Note on the number of semistar operations, XI

Ryûki Matsuda*

Abstract

We study star operations and semistar operations on an almost pseudovaluation domain.

The notion of a star operation is classical, and that of a Kronecker function ring which arises by a star operation is also classical. Let D be an integral domain, let K be its quotient field, and let $\mathrm{F}(D)$ be the set of non-zero fractional ideals of D. A mapping $I \longmapsto I^{*}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ is called a star operaion on D, if it satisfies the following conditions: (1) $(x)^{*}=(x)$ for each $x \in K-\{0\} ;(2)(x I)^{*}=x I^{*}$ for each $x \in K-\{0\}$ and $I \in \mathrm{~F}(D)$; (3) $I \subset I^{*}$ for each $I \in \mathrm{~F}(D)$; (4) $\left(I^{*}\right)^{*}=I^{*}$ for each $I \in \mathrm{~F}(D) ;(5) I \subset J$ implies $I^{*} \subset J^{*}$ for each $I, J \in \mathrm{~F}(D)$. The Kronecker function ring of D with respect to a star operation $*$ on D was first defined by Prüfer $([\mathrm{P}])$ and further investigated by Krull $([\mathrm{K}])$. Let $\mathrm{F}^{\prime}(D)$ be the set of non-zero D-submodules of K. A mapping $I \longmapsto I^{*}$ from $\mathrm{F}^{\prime}(D)$ to $\mathrm{F}^{\prime}(D)$ is called a semistar operation on D, if it satisfies the following conditions: (1) $(x I)^{*}=x I^{*}$ for each $x \in K-\{0\}$ and $I \in \mathrm{~F}^{\prime}(D)$; (2) $I \subset I^{*}$ for each $I \in \mathrm{~F}^{\prime}(D)$; (3) $\left(I^{*}\right)^{*}=I^{*}$ for each $I \in \mathrm{~F}^{\prime}(D)$; (4) $I \subset J$ implies $I^{*} \subset J^{*}$ for each $I, J \in \mathrm{~F}^{\prime}(D)$. We confer Fontana-Loper([FL]) and Halter-Koch([HK]) for notions of star operations, semistar operations, and their Kronecker function rings.

Let $\Sigma(D)$ (resp. $\Sigma^{\prime}(D)$) be the set of star operations (resp. semistar operations) on D. In this paper, we are interested in cardinalities $|\Sigma(D)|$ and $\left|\Sigma^{\prime}(D)\right|$.

Let D be an integrally closed domain. Then D has only a finite number of semistar operations if and only if D is a finite dimensional Prüfer domain with only a finite number of maximal ideals ([M4]).

Let V be a valuation domain with dimension n, let v be a valuation belonging to V, and let Γ be its value group. Let $M=P_{n} \supsetneqq P_{n-1} \supsetneqq \cdots \cdots P_{1} \supsetneqq$ (0) be the prime ideals of V, and let $\{0\} \varsubsetneqq H_{n-1} \varsubsetneqq \cdots \varsubsetneqq H_{1} \varsubsetneqq \Gamma$ be the convex subgroups of Γ. Let m be a positive integer with $n+1 \leq m \leq 2 n+1$. Then the following conditions are equivalent: (1) $\left|\Sigma^{\prime}(V)\right|=m$; (2) The maximal ideal of $V_{P_{i}}$ is principal for exactly $2 n+1-m$ of i; (3) Γ / H_{i} has a minimal positive element for exactly $2 n+1-m$ of i ([M1]).
Received 30 November, 2006; revised 7 March, 2007
2000 Mathematics Subject Classification. Primary 13A15
Key Words and Phrases. star operation, semistar operation, pseudo-valuation domain, almost pseudovaluation domain
*Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

In [M5], we studied star operations and semistar operations on a pseudo-valuation domain (or a PVD) D. We gave conditions for D to have only a finite number of semistar operations, and showed that conditions for $\left|\Sigma^{\prime}(D)\right|<\infty$ reduce to conditions for fields.

In this paper, we concern with star operations and semistar operations on almost pseudo-valuation domains. We study almost pseudo-valuation domains with simple associated valuation rings, and will prove the following,

Theorem Let D be an almost pseudo-valuation domain, let P be the maximal ideal of D, let $V=(P: P)$, let M be the maximal ideal of V, and let $K=V / M$. Assume that the valuation ring V is discrete with rank one and $D / P=K$. Then we have
(1) If K is a finite field, then $|\Sigma(D)|<\infty$.
(2) If $P=M^{2}$, then $|\Sigma(D)|=1$ and $\left|\Sigma^{\prime}(D)\right|=3$, and if $P=M^{3}$, then $|\Sigma(D)|=3$ and $\left|\Sigma^{\prime}(D)\right|=6$.
(3) If $P=M^{4}$ and K is an infinite field, then $|\Sigma(D)|=\infty$ and $\left|\Sigma^{\prime}(D)\right|=\infty$.
(4) If $P=M^{n}$ with $n \geq 5$ and K is an infinite field, then $\left|\Sigma^{\prime}(D)\right|=\infty$.

The paper consists of six sections, Section 1 is a review on almost pseudo-valuation domains, Section 2 is the general case, Section 3 is the case where $P=M^{2}$ or $P=M^{3}$, Section 4 is the case where $P=M^{4}$, Section 5 is the case where $P=M^{n}$ with $n \geq 5$, and Section 6 is examples.

§1 Review

In this section, we review a result in [M2] on semistar operations on almost pseudovaluation domains.

