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Note on the number of semistar operations, XI

Ryûki Matsuda∗

Abstract

We study star operations and semistar operations on an almost pseudo-
valuation domain.

The notion of a star operation is classical, and that of a Kronecker function ring
which arises by a star operation is also classical. Let D be an integral domain, let
K be its quotient field, and let F(D) be the set of non-zero fractional ideals of D. A
mapping I 7−→ I∗ from F(D) to F(D) is called a star operaion on D, if it satisfies the
following conditions: (1) (x)∗ = (x) for each x ∈ K − {0}; (2) (xI)∗ = xI∗ for each
x ∈ K − {0} and I ∈ F(D); (3) I ⊂ I∗ for each I ∈ F(D); (4) (I∗)∗ = I∗ for each
I ∈ F(D); (5) I ⊂ J implies I∗ ⊂ J∗ for each I, J ∈ F(D). The Kronecker function
ring of D with respect to a star operation ∗ on D was first defined by Prüfer ([P]) and
further investigated by Krull ([K]). Let F′(D) be the set of non-zero D-submodules of
K. A mapping I 7−→ I∗ from F′(D) to F′(D) is called a semistar operation on D, if it
satisfies the following conditions: (1) (xI)∗ = xI∗ for each x ∈ K−{0} and I ∈ F′(D);
(2) I ⊂ I∗ for each I ∈ F′(D); (3) (I∗)∗ = I∗ for each I ∈ F′(D); (4) I ⊂ J implies
I∗ ⊂ J∗ for each I, J ∈ F′(D). We confer Fontana-Loper([FL]) and Halter-Koch([HK])
for notions of star operations, semistar operations, and their Kronecker function rings.

Let Σ(D) (resp. Σ′(D)) be the set of star operations (resp. semistar operations)
on D. In this paper, we are interested in cardinalities |Σ(D)| and |Σ′(D)|.

Let D be an integrally closed domain. Then D has only a finite number of semistar
operations if and only if D is a finite dimensional Prüfer domain with only a finite
number of maximal ideals ([M4]).

Let V be a valuation domain with dimension n, let v be a valuation belonging
to V , and let Γ be its value group. Let M = Pn % Pn−1 % · · · · · ·P1 % (0) be the
prime ideals of V , and let {0} $ Hn−1 $ · · · $ H1 $ Γ be the convex subgroups of Γ.
Let m be a positive integer with n + 1 ≤ m ≤ 2n + 1. Then the following conditions
are equivalent: (1) |Σ′(V )| = m; (2) The maximal ideal of VPi is principal for exactly
2n + 1 − m of i; (3) Γ/Hi has a minimal positive element for exactly 2n + 1 − m of i
([M1]).
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In [M5], we studied star operations and semistar operations on a pseudo-valuation
domain (or a PVD) D. We gave conditions for D to have only a finite number of
semistar operations, and showed that conditions for |Σ′(D)| < ∞ reduce to conditions
for fields.

In this paper, we concern with star operations and semistar operations on almost
pseudo-valuation domains. We study almost pseudo-valuation domains with simple
associated valuation rings, and will prove the following,

Theorem Let D be an almost pseudo-valuation domain, let P be the maximal
ideal of D, let V = (P : P ), let M be the maximal ideal of V , and let K = V/M .
Assume that the valuation ring V is discrete with rank one and D/P = K. Then we
have

(1) If K is a finite field, then |Σ(D)| < ∞.
(2) If P = M2, then |Σ(D)| = 1 and |Σ′(D)| = 3, and if P = M3, then |Σ(D)| = 3

and |Σ′(D)| = 6.
(3) If P = M4 and K is an infinite field, then |Σ(D)| = ∞ and |Σ′(D)| = ∞.
(4) If P = Mn with n ≥ 5 and K is an infinite field, then |Σ′(D)| = ∞.

The paper consists of six sections, Section 1 is a review on almost pseudo-valuation
domains, Section 2 is the general case, Section 3 is the case where P = M2 or P = M3,
Section 4 is the case where P = M4, Section 5 is the case where P = Mn with n ≥ 5,
and Section 6 is examples.

