ, ψ, θ satisfy (3.1.4). Let T be a Calderón-

Zygmund operator of type ω ∈ Ω. If b ∈ L(Φ0,ψ)(Rn), then [b, T ]f is well-defined for

all f ∈ L(Φ,φ)(Rn) and there exists a positive constant C, independent of b and f ,

such that

∥[b, T ]f∥L(Ψ,θ) ≤ C∥b∥L(Φ0,ψ)∥f∥L(Φ,φ) .

Theorem 3.1.4. Let Φ ∈ ∇2, Φ0 ∈ ∆2, Ψ ∈ ΦY and φ ∈ Gdec. Assume that

ρ satisfies (1.1.2) and (1.1.3) and that φ satisfies (3.1.4). Assume also that there

exist Ψ0 ∈ ∇2 and Θ ∈ ΦY such that Φ−1Φ−1
0 ∼ Ψ−1

0 , Φ−1
0 Θ−1 ≲ Ψ−1 and (3.1.11).

If b ∈ L(Φ0,φ)(Rn), then [b, Iρ]f is well-defined for all f ∈ L(Φ,φ)(Rn) and there exists

a positive constant C, independent of b and f , such that

∥[b, Iρ]f∥L(Ψ,φ) ≤ C∥b∥L(Φ0,φ)∥f∥L(Φ,φ) .

At the end of this section we note that, to prove the theorems, we may assume

that Φ,Ψ ∈ ΦY instead of Φ,Ψ ∈ ΦY . For example, if Φ and Ψ satisfy (3.1.7)

and Φ ≈ Φ1, Ψ ≈ Ψ1, then Φ1 and Ψ1 also satisfy (3.1.7) by the relation (1.2.11).

Moreover, L(Φ,φ)(Rn) = L(Φ1,φ)(Rn) and L(Ψ,φ)(Rn) = L(Ψ1,φ)(Rn) with equivalent

quasi-norms.

3.2 Properties on Young functions and Orlicz-

Morrey spaces

Let Φ ∈ ΦY , φ : (0,∞) → (0,∞) and B = B(a, r) ⊂ Rn, and let µB =

dx/(|B|φ(r)). Then by the relation (1.2.21) and (2.2.5) we have

(3.2.1) ∥χB∥Φ,φ,B = ∥χB∥LΦ(B,µB) =
1

Φ−1(1/µB(B))
=

1

Φ−1(φ(r))
.
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Moreover, by the relation (1.2.21) and (2.2.7) we have

(3.2.2)
1

|B|φ(r)

ˆ
B

|f(x)g(x)| dx ≤ 2∥f∥Φ,φ,B∥g∥Φ̃,φ,B.

Lemma 3.2.1. Let Φ ∈ ΦY and φ ∈ Gdec. Then there exists a constant C ≥ 1

such that, for any ball B = B(a, r),

(3.2.3)
1

Φ−1(φ(r))
≤ ∥χB∥L(Φ,φ) ≤

C

Φ−1(φ(r))
.

Proof. Fix a ball B = B(a, r). By (3.2.1) we have

1

Φ−1(φ(r))
= ∥χB∥Φ,φ,B ≤ ∥χB∥L(Φ,φ) .

To show the second inequality in (3.2.3), let λ = 1/Φ−1(φ(r)). Then it is enough

to show that, for some C ≥ 1 and for all balls B′ = B(b, r′) with B ∩ B′ ̸= ∅,

(3.2.4)
1

φ(r′)

 
B′

Φ

(
χB(x)

Cλ

)
dx ≤ 1.

If B′ ⊂ 3B, then φ(r′) ≳ φ(3r) ∼ φ(r). Hence

1

φ(r′)|B′|

ˆ
B′

Φ

(
χB(x)

λ

)
dx ≤ 1

φ(r′)
Φ

(
1

λ

)
≲ 1

φ(r)
Φ

(
1

λ

)
≤ 1.

In the above we used (2.2.1) for the last inequality. If B′∩(3B)∁ ̸= ∅ and B′∩B ̸= ∅,
then 3B′ ⊃ B. Hence φ(r′)|B′| ∼ φ(3r′)|3B′| ≳ φ(r)|B| and

1

φ(r′)|B′|

ˆ
B′

Φ

(
χB(x)

λ

)
dx ≲ 1

φ(r)|B|

ˆ
B

Φ

(
1

λ

)
dx ≤ 1.

Then, by the convexity of Φ we have (3.2.4).

Lemma 3.2.2. Let Φ ∈ ΦY , φ : (0,∞) → (0,∞) and B = B(a, r) ⊂ Rn. Then

(3.2.5)

 
B

|f(x)| dx ≤ 2Φ−1(φ(r))∥f∥Φ,φ,B.

Moreover, if Φ ∈ ∇2, then there exists p ∈ (1,∞) such that( 
B

|f(y)|pdy
)1/p

≤ CΦ−1(φ(r))∥f∥Φ,φ,B,

where the constant C is independent of f and B = B(a, r).
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Proof. By (3.2.2), (3.2.1) and (1.2.15) we have
 
B

|f(x)| dx ≤ 2φ(r)∥f∥Φ,φ,B∥χB∥Φ̃,φ,B

=
2φ(r)

Φ̃−1(φ(r))
∥f∥Φ,φ,B

≤ 2Φ−1(φ(r))∥f∥Φ,φ,B.

Next we assume that Φ ∈ ∇2. Then by Lemma 2.2.6 we can take θ ∈ (0, 1) such

that Φ((·)θ) ∈ ∇2. Let Φθ ∈ ∇2 such that Φθ ≈ Φ
(
(·)θ
)
. Then Φθ

−1 ∼ (Φ−1)1/θ.

Let p = 1/θ. Then ∥|f |p∥Φθ,φ,B ∼ (∥f∥Φ,φ,B)p. Using (3.2.5), we have( 
B

|f(y)|pdy
)1/p

≤
(
2Φθ

−1(φ(r))∥|f |p∥Φθ,φ,B
)1/p ∼ Φ−1(φ(r))∥f∥Φ,φ,B.

Lemma 3.2.3. Let Φ ∈ ∆2 and φ ∈ Gdec. If φ satisfies (3.1.4), then there exists a

positive constant C such that, for all r ∈ (0,∞),

(3.2.6)

ˆ ∞

r

Φ−1(φ(t))

t
dt ≤ CΦ−1(φ(r)).

Proof. By Remark 1.2.1 (iv) we see that t → Φ−1(t)

tp
is almost increasing for some

p ∈ (0, 1]. From (3.1.4) it follows that

ˆ ∞

r

φ(t)p

t
dt ≤ Cp φ(r)

p,

for some Cp > 0, see [40, Lemma 7.1]. Then

ˆ ∞

r

Φ−1(φ(t))

t
dt =

ˆ ∞

r

Φ−1(φ(t))

φ(t)p
φ(t)p

t
dt

≲ Φ−1(φ(r))

φ(r)p

ˆ ∞

r

φ(t)p

t
dt ≤ CpΦ

−1(φ(r)).

This shows the conclusion.

Lemma 3.2.4 ([38, Theorem 4.1]). Let Φi ∈ ΦY and φi ∈ Gdec, i = 1, 2, 3. Assume

that

Φ−1
1 (tφ1(r))Φ

−1
3 (tφ3(r)) ≤ CΦ−1

2 (tφ2(r))

for all r, t ∈ (0,∞). Then

∥fg∥L(Φ2,φ2) ≤ 2C∥f∥L(Φ1,φ1)∥g∥L(Φ3,φ3) .
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3.3 Fractional maximal operators

It is well known that the Hardy-Littlewood maximal operator M is bounded on

Lp(Rn) if 1 < p ≤ ∞. This boundedness was extended to Orlicz-Morrey spaces

by [38, Theorem 6.1]. Namely, if Φ is bijective and in ∇2 and φ ∈ Gdec, then M

is bounded on L(Φ,φ)(Rn). This result is valid for any Φ ∈ ∇2 by the modular

inequality ˆ
Rn

Φ(Mf(x)) dx ≤
ˆ
Rn

Φ(C|f(x)|) dx

in [23, Theorem 1.2.1].

For the operator Mρ we prove the following theorem.

Theorem 3.3.1. Let Φ,Ψ ∈ ΦY , φ ∈ Gdec and ρ : (0,∞) → (0,∞). Assume that

lim
r→∞

φ(r) = 0 or that Ψ−1(t)/Φ−1(t) is almost decreasing on (0,∞). If there exists

a positive constant A such that, for all r ∈ (0,∞),

(3.3.1)

(
sup
0<t≤r

ρ(t)

)
Φ−1(φ(r)) ≤ AΨ−1(φ(r)),

then, for any positive constant C0, there exists a positive constant C1 such that, for

all f ∈ L(Φ,φ)(Rn) with f ̸≡ 0,

(3.3.2) Ψ

(
Mρf(x)

C1∥f∥L(Φ,φ)

)
≤ Φ

(
Mf(x)

C0∥f∥L(Φ,φ)

)
, x ∈ Rn.

