Math. J. Ibaraki Univ. 39 (2007), 11-22

Note on the number of semistar operations, XI

Rytiki MATSUDA*

Abstract
We study star operations and semistar operations on an almost pseudo-
valuation domain.

The notion of a star operation is classical, and that of a Kronecker function ring
which arises by a star operation is also classical. Let D be an integral domain, let
K be its quotient field, and let F(D) be the set of non-zero fractional ideals of D. A
mapping I — I* from F(D) to F(D) is called a star operaion on D, if it satisfies the
following conditions: (1) (z)* = (z) for each x € K — {0}; (2) (zI)* = xI* for each
x € K—{0} and I € F(D); (3) I C I* for each I € F(D); (4) (I*)* = I* for each
I € F(D); (5) I C J implies I* C J* for each I,J € F(D). The Kronecker function
ring of D with respect to a star operation * on D was first defined by Priifer ([P]) and
further investigated by Krull ([K]). Let F'(D) be the set of non-zero D-submodules of
K. A mapping I — I* from F/(D) to F/(D) is called a semistar operation on D, if it
satisfies the following conditions: (1) (xI)* = zI* for each z € K — {0} and I € F/(D);
(2) I C I* for each I € F/(D); (3) (I*)* = I* for each I € F/(D); (4) I C J implies
I* C J* for each I, J € F'(D). We confer Fontana-Loper([FL]) and Halter-Koch([HK])
for notions of star operations, semistar operations, and their Kronecker function rings.

Let (D) (resp. ¥'(D)) be the set of star operations (resp. semistar operations)
on D. In this paper, we are interested in cardinalities |X(D)| and |X'(D)]|.

Let D be an integrally closed domain. Then D has only a finite number of semistar
operations if and only if D is a finite dimensional Priifer domain with only a finite
number of maximal ideals ([M4]).

Let V be a valuation domain with dimension n, let v be a valuation belonging
to V, and let T be its value group. Let M = P, 2 P, 2 ------ P 2 (0) be the
prime ideals of V', and let {0} G H,,—1 & - & Hi G T be the convex subgroups of T'.
Let m be a positive integer with n +1 < m < 2n 4 1. Then the following conditions
are equivalent: (1) |¥'(V)| = m; (2) The maximal ideal of Vp, is principal for exactly
2n +1—m of ¢; (3) T'/H; has a minimal positive element for exactly 2n +1 —m of 4
(1))
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In [M5], we studied star operations and semistar operations on a pseudo-valuation
domain (or a PVD) D. We gave conditions for D to have only a finite number of
semistar operations, and showed that conditions for |¥/(D)| < oo reduce to conditions
for fields.

In this paper, we concern with star operations and semistar operations on almost
pseudo-valuation domains. We study almost pseudo-valuation domains with simple
associated valuation rings, and will prove the following,

Theorem Let D be an almost pseudo-valuation domain, let P be the maximal
ideal of D, let V' = (P : P), let M be the maximal ideal of V, and let K = V/M.
Assume that the valuation ring V' is discrete with rank one and D/P = K. Then we
have

(1) If K is a finite field, then |X(D)| < oc.

(2) If P = M?, then |%(D)| = 1 and |X/(D)| = 3, and if P = M3, then |S(D)| = 3
and |X'(D)| = 6.

(3) If P = M* and K is an infinite field, then |X(D)| = oo and |¥/(D)| = cc.

(4) If P = M" with n > 5 and K is an infinite field, then |¥'(D)| = cc.

The paper consists of six sections, Section 1 is a review on almost pseudo-valuation
domains, Section 2 is the general case, Section 3 is the case where P = M? or P = M3,
Section 4 is the case where P = M*, Section 5 is the case where P = M™ with n > 5,
and Section 6 is examples.

81 Review

In this section, we review a result in [M2] on semistar operations on almost pseudo-
valuation domains.

Let I be an ideal of a domain D. If ab € I and b ¢ I imply a™ € I for some n > 0
for each elements a,b € q(D), then I is called a strongly primary ideal of D, where
q(D) denotes the quotient field of D. If each prime ideal of D is strongly primary,
then D is called an almost pseudo-valuation domain (or an APVD). Every PVD is an
almost pseudo-valuation domain. We confer Badawi-Houston([BH]) for almost pseudo-
valuation domains.

