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On characterizations of a Prüfer domain

Akira Okabe∗ and Ryûki Matsuda∗∗

INTRODUCTION

Let D be an integral domain with quotient field K. Then it is easily seen that
every invertible fractional ideal of D is finitely generated. An integral domain D is
called a Prüfer domain if each nonzero finitely generated ideal of D is invertible.

A Prüfer domain may be an example of an integral domain which would have
the maximum number of characterizations in all the classes of integral domains which
have been already defined in commutative algebra. The number of characterizations
of a Prüfer domain is already over eighty now. In this paper, we continue to study a
Prüfer domain and we shall give some new characterizations of a Prüfer domain.

In Section 1, we first collect a family of well-known characterizations of a Prüfer
domain which is only a part of the known characterizations of a Prüfer domain and we
recall some definitions and preliminary results on semistar operations and localizing
systemes which will be used in Section 2.

In Section 2, we shall give some new semistar-theoretical characterizations of a
Prüfer domain by the use of properties of a semistar operation and a localizing system.

Throughout this paper, D denotes an integral domain with quotient field K. We
denote the integral closure of an arbitrary integral domain R by R′. The symbol ⊂
means “proper inclusion”. We shall denote the set of all prime ideals (respectively, all
maximal ideals) of D by Spec(D) (respectively, Max(D)).

1. DEFINITIONS AND PRELIMINARY RESULTS

We first collect a family of well-known characterizations of a Prüfer domain.

Proposition 1. Let D be an integral domain. Then the following statements are
equivalent:

(1) D is a Prüfer domain;
(2) For each prime ideal P of D, DP is a valuation domain;
(3) For each maximal ideal M of D, DM is a valuation domain;
(4) Each nonzero ideal of D that is generated by two elements is invertible;
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(5) Each overring of D is integrally closed;
(6) Each overring of D is flat over D;
(7) D is integrally closed and each overring of D is the intersection of localizations

of D;
(8) D is integrally closed and the prime ideals of any overring of D are the exten-

sions of prime ideals of D;
(9) D is integrally closed and for each prime ideal P of D and each overring T of

D, there is at most one prime ideal of T lying over P ;
(10) D is integrally closed and there is a positive integer n > 1 such that (a, b)n =

(an, bn) for all a, b ∈ D;
(11) If AB = AC, where A, B,C are nonzero ideals of D and A is a nonzero

finitely generated ideal, then B = C;
(12) A(B

∩
C) = AB

∩
AC for all nonzero ideals A,B,C of D;

(13) (A + B)(A
∩

B) = AB for all nonzero ideals A,B of D;
(14) If A and C are nonzero ideals of D with C finitely generated and A ⊆ C,

then there is a nonzero ideal B of D such that A = BC;
(15) (A + B) :D C = A :D C + B :D C for all nonzero ideals A,B,C of D with C

finitely generated;
(16) C :D (A

∩
B) = C :D A + C :D B for all nonzero ideals A, B,C of D with A

and B finitely generated;
(17) A

∩
(B + C) = A

∩
B + A

∩
C for all nonzero ideals A, B,C of D;

(18) D is integrally closed and there exists a positive integer n > 1 such that
an−1b ∈ (an, bn) for all a, b ∈ D;

(19) A :D B + B :D A = D for all nonzero finitely generated ideals A, B of D;
(20) (x) :D (y) + (y) :D (x) = D for all x, y ∈ D;
(21) Every ideal of D is a complete ideal;
(22) Every finitely generated ideal of D is a complete ideal;
(23) Every finitely generated ideal of D is an intersection of valuation ideals;
(24) D is integrally closed and K is a P -extension of D;
(25) D is integrally closed and cfcg = cfg for all f, g ∈ K[X], where cf denotes

the content ideal of f , i.e., the ideal generated by the coefficients of f .

Proof. The equivalence of (1), (2), (4), (11), (12), (13), (14), (15), (16), and (17)
is in [11, Theorem 6.6].

The implication (2) ⇒ (3) is trivial and the implication (3) ⇒ (2) is in [11,
Corollary 6.7].