Consequently, if Φ ∈ ∇2, then Mρ is bounded from L(Φ,φ)(Rn) to L(Ψ,φ)(Rn).

Remark 3.3.1. If ρ is almost increasing or if Ψ−1(t)/Φ−1(t) is almost decreasing,

then the inequality ρ(r)Φ−1(φ(r)) ≲ Ψ−1(φ(r)) implies (3.3.1).

Proof of Theorem 3.3.1. We may assume that Φ,Ψ ∈ ΦY . We may also assume

that φ is continuous and strictly decreasing, see Remark 1.2.3. Let f ∈ L(Φ,φ)(Rn),

and fix x ∈ Rn. To prove (3.3.2) we may assume that ∥f∥L(Φ,φ) = 1 and that

0 < Mf(x) <∞.

We show that, for any ball B = B(a, r) containing x,

(3.3.3) ρ(r)

 
B

|f | ≤ C1Ψ
−1

(
Φ

(
Mf(x)

C0

))
.

Then we have the pointwise estimate

Ψ

(
Mρf(x)

C1

)
≤ Φ

(
Mf(x)

C0

)
,
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which is the conclusion.

To show (3.3.3), we consider two cases:

Φ

(
Mf(x)

C0

)
≥ φ(r) or Φ

(
Mf(x)

C0

)
≤ φ(r).

If Φ
(
Mf(x)
C0

)
≥ φ(r), then by (3.2.5) and ∥f∥Φ,φ,B ≤ 1, we have

ρ(r)

 
B

|f | ≤ 2ρ(r)Φ−1(φ(r)).

Combining this inequality with (3.3.1) we have

ρ(r)

 
B

|f | ≤ 2AΨ−1(φ(r)) ≤ 2AΨ−1

(
Φ

(
Mf(x)

C0

))
.

Conversely, let Φ
(
Mf(x)
C0

)
≤ φ(r). If lim

r→∞
φ(r) = 0 then we can choose t0 ∈ [r,∞)

such that

Φ

(
Mf(x)

C0

)
= φ(t0).

Using (3.3.1) and (2.2.1), we have

ρ(r) ≤ sup
0<t≤t0

ρ(t) ≤ A
Ψ−1(φ(t0))

Φ−1(φ(t0))
= A

Ψ−1
(
Φ
(
Mf(x)
C0

))
Φ−1

(
Φ
(
Mf(x)
C0

)) ≤ A
Ψ−1

(
Φ
(
Mf(x)
C0

))
Mf(x)
C0

.

If Ψ−1(t)/Φ−1(t) is almost decreasing, then Φ
(
Mf(x)
C0

)
≤ φ(r) implies that

ρ(r) ≤ A
Ψ−1(φ(r))

Φ−1(φ(r))
≲

Ψ−1
(
Φ
(
Mf(x)
C0

))
Φ−1

(
Φ
(
Mf(x)
C0

)) ≤
Ψ−1

(
Φ
(
Mf(x)
C0

))
Mf(x)
C0

.

In any way we have

ρ(r)

 
B

|f | ≤ AC0

Ψ−1
(
Φ
(
Mf(x)
C0

))
Mf(x)

 
B

|f | ≤ AC0Ψ
−1

(
Φ

(
Mf(x)

C0

))
.

Then we have (3.3.3) and the proof is complete.
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3.4 Orlicz-Campanato spaces and relations to Orlicz-

Morrey spaces

In this section we define Orlicz-Campanato spaces and investigate their relations to

Orlicz-Morrey spaces.

Definition 3.4.1 (Orlicz-Campanato space). For Φ ∈ ΦY and φ : (0,∞) → (0,∞),

let

L(Φ,φ)(Rn) =
{
f ∈ L1

loc(Rn) : ∥f∥L(Φ,φ) <∞
}
,

∥f∥L(Φ,φ) = sup
B

∥f − fB∥Φ,φ,B,

where the supremum is taken over all balls B in Rn and ∥f∥Φ,φ,B is as in (1.2.19).

Then ∥·∥L(Φ,φ) is a quasi-norm modulo constant functions and thereby L(Φ,φ)(Rn)

is a quasi-Banach space. If Φ ∈ ΦY , then ∥ · ∥L(Φ,φ)(Rn) is a norm modulo constant

functions and thereby L(Φ,φ)(Rn) is a Banach space. If Φ ≈ Ψ and φ ∼ ψ, then

L(Φ,φ)(Rn) = L(Ψ,ψ)(Rn) with equivalent quasi-norms.

If Φ(r) = rp (1 ≤ p < ∞), then we denote L(Φ,φ)(Rn) by L(p,φ)(Rn), which

coincides with Lp,φp(Rn) defined by Definition 1.2.1.

In this section we prove the following two theorems. Let C be the set of all

constant functions. The first theorem is an extension of [30, Theorem 2.1] and [37,

Theorem 2.1].

Theorem 3.4.1. Let Φ ∈ ΦY and φ ∈ Gdec. Assume that Φ ∈ ∆2 and that φ

satisfies (3.1.4). Then

L(Φ,φ)(Rn)/C = L(Φ,φ)(Rn) and ∥f∥L(Φ,φ) ∼ ∥f − lim
r→∞

fB(0,r)∥L(Φ,φ) .

More precisely, for every f ∈ L(Φ,φ)(Rn), fB(0,r) converges as r → ∞, and the

mapping f 7→ f − lim
r→∞

fB(0,r) is bijective and bicontinuous from L(Φ,φ)(Rn)/C to

L(Φ,φ)(Rn). In this case lim
r→∞

fB(a,r) = lim
r→∞

fB(0,r) for all a ∈ Rn.

Theorem 3.4.2. Let Φ ∈ ΦY and φ ∈ Gdec. If Φ ∈ ∆2, then there exists a positive

constant C such that, for all f ∈ L1
loc(Rn),

(3.4.1) ∥f∥L(Φ,φ) ≤ C∥M ♯f∥L(Φ,φ) .

Moreover, if Φ ∈ ∇2 and φ satisfies (3.1.4), then

(3.4.2) C−1∥f∥L(Φ,φ) ≤ ∥M ♯f∥L(Φ,φ) ≤ C∥f∥L(Φ,φ) .
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By Theorems 3.4.1 and 3.4.2 we have the following corollary.

Corollary 3.4.3. Let Φ ∈ ΦY and φ ∈ Gdec. Assume that Φ ∈ ∆2 and that φ

satisfies (3.1.4). Then there exist a positive constant C such that, for any f ∈
L(Φ,φ)(Rn) satisfying lim

r→∞
fB(0,r) = 0,

(3.4.3) ∥f∥L(Φ,φ) ≤ C∥M ♯f∥L(Φ,φ) .

Moreover, if Φ ∈ ∇2, then

C−1∥f∥L(Φ,φ) ≤ ∥M ♯f∥L(Φ,φ) ≤ C∥f∥L(Φ,φ) .

To prove the theorems we prepare several lemmas.

Lemma 3.4.4. Let Φ ∈ ΦY and φ : (0,∞) → (0,∞). Then, for any two balls B1

and B2 such that B1 ⊂ B2,

(3.4.4) |fB1 − fB2 | ≤ 2
|B2|
|B1|

Φ−1(φ(r2))∥f∥L(Φ,φ) ,

where r2 is the radius of B2.

Proof. By (3.2.5) we have

|fB1 − fB2 | ≤
1

|B1|

ˆ
B1

|f(x)− fB2 | dx

≤ |B2|
|B1|

 
B2

|f(x)− fB2 | dx

≤ 2
|B2|
|B1|

Φ−1(φ(r2))∥f∥L(Φ,φ) .

Lemma 3.4.5. Let Φ ∈ ΦY and φ : (0,∞) → (0,∞). Assume that φ satisfies

the doubling condition. Then there exists a positive constant C such that, for any

f ∈ L(Φ,φ)(Rn) and for any two balls B(a, r) and B(b, s) satisfying B(a, r) ⊂ B(b, s),

(3.4.5) |fB(a,r) − fB(b,s)| ≤ C

ˆ 2s

r

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) .

Proof. Let f ∈ L(Φ,φ)(Rn). Take balls Bj = B(aj, 2
jr), j = 0, 1, 2, . . . , such that

B(a, r) = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bk−1 ⊂ B(b, s) ⊂ Bk.
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Then, by (3.4.4) and the doubling condition of Φ−1(φ(·)) we have

|fB(a,r)−fB(b,s)| ≤ |fB0 − fB1 |+ |fB1 − fB2 |+ · · ·+ |fBk−1
− fB(b,s)|

≤ 2n+1

k−1∑
j=1

Φ−1(φ(2jr))∥f∥L(Φ,φ) + 2
|B(b, s)|
|Bk−1|

Φ−1(φ(s))∥f∥L(Φ,φ)

≲
k−1∑
j=1

ˆ 2jr

2j−1r

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) +

ˆ 2s

s

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ)

≲
ˆ 2s

r

Φ−1 (φ(t))

t
dt ∥f∥L(Φ,φ) .