(1.1) Let D be an APVD, let P be a maximal ideal of D, let V = (P : P), and
let M be the maximal ideal of V.

(1) F/(D) = F(D) U {a(D)}.

(2) D is a local ring, that is, D has only one maximal ideal.

(3) If D is not a valuation ring, then V = P~1.

(4) The set of non-maximal prime ideals of D coincides with the set of non-
maximal prime ideals of V, and dim (V') = dim (D).

(5) The integral closure D of D is a PVD with maximal ideal M.

(6) Let T be an overring of D. Then either T D>V or T G V.

(7) Let ] = {x € ¥(D) | D* > V}. Then there exists a canonical bijection from
¥/(V) onto Xj.

(8) Let ¥4 = {x € ¥/(D) | D* & V'}. Then ¥/(D) = ¥} U X5.
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(9) If | /(D) |< oo, then dim (D) < oo, V = D, V is a finitely generated D-
module, and V/M is a simple extension field of D/P with [V/M : D/P] < cc.

(1.2) Let D be an APVD which is not a PVD, let P be the maximal ideal of D,
and let V = (P : P). Assume that dim(D) < oo, and let {T | A € A} be the set of
overrings T of D with T g V. Let X be the set of semistar operations * on D such
that D* DV, and let X} be the set of semistar operations * on D such that D* ;Cé V.
Then we have

(1) /(D) = ) U,

(2) | Z(V) |< oc.

@) [ X [=]%(V) ]
(4)

There exists a canonical bijection from the disjoint union (J, ¥(7) onto 3.
82 The general case

Throughout the paper but the final §6, let D be an APVD which is not a PVD,
let P be the maximal ideal of D, let V= (P : P), let M be the maximal ideal of
V, let v be a valuation belonging to V, and set V/M = K. We assume that v is
Z-valued and that K = (D+ M)/M, and let {o; | i € T} = K be a system of complete
representatives of V modulo M, where {0,1} C {«a; | i € Z} C D.

Note: Let V be a Z-valued valuation domain of the form K + M, where K is a
field and M is the maximal ideal of V. Let k be a subfield of K, and let D =k + M.
Assume that dim(D) < oo, and K is a simple extension of k with finite degree. Then
|X(D)| need not be finite ([M3]).

There exists m € V such that M = 7V. Then we have v(7) = 1.

We have V = P : P = P71, where P : P denotes {z € q(D) | zP C P} and P!
denotes D : P.

Let I,J € F(D). If there exists « € q(D) such that zJ = I, then I and .J are said
to be similar, and is denoted by I ~ J. For each I € F(D), set {J € F(D) | J ~1I} =
cl(I).

Let ¥} be the set of semistar operations * on D such that D* D V, and let X}, be
the set of semistar operations on D such that D* & V. We can apply (1.1) and (1.2)
for D.

(2.1) Let z € (D) — {0}, and let k be a positive integer with & > v(z). Then
x can be expressed uniquely as x = agmt + al+17rl+1 + o+ ap_1m 1 + 7Fa, where
I =wv(z) and each a; € K with oy #0 and a € V.

(2.2) There exists a positive integer n > 2 uniquely so that P = M™.

Proof. Set min{v(x) | z € P} =n. Since PV = P, we have P = M". If n =1,
then D is a valuation ring; a contradiction.

For every subset A C q(D), we denote by (A) the D-submodule of q(D) gen-
erated by A. If P = M", then we have P = (7", 7"l ... 72n=2 72n=1) " and
V= (177Ta e 77Tn71)'
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(2.3) (1) We have PY = P, where PV denotes (P~1)~%.
(2) The set Spec(D) of prime ideals of D is {P, (0)}.

(2) follows from (1.1)(4).

The mapping I — I? from F(D) to F(D) is a star operation on D, and is called
the v — operation. The identity mapping d from F(D) to F(D) is a star operation on
D, and is called the d-operation.