§1 Review

In this section, we review a result in [M2] on semistar operations on almost pseudo-
valuation domains.

Let I be an ideal of a domain D. If ab ∈ I and b 6∈ I imply an ∈ I for some n > 0
for each elements a, b ∈ q(D), then I is called a strongly primary ideal of D, where
q(D) denotes the quotient field of D. If each prime ideal of D is strongly primary,
then D is called an almost pseudo-valuation domain (or an APVD). Every PVD is an
almost pseudo-valuation domain. We confer Badawi-Houston([BH]) for almost pseudo-
valuation domains.

(1.1) Let D be an APVD, let P be a maximal ideal of D, let V = (P : P ), and
let M be the maximal ideal of V .

(1) F′(D) = F(D) ∪ {q(D)}.
(2) D is a local ring, that is, D has only one maximal ideal.
(3) If D is not a valuation ring, then V = P−1.
(4) The set of non-maximal prime ideals of D coincides with the set of non-

maximal prime ideals of V , and dim (V ) = dim (D).
(5) The integral closure D̄ of D is a PVD with maximal ideal M .
(6) Let T be an overring of D. Then either T ⊃ V or T $ V .
(7) Let Σ′

1 = {∗ ∈ Σ′(D) | D∗ ⊃ V }. Then there exists a canonical bijection from
Σ′(V ) onto Σ′

1.
(8) Let Σ′

2 = {∗ ∈ Σ′(D) | D∗ $ V }. Then Σ′(D) = Σ′
1 ∪ Σ′

2.
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(9) If | Σ′(D) |< ∞, then dim (D) < ∞, V = D̄, V is a finitely generated D-
module, and V/M is a simple extension field of D/P with [V/M : D/P ] < ∞.

(1.2) Let D be an APVD which is not a PVD, let P be the maximal ideal of D,
and let V = (P : P ). Assume that dim(D) < ∞, and let {Tλ | λ ∈ Λ} be the set of
overrings T of D with T $ V . Let Σ′

1 be the set of semistar operations ∗ on D such
that D∗ ⊃ V , and let Σ′

2 be the set of semistar operations ∗ on D such that D∗ $ V .
Then we have

(1) Σ′(D) = Σ′
1 ∪ Σ′

2.
(2) | Σ′(V ) |< ∞.
(3) | Σ′

1 | = | Σ′(V ) |.
(4) There exists a canonical bijection from the disjoint union

∪
λ Σ(Tλ) onto Σ′

2.

§2 The general case

Throughout the paper but the final §6, let D be an APVD which is not a PVD,
let P be the maximal ideal of D, let V = (P : P ), let M be the maximal ideal of
V , let v be a valuation belonging to V , and set V/M = K. We assume that v is
Z-valued and that K = (D+M)/M , and let {αi | i ∈ I} = K be a system of complete
representatives of V modulo M , where {0, 1} ⊂ {αi | i ∈ I} ⊂ D.

Note: Let V be a Z-valued valuation domain of the form K + M , where K is a
field and M is the maximal ideal of V . Let k be a subfield of K, and let D = k + M .
Assume that dim(D) < ∞, and K is a simple extension of k with finite degree. Then
|Σ(D)| need not be finite ([M3]).

There exists π ∈ V such that M = πV . Then we have v(π) = 1.
We have V = P : P = P−1, where P : P denotes {x ∈ q(D) | xP ⊂ P} and P−1

denotes D : P .
Let I, J ∈ F(D). If there exists x ∈ q(D) such that xJ = I, then I and J are said

to be similar, and is denoted by I ∼ J . For each I ∈ F(D), set {J ∈ F(D) | J ∼ I} =
cl(I).

Let Σ′
1 be the set of semistar operations ∗ on D such that D∗ ⊃ V , and let Σ′

2 be
the set of semistar operations on D such that D∗ $ V . We can apply (1.1) and (1.2)
for D.