This shows the conclusion.

Lemma 3.4.6. Let Φ ∈ ΦY and φ ∈ Gdec. If
´∞
1

Φ−1(φ(t))
t

dt < ∞, then, for every

f ∈ L(Φ,φ)(Rn), there exists a constant σ(f) such that σ(f) = lim
r→∞

fB(a,r) for all

a ∈ Rn.

Proof. Let f ∈ L(Φ,φ)(Rn). By (3.4.5) we see that

|fB(0,r) − fB(0,s)| ≤ C

ˆ 2s

r

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) → 0 as r, s→ ∞ with r < s.

Hence fB(0,r) converges as r tends to infinity by Cauchy’s test. Let σ(f) = lim
r→∞

fB(0,r).

If |a| ≤ r, then B(a, r) ⊂ B(0, 2r). From (3.4.4) it follows that

|fB(a,r) − σ(f)| ≤ |fB(a,r) − fB(0,2r)|+ |fB(0,2r) − σ(f)|

≤ 2n+1∥f∥L(Φ,φ)Φ−1(φ(2r)) + |fB(0,2r) − σ(f)| → 0 as r → ∞,

since Φ−1(φ(2r)) → 0 as r → ∞ by the assumption.

Remark 3.4.1. If Φ ∈ ∆2 and φ satisfies (3.1.4), then
´∞
1

Φ−1(φ(t))
t

dt < ∞ by

Lemma 3.2.3.

Proof of Theorem 3.4.1. We may assume that Φ ∈ ∆2. Let f ∈ L(Φ,φ)(Rn).

Then by the definition of L(Φ,φ)(Rn), for any ball B = B(a, r),

1

φ(r)

 
B

Φ

(
|f(x)− fB|
∥f∥L(Φ,φ)

)
dx ≤ 1.

Letting s→ ∞ in (3.4.5) and using Lemma 3.4.6 with Remark 3.4.1, we have

|fB − σ(f)| ≲
ˆ ∞

r

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) .
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By Lemma 3.2.3 we have

|fB − σ(f)| ≤ CΦ−1(φ(r)) ∥f∥L(Φ,φ)

for some C ≥ 1 independent of f . Then by (2.2.1) we have

Φ

(
|fB − σ(f)|
C∥f∥L(Φ,φ)

)
≤ Φ(Φ−1(φ(r))) ≤ φ(r).

By the convexity of Φ we have

1

φ(r)

 
B

Φ

(
|f(x)− σ(f)|
2C∥f∥L(Φ,φ)

)
dx

≤ 1

φ(r)

 
B

1

2

{
Φ

(
|f(x)− fB|
C∥f∥L(Φ,φ)

)
+ Φ

(
|fB − σ(f)|
C∥f∥L(Φ,φ)

)}
dx ≤ 1.

This means that f − σ(f) ∈ L(Φ,φ)(Rn) and that

∥f − σ(f)∥L(Φ,φ) ≤ 2C∥f∥L(Φ,φ) .

Conversely, let f ∈ L(Φ,φ)(Rn). Then by (3.2.5) we have, for any ball B =

B(a, r),

(3.4.6) |fB| ≤
 
B

|f(x)| dx ≤ 2Φ−1(φ(r))∥f∥L(Φ,φ) .

Since Φ−1(φ(r)) → 0 as r → ∞ by the assumption, we conclude that σ(f) =

lim
r→∞

fB(a,r) = 0 by Lemma 3.4.6. Moreover, from (3.4.6) and (3.2.1) it follows that

∥fB∥Φ,φ,B = |fB|∥1∥Φ,φ,B ≤ 2Φ−1(φ(r))∥f∥L(Φ,φ)

1

Φ−1(φ(r))
= 2∥f∥L(Φ,φ) .

Then

∥f − fB∥Φ,φ,B ≤ ∥f∥Φ,φ,B + ∥fB∥Φ,φ,B ≤ 3∥f∥L(Φ,φ) .

This shows that f ∈ L(Φ,φ)(Rn) and

∥f∥L(Φ,φ) ≤ 3∥f∥L(Φ,φ) = 3∥f − σ(f)∥L(Φ,φ) .

The proof is complete.

To prove Theorem 3.4.2 we define local versions of the dyadic maximal operator

and the dyadic sharp maximal operator. For any cube Q ⊂ Rn centered at a ∈ Rn
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and with side length 2r > 0, we denote by Qdy(Q) the set of all dyadic cubes with

respect to Q, that is,

Qdy(Q) =

{
Qj,k = a+

n∏
i=1

[2−jkir, 2
−j(ki + 1)r) : j ∈ Z, k = (k1, · · · , kn) ∈ Zn

}
.

For any cube Q ⊂ Rn, let

Mdy
Q f(x) = sup

R∈Qdy(Q), x∈R⊂Q

 
R

|f(y)| dy,

M ♯,dy
Q f(x) = sup

R∈Qdy(Q), x∈R⊂Q

 
R

|f(y)− fR| dy.

Then we have the following lemma.

Lemma 3.4.7. Let Φ ∈ ∆2 and Φ(2t) ≤ CΦΦ(t) for all t ∈ [0,∞] and some

CΦ ≥ 1. Then there exists a positive constant Cn,Φ such that, for any f ∈ L1
loc(Rn)

and any cube Q,

(3.4.7)

ˆ
Q

Φ
(
Mdy

Q f(x)
)
dx ≤ Cn,Φ

ˆ
Q

Φ
(
M ♯,dy

Q f(x)
)
dx+ 2CΦΦ (|f |Q) |Q|,

and

(3.4.8)

ˆ
Q

Φ
(
Mdy

Q (f(x)− fQ)
)
dx ≤ (Cn,Φ + 2CΦ)

ˆ
Q

Φ
(
M ♯,dy

Q f(x)
)
dx.

To prove Lemma 3.4.7 we use the following local version good λ inequality:

Lemma 3.4.8 (Tsutsui [59], Komori-Furuya [24]). Let f ∈ L1
loc(Rn). Then, for

any cube Q, 0 < γ ≤ 1 and λ > |f |Q, we have

(3.4.9)
∣∣∣{x ∈ Q : Mdy

Q f(x) > 2λ,M ♯,dy
Q f(x) ≤ γλ

}∣∣∣
≤ 2nγ

∣∣∣{x ∈ Q : Mdy
Q f(x) > λ

}∣∣∣ .
Proof of Lemma 3.4.7. For N > 0, let

IN =

ˆ N

0

Φ
′
(λ)
∣∣∣{x ∈ Q :Mdy

Q f(x) > λ
}∣∣∣ dλ.

If N > 2|f |Q, then

IN =

ˆ 2|f |Q

0

+

ˆ N

2|f |Q
Φ

′
(λ)
∣∣∣{x ∈ Q :Mdy

Q f(x) > λ}
∣∣∣ dλ

≤ Φ (2|f |Q) |Q|+ 2

ˆ N/2

|f |Q
Φ

′
(2λ)

∣∣∣{x ∈ Q :Mdy
Q f(x) > 2λ}

∣∣∣ dλ.
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By the doubling conditions of Φ and Φ′ and the good-λ inequality (3.4.9), we have

IN ≤ 2CΦ′

(
2nγ

ˆ N/2

|f |Q
Φ

′
(λ)
∣∣∣{x ∈ Q :Mdy

Q f(x) > λ}
∣∣∣ dλ

+

ˆ N/2

|f |Q
Φ

′
(λ)
∣∣∣{x ∈ Q :M ♯,dy

Q f(x) > γλ}
∣∣∣ dλ)+ CΦΦ (|f |Q) |Q|

≤ 2n+1γCΦ′IN +
2CΦ′

γ

ˆ Nγ/2

0

Φ
′
(
λ

γ

) ∣∣∣{x ∈ Q :M ♯,dy
Q f(x) > λ}

∣∣∣ dλ
+ CΦΦ (|f |Q) |Q|.

At this point we pick a γ such that 2n+1γCΦ′ = 1/2, then

IN ≤ Cn,Φ

ˆ ∞

0

Φ
′
(λ)
∣∣∣{x ∈ Q :M ♯,dy

Q f(x) > λ}
∣∣∣ dλ+ 2CΦΦ (|f |Q) |Q|.

Letting N → ∞, we deduce (3.4.7). Next, substitute f − fQ for f in (3.4.7). Thenˆ
Q

Φ
(
Mdy

Q (f(x)− fQ)
)
dx

≤ Cn,Φ

ˆ
Q

Φ
(
M ♯,dy

Q f(x)
)
dx+ 2CΦΦ (|f − fQ|Q) |Q|

≤ Cn,Φ

ˆ
Q

Φ
(
M ♯,dy

Q f(x)
)
dx+ 2CΦΦ

(
min
x∈Q

M ♯,dy
Q f(x)

)
|Q|

≤ (Cn,Φ + 2CΦ)

ˆ
Q

Φ
(
M ♯,dy

Q f(x)
)
dx,

which is (3.4.8).