Let I be an ideal of a domain D. If $a b \in I$ and $b \notin I$ imply $a^{n} \in I$ for some $n>0$ for each elements $a, b \in \mathrm{q}(D)$, then I is called a strongly primary ideal of D, where $\mathrm{q}(D)$ denotes the quotient field of D. If each prime ideal of D is strongly primary, then D is called an almost pseudo-valuation domain (or an APVD). Every PVD is an almost pseudo-valuation domain. We confer Badawi-Houston($[\mathrm{BH}]$) for almost pseudovaluation domains.
(1.1) Let D be an APVD, let P be a maximal ideal of D, let $V=(P: P)$, and let M be the maximal ideal of V.
(1) $\mathrm{F}^{\prime}(D)=\mathrm{F}(D) \cup\{\mathrm{q}(D)\}$.
(2) D is a local ring, that is, D has only one maximal ideal.
(3) If D is not a valuation ring, then $V=P^{-1}$.
(4) The set of non-maximal prime ideals of D coincides with the set of nonmaximal prime ideals of V, and $\operatorname{dim}(V)=\operatorname{dim}(D)$.
(5) The integral closure \bar{D} of D is a PVD with maximal ideal M.
(6) Let T be an overring of D. Then either $T \supset V$ or $T \varsubsetneqq V$.
(7) Let $\Sigma_{1}^{\prime}=\left\{* \in \Sigma^{\prime}(D) \mid D^{*} \supset V\right\}$. Then there exists a canonical bijection from $\Sigma^{\prime}(V)$ onto Σ_{1}^{\prime}.
(8) Let $\Sigma_{2}^{\prime}=\left\{* \in \Sigma^{\prime}(D) \mid D^{*} \varsubsetneqq V\right\}$. Then $\Sigma^{\prime}(D)=\Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime}$.
(9) If $\left|\Sigma^{\prime}(D)\right|<\infty$, then $\operatorname{dim}(D)<\infty, V=\bar{D}, V$ is a finitely generated D module, and V / M is a simple extension field of D / P with $[V / M: D / P]<\infty$.
(1.2) Let D be an APVD which is not a PVD, let P be the maximal ideal of D, and let $V=(P: P)$. Assume that $\operatorname{dim}(D)<\infty$, and let $\left\{T_{\lambda} \mid \lambda \in \Lambda\right\}$ be the set of overrings T of D with $T \varsubsetneqq V$. Let Σ_{1}^{\prime} be the set of semistar operations $*$ on D such that $D^{*} \supset V$, and let Σ_{2}^{\prime} be the set of semistar operations $*$ on D such that $D^{*} \varsubsetneqq V$. Then we have
(1) $\Sigma^{\prime}(D)=\Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime}$.
(2) $\left|\Sigma^{\prime}(V)\right|<\infty$.
(3) $\left|\Sigma_{1}^{\prime}\right|=\left|\Sigma^{\prime}(V)\right|$.
(4) There exists a canonical bijection from the disjoint union $\bigcup_{\lambda} \Sigma\left(T_{\lambda}\right)$ onto Σ_{2}^{\prime}.

$\S 2$ The general case

Throughout the paper but the final $\S 6$, let D be an APVD which is not a PVD, let P be the maximal ideal of D, let $V=(P: P)$, let M be the maximal ideal of V, let v be a valuation belonging to V, and set $V / M=K$. We assume that v is \boldsymbol{Z}-valued and that $K=(D+M) / M$, and let $\left\{\alpha_{i} \mid i \in \mathcal{I}\right\}=\mathcal{K}$ be a system of complete representatives of V modulo M, where $\{0,1\} \subset\left\{\alpha_{i} \mid i \in \mathcal{I}\right\} \subset D$.

Note: Let V be a \boldsymbol{Z}-valued valuation domain of the form $K+M$, where K is a field and M is the maximal ideal of V. Let k be a subfield of K, and let $D=k+M$. Assume that $\operatorname{dim}(D)<\infty$, and K is a simple extension of k with finite degree. Then $|\Sigma(D)|$ need not be finite ([M3]).

There exists $\pi \in V$ such that $M=\pi V$. Then we have $v(\pi)=1$.
We have $V=P: P=P^{-1}$, where $P: P$ denotes $\{x \in \mathrm{q}(D) \mid x P \subset P\}$ and P^{-1} denotes $D: P$.

Let $I, J \in \mathrm{~F}(D)$. If there exists $x \in \mathrm{q}(D)$ such that $x J=I$, then I and J are said to be similar, and is denoted by $I \sim J$. For each $I \in \mathrm{~F}(D)$, set $\{J \in \mathrm{~F}(D) \mid J \sim I\}=$ $\mathrm{cl}(I)$.

Let Σ_{1}^{\prime} be the set of semistar operations $*$ on D such that $D^{*} \supset V$, and let Σ_{2}^{\prime} be the set of semistar operations on D such that $D^{*} \varsubsetneqq V$. We can apply (1.1) and (1.2) for D.
(2.1) Let $x \in \mathrm{q}(D)-\{0\}$, and let k be a positive integer with $k>v(x)$. Then x can be expressed uniquely as $x=\alpha_{l} \pi^{l}+\alpha_{l+1} \pi^{l+1}+\cdots+\alpha_{k-1} \pi^{k-1}+\pi^{k} a$, where $l=v(x)$ and each $\alpha_{i} \in \mathcal{K}$ with $\alpha_{l} \neq 0$ and $a \in V$.
(2.2) There exists a positive integer $n \geq 2$ uniquely so that $P=M^{n}$.

Proof. Set $\min \{v(x) \mid x \in P\}=n$. Since $P V=P$, we have $P=M^{n}$. If $n=1$, then D is a valuation ring; a contradiction.

For every subset $A \subset \mathrm{q}(D)$, we denote by (A) the D-submodule of $\mathrm{q}(D)$ generated by A. If $P=M^{n}$, then we have $P=\left(\pi^{n}, \pi^{n+1}, \cdots, \pi^{2 n-2}, \pi^{2 n-1}\right)$, and $V=\left(1, \pi, \cdots, \pi^{n-1}\right)$.
(2.3) (1) We have $P^{v}=P$, where P^{v} denotes $\left(P^{-1}\right)^{-1}$.
(2) The set $\operatorname{Spec}(D)$ of prime ideals of D is $\{P,(0)\}$.
(2) follows from (1.1)(4).

The mapping $I \longmapsto I^{v}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ is a star operation on D, and is called the v-operation. The identity mapping d from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ is a star operation on D, and is called the d-operation.

We note that V is a divisorial fractional ideal of D, that is, $V^{\mathrm{v}}=V$. Each star operation on D can be uniquely extended to a semistar operation on D. Also let D^{\prime} be an overring of D. Then there exists a canonical mapping δ from $\Sigma^{\prime}\left(D^{\prime}\right)$ to $\Sigma^{\prime}(D)$, and is called the descent mapping. And δ is an injective mapping.