We note that V is a divisorial fractional ideal of D, that is, V¥ = V. Each star
operation on D can be uniquely extended to a semistar operation on D. Also let D’
be an overring of D. Then there exists a canonical mapping § from X/(D’) to ¥/(D),
and is called the descent mapping. And ¢ is an injective mapping.

We have |2} = |Z/(V)| =2.

If P = M?, then we have

{IeFD)|[DcIcV}={1),(1,m)}

(2.4) Example Assume that P = M3. Set (1) = Iy, (1,7%) = Ipo, (1,7, 7%) =
Iy, and (1,7 + an?) = I§;, where a € K. Then we have
{I € F(D) | DcClIcC V} = {1071072,107172} U {I(()l,l | o€ ’C}

Proof. Because, {v(z) | x € I — P} is either {0} or {0,1} or {0,2} or {0,1,2}.

(2.5) Example Assume that P = M*. For every element «; € K, set
1) = Iy,
L+ ogm? 4 apn®) = Ig7,

2 3\ __ 791,02
, T2+ QoT )*10,1,2 ,

L+ onn? w?) = Igh 5,

L%, 7)) =TIoas,

(177‘-’7‘-27 773) = IO,L2,3~

Then we have

{I € F(D) | DclIc V} = {Io,Iall’a2,I&12, I()’g, Igill:gz, 1&11’3, 1072,3, 10717273 | each
o; € IC}

Proof. Let I be a fractional ideal of D such that D C I C V. Let 7 = {v(x)| z €
I — P}, say let 7 = {0,1,3}. Then I contains elements a,b € V of the form a =
7+ a1m?,b =73, where a; € K. We have I D (1,a,b). Let I > x = By + 17 + for? +
B3 + p, where each 8; € K and p € P. We have x = 3y + B1a + B3b + 3% + p’ for
some 3’ € K and p’ € P. By the choice of 7, we have 3/ = 0. Hence I = (1,a,b).

(2.6) Example Assume that P = M?®. For every element «; € K, set
(1) = I,

(1,7 4+ aqm? + apm® + agmt) = I,

(1, 7% + an7w® 4 o) =I5,
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)f Io, 45
L+ onm® 4+ agnt, 12 4 agm® + aynt) = I575> 9>,
1L, m+ a2 + agmt, w3 + aznt) = I&ll’,o‘z’%
1 7T—|—oq7r —|—ozz7r3 74) —18‘112‘2,
1,7 +a17r4

(1,

(1,

(

(

(1,

( — I(ll fle)
(1,72 + 73, 7d) = 18“,1274,
(1,

(1,

(

(1,

(1,

)

4
7 + apm?) = 0,2,3 >
1 7T , T )_1034,

a1 ,02,0
4?4 gt w4 ast) = 197535,

3

1, m+ aym®,
3 — Ia17a2

4
Lm+aim, ™) =Ip) 2%
1 7T—|—0¢171'2 73, mt) = 16“7117374,

]. ’/T 7T , T ) = I0727374,
3

2 + T,

2 4y _
(1»7T77T y2, ) = Io1,2,3.4-
Then we have
Qq,02,03 C¥17052 a1 a1,02,03,04 Qq,02,03
{IeFD)|DcIcV}={I,I; I 103,104,101 107173 ,
Q1,02 1,002 1,002,003 al,Oé2 (e3]
Ioxs®s 1o2s”, Io,2,4> Tosa, Inia3 7, Ioals 4:10 1,3,4 10,2,3,4, 10,1,2’3,4 | each a; € K}.

Proof. Let I be a fractional ideal of D such that D C I C V. Let 7 = {v(x)| z €
I — P}, say let 7 = {0,1,3}. Then I contains elements a,b € V of the form a =
T+ a1m? + apmt, b = 7 + azw?, where a1, a,a3 € K. We have I D (1,a,b). Let
I3 x =0+ Bim+ Bor? + B3m® + Bum* + p, where each 3; € K and p € P. We have
x = By + Bra+ Bsb+ B2 + Byt + p’ for some B € K and p’ € P. By the choice of
7, we have 3] = 85, = 0. Hence I = (1, a,b).