Proof of Theorem 3.4.2. To prove (3.4.1) we may assume that ∥M ♯f∥L(Φ,φ) = 1.

Then it is enough to prove that there exists a positive constant C ′ such that, for

all balls B = B(a, r),

(3.4.10)
1

|B|φ(r)

ˆ
B

Φ

(
|f(x)− fB|

C ′

)
dx ≤ 1.

Take the cube Q such that B ⊂ Q ⊂
√
nB. By Jensen’s inequality we have

Φ (|fQ − fB|) ≤ Φ

( 
B

|f(x)− fQ|dx
)

≤
 
B

Φ (|f(x)− fQ|) dx.

Then

(3.4.11)

ˆ
B

Φ

(
|f(x)− fB|

2

)
dx ≤ 1

2

ˆ
B

(
Φ (|f(x)− fQ|) + Φ (|fB − fQ|)

)
dx

≤
ˆ
B

Φ (|f(x)− fQ|) dx ≤
ˆ
Q

Φ (|f(x)− fQ|) dx.
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By (3.4.8) and the fact that M ♯,dy
Q f ≤ CnM

♯f for some positive constant Cn, we

have ˆ
Q

Φ (|f(x)− fQ|) dx ≤
ˆ
Q

Φ
(
Mdy

Q (f(x)− fQ)
)
dx

≤ (Cn,Φ + 2CΦ)

ˆ
Q

Φ
(
M ♯,dy

Q f(x)
)
dx

≤ (Cn,Φ + 2CΦ)

ˆ
√
nB

Φ
(
CnM

♯f(x)
)
dx.(3.4.12)

Take Cn,φ ≥ 1 such that |
√
nB|φ(

√
nr) ≤ Cn,φ|B|φ(r). Then, from (3.4.11) and

(3.4.12) it follows that

1

|B|φ(r)

ˆ
B

Φ

(
|f(x)− fB|

2

)
dx ≤ Cn,φ(Cn,Φ + 2CΦ)

|
√
nB|φ(

√
nr)

ˆ
√
nB

Φ
(
CnM

♯f(x)
)
dx,

which shows that

1

|B|φ(r)

ˆ
B

Φ

(
|f(x)− fB|

2Cn,φ(Cn,Φ + 2CΦ)Cn

)
dx

≤ 1

|
√
nB|φ(

√
nr)

ˆ
√
nB

Φ
(
M ♯f(x)

)
dx ≤ 1.

Therefore we have (3.4.10).

Next, we add the assumptions that Φ ∈ ∆2 and that φ satisfies (3.1.4). Then

the Hardy-Littlewood maximal operator M is bounded on L(Φ,φ)(Rn) and then

(3.4.13) ∥M ♯f∥L(Φ,φ) ≤ 2∥Mf∥L(Φ,φ) ≤ C∥f∥L(Φ,φ) .

To prove the second inequality in (3.4.2) we may assume that f ∈ L(Φ,φ)(Rn). By

Theorem 3.4.1 we see that fB(0,r) converges as r → ∞. Setting σ(f) = lim
r→∞

fB(0,r),

we have ∥f − σ(f)∥L(Φ,φ) ≤ C∥f∥L(Φ,φ) . Substituting f − σ(f) for f into (3.4.13),

we have

∥M ♯f∥L(Φ,φ) ≤ C∥f − σ(f)∥L(Φ,φ) ≤ C∥f∥L(Φ,φ) ,

which shows the conclusion.

3.5 Well-definedness of the commutators

In this section we prove that the commutators [b, T ]f and [b, Iρ]f are well-defined

for all b ∈ L1,ψ(Rn) and f ∈ L(Φ,φ)(Rn).
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Lemma 3.5.1. Let Φ ∈ ΦY and φ ∈ Gdec. Let K be a standard kernel satisfying

(3.1.1). Then there exists a positive constant C such that, for all f ∈ L(Φ,φ)(Rn)

and all balls B = B(z, r),
ˆ
Rn\2B

|K(x, y)f(y)| dy ≤ C

ˆ ∞

2r

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) , x ∈ B.

Proof. If x ∈ B and y ̸∈ 2B, then |z − y|/2 ≤ |x− y| ≤ 3|z − y|/2. From (3.1.1) it

follows that |K(x, y)| ≲ |x− y|−n ∼ |z − y|−n. Then
ˆ
Rn\2B

|K(x, y)||f(y)| dy ≲
ˆ
Rn\2B

|f(y)|
|z − y|n

dy =
∞∑
j=1

ˆ
2j+1B\2jB

|f(y)|
|z − y|n

dy.

By (3.2.5), Hölder’s inequality and the doubling condition of φ we have

ˆ
2j+1B\2jB

|f(y)|
|z − y|n

dy ≲
 
2j+1B

|f(y)| dy ≲ Φ−1
(
φ(2j+1r)

)
∥f∥L(Φ,φ)

≲
ˆ 2j+1r

2jr

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) .

Therefore, we have the conclusion.

Lemma 3.5.2. Let Φ ∈ ∇2, φ ∈ Gdec, ψ ∈ G inc and K be a standard kernel

satisfying (3.1.1). Then there exists a positive constant C such that, for all b ∈
L1,ψ(Rn), all f ∈ L(Φ,φ)(Rn) and all balls B = B(z, r),

ˆ
Rn\2B

|(b(y)− bB)K(x, y)f(y)| dy

≤ C

ˆ ∞

r

ψ(t)

t

(ˆ ∞

t

Φ−1(φ(u))

u
du

)
dt ∥b∥L1,ψ

∥f∥L(Φ,φ) , x ∈ B.

Proof. If x ∈ B and y ̸∈ 2B, then |z − y|/2 ≤ |x− y| ≤ 3|z − y|/2. From (3.1.1) it

follows that |K(x− y)| ≲ |x− y|−n ∼ |z − y|−n. Then
ˆ
Rn\2B

|(b(y)− bB)K(x, y)f(y)| dy ≲
ˆ
Rn\2B

|(b(y)− bB)f(y)|
|z − y|n

dy

=
∞∑
j=1

ˆ
2j+1B\2jB

|(b(y)− bB)f(y)|
|z − y|n

dy.

By Lemma 3.2.2 we can find p ∈ (1,∞) such that( 
2j+1B

|f(y)|pdy
)1/p

≲ Φ−1
(
φ(2j+1r)

)
∥f∥L(Φ,φ) .
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By Hölder’s inequality, Lemma 2.5.3 and the doubling condition of ψ and φ we have

ˆ
2j+1B\2jB

|(b(y)− bB)f(y)|
|z − y|n

dy

∼ 1

(2j+1r)n

ˆ
2j+1B\2jB

|(b(y)− bB)f(y)| dy

≲
( 

2j+1B

|b− bB|p
′
dy

)1/p′ ( 
2j+1B

|f(y)|p dy
)1/p

≲
ˆ 2j+1r

r

ψ(t)

t
dtΦ−1(φ(2j+1r)) ∥b∥L1,ψ

∥f∥L(Φ,φ)

≲
ˆ 2j+1r

2jr

(ˆ u

r

ψ(t)

t
dt

)
Φ−1(φ(u))

u
du ∥b∥L1,ψ

∥f∥L(Φ,φ) .

Therefore,
ˆ
Rn\2B

|(b(y)− bB)K(x, y)f(y)| dy

≲
ˆ ∞

r

(ˆ u

r

ψ(t)

t
dt

)
Φ−1(φ(u))

u
du ∥b∥L1,ψ

∥f∥L(Φ,φ)

=

ˆ ∞

r

ψ(t)

t

(ˆ ∞

t

Φ−1(φ(u))

u
du

)
dt ∥b∥L1,ψ

∥f∥L(Φ,φ) .

This is the conclusion.

Remark 3.5.1. Under the assumption in Theorem 3.1.1 (i), let b ∈ L1,ψ(Rn) and

f ∈ L(Φ,φ)(Rn). Since Φ ∈ ∆2, there exists p ∈ (1,∞) such that tp ≲ Φ(t) for

t ≥ 1, see Remark 1.2.1 (v). Then L(Φ,φ)(Rn) ⊂ LΦ
loc(Rn) ⊂ Lploc(Rn), which

implies f ∈ Lploc(Rn) and bf ∈ Lp1loc(Rn) for all p1 ∈ (1, p) by Theorem 2.5.1. Hence,

T (fχ2B) and T (bfχ2B) are well-defined for any ball B = B(z, r). By (3.1.4), (3.1.7)

and Lemma 3.2.3 we have

(3.5.1)

ˆ ∞

r

ψ(t)

t

(ˆ ∞

t

Φ−1(φ(u))

u
du

)
dt

≲
ˆ ∞

r

ψ(t)Φ−1(φ(t))

t
dt ≲

ˆ ∞

r

Ψ−1(φ(t))

t
dt ≲ Ψ−1(φ(r)).