The implications (6) ⇒ (3) and (2) ⇒ (6) are in [11, Theorem 6.10].
The equivalence of (10) and (18) is in [9, Theorem 24.3]. The equivalence of (1),

(19), and (20) is in [9, Theorem 25.2].
The equivalence of (1), (21), (22), and (23) is in [9, Theorem 24.7].
The equivalence of (1), (5), (7), (8), and (9) is in [9, Theorem 26.2]. The equiva-

lence of (1) to (4) is also in [9, Theorem 22.1].
The implication (18) ⇒ (24) is trivial. The implication (24) ⇒ (3) is in [8,

Theorem 2].
The implication (1) ⇒ (25) is in [9, Corollary 28.5]. The implication (25) ⇒ (18)

is in [9, Theorem 28.6].
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Let D be an integral domain with quotient field K and let K(D) be the set of
all nonzero D-submodules of K. As in [13], we shall call each element of K(D) a
Kaplansky fractional ideal (for short, K-fractional ideal ) of D.

A map E 7→ E∗ of K(D) into K(D) is called a semistar operation if the following
conditions hold for all a ∈ K − {0} and E,F ∈ K(D):

(S1) (aE)∗ = aE∗;
(S2) If E ⊆ F , then E∗ ⊆ F ∗; and
(S3)E ⊆ E∗ and (E∗)∗ = E∗.

The notion of a semistar operation was introduced by Okabe and Matsuda in [11]
as a generalization of the notion of a star operation. For more detailed results on
semistar operations, the reader is referred to [5], [12], [13], [14], [15], [16], and [17].

A K-fractional ideal E of D is called a fractional ideal of D if dE ⊆ D for some
nonzero element d of D. We denote the set of all fractional ideals of D by F(D) and
the set of all finitely generated K-fractional ideals of D by f(D). Moreover we denote
the set of all nonzero integral ideals of D by I(D).

An element E ∈ K(D) is called a ∗-ideal of D if E = E∗. We denote the set of
all ∗-ideals of D by K∗(D). A ∗-ideal P of D is called a prime ∗-ideal of D if P is also
a prime ideal of D.

We shall now recall the definition of a star operation on D from [9].

A map E 7→ E? of F(D) into F(D) is called a star operation on D, if the following
conditions hold for all a ∈ K − {0} and E,F ∈ F(D):

(S0) (xD)? = xD for all x ∈ K − {0};
(S1) (aE)? = aE?;
(S2) If E ⊆ F , then E? ⊆ F ?; and
(S3)E ⊆ E? and (E?)? = E?.

The reader can refer to [9, Sections 32 and 34] for basic properties of star opera-
tions.

We first recall some representative examples of semistar operations and star op-
erations.

Example 2. (1) If we set Ed̄ = E for every E ∈ K(D), then d̄ is a semistar
operation on D and is called the d̄-semistar operation or the identity semistar operation
on D.

(2) If we set E−1 = (D :K E) = {x ∈ K | xE ⊆ D} and Ev̄ = (E−1)−1 for every
E ∈ K(D), then v̄ is a semistar operation on D and is called the v̄-semistar operation
on D.

(3) If we set E ē = K for every E ∈ K(D), then ē is a semistar operation on D
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and is called the ē-semistar operation on D or the trivial semistar operation on D.
(4) Let {Vλ | λ ∈ Λ} be the set of valuation overrings of D. If we set E b̄ =∩

{EVλ | λ ∈ Λ} for every E ∈ K(D), then b̄ is a semistar operation on D and is called
the b̄-semistar operation on D.

(5) If we set Ed = E for all E ∈ F(D), then d is a star operation on D and is
called the d-operation on D.

(6) If we set Ev = (E−1)−1 for all E ∈ F(D), then v is a star operation on D and
is called the v-operation on D.

We shall denote the set of all semistar operations (respectively, all star operations)
on D by SStar(D) (respectively, Star(D)) as in [5].

As in [13], a semistar operation ∗ is said to be weak if D∗ = D and is said to
be strong if D∗ 6= D. The set of all weak semistar operations on D is denoted by
SStarw(D) as in [13]. Moreover we denote the set of all strong semistar operations on
D by SStars(D).

In [7] the notion of a localizing (or topologizing) system of ideals was introduced
by P. Gabriel. A set F of ideals of D is called a localizing system of ideals (for short,
localizing system) if the following conditions are satisfied:

(LS1) If I ∈ F and I ⊆ J with J ∈ I(D), then J ∈ F .
(LS2) If I ∈ F and J ∈ I(D) such that J :D iD ∈ F for all i ∈ I, then J ∈ F .

If F is a localizing system on D and I, J ∈ F , then IJ ∈ F (see, [4, Proposition
5.1.1]) and so I

∩
J ∈ F by (LS1). Thus every localizing system is a generalized

multiplicative system. A localizing system F on D is said to be of finite type if for each
I ∈ F , there exists a finitely generated ideal J ∈ F such that J ⊆ I.