Each subset 7 of {0,1,2,3,4} which contains 0 is called a type associated to D.
We have the number 16 of associated types to D. The set of types has a canonical
order so that {0} is the minimal member and {0,1,2,3,4} is the maximal member:
{0},10,1},10,2}, 10,3}, {0,4}, {0, 1,2}, {0,1,3},{0,1,4},{0,2,3}, {0,2,4}, {0,3,4},
{0,1,2,3}, {0,1,2,4},{0,1,3,4},{0,2, 3,4}, {0,1,2,3,4}. Let 7 be a type associated
to D, say let 7 = {0,1,2}. Then the tuple < «aj,as,a3,as > of elements in K
is called a system of parameters of 7 (or, a system of parameters associated to 7),
and 4 is called the length of the system of parameters < «j,as, a3,y >. The pair
<0,1,2;a1,00,a3, ag > = 0 of 7 and < ay, a9, a3,y > is called a data of 7 (or, a
data associated to 7). Set 1 = f7, 7+ oy + agn* = f§, 72 + azm® + aun? = f5.
Then the tuple < f7, f§, f§ > is called an associated system of generators to o. The
fractional ideal (f7, fg, fg) = I is called associated to o, and is denoted by I?. The
tuple < f7, f9, f§ > is also called a canonical system of generators for I associated to
.

Assume that P = M™ for a positive integer n > 2. We confer the previous
examples. Each subset 7 of {0,1,2,--- ;n — 1} which contains 0 is called a type
associated to D. We have the number 2"~ of associated types to D. The set of types

has a canonical order so that {0} = 71 is the minimal member and {0,1,--- ,n—1} =
Ton—1 18 the maximal member. Let 7 = {0,ky,--- ,k,} be a type associated to D
with 0 < k1 < -+ < k. We can define a system of parameters < ay,---,a; > of 7.

It is a tuple of elements in K. The pair < 0,k1,-- ,kp;a1,--- ,aq > = o of 7 and
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< g, - ,qp > is called a data of 7 (or, a data associated to 7). We can define an
associated system < f7, fg,---, f7 1 > of generators to o. It is a tuple of elements in
V. We donote also f7 = fi(0). The fractional ideal (f7, f5, -, f541) = I is said to
be associated to o, and is denoted by I7 (or, by I(c)). The tuple < f7, f,---, f7 .1 >
is also called a canonical system of generators for I associated to o.

(2.7) Proposition Assume that P = M"™ with n > 2. Then we have
{IeFD)|DcIcV}={Il(o1), -+ ,I(09n-1) | each o; is a data associated to
the type 7; for 1 <1 <2771},

§3 The case where P = M? or P = M3

(3.1) Proposition Assume that P = M2 Then we have |[X(D) | = 1 and
|/ (D)| = 3.

Proof. Since 72(1,m) = P, each I € F(D) is divisorial. It follows that |X(D)| = 1.

Let T be an overring of D with V' 2 T'2 D, and take t € T — D. There may arise
the following two cases: (1) v(t) =1, and (2) v(¢) = 0.

Case (1): We may assume that ¢ = 7w + p for some p € P. Hence we have T > 7,
and hence T'= V’; a contradiction.

Case (2): We may assume that ¢t = 1 + am + p for some o € K and p € P. Since
t ¢ D, we have ar € T — D. Case (1) implies that T = V; a contradiction.

We will apply (1.2). Since |¥]| = 2, we have |¥/(D)| =2+ |3(D)| =3.

Throughout the rest of the section, assume that P = M3,

(3.2) We have
{T | T is an overring of D with T G V} = {D, D + M?}.

Proof. Let T be an overring of D with V' 2 T' 2 D, and take t € T — D. The
proof of (3.1) shows that, if T 2 D + M? then T = V. There may arise the following
three cases: (1) v(t) =2, (2) v(t) =1, and (3) v(t) = 0.

Case (1): We may assume that ¢t = 72 + p for some p € P. Hence we have T' > 72,
and T D D + M?.

Case (2): We may assume that ¢t = 7 + an? + p for some o € K and p € P. Since
T > t2, we have T > 72, and hence T D D + M?.