We have $\left|\Sigma_{1}^{\prime}\right|=\left|\Sigma^{\prime}(V)\right|=2$.
If $P=M^{2}$, then we have
$\{I \in \mathrm{~F}(D) \mid D \subset I \subset V\}=\{(1),(1, \pi)\}$.
(2.4) Example Assume that $P=M^{3}$. Set (1) $=I_{0},\left(1, \pi^{2}\right)=I_{0,2},\left(1, \pi, \pi^{2}\right)=$ $I_{0,1,2}$, and $\left(1, \pi+\alpha \pi^{2}\right)=I_{0,1}^{\alpha}$, where $\alpha \in \mathcal{K}$. Then we have
$\{I \in \mathrm{~F}(D) \mid D \subset I \subset V\}=\left\{I_{0}, I_{0,2}, I_{0,1,2}\right\} \cup\left\{I_{0,1}^{\alpha} \mid \alpha \in \mathcal{K}\right\}$.
Proof. Because, $\{v(x) \mid x \in I-P\}$ is either $\{0\}$ or $\{0,1\}$ or $\{0,2\}$ or $\{0,1,2\}$.
(2.5) Example Assume that $P=M^{4}$. For every element $\alpha_{i} \in \mathcal{K}$, set
(1) $=I_{0}$,
$\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}\right)=I_{0,1}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi^{2}+\alpha_{1} \pi^{3}\right)=I_{0,2}^{\alpha_{1}}$,
$\left(1, \pi^{3}\right)=I_{0,3}$,
$\left(1, \pi+\alpha_{1} \pi^{3}, \pi^{2}+\alpha_{2} \pi^{3}\right)=I_{0,1,2}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi+\alpha_{1} \pi^{2}, \pi^{3}\right)=I_{0,1,3}^{\alpha_{1}}$,
$\left(1, \pi^{2}, \pi^{3}\right)=I_{0,2,3}$,
$\left(1, \pi, \pi^{2}, \pi^{3}\right)=I_{0,1,2,3}$.
Then we have
$\{I \in \mathrm{~F}(D) \mid D \subset I \subset V\}=\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}}, I_{0,2}^{\alpha_{1}}, I_{0,3}, I_{0,1,2}^{\alpha_{1}, \alpha_{2}}, I_{0,1,3}^{\alpha_{1}}, I_{0,2,3}, I_{0,1,2,3} \mid\right.$ each $\left.\alpha_{i} \in \mathcal{K}\right\}$.

Proof. Let I be a fractional ideal of D such that $D \subset I \subset V$. Let $\tau=\{v(x) \mid x \in$ $I-P\}$, say let $\tau=\{0,1,3\}$. Then I contains elements $a, b \in V$ of the form $a=$ $\pi+\alpha_{1} \pi^{2}, b=\pi^{3}$, where $\alpha_{1} \in \mathcal{K}$. We have $I \supset(1, a, b)$. Let $I \ni x=\beta_{0}+\beta_{1} \pi+\beta_{2} \pi^{2}+$ $\beta_{3} \pi^{3}+p$, where each $\beta_{i} \in \mathcal{K}$ and $p \in P$. We have $x=\beta_{0}+\beta_{1} a+\beta_{3} b+\beta^{\prime} \pi^{2}+p^{\prime}$ for some $\beta^{\prime} \in \mathcal{K}$ and $p^{\prime} \in P$. By the choice of τ, we have $\beta^{\prime}=0$. Hence $I=(1, a, b)$.
(2.6) Example Assume that $P=M^{5}$. For every element $\alpha_{i} \in \mathcal{K}$, set
(1) $=I_{0}$,
$\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}+\alpha_{3} \pi^{4}\right)=I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$,
$\left(1, \pi^{2}+\alpha_{1} \pi^{3}+\alpha_{2} \pi^{4}\right)=I_{0,2}^{\alpha_{1}, \alpha_{2}}$,

```
\(\left(1, \pi^{3}+\alpha_{1} \pi^{4}\right)=I_{0,3}^{\alpha_{1}}\),
\(\left(1, \pi^{4}\right)=I_{0,4}\),
\(\left(1, \pi+\alpha_{1} \pi^{3}+\alpha_{2} \pi^{4}, \pi^{2}+\alpha_{3} \pi^{3}+\alpha_{4} \pi^{4}\right)=I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}}\),
\(\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{4}, \pi^{3}+\alpha_{3} \pi^{4}\right)=I_{0,1,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}\),
\(\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}, \pi^{4}\right)=I_{0,1,4}^{\alpha_{1}, \alpha_{2}}\),
\(\left(1, \pi^{2}+\alpha_{1} \pi^{4}, \pi^{3}+\alpha_{2} \pi^{4}\right)=I_{0,2,3}^{\alpha_{1}, \alpha_{2}}\),
\(\left(1, \pi^{2}+\alpha_{1} \pi^{3}, \pi^{4}\right)=I_{0,2,4}^{\alpha_{1}}\),
\(\left(1, \pi^{3}, \pi^{4}\right)=I_{0,3,4}\),
\(\left(1, \pi+\alpha_{1} \pi^{4}, \pi^{2}+\alpha_{2} \pi^{4}, \pi^{3}+\alpha_{3} \pi^{4}\right)=I_{0,1,2,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}\),
\(\left(1, \pi+\alpha_{1} \pi^{3}, \pi^{2}+\alpha_{2} \pi^{3}, \pi^{4}\right)=I_{0,1,2,4}^{\alpha_{1}, \alpha_{2}}\),
\(\left(1, \pi+\alpha_{1} \pi^{2}, \pi^{3}, \pi^{4}\right)=I_{0,1,3,4}^{\alpha_{1}}\),
\(\left(1, \pi^{2}, \pi^{3}, \pi^{4}\right)=I_{0,2,3,4}\),
\(\left(1, \pi, \pi^{2}, \pi^{3}, \pi^{4}\right)=I_{0,1,2,3,4}\).
Then we have
    \(\{I \in \mathrm{~F}(D) \mid D \subset I \subset V\}=\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,2}^{\alpha_{1}, \alpha_{2}}, I_{0,3}^{\alpha_{1}}, I_{0,4}, I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}}, I_{0,1,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}\right.\),
\(I_{0,1,4}^{\alpha_{1}, \alpha_{2}}, I_{0,2,3}^{\alpha_{1}, \alpha_{2}}, I_{0,2,4}^{\alpha_{1}}, I_{0,3,4}, I_{0,1,2,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,1,2,4}^{\alpha_{1}, \alpha_{2}}, I_{0,1,3,4}^{\alpha_{1}}, I_{0,2,3,4}, I_{0,1,2,3,4} \mid\) each \(\left.\alpha_{i} \in \mathcal{K}\right\}\).
```

Proof. Let I be a fractional ideal of D such that $D \subset I \subset V$. Let $\tau=\{v(x) \mid x \in$ $I-P\}$, say let $\tau=\{0,1,3\}$. Then I contains elements $a, b \in V$ of the form $a=$ $\pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{4}, b=\pi^{3}+\alpha_{3} \pi^{4}$, where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{K}$. We have $I \supset(1, a, b)$. Let $I \ni x=\beta_{0}+\beta_{1} \pi+\beta_{2} \pi^{2}+\beta_{3} \pi^{3}+\beta_{4} \pi^{4}+p$, where each $\beta_{i} \in \mathcal{K}$ and $p \in P$. We have $x=\beta_{0}+\beta_{1} a+\beta_{3} b+\beta_{1}^{\prime} \pi^{2}+\beta_{2}^{\prime} \pi^{4}+p^{\prime}$ for some $\beta_{i}^{\prime} \in \mathcal{K}$ and $p^{\prime} \in P$. By the choice of τ, we have $\beta_{1}^{\prime}=\beta_{2}^{\prime}=0$. Hence $I=(1, a, b)$.