(2.1) Let x ∈ q(D) − {0}, and let k be a positive integer with k > v(x). Then
x can be expressed uniquely as x = αlπ

l + αl+1π
l+1 + · · · + αk−1π

k−1 + πka, where
l = v(x) and each αi ∈ K with αl 6= 0 and a ∈ V .

(2.2) There exists a positive integer n ≥ 2 uniquely so that P = Mn.

Proof. Set min{v(x) | x ∈ P} = n. Since PV = P , we have P = Mn. If n = 1,
then D is a valuation ring; a contradiction.

For every subset A ⊂ q(D), we denote by (A) the D-submodule of q(D) gen-
erated by A. If P = Mn, then we have P = (πn, πn+1, · · · , π2n−2, π2n−1), and
V = (1, π, · · · , πn−1).
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(2.3) (1) We have P v = P , where P v denotes (P−1)−1.
(2) The set Spec(D) of prime ideals of D is {P, (0)}.

(2) follows from (1.1)(4).
The mapping I 7−→ Iv from F(D) to F(D) is a star operation on D, and is called

the v − operation. The identity mapping d from F(D) to F(D) is a star operation on
D, and is called the d-operation.

We note that V is a divisorial fractional ideal of D, that is, V v = V . Each star
operation on D can be uniquely extended to a semistar operation on D. Also let D′

be an overring of D. Then there exists a canonical mapping δ from Σ′(D′) to Σ′(D),
and is called the descent mapping. And δ is an injective mapping.

We have |Σ′
1| = |Σ′(V )| = 2.

If P = M2, then we have
{I ∈ F(D) | D ⊂ I ⊂ V } = {(1), (1, π)}.

(2.4) Example Assume that P = M3. Set (1) = I0, (1, π2) = I0,2, (1, π, π2) =
I0,1,2, and (1, π + απ2) = Iα

0,1, where α ∈ K. Then we have
{I ∈ F(D) | D ⊂ I ⊂ V } = {I0, I0,2, I0,1,2} ∪ {Iα

0,1 | α ∈ K}.

Proof. Because, {v(x) | x ∈ I − P} is either {0} or {0, 1} or {0, 2} or {0, 1, 2}.

(2.5) Example Assume that P = M4. For every element αi ∈ K, set
(1) = I0,
(1, π + α1π

2 + α2π
3) = Iα1,α2

0,1 ,
(1, π2 + α1π

3) = Iα1
0,2,

(1, π3) = I0,3,
(1, π + α1π

3, π2 + α2π
3) = Iα1,α2

0,1,2 ,
(1, π + α1π

2, π3) = Iα1
0,1,3,

(1, π2, π3) = I0,2,3,
(1, π, π2, π3) = I0,1,2,3.
Then we have
{I ∈ F(D) | D ⊂ I ⊂ V } = {I0, I

α1,α2
0,1 , Iα1

0,2, I0,3, Iα1,α2
0,1,2 , Iα1

0,1,3, I0,2,3, I0,1,2,3 | each
αi ∈ K}.

Proof. Let I be a fractional ideal of D such that D ⊂ I ⊂ V . Let τ = {v(x)| x ∈
I − P}, say let τ = {0, 1, 3}. Then I contains elements a, b ∈ V of the form a =
π + α1π

2, b = π3, where α1 ∈ K. We have I ⊃ (1, a, b). Let I 3 x = β0 + β1π + β2π
2 +

β3π
3 + p, where each βi ∈ K and p ∈ P . We have x = β0 + β1a + β3b + β′π2 + p′ for

some β′ ∈ K and p′ ∈ P . By the choice of τ , we have β′ = 0. Hence I = (1, a, b).