Case (3): We may assume that t = 1 + ;7 + aen? + p for some aj,az € K
and p € P. Since t € D, we have aym + apm? € T — D. Cases 1 and 2 imply that
T > D+ M2

(3.3) (1) Ipz and I§; are incomparable for each o € K.
(2) Iy C Iy, if and only if o = 3.

Proof.  (2) Assume that I§'; C I(?,r Then 7 + ar? € (1,7 + Bn?) implies
7+ an? = (7 + Br?) + p for some p € P. Hence o = (3.
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(3.4) (1) Each two in {Io, Inz2, 01,2, 15} are not similar for each a € K.
(2) Ig; and Ié%l are similar for each o, 3 € K .

Proof. (2) Set 1+ am + o?7? = x. Then we have z(1,7) = (1,7 + ar?).

(3.5) Let * be a star operation on D. Then (Io2)* is either Iz or V, and (1§ ;)*
is either 18’1 or V.

Proof. Since V is a divisorial fractional ideal of D, we have (Ip2)* C V and
(I9)* CV.

(3.6) (1) If we set (Ip2)* = Iz and (I§)** = I§ |, then there is determined a
unique mapping *; from F(D) to F(D).

(2) If we set (Ip2)*> = Io2 and (I§,)*> =V, then there is determined a unique
mapping #*5 from F(D) to F(D).

(3) If we set (Ip2)*® =V and (I§)** = I |, then there is determined a unique
mapping 3 from F(D) to F(D).

(4) If we set (Ip2)™ =V and (I§,)** =V, then there is determined a unique
mapping #4 from F(D) to F(D).

For, each element I € F(D) is similar to one and only one in {Iy, lo,2,lo,1,2, 1§ 1 }-

(8.7) (1) *q is a star operation on D, and %; = d.
(2) *9 is a star operation on D.

(3) #3 is not a star operation on D.

(4) #4 is a star operation on D, and x4 = v.

Proof. (2) For each x € q(D) — {0}, we have (z)*2 = ().

For each = € (D) — {0} and each I € F(D), we have (xI)*? = zI*2.

For each I € F(D), we have I C I*2.

For each I € F(D), we have (I*2)*2 = [*2.

Let I, I, € F(D) with I; C Iy. To prove I}? C I?, it is sufficient to show that,
if 21§, C J then zV C J for each z € (D) — {0} and each J € {Io, o2, 10,1,2}-

(3) Set m+ 72 = 2. Then we have z(1,72) C (1,7 + «2) and 2V ¢ (1,7 + 72).

(3.8) Proposition Assume that P = M3. Then we have |X(D)| = 3 and
X'(D)| = 6.

Proof. It follows that (D) = {d,v,*3}, and that |[2(D)| = 3. We can apply
(3.1) for D' = D + M?. Then we have

IS5 = |S(D)| + |2(D+ M?)| =3+ 1=4.

Since |¥/(V)| =2, it follows that

|X(D)] =31+ 25 =2+4=6.
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§4 The case where P = M*
In this section, we assume that P = M*.
(4.1) Proposition If K is a finite field, then we have |3(D)| < oco.

Proof. Let

X = {lo, Ig7**, I5%, Tos, Ig15°, 15 35 lo2,3, loa,2,3 | each oy € K.

Then X is a finite set. Let x be a star operation on D. Since V is a divisorial
fractional ideal of D, we have D C I* C V for each I € X. If we set I* = g.([), each
element * € X(D) gives rise to an element g, € XX, where X% is the set of mappings

from X to X. And the mapping g : * — g, from %(D) to XX is an injection.

(4.2) Let ay,az,01, 02 € K.

13117042 C 1311’62 if and only if a1 = 81, as = Bs.
g% < I if and only if a1 = fi.

Iallzgz C Ig)ll’g? if and only if a1 = 81, as = Fs.
Igis C 15711)3 if and only if aq = ;.

Proof. For instance, assume that 155> C 15752, Then we have

T+ a1 = (1 + B17?) + (7% + Bsm)p1 + po
for some p; € P. Hence oy = 1. We have 72 + agn® = (72 + Bo7) + p3 for some
p3 € P. Hence as = (5.