As in [17], we shall denote the set of localizing systems on D by LS(D) and the
set of localizing systems of finite type on D by LSf (D).

Let F be a localizing system on D. We define

DF = {x ∈ K | D :D xD ∈ F}.

Then DF is an overring of D and is called the ring of fractions with respect to F . It is
easy to see that DF =

∪
{D :K I | I ∈ F} [4, (5. 1b)].

Let ∗ be a semistar operation on D. It is proved in [5, Proposition 2.8] that if we
set F∗ = {I ∈ I(D) | I∗ = D∗}, then F∗ is a localizing system on D.

Let T be an overring of D. If we set F(T ) = {I ∈ I(D) | IT = T}, then F(T )
is a localizing system on D. In fact, (LS1) is evident. Next, let I ∈ F(T ) and let J
be a nonzero ideal of D. Suppose that J :D x ∈ F(T ) for each x ∈ I. Then, since
(J :D x)T = T , we have xT = x(J :D x)T ⊆ JT for each x ∈ I and so IT ⊆ JT . Hence
T = IT ⊆ JT ⊆ T and therefore T = JT which implies that J ∈ F(T ). Thus (LS2)
also holds and hence F(T ) is a localizing system on D. It is easy to see that F(T ) is
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a localizing system of finite type. A localizing system F is said to be of overring type
if F = F(T ) for some overring T of D.

Lemma 3 ([12, Lemma 45]). Let T be an overring of D. Then
(1) For each ∗ ∈ SStar(T ), we set EδT/D(∗) = (ET )∗ for each E ∈ K(D). Then

δT/D(∗) ∈ SStar(D).
(2) For each ∗ ∈ SStar(D), we set EαT/D(∗) = E∗ for each E ∈ K(T ) ( ⊆ K(D)).

Then αT/D(∗) ∈ SStar(T ).
(3) αT/D ◦ δT/D is the identity map of SStar(T ) and so δT/D is an injective map.

The map δT/D (respectively, αT/D) is called the descent map (respectively, the
ascent map).

Let T be an overring of D. If we set E∗(T ) = ET for each E ∈ K(D), then ∗(T )

is a semistar operation on D and is called the semistar operation on D induced by T .
If T 6= D, then ∗(T ) is a strong semistar operation on D. Each semistar operation
∗(T ) for an overring T of D is said to be of overring type as in [15]. In this paper an
overring T of D is called a proper overring in case T 6= D and T 6= K. We shall denote
the set of all proper overrings of D by P(D).

Proposition 4. (1) For each overring T of D, ∗(T ) = δT/D(d̄T ), where d̄T is the
d̄-semistar operation on T .

(2) For overrings S ⊂ T of D, ∗(T ) = δS/D(δT/S(d̄T )).
(3) For each overring T of D, δT/D(ēT ) = ē, where ēT is the ē-semistar operation

on T .
(4) For each T ∈ P(D), δT/D(SStar(T ))

∩
SStarw(D) = ∅. In particular, d̄ and

v̄ are not contained in δT/D(SStar(T )).

Proof. (1) For each E ∈ K(D), EδT/D(d̄T ) = (ET )d̄T = ET = E∗(T ) and hence
∗(T ) = δT/D(d̄T ).

(2) By definition, EδS/D(δT/S(d̄T )) = (ES)δT/S(d̄T ) = (ET )d̄T = ET = E∗(T ) for all
E ∈ K(D) and so δS/D(δT/S(d̄T )) = ∗(T ).

(3) This is trivial.
(4) For each ∗ ∈ SStar(T ), we have DδT/D(∗) = (DT )∗ = T ∗ ⊇ T 6= D and hence

δT/D(∗) /∈ SStarw(D). The “in particular” statement is straightforward. ¤

2. CHARACTERIZATIONS OF A PRÜFER DOMAIN

We first recall some equivalent conditions for an overring T of D to be flat over
D.

Proposition 5. Let T be an overring of D. Then the following statements are
equivalent:

(1) T is a flat overring of D, i.e., T is a flat D-module.
(2) TM = DM∩D for each maximal ideal M of T .
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(3) T =
∩
{DM∩D | M ∈ Max(T )}.

(4) For each prime ideal P of D, either PT = T or T ⊆ DP .
(5) For every t ∈ T , (D :D t)T = T .
(6) There exists a generalized multiplicative system S of D such that T = DS and

IT = T for every I ∈ S.
(7) There exists a localizing system F of finite type on D such that T = DF and

IT = T for every I ∈ F .
(8) T = DF(T ).