(2.6) Example Assume that P = M5. For every element αi ∈ K, set
(1) = I0,
(1, π + α1π

2 + α2π
3 + α3π

4) = Iα1,α2,α3
0,1 ,

(1, π2 + α1π
3 + α2π

4) = Iα1,α2
0,2 ,
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(1, π3 + α1π
4) = Iα1

0,3,

(1, π4) = I0,4,
(1, π + α1π

3 + α2π
4, π2 + α3π

3 + α4π
4) = Iα1,α2,α3,α4

0,1,2 ,

(1, π + α1π
2 + α2π

4, π3 + α3π
4) = Iα1,α2,α3

0,1,3 ,

(1, π + α1π
2 + α2π

3, π4) = Iα1,α2
0,1,4 ,

(1, π2 + α1π
4, π3 + α2π

4) = Iα1,α2
0,2,3 ,

(1, π2 + α1π
3, π4) = Iα1

0,2,4,

(1, π3, π4) = I0,3,4,
(1, π + α1π

4, π2 + α2π
4, π3 + α3π

4) = Iα1,α2,α3
0,1,2,3 ,

(1, π + α1π
3, π2 + α2π

3, π4) = Iα1,α2
0,1,2,4,

(1, π + α1π
2, π3, π4) = Iα1

0,1,3,4,

(1, π2, π3, π4) = I0,2,3,4,
(1, π, π2, π3, π4) = I0,1,2,3,4.
Then we have
{I ∈ F(D) | D ⊂ I ⊂ V } = {I0, I

α1,α2,α3
0,1 , Iα1,α2

0,2 , Iα1
0,3, I0,4, I

α1,α2,α3,α4
0,1,2 , Iα1,α2,α3

0,1,3 ,
Iα1,α2
0,1,4 , Iα1,α2

0,2,3 , Iα1
0,2,4, I0,3,4, Iα1,α2,α3

0,1,2,3 , Iα1,α2
0,1,2,4, I

α1
0,1,3,4, I0,2,3,4, I0,1,2,3,4 | each αi ∈ K}.

Proof. Let I be a fractional ideal of D such that D ⊂ I ⊂ V . Let τ = {v(x)| x ∈
I − P}, say let τ = {0, 1, 3}. Then I contains elements a, b ∈ V of the form a =
π + α1π

2 + α2π
4, b = π3 + α3π

4, where α1, α2, α3 ∈ K. We have I ⊃ (1, a, b). Let
I 3 x = β0 + β1π + β2π

2 + β3π
3 + β4π

4 + p, where each βi ∈ K and p ∈ P . We have
x = β0 + β1a + β3b + β′

1π
2 + β′

2π
4 + p′ for some β′

i ∈ K and p′ ∈ P . By the choice of
τ , we have β′

1 = β′
2 = 0. Hence I = (1, a, b).

Each subset τ of {0, 1, 2, 3, 4} which contains 0 is called a type associated to D.
We have the number 16 of associated types to D. The set of types has a canonical
order so that {0} is the minimal member and {0, 1, 2, 3, 4} is the maximal member:
{0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}, {0, 3, 4},
{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4}, {0, 1, 2, 3, 4}. Let τ be a type associated
to D, say let τ = {0, 1, 2}. Then the tuple < α1, α2, α3, α4 > of elements in K
is called a system of parameters of τ (or, a system of parameters associated to τ),
and 4 is called the length of the system of parameters < α1, α2, α3, α4 >. The pair
< 0, 1, 2;α1, α2, α3, α4 > = σ of τ and < α1, α2, α3, α4 > is called a data of τ (or, a
data associated to τ). Set 1 = fσ

1 , π + α1π
3 + α2π

4 = fσ
2 , π2 + α3π

3 + α4π
4 = fσ

3 .
Then the tuple < fσ

1 , fσ
2 , fσ

3 > is called an associated system of generators to σ. The
fractional ideal (fσ

1 , fσ
2 , fσ

3 ) = I is called associated to σ, and is denoted by Iσ. The
tuple < fσ

1 , fσ
2 , fσ

3 > is also called a canonical system of generators for I associated to
σ.