Each subset τ of $\{0,1,2,3,4\}$ which contains 0 is called a type associated to D. We have the number 16 of associated types to D. The set of types has a canonical order so that $\{0\}$ is the minimal member and $\{0,1,2,3,4\}$ is the maximal member: $\{0\},\{0,1\},\{0,2\},\{0,3\},\{0,4\},\{0,1,2\},\{0,1,3\},\{0,1,4\},\{0,2,3\},\{0,2,4\},\{0,3,4\}$, $\{0,1,2,3\},\{0,1,2,4\},\{0,1,3,4\},\{0,2,3,4\},\{0,1,2,3,4\}$. Let τ be a type associated to D, say let $\tau=\{0,1,2\}$. Then the tuple $<\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}>$ of elements in \mathcal{K} is called a system of parameters of τ (or, a system of parameters associated to τ), and 4 is called the length of the system of parameters $<\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}>$. The pair $<0,1,2 ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}>=\sigma$ of τ and $<\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}>$ is called a data of τ (or, a data associated to $\tau)$. Set $1=f_{1}^{\sigma}, \pi+\alpha_{1} \pi^{3}+\alpha_{2} \pi^{4}=f_{2}^{\sigma}, \pi^{2}+\alpha_{3} \pi^{3}+\alpha_{4} \pi^{4}=f_{3}^{\sigma}$. Then the tuple $<f_{1}^{\sigma}, f_{2}^{\sigma}, f_{3}^{\sigma}>$ is called an associated system of generators to σ. The fractional ideal $\left(f_{1}^{\sigma}, f_{2}^{\sigma}, f_{3}^{\sigma}\right)=I$ is called associated to σ, and is denoted by I^{σ}. The tuple $<f_{1}^{\sigma}, f_{2}^{\sigma}, f_{3}^{\sigma}>$ is also called a canonical system of generators for I associated to σ.

Assume that $P=M^{n}$ for a positive integer $n \geq 2$. We confer the previous examples. Each subset τ of $\{0,1,2, \cdots, n-1\}$ which contains 0 is called a type associated to D. We have the number 2^{n-1} of associated types to D. The set of types has a canonical order so that $\{0\}=\tau_{1}$ is the minimal member and $\{0,1, \cdots, n-1\}=$ $\tau_{2^{n-1}}$ is the maximal member. Let $\tau=\left\{0, k_{1}, \cdots, k_{m}\right\}$ be a type associated to D with $0<k_{1}<\cdots<k_{m}$. We can define a system of parameters $<\alpha_{1}, \cdots, \alpha_{l}>$ of τ. It is a tuple of elements in \mathcal{K}. The pair $<0, k_{1}, \cdots, k_{m} ; \alpha_{1}, \cdots, \alpha_{l}>=\sigma$ of τ and
$<\alpha_{1}, \cdots, \alpha_{l}>$ is called a data of τ (or, a data associated to τ). We can define an associated system $<f_{1}^{\sigma}, f_{2}^{\sigma}, \cdots, f_{m+1}^{\sigma}>$ of generators to σ. It is a tuple of elements in V. We donote also $f_{i}^{\sigma}=f_{i}(\sigma)$. The fractional ideal $\left(f_{1}^{\sigma}, f_{2}^{\sigma}, \cdots, f_{m+1}^{\sigma}\right)=I$ is said to be associated to σ, and is denoted by I^{σ} (or, by $I(\sigma)$). The tuple $<f_{1}^{\sigma}, f_{2}^{\sigma}, \cdots, f_{m+1}^{\sigma}>$ is also called a canonical system of generators for I associated to σ.
(2.7) Proposition Assume that $P=M^{n}$ with $n \geq 2$. Then we have
$\{I \in \mathrm{~F}(D) \mid D \subset I \subset V\}=\left\{I\left(\sigma_{1}\right), \cdots, I\left(\sigma_{2^{n-1}}\right) \mid\right.$ each σ_{i} is a data associated to the type τ_{i} for $\left.1 \leq i \leq 2^{n-1}\right\}$.
$\S 3$ The case where $P=M^{2}$ or $P=M^{3}$
(3.1) Proposition Assume that $P=M^{2}$. Then we have $|\Sigma(D)|=1$ and $\left|\Sigma^{\prime}(D)\right|=3$.

Proof. Since $\pi^{2}(1, \pi)=P$, each $I \in \mathrm{~F}(D)$ is divisorial. It follows that $|\Sigma(D)|=1$.
Let T be an overring of D with $V \supsetneqq T \supsetneqq D$, and take $t \in T-D$. There may arise the following two cases: (1) $v(t)=1$, and (2) $v(t)=0$.

Case (1): We may assume that $t=\pi+p$ for some $p \in P$. Hence we have $T \ni \pi$, and hence $T=V$; a contradiction.

Case (2): We may assume that $t=1+\alpha \pi+p$ for some $\alpha \in \mathcal{K}$ and $p \in P$. Since $t \notin D$, we have $\alpha \pi \in T-D$. Case (1) implies that $T=V$; a contradiction.

We will apply (1.2). Since $\left|\Sigma_{1}^{\prime}\right|=2$, we have $\left|\Sigma^{\prime}(D)\right|=2+|\Sigma(D)|=3$.
Throughout the rest of the section, assume that $P=M^{3}$.
(3.2) We have
$\{T \mid T$ is an overring of D with $T \varsubsetneqq V\}=\left\{D, D+M^{2}\right\}$.
Proof. Let T be an overring of D with $V \supsetneqq T \supsetneqq D$, and take $t \in T-D$. The proof of (3.1) shows that, if $T \supsetneqq D+M^{2}$ then $T=V$. There may arise the following three cases: (1) $v(t)=2,(2) v(t)=1$, and (3) $v(t)=0$.