Then, by Lemmas 3.5.1 and 3.5.2, the integrals
ˆ
Rn\2B

|K(x, y)f(y)| dy and

ˆ
Rn\2B

|K(x, y)b(y)f(y)| dy
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are finite. That is, we can write

[b, T ]f(x) = [b, T ](fχ2B)(x) +

ˆ
Rn\2B

(b(x)− b(y))K(x, y)f(y) dy, x ∈ B.

Moreover, if x ∈ B1 ∩B2, then, taking B3 such that B1 ∪ B2 ⊂ B3, we have(
[b, T ](fχ2Bi)(x) +

ˆ
Rn\2Bi

(b(x)− b(y))K(x, y)f(y) dy

)
−
(
[b, T ](fχ2B3)(x) +

ˆ
Rn\2B3

(b(x)− b(y))K(x, y)f(y) dy

)
= −[b, T ](fχ2B3\2Bi)(x) +

ˆ
2B3\2Bi

(b(x)− b(y))K(x, y)f(y) dy = 0,

by (3.1.3). That is,

[b, T ](fχ2B1)(x) +

ˆ
Rn\2B1

(b(x)− b(y))K(x, y)f(y) dy

= [b, T ](fχ2B2)(x) +

ˆ
Rn\2B2

(b(x)− b(y))K(x, y)f(y) dy, x ∈ B1 ∩ B2.

This shows that [b, T ]f(x) in (3.1.6) is independent of the choice of the ball B

containing x.

Lemma 3.5.3. Under the assumption of Theorem 3.1.1 (i), there exists a positive

constant C such that, for all b ∈ L1,ψ(Rn), all f ∈ L(Φ,φ)(Rn) and all balls B =

B(z, r),
 
B

(ˆ
Rn\2B

|(b(x)− b(y))K(x, y)f(y) | dy
)
dx ≤ CΨ−1(φ(B)) ∥b∥L1,ψ

∥f∥L(Φ,φ) .

Proof. For x ∈ B, let

G1(x) = |b(x)− bB|
ˆ
Rn\2B

|K(x, y)f(y)| dy,

G2(x) =

ˆ
Rn\2B

|(b(y)− bB)K(x, y)f(y)| dy.

Then ∣∣∣∣ˆ
Rn\2B

(b(x)− b(y))K(x, y)f(y) dy

∣∣∣∣ ≤ G1(x) +G2(x).

Using Lemmas 3.5.1 and 3.5.2, we have

(3.5.2)

ˆ
Rn\2B

|K(x, y)||f(y)| dy ≲
ˆ ∞

2r

Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) , x ∈ B,
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and

(3.5.3)

ˆ
Rn\2B

|b(y)− bB||K(x, y)||f(y)| dy

≲
ˆ ∞

r

ψ(t)

t

(ˆ ∞

t

Φ−1(φ(u))

u
du

)
dt ∥b∥L1,ψ

∥f∥L(Φ,φ) , x ∈ B.

Then, using (3.5.2), (3.2.6) and (3.1.7), we have

 
B

G1(x) dx ≲
 
B

|b(x)− bB| dxΦ−1(φ(r))∥f∥L(Φ,φ)

≲ ψ(r)Φ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ)

≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) .

Using (3.5.3) and (3.5.1), we also have

 
B

G2(x) dx ≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) .

Then we have the conclusion.

Lemma 3.5.4. Let Φ ∈ ΦY and φ ∈ Gdec. Assume that ρ satisfies (1.1.2) and

(1.1.3). Then there exists a positive constant C such that, for all f ∈ L(Φ,φ)(Rn)

and all balls B(x, r),

ˆ
Rn\B(x,r)

ρ(|x− y|)
|x− y|n

|f(y)| dy ≤ C

ˆ ∞

K1r

ρ(t)Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) ,

where K1 is the constant in (1.1.3).

Proof. Let B = B(x, r). Then

ˆ
Rn\B(x,r)

ρ(|x− y|)
|x− y|n

|f(y)| dy =
∞∑
j=0

ˆ
2j+1B\2jB

ρ(|x− y|)
|x− y|n

|f(y)| dy.

By (1.1.3), (3.2.5), Hölder’s inequality and the doubling condition of φ we have

ˆ
2j+1B\2jB

ρ(|x− y|)
|x− y|n

|f(y)| dy ≲
sup2jr≤t≤2j+1r ρ(t)

(2j+1r)n

ˆ
2j+1B\2jB

|f(y)| dy

≲
ˆ K22jr

K12jr

ρ(t)

t
dt Φ−1(φ(2j+1r))∥f∥L(Φ,φ) ≲

ˆ K22jr

K12jr

ρ(t)Φ−1(φ(t))

t
dt ∥f∥L(Φ,φ) .

Therefore, we have the conclusion.
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Lemma 3.5.5. Let Φ ∈ ∇2, φ ∈ Gdec and ψ ∈ G inc. Assume that ρ satisfies (1.1.2)

and (1.1.3). Then there exists a positive constant C such that, for all b ∈ L1,ψ(Rn),

all f ∈ L(Φ,φ)(Rn) and all balls B(x, r),

ˆ
Rn\B(x,r)

|b(y)− bB(x,r)|
ρ(|x− y|)
|x− y|n

|f(y)| dy

≤ C

ˆ ∞

K1r

ψ(t)

t

(ˆ ∞

t

ρ(u)Φ−1(φ(u))

u
du

)
dt ∥b∥L1,ψ

∥f∥L(Φ,φ) ,

where K1 is the constant in (1.1.3).

Proof. Let B = B(x, r). Then

ˆ
Rn\B(x,r)

|b(y)− bB|
ρ(|x− y|)
|x− y|n

|f(y)| dy

=
∞∑
j=0

ˆ
2j+1B\2jB

|b(y)− bB|
ρ(|x− y|)
|x− y|n

|f(y)| dy.

By Lemma 3.2.2 we can find p ∈ (1,∞) such that

( 
2j+1B

|f(y)|pdy
)1/p

≲ Φ−1
(
φ(2j+1r)

)
∥f∥L(Φ,φ) .

By (1.1.3), (3.2.5), Hölder’s inequality, Lemma 2.5.3 and the doubling condition of

ψ and φ we have

ˆ
2j+1B\2jB

|b(y)− bB|
ρ(|x− y|)
|x− y|n

|f(y)| dy

≲
sup2jr≤u≤2j+1r ρ(u)

(2j+1r)n

ˆ
2j+1B\2jB

|b(y)− bB||f(y)| dy

≲
ˆ K22jr

K12jr

ρ(u)

u
du

( 
2j+1B

|b− bB|p
′
dy

)1/p′ ( 
2j+1B

|f(y)|p dy
)1/p

≲
ˆ K22jr

K12jr

ρ(u)

u
du

ˆ 2j+1r

r

ψ(t)

t
dtΦ−1(φ(2j+1r)) ∥b∥L1,ψ

∥f∥L(Φ,φ)

≲
ˆ K22jr

K12jr

(ˆ u

K1r

ψ(t)

t
dt

)
ρ(u)Φ−1(φ(u))

u
du ∥b∥L1,ψ

∥f∥L(Φ,φ) .
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Therefore,

ˆ
Rn\B

|b(y)− bB|
ρ(|x− y|)
|x− y|n

|f(y)| dy

≲
ˆ ∞

K1r

(ˆ u

K1r

ψ(t)

t
dt

)
ρ(u)Φ−1(φ(u))

u
du ∥b∥L1,ψ

∥f∥L(Φ,φ)

=

ˆ ∞

K1r

ψ(t)

t

(ˆ ∞

t

ρ(u)Φ−1(φ(u))

u
du

)
dt ∥b∥L1,ψ

∥f∥L(Φ,φ) .

This is the conclusion.

Remark 3.5.2. Under the assumption in Theorem 3.1.2 (i), let b ∈ L1,ψ(Rn) and

f ∈ L(Φ,φ)(Rn). Then f is in Lploc(Rn) and bf is in Lp1loc(Rn) for all p1 < p by the

same way as in Remark 3.5.1. Since ρ(|y|)
|y|n is integrable near the origin with respect

to y, Iρ(|f |χ2B) and Iρ(|bf |χ2B) are well-defined for any ball B = B(x, r). By

(3.1.11) and (3.1.12) we have

(3.5.4)

ˆ ∞

K1r

ρ(t)Φ−1(φ(t))

t
dt ≲ Θ−1(φ(K1r)) ≲ Θ−1(φ(r)),

and

(3.5.5)

ˆ ∞

K1r

ψ(t)

t

(ˆ ∞

t

ρ(u)Φ−1(φ(u))

u
du

)
dt

≲
ˆ ∞

K1r

ψ(t)Θ−1(φ(t))

t
dt ≲

ˆ ∞

K1r

Ψ−1(φ(t))

t
dt ≲ Ψ−1(φ(r)).