Proof. The equivalence of (1), (2), (3), and (4) is in [11, Propositions 4.10, 4.12,
and 4.14]. The equivalence of (1), (6), and (7) is in [4, Remark 5.1.11 (b)]. (1) ⇒ (8)
is proved in [18, Proposition 1.2 (i)] or in [4, Proposition 5.1.10]. (8) ⇒ (7) is trivial.
Note that (4) ⇔ (5), (1) ⇔ (4), and (1) ⇔ (2) is proved respectivly in [19, Lemma 1],
[19, Theorem 1], and [19, Theorem 2]. ¤

As in [5], a semistar operation ∗ on D is called a stable semistar operation if
(E

∩
F )∗ = E∗ ∩

F ∗ for all E,F ∈ K(D).

We first recall when a semistar operation of the form ∗(T ) with overring T of D
is a stable semistar operation on D.

Proposition 6 ( [15, Remark 37 (1)]). Let T be an overring of D. Then T is flat
over D if and only if ∗(T ) is a stable semistar operation.

Proof. (⇒) This follows from [2, Chapter I, §2.6, Proposition 6].
(⇐) This follows from [10, Theorem 1]. ¤

Corollary 7. D is a Prüfer domain if and only if ∗(T ) is a stable semistar operation
on D for each overring T of D.

In [11], we defined a partial order ≤ on SStar(D) by ∗1 ≤ ∗2 if and only if
E∗1 ⊆ E∗2 for all E ∈ K(D).

Proposition 8 ( [5, Proposition 2.4]). Let F be a localizing system on D. If we
set EF =

∪
{E :K J | J ∈ F} for each E ∈ K(D), then the map E 7→ E∗F := EF of

K(D) into K(D) is a stable semistar operation on D.

A semistar operation ∗F is called the semistar operation associated to a localizing
system F .

Lemma 9. Let T be an overring of D. Then ∗F(T ) ≤ ∗(T ).

Proof. By definition, E∗F(T ) =
∪
{E :K J | J ∈ F(T )} for each E ∈ K(D). Let

x ∈ E :K J for some J ∈ F(T ). Then xJ ⊆ E and therefore x ∈ xT = xJT ⊆ ET .
Thus E :K J ⊆ ET for all J ∈ F(T ). Hence E∗F(T ) ⊆ ET = E∗(T ) for each E ∈ K(D)
which implies that ∗F(T ) ≤ ∗(T ). ¤
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Proposition 10 ([12, Proposition 34]). Let ∗ be a semistar operation on D. We
set D[∗] =

∪
{I∗ :K I∗ | I ∈ f(D)}. Then D[∗] is an integrally closed overring of D.

Lemma 11. For each overring T of D, we have T ′ = D[∗(T )].

Proof. First we have T ⊆ D[∗(T )] =
∪
{I∗(T ) :K I∗(T ) | I ∈ f(D)} =

∪
{IT :K

IT | I ∈ f(D)} ⊆ {J :K J | J ∈ f(T )} = T ′. Then, since D[∗(T )] is integrally closed by
Proposition 10, we get T ′ ⊆ D[∗(T )] ⊆ T ′ and hence T ′ = D[∗(T )]. ¤

Let T be an overing of D. Then we denote the subset {M
∩

D | M ∈ Max(T )} of
Spec(D) by ∆T

max.

Lemma 12. Let T be an overring of D. Then ?∆T
max

≤ ∗(T ).

Proof. We first show that ET =
∩
{ETM | M ∈ Max(T )} for each E ∈ K(D).

ET ⊆
∩
{ETM | M ∈ Max(T )} is trivial. Conversely choose x ∈

∩
{ETM | M ∈

Max(T )} and set I = (ET ) :T x. Then I is an ideal of T and is not contained in any
maximal ideal of T . Hence I = T and so 1 ∈ (ET ) :T x, that is, x ∈ ET . Therefore
ET =

∩
{ETM | M ∈ Max(T )} for each E ∈ K(D). For each M ∈ Max(T ), DM∩D ⊆

TM is evident and therefore E
?∆T

max =
∩
{EDM∩D | M ∈ Max(T )} ⊆

∩
{ETM | M ∈

Max(T )} = ET = E∗(T ) for all E ∈ K(D). Hence ?∆T
max

≤ ∗(T ). ¤

Proposition 13. The following conditions are equivalent.
(1) D is a Prüfer domain;
(2) b̄ = d̄;
(3) (b̄)f = d̄, where (b̄)f is the finite type semistar operation associated to b̄;
(4) T = T bT for each overring T of D, where bT is the b̄-operation on T .