(4.3) (1) Igy°* ~ Igy"™ if and only if 87 — B> = af — a2 (mod P).
(2) Iy ~ I}, if and only if o = 3.
(3) Ig45* ~ I3 for each ay, az, By, B2 € K.
(4) I§1 35~ 15173 for each a, f € K.

Proof. (1) Assume that 37 — B2 = o — ay (mod P). Set 1 + (7 + By +
Bom®)(B1 — a1) = x. Then we have zIg'}** = 1511’62.

(3) Set 1 —azm — ayn? = 2. Then we have zI515* = Iy 5.

(4) Set 1 —am =z. Then we have 21§, 3 = I§ ; 5. '

(4.4) Each two in {Io, I57"*, 153, To.s, 16757, 165 5, To.2.3, Io.1,2,3} are not similar
for each «; € K.

Proof. For instance, suppose that there exists x € q(D) so that I51** = zI'§ 5.

We may assume that x = 1+ 317 + Bom? + Bam> + p for some 3; € K and p € P. Then
3 a1,a2 - : st
zm” € Iy 1"* implies a contradiction.

(4.5) Let z € q(D) — {0}.
(1) xIgy™* C Iy implies 2V C Io.
(2) xI5y5® C Iy implies 2V C Io.
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(3) zIgi 3 C Io implies 2V C Ip.

(4) alg""® C Igy® with afyy — () # af — az (mod P) implies 2V C I57*.
(5) xIgy™* C IgQ implies 2V C Igz.

(6) xI(‘ill’az C Iy implies V C Iy 3.

(7) .13]61,1170‘2 C 107273 implies zV C 10,273.
(8) xIyis® 1Dy implies 2V C 1)y
(9) xI§} 5 C I,y implies 2V C 15y
(10) =I5y C Igg implies 2V C 132.
(11) zI§y 5 C 132 implies 2V C 152.
(12) 33[&11132 C 10,3 implies zV C 1073.
(13) zI§y 3 C Io,3 implies 2V C I 3.
(14) 1’[&11:(;2 C 10’273 1mphes zV C I0’2,3.
(15) 37]6%1’3 C 10’2,3 1mphes zV C 10’2)3.

Proof. (4) We may assume that v(x) = 0. Then we may assume that x = 1 +
(m+aym? +agm®)a+p for some o € K and p € P. Then :z:(7r+oz(1)7r2+a(2)7r3) € 1311,042
implies 0‘%1) — Q) = a? — ay (mod P); a contradiction. It follows that x € M*, and
hence zV C I,

(4.6) Fix a data < 0,1;01), () >, and set (Igi(ll”am)* = V. For I5y** with
a? —ay # 04%1) — aqg) (mod P), set (I57*?)* = Igy**. For each 51,02 € K, set
(I0%)* =I5, (193 =V, (Igh 5)* =V, and set (Io3)* = To3, (Io,2,3)* = o 23-
Then we have
(1) There is determined a unique mapping * from F(D) to F(D).
2) For each = € (D) — {0}, we have (z)* = (z).
For each © € q(D) — {0} and each I € F(D), we have (zI)* = zI*.
For each I € F(D), we have I C I*.
For each I € F(D), we have (I*)* = I*.
For each I, I, € F(D) with I C I, we have If C I].

N —

(

(3
(4
(5
(6

(6) follows from (4.5).

(4.7) Proposition Assume that P = M* and K is an infinite field. Then we
have |3X(D)| = oo and [¥'(D)| = oo.

Proof. Let *q,, a., be the star operation on D determined in (4.6). If 13,11’&2 >
IG5, we have a, a, # %4,,6,- It follows that [S(D)| = oc.

85 The case where P = M™ withn > 5

(5.1) Proposition Assume that P = M® and K is a finite field. Then we have
|X(D)] < oc.
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Proof. Let
_ 1,002,063 1,02 (&5} a1 ,062,3,004 a1,002,3 1,002 1,02 (65}
X N {110&[0,1a o alo,z ) 10,3710747[0,1,2 alo,1,3 a10,1,4 a10,2,3 ) 10,2,47
1,02,03 1,02 «
Tosa, 1oy 5™ 1oy 2/ 101 345 02,34, Jo,1,2,3.4 | each o € K}
The similar argument to the proof of (4.1) completes the proof.