Then, by Lemmas 3.5.4 and 3.5.5, the integrals

ˆ
Rn\2B

ρ(|x− y|)
|x− y|n

|f(y)| dy and

ˆ
Rn\2B

ρ(|x− y|)
|x− y|n

|b(y)f(y)| dy

converge. That is, the integrals

ˆ
Rn

ρ(|x− y|)
|x− y|n

f(y) dy and

ˆ
Rn

ρ(|x− y|)
|x− y|n

b(y)f(y) dy

converge absolutely a.e. x and we can write

[b, Iρ]f(x) =

ˆ
Rn
(b(x)− b(y))

ρ(|x− y|)
|x− y|n

f(y) dy, a.e. x.
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Lemma 3.5.6. Under the assumption of Theorem 3.1.2 (i), there exists a positive

constant C such that, for all b ∈ L1,ψ(Rn), all f ∈ L(Φ,φ)(Rn) and all balls B =

B(z, r),

 
B

(ˆ
Rn\2B

∣∣∣∣(b(x)− b(y))
ρ(|x− y|)
|x− y|n

f(y)

∣∣∣∣ dy) dx ≤ CΨ−1(φ(B)) ∥b∥L1,ψ
∥f∥L(Φ,φ) .

Proof. For x ∈ B, let

G1(x) = |b(x)− bB|
ˆ
Rn\2B

ρ(|x− y|)
|x− y|n

|f(y)| dy,

G2(x) =

ˆ
Rn\2B

|b(y)− bB|
ρ(|x− y|)
|x− y|n

|f(y)| dy.

Then ∣∣∣∣ˆ
Rn\2B

(b(x)− b(y))
ρ(|x− y|)
|x− y|n

f(y) dy

∣∣∣∣ ≤ G1(x) +G2(x).

Using this estimate and a similar way to Lemmas 3.5.4 and 3.5.5, we have, for

all x ∈ B,

G1(x) ≲ |b(x)− bB|
ˆ ∞

K1r

ρ(t)Φ−1 (φ(t))

t
dt ∥f∥L(Φ,φ) ,

G2(x) ≲ C

ˆ ∞

K1r

ψ(t)

t

(ˆ ∞

t

ρ(u)Φ−1 (φ(u))

u
du

)
dt ∥b∥L1,ψ

∥f∥L(Φ,φ) .

Then, using (3.5.4) and (3.5.5) also, we have
 
B

G1(x) dx ≲
 
B

|b(x)− bB| dxΘ−1(φ(r))∥f∥L(Φ,φ)

≲ ψ(r)Θ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ)

≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) ,

and  
B

G2(x) dx ≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) .

Then we have the conclusion.

3.6 Proof of Theorem 3.1.1

We use the following proposition. We omit its proof because the proof method is

almost the same as [1, Proposition 5.1].
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Proposition 3.6.1. Let T be a Calderón-Zygmund operator of type ω. Let ψ ∈ G inc.

Assume that ω and ψ satisfy the same assumption in Theorem 3.1.1. Then, for any

η ∈ (1,∞), there exists a positive constant C such that, for all b ∈ L1,ψ(Rn),

f ∈ L(Φ,φ)(Rn) and x ∈ Rn,

(3.6.1) M ♯([b, T ]f)(x) ≤ C∥b∥L1,ψ

((
Mψη(|Tf |η)(x)

)1/η
+
(
Mψη(|f |η)(x)

)1/η)
,

where Mψη is the fractional maximal operator defined by

Mψηf(x) = sup
B(a,r)∋x

ψ(r)η
 
B(a,r)

|f(y)| dy, x ∈ Rn.

Next, we note that, for θ ∈ (0,∞),

(3.6.2) ∥|g|θ∥L(Φ,φ) =
(
∥g∥

L(Φ((·)θ),φ))

)θ
.

Proof of Theorem 3.1.1 (i). First note that T is bounded on L(Φ,φ)(Rn) as we

state just before Theorem 3.1.1. We can take η ∈ (1,∞) such that Φ((·)1/η) ∈ ∇2

by Lemma 2.2.6. Then, from (3.1.7) it follows that

ψ(r)ηΦ−1(φ(r))η ≤ C0
ηΨ−1(φ(r))η.

By Theorem 3.3.1 with this condition we have the boundedness of Mψη from

L(Φ((·)1/η),φ)(Rn) to L(Ψ((·)1/η),φ)(Rn). Using this boundedness and (3.6.2), we have∥∥∥(Mψη(|Tf |η)
)1/η∥∥∥

L(Ψ,φ)
=
(
∥Mψη(|Tf |η)∥L(Ψ((·)1/η),φ)

)1/η
≲
(
∥|Tf |η∥

L(Φ((·)1/η),φ)

)1/η
= ∥Tf∥L(Φ,φ) ≲ ∥f∥L(Φ,φ) ,

and

∥(Mψη(|f |η))1/η∥L(Ψ,φ) =
(
∥Mψη(|f |η)∥L(Ψ((·)1/η),φ)

)1/η
≲
(
∥|f |η∥

L(Φ((·)1/η),φ)

)1/η
= ∥f∥L(Φ,φ) .

Then, using Proposition 3.6.1, we have

(3.6.3) ∥M ♯([b, T ]f)∥L(Ψ,φ) ≲ ∥b∥L1,ψ
∥f∥L(Φ,φ) .

Therefore, once we show that, for Br = B(0, r),

(3.6.4)

 
Br

[b, T ]f → 0 as r → ∞,
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then by Corollary 3.4.3 we have

(3.6.5) ∥[b, T ]f∥L(Ψ,φ) ≲ ∥b∥L1,ψ
∥f∥L(Φ,φ) ,

which is the conclusion.

In the following we show (3.6.4).

Case 1: First we show (3.6.4) for all f ∈ L(Φ,φ)(Rn) with compact support. Let

supp f ⊂ Bs = B(0, s) with s ≥ 1. Then f ∈ Lp(Rn) and bf ∈ Lp1(Rn) for some

1 < p1 < p < ∞ (see Remark 3.5.1). Since T is bounded on Lebesgue spaces, we

see that both (bTf)χB2s and T (bf)χB2s are in L1(Rn) and that 
Br

(bTf)χB2s → 0,

 
Br

T (bf)χB2s → 0 as r → ∞.

If x ̸∈ B2s and y ∈ B(0, s), then |x|/2 ≤ |x− y| ≤ 3|x|/2. By (3.1.1) and (3.1.3) we

have

(3.6.6) |Tf(x)| ≲ 1

|x|n
∥f∥L1 , |T (bf)(x)| ≲ 1

|x|n
∥bf∥L1 , x ̸∈ B2s,

which yields

bB2s

 
Br

(Tf)(1− χB2s) → 0,

 
Br

(T (bf))(1− χB2s) → 0 as r → ∞.

Next, we show

(3.6.7)

 
Br

(b− bB2s)(Tf)(1− χB2s) → 0 as r → ∞.

Then we have (3.6.4) for all f ∈ L(Φ,φ)(Rn) with compact support.

Now, since Ψ ∈ ∆2, there exists p ∈ (1,∞) such that Ψ−1(u) ≲ u1/p (u ≤ 1).

Let ν = 2p
2p−1

. Then∣∣∣∣ 
Br

(b− bB2s)(Tf)(1− χB2s)

∣∣∣∣
≤
( 

Br

|b− bB2s |ν
′
)1/ν′ ( 

Br

|(Tf)(1− χB2s)|
ν

)1/ν

.

From Lemma 2.5.3, Remark 2.5.1 and (3.1.7) it follows that

(3.6.8)

( 
Br

|b− bB2s |ν
′
)1/ν′

≲
ˆ r

2s

ψ(t)

t
dt ∥b∥L1,ψ

≲ ψ(r) log r ∥b∥L1,ψ
≲ Ψ−1(φ(r))

Φ−1(φ(r))
log r ∥b∥L1,ψ

.
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From (3.6.6) it follows that

(3.6.9)

(ˆ
Br\B2s

|Tf(x)|ν dx
)1/ν

≲
(ˆ

Br\B2s

(
1

|x|n
∥f∥L1

)ν
dx

)1/ν

≲ ∥f∥L1 .

By (3.6.8) and (3.6.9) we have∣∣∣∣ 
Br

(b− bB2s)(Tf)(1− χB2s)

∣∣∣∣
≲ Ψ−1(φ(r))

Φ−1(φ(r))
log r ∥b∥L1,ψ

1

rn/ν
∥f∥L1 =

log r

rn/ν
Ψ−1(φ(r))

Φ−1(φ(r))
∥b∥L1,ψ

∥f∥L1

≲ log r

rn/ν
φ(r)1/p

φ(r)
∥b∥L1,ψ

∥f∥L1 =
log r

r
n
2p (rnφ(r))1−

1
p

∥b∥L1,ψ
∥f∥L1

→ 0 as r → ∞.

Therefore, we have (3.6.4) and (3.6.5) for all f ∈ L(Φ,φ)(Rn) with compact support.