Assume that P = Mn for a positive integer n ≥ 2. We confer the previous
examples. Each subset τ of {0, 1, 2, · · · , n − 1} which contains 0 is called a type
associated to D. We have the number 2n−1 of associated types to D. The set of types
has a canonical order so that {0} = τ1 is the minimal member and {0, 1, · · · , n− 1} =
τ2n−1 is the maximal member. Let τ = {0, k1, · · · , km} be a type associated to D
with 0 < k1 < · · · < km. We can define a system of parameters < α1, · · · , αl > of τ .
It is a tuple of elements in K. The pair < 0, k1, · · · , km;α1, · · · , αl > = σ of τ and
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< α1, · · · , αl > is called a data of τ (or, a data associated to τ). We can define an
associated system < fσ

1 , fσ
2 , · · · , fσ

m+1 > of generators to σ. It is a tuple of elements in
V . We donote also fσ

i = fi(σ). The fractional ideal (fσ
1 , fσ

2 , · · · , fσ
m+1) = I is said to

be associated to σ, and is denoted by Iσ (or, by I(σ)). The tuple < fσ
1 , fσ

2 , · · · , fσ
m+1 >

is also called a canonical system of generators for I associated to σ.

(2.7) Proposition Assume that P = Mn with n ≥ 2. Then we have
{I ∈ F(D) | D ⊂ I ⊂ V } = {I(σ1), · · · , I(σ2n−1) | each σi is a data associated to

the type τi for 1 ≤ i ≤ 2n−1}.

§3 The case where P = M2 or P = M3

(3.1) Proposition Assume that P = M2. Then we have |Σ(D) | = 1 and
|Σ′(D)| = 3.

Proof. Since π2(1, π) = P , each I ∈ F(D) is divisorial. It follows that |Σ(D)| = 1.
Let T be an overring of D with V % T % D, and take t ∈ T −D. There may arise

the following two cases: (1) v(t) = 1, and (2) v(t) = 0.
Case (1): We may assume that t = π + p for some p ∈ P . Hence we have T 3 π,

and hence T = V ; a contradiction.
Case (2): We may assume that t = 1 + απ + p for some α ∈ K and p ∈ P . Since

t 6∈ D, we have απ ∈ T − D. Case (1) implies that T = V ; a contradiction.
We will apply (1.2). Since |Σ′

1| = 2, we have |Σ′(D)| = 2 + |Σ(D)| = 3.

Throughout the rest of the section, assume that P = M3.

(3.2) We have
{T | T is an overring of D with T $ V } = {D,D + M2}.

Proof. Let T be an overring of D with V % T % D, and take t ∈ T − D. The
proof of (3.1) shows that, if T % D + M2 then T = V . There may arise the following
three cases: (1) v(t) = 2, (2) v(t) = 1, and (3) v(t) = 0.

Case (1): We may assume that t = π2 +p for some p ∈ P . Hence we have T 3 π2,
and T ⊃ D + M2.

Case (2): We may assume that t = π + απ2 + p for some α ∈ K and p ∈ P . Since
T 3 t2, we have T 3 π2, and hence T ⊃ D + M2.

Case (3): We may assume that t = 1 + α1π + α2π
2 + p for some α1, α2 ∈ K

and p ∈ P . Since t 6∈ D, we have α1π + α2π
2 ∈ T − D. Cases 1 and 2 imply that

T ⊃ D + M2.

(3.3) (1) I0,2 and Iα
0,1 are incomparable for each α ∈ K.

(2) Iα
0,1 ⊂ Iβ

0,1 if and only if α = β.

Proof. (2) Assume that Iα
0,1 ⊂ Iβ

0,1. Then π + απ2 ∈ (1, π + βπ2) implies
π + απ2 = (π + βπ2) + p for some p ∈ P . Hence α = β.
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(3.4) (1) Each two in {I0, I0,2, I0,1,2, I
α
0,1} are not similar for each α ∈ K.

(2) Iα
0,1 and Iβ

0,1 are similar for each α, β ∈ K .

Proof. (2) Set 1 + απ + α2π2 = x. Then we have x(1, π) = (1, π + απ2).

(3.5) Let ∗ be a star operation on D. Then (I0,2)∗ is either I0,2 or V , and (I0
0,1)∗

is either I0
0,1 or V .

Proof. Since V is a divisorial fractional ideal of D, we have (I0,2)∗ ⊂ V and
(I0

0,1)∗ ⊂ V .

(3.6) (1) If we set (I0,2)∗1 = I0,2 and (I0
0,1)∗1 = I0

0,1, then there is determined a
unique mapping ∗1 from F(D) to F(D).