Case (1): We may assume that $t=\pi^{2}+p$ for some $p \in P$. Hence we have $T \ni \pi^{2}$, and $T \supset D+M^{2}$.

Case (2): We may assume that $t=\pi+\alpha \pi^{2}+p$ for some $\alpha \in \mathcal{K}$ and $p \in P$. Since $T \ni t^{2}$, we have $T \ni \pi^{2}$, and hence $T \supset D+M^{2}$.

Case (3): We may assume that $t=1+\alpha_{1} \pi+\alpha_{2} \pi^{2}+p$ for some $\alpha_{1}, \alpha_{2} \in \mathcal{K}$ and $p \in P$. Since $t \notin D$, we have $\alpha_{1} \pi+\alpha_{2} \pi^{2} \in T-D$. Cases 1 and 2 imply that $T \supset D+M^{2}$.
(3.3) (1) $I_{0,2}$ and $I_{0,1}^{\alpha}$ are incomparable for each $\alpha \in \mathcal{K}$.
(2) $I_{0,1}^{\alpha} \subset I_{0,1}^{\beta}$ if and only if $\alpha=\beta$.

Proof. (2) Assume that $I_{0,1}^{\alpha} \subset I_{0,1}^{\beta}$. Then $\pi+\alpha \pi^{2} \in\left(1, \pi+\beta \pi^{2}\right)$ implies $\pi+\alpha \pi^{2}=\left(\pi+\beta \pi^{2}\right)+p$ for some $p \in P$. Hence $\alpha=\beta$.
(3.4) (1) Each two in $\left\{I_{0}, I_{0,2}, I_{0,1,2}, I_{0,1}^{\alpha}\right\}$ are not similar for each $\alpha \in \mathcal{K}$.
(2) $I_{0,1}^{\alpha}$ and $I_{0,1}^{\beta}$ are similar for each $\alpha, \beta \in \mathcal{K}$.

Proof. (2) Set $1+\alpha \pi+\alpha^{2} \pi^{2}=x$. Then we have $x(1, \pi)=\left(1, \pi+\alpha \pi^{2}\right)$.
(3.5) Let $*$ be a star operation on D. Then $\left(I_{0,2}\right)^{*}$ is either $I_{0,2}$ or V, and $\left(I_{0,1}^{0}\right)^{*}$ is either $I_{0,1}^{0}$ or V.

Proof. Since V is a divisorial fractional ideal of D, we have $\left(I_{0,2}\right)^{*} \subset V$ and $\left(I_{0,1}^{0}\right)^{*} \subset V$.
(3.6) (1) If we set $\left(I_{0,2}\right)^{*_{1}}=I_{0,2}$ and $\left(I_{0,1}^{0}\right)^{*_{1}}=I_{0,1}^{0}$, then there is determined a unique mapping $*_{1}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$.
(2) If we set $\left(I_{0,2}\right)^{* 2}=I_{0,2}$ and $\left(I_{0,1}^{0}\right)^{* 2}=V$, then there is determined a unique mapping $*_{2}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$.
(3) If we set $\left(I_{0,2}\right)^{* 3}=V$ and $\left(I_{0,1}^{0}\right)^{* 3}=I_{0,1}^{0}$, then there is determined a unique mapping $*_{3}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$.
(4) If we set $\left(I_{0,2}\right)^{*_{4}}=V$ and $\left(I_{0,1}^{0}\right)^{*_{4}}=V$, then there is determined a unique mapping $*_{4}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$.

For, each element $I \in \mathrm{~F}(D)$ is similar to one and only one in $\left\{I_{0}, I_{0,2}, I_{0,1,2}, I_{0,1}^{0}\right\}$.
(3.7) (1) $*_{1}$ is a star operation on D, and $*_{1}=\mathrm{d}$.
(2) $*_{2}$ is a star operation on D.
(3) $*_{3}$ is not a star operation on D.
(4) $*_{4}$ is a star operation on D, and $*_{4}=v$.

Proof. (2) For each $x \in \mathrm{q}(D)-\{0\}$, we have $(x)^{*_{2}}=(x)$.
For each $x \in \mathrm{q}(D)-\{0\}$ and each $I \in \mathrm{~F}(D)$, we have $(x I)^{*_{2}}=x I^{*_{2}}$.
For each $I \in \mathrm{~F}(D)$, we have $I \subset I^{*_{2}}$.
For each $I \in \mathrm{~F}(D)$, we have $\left(I^{*_{2}}\right)^{*_{2}}=I^{*_{2}}$.
Let $I_{1}, I_{2} \in \mathrm{~F}(D)$ with $I_{1} \subset I_{2}$. To prove $I_{1}^{*_{2}} \subset I_{2}^{* 2}$, it is sufficient to show that, if $x I_{0,1}^{0} \subset J$ then $x V \subset J$ for each $x \in \mathrm{q}(D)-\{0\}$ and each $J \in\left\{I_{0}, I_{0,2}, I_{0,1,2}\right\}$.
(3) Set $\pi+\pi^{2}=x$. Then we have $x\left(1, \pi^{2}\right) \subset\left(1, \pi+\pi^{2}\right)$ and $x V \not \subset\left(1, \pi+\pi^{2}\right)$.
(3.8) Proposition Assume that $P=M^{3}$. Then we have $|\Sigma(D)|=3$ and $\left|\Sigma^{\prime}(D)\right|=6$.

Proof. It follows that $\Sigma(D)=\left\{d, v, *_{2}\right\}$, and that $|\Sigma(D)|=3$. We can apply (3.1) for $D^{\prime}=D+M^{2}$. Then we have

$$
\begin{aligned}
& \left|\Sigma_{2}^{\prime}\right|=|\Sigma(D)|+\left|\Sigma\left(D+M^{2}\right)\right|=3+1=4 . \\
& \text { Since }\left|\Sigma^{\prime}(V)\right|=2 \text {, it follows that } \\
& \left|\Sigma^{\prime}(D)\right|=\left|\Sigma_{1}^{\prime}\right|+\left|\Sigma_{2}^{\prime}\right|=2+4=6 .
\end{aligned}
$$

$\S 4$ The case where $P=M^{4}$

In this section, we assume that $P=M^{4}$.
(4.1) Proposition If K is a finite field, then we have $|\Sigma(D)|<\infty$.