Proof. (1) ⇒ (2): Let E ∈ K(D), and let x ∈ K with x 6∈ E. Then there exists
a maximal ideal M of D such that E :D x ⊂ M . It follows that x 6∈ EDM .

(2) ⇒ (1): If b̄ = d̄, then every ideal of D is a complete ideal and hence D is a
Prüfer domain by the implication (21) ⇒ (1) in Proposition 1.

(1) ⇔ (3) follows from the equivalence (1) ⇔ (22) in Proposition 1.
(1) ⇔ (4) follows from the equivalence (1) ⇔ (5) in Proposition 1. ¤

Let ∗ be a semistar operation on D. Then ∗ is said to be arithmetisch brauchbar
(abbreviated a.b.) if for all E ∈ f(D) and for all F,G ∈ K(D), (EF )∗ ⊆ (EG)∗ implies
F ∗ ⊆ G∗ and ∗ is said to be endlich arithmetisch brauchbar (abbreviated e.a.b.) if for
all E,F,G ∈ f(D), (EF )∗ ⊆ (EG)∗ implies F ∗ ⊆ G∗.

We get the following characterizations of a Prüfer domain using the a.b. property
or the e.a.b. property of semistar operations:

Proposition 14. Let D be an integral domain. Then the following statements
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are equivalent:
(1) D is a Prüfer domain;
(2) Each semistar operation on D is a.b.;
(3) Each semistar operation on D is e.a.b.;
(4) d̄ is a.b.;
(5) d̄ is e.a.b..

Proof. The implications (2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are clear. The
implication (5) ⇒ (1) is shown in [9, Theorem 24.3].

(1) ⇒ (2) : Let ∗ be a semistar operation on D. Assume that (EF )∗ ⊆ (EG)∗

for E ∈ f(D) and for F,G ∈ K(D). Then (E−1(EF )∗)∗ ⊆ (E−1(EG)∗)∗ and hence
F ∗ = ((EE−1)F ∗)∗ ⊆ ((EE−1)G∗)∗ = G∗ which implies that ∗ is a.b.. ¤

Let ∗ be a semistar operation on D. If we set ∗̄ = ∗F∗ , then it is easily seen that
∗̄ is stable by Proposition 8. Moreover, it is proved in [5, Theorem 2.10 (B)] that ∗ is
stable if and only if ∗ = ∗̄.

We shall now give some new characterizations of a Prüfer domain.

Theorem 15. Let D be an integral domain. Then the following conditions are
equivalent:

(1) D is a Prüfer domain;
(2) ∗F(T ) = ∗(T ) for each overring T of D;
(3) T = D[∗(T )] for each overring T of D.
(4) ?∆T

max
= ∗(T ).

Proof. (1) ⇒ (2) : First, note that F∗(T ) = F(T ) for each overring T of D. In
fact, F∗(T ) = {I ∈ I(D) | I∗(T ) = D∗(T )} = {I ∈ I(D) | IT = DT = T} = F(T ). Then
∗F(T ) = ∗F∗(T ) = ∗(T ). But, since T is flat over D, ∗(T ) is stable by Proposition 6 and
therefore ∗(T ) = ∗(T ) by [5, Theorem 2.10 (B)]. Hence ∗F(T ) = ∗(T ).

(2) ⇒ (1) : Assume that ∗F(T ) = ∗(T ) for each overring T of D. Then, by
Proposition 8, ∗(T ) is stable and so T is flat over D by Proposition 6. Thus every
overring T is flat over D and therefore D is a Prüfer domain by Proposition 1.

(1) ⇔ (3) : This follows from Proposition 1 ((1) ⇔ (5)), Proposition 10 and
Lemma 11.

(4) ⇒ (1) : Let T be an arbitrary overring of D. By hypothesis, D?(T ) = D∆T
max

and therefore T =
∩
{DM∩D | M ∈ Max(T )}. Then, by (1) ⇔ (3) in Proposition 5, T

is flat over D. Hence, by (1) ⇔ (6) in Proposition 1, D is a Prüfer domain.
(1) ⇒ (4) : Assume that D is a Prüfer domain. Then, by Propositions 1 and

5, DM∩D = TM for each M ∈ Max(T ) and hence E
?∆T

max =
∩
{EDM∩D | M ∈

Max(T )} =
∩
{ETM | M ∈ Max(T )} = ET = E∗(T ) for all E ∈ K(D). Hence

?∆T
max

= ∗(T ). ¤
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