(2) If we set (I0,2)∗2 = I0,2 and (I0
0,1)∗2 = V , then there is determined a unique

mapping ∗2 from F(D) to F(D).
(3) If we set (I0,2)∗3 = V and (I0

0,1)
∗3 = I0

0,1, then there is determined a unique
mapping ∗3 from F(D) to F(D).

(4) If we set (I0,2)∗4 = V and (I0
0,1)

∗4 = V , then there is determined a unique
mapping ∗4 from F(D) to F(D).

For, each element I ∈ F(D) is similar to one and only one in {I0, I0,2, I0,1,2, I
0
0,1}.

(3.7) (1) ∗1 is a star operation on D, and ∗1 = d.
(2) ∗2 is a star operation on D.
(3) ∗3 is not a star operation on D.
(4) ∗4 is a star operation on D, and ∗4 = v.

Proof. (2) For each x ∈ q(D) − {0}, we have (x)∗2 = (x).
For each x ∈ q(D) − {0} and each I ∈ F(D), we have (xI)∗2 = xI∗2 .
For each I ∈ F(D), we have I ⊂ I∗2 .
For each I ∈ F(D), we have (I∗2)∗2 = I∗2 .
Let I1, I2 ∈ F(D) with I1 ⊂ I2. To prove I∗2

1 ⊂ I∗2
2 , it is sufficient to show that,

if xI0
0,1 ⊂ J then xV ⊂ J for each x ∈ q(D) − {0} and each J ∈ {I0, I0,2, I0,1,2}.
(3) Set π + π2 = x. Then we have x(1, π2) ⊂ (1, π + π2) and xV 6⊂ (1, π + π2).

(3.8) Proposition Assume that P = M3. Then we have |Σ(D)| = 3 and
|Σ′(D)| = 6.

Proof. It follows that Σ(D) = {d, v, ∗2}, and that |Σ(D)| = 3. We can apply
(3.1) for D′ = D + M2. Then we have

|Σ′
2| = |Σ(D)| + |Σ(D + M2)| = 3 + 1 = 4.

Since |Σ′(V )| = 2, it follows that
|Σ′(D)| = |Σ′

1| + |Σ′
2| = 2 + 4 = 6.
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§4 The case where P = M4

In this section, we assume that P = M4.

(4.1) Proposition If K is a finite field, then we have |Σ(D)| < ∞.

Proof. Let
X = {I0, I

α1,α2
0,1 , Iα1

0,2, I0,3, Iα1,α2
0,1,2 , Iα1

0,1,3, I0,2,3, I0,1,2,3 | each αi ∈ K}.
Then X is a finite set. Let ∗ be a star operation on D. Since V is a divisorial

fractional ideal of D, we have D ⊂ I∗ ⊂ V for each I ∈ X. If we set I∗ = g∗(I), each
element ∗ ∈ Σ(D) gives rise to an element g∗ ∈ XX , where XX is the set of mappings
from X to X. And the mapping g : ∗ 7−→ g∗ from Σ(D) to XX is an injection.

(4.2) Let α1, α2, β1, β2 ∈ K.
Iα1,α2
0,1 ⊂ Iβ1,β2

0,1 if and only if α1 = β1, α2 = β2.
Iα1
0,2 ⊂ Iβ1

0,2 if and only if α1 = β1.
Iα1,α2
0,1,2 ⊂ Iβ1,β2

0,1,2 if and only if α1 = β1, α2 = β2.
Iα1
0,1,3 ⊂ Iβ1

0,1,3 if and only if α1 = β1.

Proof. For instance, assume that Iα1,α2
0,1,2 ⊂ Iβ1,β2

0,1,2 . Then we have
π + α1π

3 = (π + β1π
3) + (π2 + β3π

3)p1 + p2

for some pi ∈ P . Hence α1 = β1. We have π2 + α2π
3 = (π2 + β2π

3) + p3 for some
p3 ∈ P . Hence α2 = β2.