Case 2: For general f ∈ L(Φ,φ)(Rn), using Case 1, we have

∥[b, T ](fχB2r)∥L(Ψ,φ) ≲ ∥b∥L1,ψ
∥fχB2r∥L(Φ,φ) ≤ ∥b∥L1,ψ

∥f∥L(Φ,φ) .

Then, by (3.2.5),
 
Br

|[b, T ](fχB2r)| ≤ Ψ−1(φ(r))∥[b, T ](fχB2r)∥L(Ψ,φ)

≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) .

Combining this with Lemma 3.5.3, we have
 
Br

|[b, T ]f | ≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) ,

which implies (3.6.4). Therefore, we have (3.6.5) for all f ∈ L(Φ,φ)(Rn). The proof

is complete.

Proof of Theorem 3.1.1 (ii). We use the method by Janson [17] as same as the

proof of Theorem 2.1.4 (ii). Since 1/K(z) is many times infinitely differentiable in

an open set, we may choose z0 ̸= 0 and δ > 0 such that 1/K(z) can be expressed in

the neighborhood |z−z0| < 2δ as an absolutely convergent Fourier series, 1/K(z) =∑
j aje

ivj ·z. (The exact form of the vectors vj is irrelevant. For example, if the cube

centered at z0 of side length 4δ is contained in the open set, then we can take

vj = 2πj/(4δ), j ∈ Zn.)
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Set z1 = z0/δ. If |z − z1| < 2, we have the expansion

1

K(z)
=

δ−n

K(δz)
= δ−n

∑
j

aje
ivj ·δz,

∑
j∈Zn

|aj| <∞

Choose now any ball B = B(x0, r). Set y0 = x0 − rz1 and B′ = B(y0, r). Then, if

x ∈ B and y ∈ B′, ∣∣∣∣x− y

r
− z1

∣∣∣∣ ≤ ∣∣∣∣x− x0
r

∣∣∣∣+ ∣∣∣∣y − y0
r

∣∣∣∣ ≤ 2.

Denote sgn(f(x)− fB′) by s(x). Then
ˆ
B

|b(x)− bB′ | dx

=

ˆ
B

(b(x)− bB′)s(x) dx

=
1

|B′|

ˆ
B

ˆ
B′
(b(x)− b(y))s(x) dy dx

=
1

|B′|

ˆ
Rn

ˆ
Rn
(b(x)− b(y))

rnK(x− y)

K(x−y
r
)

s(x)χB(x)χB′(y) dy dx

=
rnδ−n

|B′|

ˆ
Rn

ˆ
Rn
(b(x)− b(y))K(x− y)

∑
aje

ivj ·δ x−yr s(x)χB(x)χB′(y) dy dx.

Here, we set C = δ−n|B(0, 1)|−1 and

gj(y) = e−ivj ·δ
y
rχB′(y), hj(x) = eivj ·δ

x
r s(x)χB(x).

Then ˆ
B

|b(x)− bB′ | dx

= C
∑

aj

ˆ
Rn

ˆ
Rn
(b(x)− b(y))K(x− y)gj(y)hj(x) dy dx

= C
∑

aj

ˆ
Rn
([b, T ]gj)(x)hj(x) dx

≤ C
∑

|aj|
ˆ
Rn

|([b, T ]gj)(x)||hj(x)| dx

= C
∑

|aj|
ˆ
B

|([b, T ]gj)(x)| dx

≤ C
∑

|aj||B|Ψ−1(φ(r))∥[b, T ]gj∥L(Ψ,φ)

≤ C∥[b, T ]∥L(Φ,φ)→L(Ψ,φ) |B|Ψ−1(φ(r))
∑

|aj|∥gj∥L(Φ,φ) .
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By Lemma 3.2.1 we have that ∥gj∥L(Φ,φ) = ∥χB′∥L(Φ,φ) ∼ 1
Φ−1(φ(B′))

. Then

ˆ
B

|b(x)− bB′ | dx ≲ ∥[b, T ]∥L(Φ,φ)→L(Ψ,φ) |B|Ψ
−1(φ(B))

Φ−1(φ(B))
.

By (3.1.8) we have

1

ψ(B)

 
B

|b(x)− bB| dx ≤ 2

ψ(B)

 
B

|b(x)− bB′ | dx ≲ ∥[b, T ]∥L(Φ,φ)→L(Ψ,φ) .

That is, ∥b∥L1,ψ
≲ ∥[b, T ]∥L(Φ,φ)→L(Ψ,φ) and we have the conclusion.

3.7 Proof of Theorem 3.1.2

We use the following proposition. We omit its proof because the proof methods are

almost the same as [1, Proposition 5.2] and Theorem 2.5.2.

Proposition 3.7.1. Assume that ρ : (0,∞) → (0,∞) satisfies (1.1.2). Let ρ∗(r)

be as in (2.1.12). Assume that the condition (3.1.10) holds and that r 7→ ρ(r)/rn−ϵ

is almost decreasing for some ϵ > 0. Assume also that

(3.7.1)

ˆ ∞

r

ρ(t)Φ−1(φ(t))

t
dt <∞,

ˆ ∞

r

ψ(t)

t

(ˆ ∞

t

ρ(u)Φ−1(φ(u))

u
du

)
dt <∞,

Then, for any η ∈ (1,∞), there exists a positive constant C such that, for all

b ∈ L1,ψ(Rn), f ∈ L(Φ,φ)(Rn) and x ∈ Rn,

M ♯([b, Iρ]f)(x) ≤ C∥b∥L1,ψ

((
Mψη(|Iρf |η)(x)

)1/η
+
(
M(ρ∗ψ)η(|f |η)(x)

)1/η)
where M(ρ∗ψ)η is the fractional maximal operator defined by

M(ρ∗ψ)ηf(x) = sup
B(a,r)∋x

(ρ∗(r)ψ(r))η
 
B(a,r)

|f(y)| dy, x ∈ Rn.

We note that the condition (3.7.1) is used to prove the well-definedness of [b, Iρ]f .

Proof of Theorem 3.1.2 (i). We may assume that Φ,Ψ ∈ ∆2 ∩∇2 and Θ ∈ ∇2.

We can choose η ∈ (1,∞) such that Φ((·)1/η), Ψ((·)1/η) and Θ((·)1/η) are in ∇2 by

Lemma 2.2.6. Then from (3.1.12) it follows that

ψ(r)ηΘ−1(φ(r))η ≤ Cη
1Ψ

−1(φ(r))η.
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Hence, by Theorem 3.3.1 we see that Mψη is bounded from L(Θ((·)1/η),φ)(Rn) to

L(Ψ((·)1/η),φ)(Rn). Moreover, as we mentioned just before Theorem 3.1.2, Iρ is

bounded from L(Φ,φ)(Rn) to L(Θ,φ)(Rn) by (3.1.11). Then, using (3.6.2), we have∥∥∥(Mψη(|Iρf |η)
)1/η∥∥∥

L(Ψ,φ)
=
(
∥Mψη(|Iρf |η)∥L(Ψ((·)1/η),φ)

)1/η
≲
(
∥|Iρf |η∥L(Θ((·)1/η),φ)

)1/η
= ∥Iρf∥L(Θ,φ) ≲ ∥f∥L(Φ,φ) .

From (3.1.11) and (3.1.12) it follows that

(ρ∗(r)ψ(r))η
(
Φ−1(φ(r))

)η ≤ (C0C1)
η
(
Ψ−1(φ(r))

)η
.

By using Theorem 3.3.1, we have the boundedness of M(ρ∗ψ)η from L(Φ((·)1/η),φ)(Rn)

to L(Ψ((·)1/η),φ). That is,∥∥∥(M(ρ∗ψ)η(|f |η)
)1/η∥∥∥

L(Ψ,φ)
=
(∥∥M(ρ∗ψ)η(|f |η)

∥∥
L(Ψ((·)1/η),φ)

)1/η
≲
(
∥|f |η∥

L(Φ((·)1/η),φ)

)1/η
= ∥f∥L(Φ,φ) .

Therefore, if we show that, for Br = B(0, r),

(3.7.2)

 
Br

[b, Iρ]f → 0 as r → ∞,

then we have

(3.7.3) ∥[b, Iρ]f∥L(Ψ,φ) ≲ ∥b∥L1,ψ
∥f∥L(Φ,φ) ,

by Corollary 3.4.3.

In the following we show (3.7.2).

Case 1: First we show (3.7.2) for all f ∈ L(Φ,φ)(Rn) with compact support. Let

supp f ⊂ Bs = B(0, s) with s ≥ 1. Then f ∈ Lp(Rn) and bf ∈ Lp1(Rn) for some

1 < p1 < p < ∞ (see Remark 3.5.2). Since ρ(|y|)
|y|n is locally integrable with respect

to y, we see that (bIρf)χB2s and Iρ(bf)χB2s are in L1(Rn) and that

 
Br

(bIρf)χB2s → 0,

 
Br

Iρ(bf)χB2s → 0 as r → ∞.