Proof. Let
$X=\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}}, I_{0,2}^{\alpha_{1}}, I_{0,3}, I_{0,1,2}^{\alpha_{1}, \alpha_{2}}, I_{0,1,3}^{\alpha_{1}}, I_{0,2,3}, I_{0,1,2,3} \mid\right.$ each $\left.\alpha_{i} \in \mathcal{K}\right\}$.
Then X is a finite set. Let $*$ be a star operation on D. Since V is a divisorial fractional ideal of D, we have $D \subset I^{*} \subset V$ for each $I \in X$. If we set $I^{*}=g_{*}(I)$, each element $* \in \Sigma(D)$ gives rise to an element $g_{*} \in X^{X}$, where X^{X} is the set of mappings from X to X. And the mapping $g: * \longmapsto g_{*}$ from $\Sigma(D)$ to X^{X} is an injection.
(4.2) Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathcal{K}$.
$I_{0,1}^{\alpha_{1}, \alpha_{2}} \subset I_{0,1}^{\beta_{1}, \beta_{2}}$ if and only if $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}$.
$I_{0,2}^{\alpha_{1}} \subset I_{0,2}^{\beta_{1}}$ if and only if $\alpha_{1}=\beta_{1}$.
$I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0,1,2}^{\beta_{1}, \beta_{2}}$ if and only if $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}$.
$I_{0,1,3}^{\alpha_{1}} \subset I_{0,1,3}^{\beta_{1}}$ if and only if $\alpha_{1}=\beta_{1}$.
Proof. For instance, assume that $I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0,1,2}^{\beta_{1}, \beta_{2}}$. Then we have
$\pi+\alpha_{1} \pi^{3}=\left(\pi+\beta_{1} \pi^{3}\right)+\left(\pi^{2}+\beta_{3} \pi^{3}\right) p_{1}+p_{2}$
for some $p_{i} \in P$. Hence $\alpha_{1}=\beta_{1}$. We have $\pi^{2}+\alpha_{2} \pi^{3}=\left(\pi^{2}+\beta_{2} \pi^{3}\right)+p_{3}$ for some $p_{3} \in P$. Hence $\alpha_{2}=\beta_{2}$.
(4.3) (1) $I_{0,1}^{\alpha_{1}, \alpha_{2}} \sim I_{0,1}^{\beta_{1}, \beta_{2}}$ if and only if $\beta_{1}^{2}-\beta_{2} \equiv \alpha_{1}^{2}-\alpha_{2}(\bmod P)$.
(2) $I_{0,2}^{\alpha} \sim I_{0,2}^{\beta}$ if and only if $\alpha=\beta$.
(3) $I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \sim I_{0,1,2}^{\beta_{1}, \beta_{2}}$ for each $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathcal{K}$.
(4) $I_{0,1,3}^{\alpha} \sim I_{0,1,3}^{\beta}$ for each $\alpha, \beta \in \mathcal{K}$.

Proof. (1) Assume that $\beta_{1}^{2}-\beta_{2} \equiv \alpha_{1}^{2}-\alpha_{2}(\bmod P)$. Set $1+\left(\pi+\beta_{1} \pi^{2}+\right.$ $\left.\beta_{2} \pi^{3}\right)\left(\beta_{1}-\alpha_{1}\right)=x$. Then we have $x I_{0,1}^{\alpha_{1}, \alpha_{2}}=I_{0,1}^{\beta_{1}, \beta_{2}}$.
(3) Set $1-\alpha_{2} \pi-\alpha_{1} \pi^{2}=x$. Then we have $x I_{0,1,2}^{\alpha_{1}, \alpha_{2}}=I_{0,1,2}^{0,0}$.
(4) Set $1-\alpha \pi=x$. Then we have $x I_{0,1,3}^{\alpha}=I_{0,1,3}^{0}$.
(4.4) Each two in $\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}}, I_{0,2}^{\alpha_{3}}, I_{0,3}, I_{0,1,2}^{\alpha_{4}, \alpha_{5}}, I_{0,1,3}^{\alpha_{6}}, I_{0,2,3}, I_{0,1,2,3}\right\}$ are not similar for each $\alpha_{i} \in \mathcal{K}$.

Proof. For instance, suppose that there exists $x \in \mathrm{q}(D)$ so that $I_{0,1}^{\alpha_{1}, \alpha_{2}}=x I_{0,1,3}^{\alpha_{6}}$. We may assume that $x=1+\beta_{1} \pi+\beta_{2} \pi^{2}+\beta_{3} \pi^{3}+p$ for some $\beta_{i} \in \mathcal{K}$ and $p \in P$. Then $x \pi^{3} \in I_{0,1}^{\alpha_{1}, \alpha_{2}}$ implies a contradiction.
(4.5) Let $x \in \mathrm{q}(D)-\{0\}$.
(1) $x I_{0,1}^{\alpha_{1}, \alpha_{2}} \subset I_{0}$ implies $x V \subset I_{0}$.
(2) $x I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0}$ implies $x V \subset I_{0}$.
(3) $x I_{0,1,3}^{\alpha_{1}} \subset I_{0}$ implies $x V \subset I_{0}$.
(4) $x I_{0,1}^{\alpha_{(1)}, \alpha_{(2)}} \subset I_{0,1}^{\alpha_{1}, \alpha_{2}}$ with $\alpha_{(1)}^{2}-\alpha_{(2)} \not \equiv \alpha_{1}^{2}-\alpha_{2}(\bmod P)$ implies $x V \subset I_{0,1}^{\alpha_{1}, \alpha_{2}}$.
(5) $x I_{0,1}^{\alpha_{1}, \alpha_{2}} \subset I_{0,2}^{\beta}$ implies $x V \subset I_{0,2}^{\beta}$.
(6) $x I_{0,1}^{\alpha_{1}, \alpha_{2}} \subset I_{0,3}$ implies $x V \subset I_{0,3}$.
(7) $x I_{0,1}^{\alpha_{1}, \alpha_{2}} \subset I_{0,2,3}$ implies $x V \subset I_{0,2,3}$.
(8) $x I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0,1}^{\beta_{1}, \beta_{2}}$ implies $x V \subset I_{0,1}^{\beta_{1}, \beta_{2}}$.
(9) $x I_{0,1,3}^{\alpha_{1}} \subset I_{0,1}^{\beta_{1}, \beta_{2}}$ implies $x V \subset I_{0,1}^{\beta_{1}, \beta_{2}}$.
(10) $x I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0,2}^{\beta}$ implies $x V \subset I_{0,2}^{\beta}$.
(11) $x I_{0,1,3}^{\alpha} \subset I_{0,2}^{\beta}$ implies $x V \subset I_{0,2}^{\beta}$.
(12) $x I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0,3}$ implies $x V \subset I_{0,3}$.
(13) $x I_{0,1,3}^{\alpha} \subset I_{0,3}$ implies $x V \subset I_{0,3}$.
(14) $x I_{0,1,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0,2,3}$ implies $x V \subset I_{0,2,3}$.
(15) $x I_{0,1,3}^{\alpha} \subset I_{0,2,3}$ implies $x V \subset I_{0,2,3}$.