(4.3) (1) Iα1,α2
0,1 ∼ Iβ1,β2

0,1 if and only if β2
1 − β2 ≡ α2

1 − α2 (mod P ).
(2) Iα

0,2 ∼ Iβ
0,2 if and only if α = β.

(3) Iα1,α2
0,1,2 ∼ Iβ1,β2

0,1,2 for each α1, α2, β1, β2 ∈ K.
(4) Iα

0,1,3 ∼ Iβ
0,1,3 for each α, β ∈ K.

Proof. (1) Assume that β2
1 − β2 ≡ α2

1 − α2 (mod P ). Set 1 + (π + β1π
2 +

β2π
3)(β1 − α1) = x. Then we have xIα1,α2

0,1 = Iβ1,β2
0,1 .

(3) Set 1 − α2π − α1π
2 = x. Then we have xIα1,α2

0,1,2 = I0,0
0,1,2.

(4) Set 1 − απ = x. Then we have xIα
0,1,3 = I0

0,1,3.

(4.4) Each two in {I0, I
α1,α2
0,1 , Iα3

0,2, I0,3, Iα4,α5
0,1,2 , Iα6

0,1,3, I0,2,3, I0,1,2,3} are not similar
for each αi ∈ K.

Proof. For instance, suppose that there exists x ∈ q(D) so that Iα1,α2
0,1 = xIα6

0,1,3.
We may assume that x = 1+ β1π +β2π

2 +β3π
3 + p for some βi ∈ K and p ∈ P . Then

xπ3 ∈ Iα1,α2
0,1 implies a contradiction.

(4.5) Let x ∈ q(D) − {0}.
(1) xIα1,α2

0,1 ⊂ I0 implies xV ⊂ I0.
(2) xIα1,α2

0,1,2 ⊂ I0 implies xV ⊂ I0.
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(3) xIα1
0,1,3 ⊂ I0 implies xV ⊂ I0.

(4) xI
α(1),α(2)
0,1 ⊂ Iα1,α2

0,1 with α2
(1) −α(2) 6≡ α2

1 −α2 (mod P ) implies xV ⊂ Iα1,α2
0,1 .

(5) xIα1,α2
0,1 ⊂ Iβ

0,2 implies xV ⊂ Iβ
0,2.

(6) xIα1,α2
0,1 ⊂ I0,3 implies xV ⊂ I0,3.

(7) xIα1,α2
0,1 ⊂ I0,2,3 implies xV ⊂ I0,2,3.

(8) xIα1,α2
0,1,2 ⊂ Iβ1,β2

0,1 implies xV ⊂ Iβ1,β2
0,1 .

(9) xIα1
0,1,3 ⊂ Iβ1,β2

0,1 implies xV ⊂ Iβ1,β2
0,1 .

(10) xIα1,α2
0,1,2 ⊂ Iβ

0,2 implies xV ⊂ Iβ
0,2.

(11) xIα
0,1,3 ⊂ Iβ

0,2 implies xV ⊂ Iβ
0,2.

(12) xIα1,α2
0,1,2 ⊂ I0,3 implies xV ⊂ I0,3.

(13) xIα
0,1,3 ⊂ I0,3 implies xV ⊂ I0,3.

(14) xIα1,α2
0,1,2 ⊂ I0,2,3 implies xV ⊂ I0,2,3.

(15) xIα
0,1,3 ⊂ I0,2,3 implies xV ⊂ I0,2,3.

Proof. (4) We may assume that v(x) = 0. Then we may assume that x = 1 +
(π+α1π

2+α2π
3)α+p for some α ∈ K and p ∈ P . Then x(π+α(1)π

2+α(2)π
3) ∈ Iα1,α2

0,1

implies α2
(1) − α(2) ≡ α2

1 − α2 (mod P ); a contradiction. It follows that x ∈ M4, and
hence xV ⊂ Iα1,α2

0,1 .