If x ̸∈ B2s and y ∈ B(0, s), then |y| < |x− y| and |x|/2 ≤ |x− y| ≤ 3|x|/2,

(3.7.4) ρ(|x− y|) ≤ sup
|x|/2≤t≤3|x|/2

ρ(t).
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Then we have

ρ(|x− y|)
|x− y|n

≲
sup|x|/2≤t≤3|x|/2 ρ(t)

|x|n
∼ sup

|x|/2≤t≤3|x|/2

ρ(t)

tn
,

and

|Iρf(x)| ≲ sup
|x|/2≤t≤3|x|/2

ρ(t)

tn
∥f∥L1 , |Iρ(bf)(x)| ≲ sup

|x|/2≤t≤3|x|/2

ρ(t)

tn
∥bf∥L1 .

From the almost decreasingness of t 7→ ρ(t)/tn−ϵ for some ϵ ∈ (0, n), it follows that
ρ(t)
tn

→ 0 as t→ ∞, which yields

bB2s

 
Br

(Iρf)(1− χB2s) → 0,

 
Br

(Iρ(bf))(1− χB2s) → 0 as r → ∞.

Next, we show

(3.7.5)

 
Br

(b− bB2s)(Iρf)(1− χB2s) → 0 as r → ∞.

Then we have (3.7.2) for all f ∈ L(Φ,φ)(Rn) with compact support.

Now, since Ψ ∈ ∆2, there exists p ∈ (1,∞) such that Ψ−1(u) ≲ u1/p (u ≤ 1).

Let ν = 2p
2p−1

, then∣∣∣∣ 
Br

(b− bB2s)(Iρf)(1− χB2s)

∣∣∣∣
≤
( 

Br

|b− bB2s |ν
′
)1/ν′ ( 

Br

|(Iρf)(1− χB2s)|
ν

)1/ν

.

From Lemma 2.5.3, Remark 2.5.1 and (3.1.12) it follows that

(3.7.6)

( 
Br

|b− bB2s |ν
′
)1/ν′

≲
ˆ r

2s

ψ(t)

t
dt ∥b∥L1,ψ

≲ ψ(r) log r ∥b∥L1,ψ
≲ Ψ−1(φ(r))

Θ−1(φ(r))
log r ∥b∥L1,ψ

.

For j = 0, 1, 2, . . . , from (3.7.4) and (1.1.3) it follows that(ˆ
2j+2Bs\2j+1Bs

|Iρf(x)|ν dx
)1/ν

≲
(ˆ

2j+2Bs\2j+1Bs

(
sup|x|/2≤t≤3|x|/2 ρ(t)

|x|n
∥f∥L1

)ν
dx

)1/ν

≲ (2js)(−nν+n)/ν sup
2js≤t≤3·2j+1s

ρ(t) ∥f∥L1 ≲
ˆ 3·2jK2s

2jK1s

ρ(t)

t
dt ∥f∥L1 ,
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since s ≥ 1. Take the integer j0 such that r ≤ 2j0+2s < 2r. Then, by (3.1.11),

(3.7.7)

( 
Br

|(Iρf)(1− χB2s)|
ν

)1/ν

≤ 1

rn/ν

j0∑
j=0

(ˆ
2j+2Bs\2j+1Bs

|Iρf |ν
)1/ν

≲ 1

rn/ν

ˆ 3K2r/2

0

ρ(t)

t
dt ∥f∥L1 ≲ 1

rn/ν
Θ−1(φ(r))

Φ−1(φ(r))
∥f∥L1 .

By (3.7.6) and (3.7.7), we have∣∣∣∣ 
Br

(b− bB2s)(Iρf)(1− χB2s)

∣∣∣∣
≲ Ψ−1(φ(r))

Θ−1(φ(r))
log r

1

rn/ν
Θ−1(φ(r))

Φ−1(φ(r))
∥b∥L1,ψ

∥f∥L1

=
log r

rn/ν
Ψ−1(φ(r))

Φ−1(φ(r))
∥b∥L1,ψ

∥f∥L1

≲ log r

rn/ν
φ(r)1/p

φ(r)
∥b∥L1,ψ

∥f∥L1 =
log r

r
n
2p (rnφ(r))1−

1
p

∥b∥L1,ψ
∥f∥L1

→ 0 as r → ∞.

Therefore, we have (3.7.2) and (3.7.3) for all f ∈ L(Φ,φ)(Rn) with compact support.

Case 2: For general f ∈ L(Φ,φ)(Rn), using Case 1, we have

∥[b, Iρ](fχB2r)∥L(Ψ,φ) ≲ ∥b∥L1,ψ
∥fχB2r∥L(Φ,φ) ≤ ∥b∥L1,ψ

∥f∥L(Φ,φ) .

Then, by (3.2.5),
 
Br

[b, Iρ](fχB2r) ≤ Ψ−1(φ(r))∥[b, Iρ](fχB2r)∥L(Ψ,φ)

≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) .

Combining this with Lemma 3.5.6, we have
 
Br

[b, Iρ]f ≲ Ψ−1(φ(r))∥b∥L1,ψ
∥f∥L(Φ,φ) ,

which implies (3.7.2). Therefore, we have (3.7.3) for all f ∈ L(Φ,φ)(Rn). The proof

is complete.

Proof of Theorem 3.1.2 (ii). In a similar way to the proof of Theorem 3.1.1 (ii),

we can conclude that ∥b∥L1,ψ
≲ ∥[b, Iρ]∥L(Φ,φ)→L(Ψ,φ) , by calculating |z|n−α instead of

1/K(z).
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3.8 Proofs of Theorems 3.1.3 and 3.1.4

Finally, we prove Theorems 3.1.3 and 3.1.4.

Proof of Theorem 3.1.3. Let Br = B(0, r). By Theorem 3.4.1 we have that,

for every b ∈ L(Φ0,ψ)(Rn), bBr converges as r → ∞ and ∥b − lim
r→∞

bBr∥L(Φ0,ψ) ∼
∥b∥L(Φ0,ψ) . Let b0 = b− lim

r→∞
bBr . Then ∥b0∥L(Φ0,ψ) ∼ ∥b∥L(Φ0,ψ) and [b, T ]f = b0Tf −

T (b0f). Using the boundedness of T on L(Φ,φ)(Rn) and on L(Ψ,θ)(Rn) and generalized

Hölder’s inequality (Lemma 3.2.4) with the assumption (3.1.14), we have

∥[b, T ]f∥L(Ψ,θ) ≤ ∥b0Tf∥L(Ψ,θ) + ∥T (b0f)∥L(Ψ,θ)

≲ ∥b0∥L(Φ0,ψ)∥Tf∥L(Φ,φ) + ∥b0f∥L(Ψ,θ)

≲ ∥b0∥L(Φ0,ψ)∥f∥L(Φ,φ) ∼ ∥b∥L(Φ0,φ)∥f∥L(Φ,φ) .

This is the conclusion.

Proof of Theorem 3.1.4. We use the same method as the proof of Theorem 3.1.3.

For b ∈ L(Φ0,φ)(Rn), let b0 = b− lim
r→∞

bBr . Then ∥b0∥L(Φ0,φ) ∼ ∥b∥L(Φ0,φ) and [b, Iρ]f =

b0Iρf − Iρ(b0f). As we mentioned just before Theorem 3.1.2 Iρ is bounded from

L(Φ,φ)(Rn) to L(Θ,φ)(Rn) by the assumption (3.1.11). Moreover, we see that Iρ is

bounded from L(Ψ0,φ)(Rn) to L(Ψ,φ)(Rn), since

ˆ r

0

ρ(t)

t
dtΨ−1

0 (φ(r)) +

ˆ ∞

r

ρ(t)Ψ−1
0 (φ(t))

t
dt

∼
ˆ r

0

ρ(t)

t
dtΦ−1(φ(r))Φ−1

0 (φ(r)) +

ˆ ∞

r

ρ(t)Φ−1(φ(t))Φ−1
0 (φ(t))

t
dt

≲
(ˆ r

0

ρ(t)

t
dtΦ−1(φ(r)) +

ˆ ∞

r

ρ(t)Φ−1(φ(t))

t
dt

)
Φ−1

0 (φ(r))

≲ Θ−1(φ(r))Φ−1
0 (φ(r)) ≲ Ψ−1(φ(r)).

In the above we use the almost decreasingness of r 7→ Φ−1
0 (φ(r)). Then, using these

boundedness of Iρ and generalized Hölder’s inequality (Lemma 3.2.4), we have

∥[b, Iρ]f∥L(Ψ,φ) ≤ ∥b0Iρf∥L(Ψ,φ) + ∥Iρ(b0f)∥L(Ψ,φ)

≲ ∥b0∥L(Φ0,φ)∥Iρf∥L(Θ,φ) + ∥b0f∥L(Ψ0,φ)

≲ ∥b0∥L(Φ0,φ)∥f∥L(Φ,φ) ∼ ∥b∥L(Φ0,φ)∥f∥L(Φ,φ) .

This is the conclusion.
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