Proof. (4) We may assume that $v(x)=0$. Then we may assume that $x=1+$ $\left(\pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}\right) \alpha+p$ for some $\alpha \in \mathcal{K}$ and $p \in P$. Then $x\left(\pi+\alpha_{(1)} \pi^{2}+\alpha_{(2)} \pi^{3}\right) \in I_{0,1}^{\alpha_{1}, \alpha_{2}}$ implies $\alpha_{(1)}^{2}-\alpha_{(2)} \equiv \alpha_{1}^{2}-\alpha_{2}(\bmod P)$; a contradiction. It follows that $x \in M^{4}$, and hence $x V \subset I_{0,1}^{\alpha_{1}, \alpha_{2}}$.
(4.6) Fix a data $<0,1 ; \alpha_{(1)}, \alpha_{(2)}>$, and set $\left(I_{0,1}^{\alpha_{(1)}, \alpha_{(2)}}\right)^{*}=V$. For $I_{0,1}^{\alpha_{1}, \alpha_{2}}$ with $\alpha_{1}^{2}-\alpha_{2} \not \equiv \alpha_{(1)}^{2}-\alpha_{(2)}(\bmod P)$, set $\left(I_{0,1}^{\alpha_{1}, \alpha_{2}}\right)^{*}=I_{0,1}^{\alpha_{1}, \alpha_{2}}$. For each $\beta_{1}, \beta_{2} \in \mathcal{K}$, set $\left(I_{0,2}^{\beta_{1}}\right)^{*}=I_{0,2}^{\beta_{1}},\left(I_{0,1,2}^{\beta_{1}, \beta_{2}}\right)^{*}=V,\left(I_{0,1,3}^{\beta_{1}}\right)^{*}=V$, and set $\left(I_{0,3}\right)^{*}=I_{0,3},\left(I_{0,2,3}\right)^{*}=I_{0,2,3}$.

Then we have
(1) There is determined a unique mapping $*$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$.
(2) For each $x \in \mathrm{q}(D)-\{0\}$, we have $(x)^{*}=(x)$.
(3) For each $x \in \mathrm{q}(D)-\{0\}$ and each $I \in \mathrm{~F}(D)$, we have $(x I)^{*}=x I^{*}$.
(4) For each $I \in \mathrm{~F}(D)$, we have $I \subset I^{*}$.
(5) For each $I \in \mathrm{~F}(D)$, we have $\left(I^{*}\right)^{*}=I^{*}$.
(6) For each $I_{1}, I_{2} \in \mathrm{~F}(D)$ with $I_{1} \subset I_{2}$, we have $I_{1}^{*} \subset I_{2}^{*}$.
(6) follows from (4.5).
(4.7) Proposition Assume that $P=M^{4}$ and K is an infinite field. Then we have $|\Sigma(D)|=\infty$ and $\left|\Sigma^{\prime}(D)\right|=\infty$.

Proof. Let $*_{\alpha_{(1)}, \alpha_{(2)}}$ be the star operation on D determined in (4.6). If $I_{0,1}^{\alpha_{1}, \alpha_{2}} \not \nsucc$ $I_{0,1}^{\beta_{1}, \beta_{2}}$, we have $*_{\alpha_{1}, \alpha_{2}} \neq *_{\beta_{1}, \beta_{2}}$. It follows that $|\Sigma(D)|=\infty$.

$\S 5$ The case where $P=M^{n}$ with $n \geq 5$

(5.1) Proposition Assume that $P=M^{5}$ and K is a finite field. Then we have $|\Sigma(D)|<\infty$.

Proof. Let
$X=\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,2}^{\alpha_{1}, \alpha_{2}}, I_{0,3}^{\alpha_{1}}, I_{0,4}, I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}}, I_{0,1,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,1,4}^{\alpha_{1}, \alpha_{2}}, I_{0,2,3}^{\alpha_{1}, \alpha_{2}}, I_{0,2,4}^{\alpha_{1}}\right.$,
$I_{0,3,4}, I_{0,1,2,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,1,2,4}^{\alpha_{1}, \alpha_{2}}, I_{0,1,3,4}^{\alpha_{1}}, I_{0,2,3,4}, I_{0,1,2,3,4} \mid$ each $\left.\alpha_{i} \in \mathcal{K}\right\}$.
The similar argument to the proof of (4.1) completes the proof.
(5.2) Assume that $P=M^{5}$. Let $\alpha_{i}, \beta_{j} \in \mathcal{K}$ for each i, j.
$I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}} \subset I_{0,1}^{\beta_{1}, \beta_{2}, \beta_{3}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,2}^{\alpha_{1}, \alpha_{2}} \subset I_{0,2}^{\beta_{1}, \beta_{2}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,3}^{\alpha_{1}} \subset I_{0,3}^{\beta_{1}}$ if and only if $\alpha_{1}=\beta_{1}$.
$I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}} \subset I_{0,1,2}^{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,1,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}} \subset I_{0,1,3}^{\beta_{1}, \beta_{2}, \beta_{3}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,1,4}^{\alpha_{1}, \alpha_{2}} \subset I_{0,1,4}^{\beta_{1}, \beta_{2}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,2,3}^{\alpha_{1}, \alpha_{2}} \subset I_{0,2,3}^{\beta_{1}, \beta_{2}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,2,4}^{\alpha_{1}} \subset I_{0,2,4}^{\beta_{1}}$ if and only if $\alpha_{1}=\beta_{1}$.
$I_{0,1,2,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}} \subset I_{0,1,2,3}^{\beta_{1}, \beta_{2}, \beta_{3}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,1,2,4}^{\alpha_{1}, \alpha_{2}} \subset I_{0,1,2,4}^{\beta_{1}, \beta_{2}}$ if and only if $\alpha_{i}=\beta_{i}$ for each i.
$I_{0,1,3,4}^{\alpha_{1}} \subset I_{0,1,3,4}^{\beta_{1}}$ if and only if $\alpha_{1}=\beta_{1}$.
Proof. For instance, assume that $I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}} \subset I_{0,1,2}^{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}}$. Then we have
$\pi+\alpha_{1} \pi^{3}+\alpha_{2} \pi^{4}=\left(\pi+\beta_{1} \pi^{3}+\beta_{2} \pi^{4}\right)+\left(\pi^{2}+\beta_{3} \pi^{3}+\beta_{4} \pi^{4}\right) p_{1}+p_{2}$
for some $p_{i} \in P$. Hence $\alpha_{1}=\beta_{1}$ and $\alpha_{2}=\beta_{2}$. We have
$\pi^{2}+\alpha_{3} \pi^{3}+\alpha_{4} \pi^{4}=\left(\pi^{2}+\beta_{3} \pi^{3}+\beta_{4} \pi^{4}\right)+p_{3}$
for some $p_{3} \in P$. Hence $\alpha_{3}=\beta_{3}$ and $\alpha_{4}=\beta_{4}$.
(5.3) Assume that $P=M^{5}$. Then each two in $\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,2}^{\alpha_{4}, \alpha_{5}}, I_{0,3}^{\alpha_{6}}, I_{0,4}\right.$, $I_{0,1,2}^{\alpha_{7}, \alpha_{8}, \alpha_{9}, \alpha_{10}}, I_{0,1,3}^{\alpha_{11}, \alpha_{12}, \alpha_{13}}, I_{0,1,4}^{\alpha_{14}, \alpha_{15}}, I_{0,2,3}^{\alpha_{16}, \alpha_{17}}, I_{0,2,4}^{\alpha_{18}}, I_{0,3,4}, I_{0,1,2,3}^{\alpha_{19}, \alpha_{20}, \alpha_{21}}, I_{0,1,2,4}^{\alpha_{22}, \alpha_{23}}, I_{0,1,3,4}^{\alpha_{24}}$, $\left.I_{0,2,3,4}, I_{0,1,2,3,4}\right\}$ are not similar for each $\alpha_{i} \in \mathcal{K}$.