(5.2) Assume that P = M°. Let o, 3; € K for each i, j.

Igye*® C 1511’62"63 if and only if a; = 3; for each 1.

Ipy** C 1512’62 if and only if a; = 3; for each .
Igs C 1513 if and only if oy = 5.

13112;%2704376!4 c 1511,22753734

I&izgz,a3 c Igll:gzxﬂS

13117,40162 - Ioﬁ)ll’ff if and only if «; = 3; for each i.

I5y3® C Ig)ggﬁ if and only if a; = 3; for each .
Igh 4 C 1512)4 if and only if oy = 6.
Ig155% C Ig’ll”gféﬂg if and only if a; = 3; for each i.

gy C 15,11@?4 if and only if a; = 3; for each 1.

if and only if o; = G; for each 1.

if and only if a; = 3; for each 1.

15334 C 151173)4 if and only if oy = B1.

Proof. For instance, assume that Ig'7'5*%*** C Igll’gz’m’ﬁ“. Then we have
T+ o + agrt = (7 + B + forrt) 4 (72 + B + Bamt)p1 + p2

for some p; € P. Hence a; = 1 and as = B5. We have
72 + a3md 4+ agnt = (72 + B3md + Burm?) + p3

for some p3 € P. Hence az = B3 and a4 = 4.

(5.3) Assume that P = M®. Then each two in {Io, I} ">, I55®, I¢S, Io 4,
Ia77a83a97a10 Ia117a123a13 Ia147a15 Ial6»al7 IalS I Ia191bé201a21 b‘2210‘23 ja24
0,1,2 »10,1,3 »40,1,4  »40,2,3 > 10,2,40 10,345 £0,1,2,3 > 40,1,2,4 »10,1,3,4>

Ip 23,4, 10,1234} are not similar for each o; € K.
Proof. Because the each two have distinct types.

(5.4) Proposition Assume that P = M™ with n > 6 and K is a finite field.
Then we have |2(D)| < oo.

The proof is similar to that of (5.1).

(5.5) Proposition Assume that P = M"™ with n > 5 and K is an infinite field.
Then we have |X'(D)| = oc.

Proof. Set D + M* = D’. Then D’ is an APVD with maximal ideal M*. D’ is
not a PVD. We have |X(D’)| = oo by (4.7). Hence |¥'(D’)| = oo. Since the descent
map 9§ from ¥'(D’) to ¥/(D) is an injection, we have |X/(D)| = oco.

The proof of our Theorem is complete.
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§6 Examples

In this final section, D does not necessarily denote an APVD which is not a PVD.
We will apply our Theorem to some APVD'’s.

(6.1) Proposition Let V' be a rank one discrete valuation domain of the form
K + M, where K is a field and M is the maximal ideal of V', and let D = K 4+ M™ for
a positive integer n > 2. Then we have

(1) If K is a finite field, then |X(D)| < oo.

(2) If n =2, then |[2(D)| =1 and |X'(D)| = 3, and if n = 3, then |X(D)| = 3 and
(D) = 6.

(3) If n =4 and K is an infinite field, then |X(D)| = co and |¥/(D)] = oo.

(4) If n > 5 and K is an infinite field, then |X/(D)] = cc.

Proof. Then D is an APVD which is not a PVD, P = M™ is the maximal ideal
of D,V =(P:P),and (D+ M)/M =V/M.

(6.2) Let V = KJ[[X]] be the formal power series ring of a variable X over a field
K, let M be the maximal ideal of V', and let D = K + M™ for a positive integer n > 2.
Then we have the same (1) ~ (4) of (6.1).

(6.3) Let V be a rank one discrete valuation domain of the form K + M, where
K is a field and M is the maximal ideal of V, and let D = k + M™ for a positive
integer n > 2 and for a subfield k£ of K. Then, if n > 4 and K is an infinite field, then
X' (D)] = oo.

Proof. Set K + M™ = D’. Then |X/(D’)] = oo by (6.1). Since the descent map
d from ¥/ (D') to ¥'(D) is an injection, we have |X'(D)| = oo.
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