Proof. Because the each two have distinct types.
(5.4) Proposition Assume that $P=M^{n}$ with $n \geq 6$ and K is a finite field. Then we have $|\Sigma(D)|<\infty$.

The proof is similar to that of (5.1).
(5.5) Proposition Assume that $P=M^{n}$ with $n \geq 5$ and K is an infinite field. Then we have $\left|\Sigma^{\prime}(D)\right|=\infty$.

Proof. Set $D+M^{4}=D^{\prime}$. Then D^{\prime} is an APVD with maximal ideal M^{4}. D^{\prime} is not a PVD. We have $\left|\Sigma\left(D^{\prime}\right)\right|=\infty$ by (4.7). Hence $\left|\Sigma^{\prime}\left(D^{\prime}\right)\right|=\infty$. Since the descent map δ from $\Sigma^{\prime}\left(D^{\prime}\right)$ to $\Sigma^{\prime}(D)$ is an injection, we have $\left|\Sigma^{\prime}(D)\right|=\infty$.

The proof of our Theorem is complete.

§6 Examples

In this final section, D does not necessarily denote an APVD which is not a PVD. We will apply our Theorem to some APVD's.
(6.1) Proposition Let V be a rank one discrete valuation domain of the form $K+M$, where K is a field and M is the maximal ideal of V, and let $D=K+M^{n}$ for a positive integer $n \geq 2$. Then we have
(1) If K is a finite field, then $|\Sigma(D)|<\infty$.
(2) If $n=2$, then $|\Sigma(D)|=1$ and $\left|\Sigma^{\prime}(D)\right|=3$, and if $n=3$, then $|\Sigma(D)|=3$ and $\left|\Sigma^{\prime}(D)\right|=6$.
(3) If $n=4$ and K is an infinite field, then $|\Sigma(D)|=\infty$ and $\left|\Sigma^{\prime}(D)\right|=\infty$.
(4) If $n \geq 5$ and K is an infinite field, then $\left|\Sigma^{\prime}(D)\right|=\infty$.

Proof. Then D is an APVD which is not a PVD, $P=M^{n}$ is the maximal ideal of $D, V=(P: P)$, and $(D+M) / M=V / M$.
(6.2) Let $V=K[[X]]$ be the formal power series ring of a variable X over a field K, let M be the maximal ideal of V, and let $D=K+M^{n}$ for a positive integer $n \geq 2$. Then we have the same $(1) \sim(4)$ of (6.1).
(6.3) Let V be a rank one discrete valuation domain of the form $K+M$, where K is a field and M is the maximal ideal of V, and let $D=k+M^{n}$ for a positive integer $n \geq 2$ and for a subfield k of K. Then, if $n \geq 4$ and K is an infinite field, then $\left|\Sigma^{\prime}(D)\right|=\infty$.

Proof. Set $K+M^{n}=D^{\prime}$. Then $\left|\Sigma^{\prime}\left(D^{\prime}\right)\right|=\infty$ by (6.1). Since the descent map δ from $\Sigma^{\prime}\left(D^{\prime}\right)$ to $\Sigma^{\prime}(D)$ is an injection, we have $\left|\Sigma^{\prime}(D)\right|=\infty$.

References

[BH] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg. 30(2002), 15911606.
[FL] M. Fontana and K. Loper, Kronecker function rings: a general approach, Ideal theoretic methods in commutative algebra, Lecture notes in Pure and Appl. Math., 220, Dekker, New York, 2001, 189-205.
[HK] F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, Marcel Dekker, 1998.
[K] W. Krull, Beiträge zur Arithmetik kommutativer Integritätesbereiche, Math. Zeit. 41(1936), 545-577.
[M1] R. Matsuda, Note on the number of semistar-operations, Math. J. Ibaraki Univ. 31 (1999), 47-53.
[M2] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ. 37 (2005), 53-79.
[M3] R. Matsuda, Note on the number of semistar operations, VII, J. Commutative Algebra, to appear.
[M4] R. Matsuda, Integrally closed domains with a finite number of semistar operations, J. Commutative Algebra, to appear.
[M5] R. Matsuda, Semistar operations on a pseudo-valuation domain, J. Commutative Algebra, to appear.
[P] H. Prüfer, Untersufungen über Teilbarkeitseigenshaften in Körpern, J. reine angew. Math. 168(1932), 1-36.