(4.6) Fix a data < 0, 1;α(1), α(2) >, and set (Iα(1),α(2)
0,1 )∗ = V . For Iα1,α2

0,1 with
α2

1 − α2 6≡ α2
(1) − α(2) (mod P ), set (Iα1,α2

0,1 )∗ = Iα1,α2
0,1 . For each β1, β2 ∈ K, set

(Iβ1
0,2)

∗ = Iβ1
0,2, (I

β1,β2
0,1,2 )∗ = V, (Iβ1

0,1,3)
∗ = V , and set (I0,3)∗ = I0,3, (I0,2,3)∗ = I0,2,3.

Then we have
(1) There is determined a unique mapping ∗ from F(D) to F(D).
(2) For each x ∈ q(D) − {0}, we have (x)∗ = (x).
(3) For each x ∈ q(D) − {0} and each I ∈ F(D), we have (xI)∗ = xI∗.
(4) For each I ∈ F(D), we have I ⊂ I∗.
(5) For each I ∈ F(D), we have (I∗)∗ = I∗.
(6) For each I1, I2 ∈ F(D) with I1 ⊂ I2, we have I∗1 ⊂ I∗2 .

(6) follows from (4.5).

(4.7) Proposition Assume that P = M4 and K is an infinite field. Then we
have |Σ(D)| = ∞ and |Σ′(D)| = ∞.

Proof. Let ∗α(1),α(2) be the star operation on D determined in (4.6). If Iα1,α2
0,1 6∼

Iβ1,β2
0,1 , we have ∗α1,α2 6= ∗β1,β2 . It follows that |Σ(D)| = ∞.

§5 The case where P = Mn with n ≥ 5

(5.1) Proposition Assume that P = M5 and K is a finite field. Then we have
|Σ(D)| < ∞.
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Proof. Let
X = {I0, I

α1,α2,α3
0,1 , Iα1,α2

0,2 , Iα1
0,3, I0,4, I

α1,α2,α3,α4
0,1,2 , Iα1,α2,α3

0,1,3 , Iα1,α2
0,1,4 , Iα1,α2

0,2,3 , Iα1
0,2,4,

I0,3,4, Iα1,α2,α3
0,1,2,3 , Iα1,α2

0,1,2,4, I
α1
0,1,3,4, I0,2,3,4, I0,1,2,3,4 | each αi ∈ K}.

The similar argument to the proof of (4.1) completes the proof.

(5.2) Assume that P = M5. Let αi, βj ∈ K for each i, j.
Iα1,α2,α3
0,1 ⊂ Iβ1,β2,β3

0,1 if and only if αi = βi for each i.
Iα1,α2
0,2 ⊂ Iβ1,β2

0,2 if and only if αi = βi for each i.
Iα1
0,3 ⊂ Iβ1

0,3 if and only if α1 = β1.
Iα1,α2,α3,α4
0,1,2 ⊂ Iβ1,β2,β3,β4

0,1,2 if and only if αi = βi for each i.
Iα1,α2,α3
0,1,3 ⊂ Iβ1,β2,β3

0,1,3 if and only if αi = βi for each i.
Iα1,α2
0,1,4 ⊂ Iβ1,β2

0,1,4 if and only if αi = βi for each i.
Iα1,α2
0,2,3 ⊂ Iβ1,β2

0,2,3 if and only if αi = βi for each i.
Iα1
0,2,4 ⊂ Iβ1

0,2,4 if and only if α1 = β1.
Iα1,α2,α3
0,1,2,3 ⊂ Iβ1,β2,β3

0,1,2,3 if and only if αi = βi for each i.
Iα1,α2
0,1,2,4 ⊂ Iβ1,β2

0,1,2,4 if and only if αi = βi for each i.
Iα1
0,1,3,4 ⊂ Iβ1

0,1,3,4 if and only if α1 = β1.

Proof. For instance, assume that Iα1,α2,α3,α4
0,1,2 ⊂ Iβ1,β2,β3,β4

0,1,2 . Then we have
π + α1π

3 + α2π
4 = (π + β1π

3 + β2π
4) + (π2 + β3π

3 + β4π
4)p1 + p2

for some pi ∈ P . Hence α1 = β1 and α2 = β2. We have
π2 + α3π

3 + α4π
4 = (π2 + β3π

3 + β4π
4) + p3

for some p3 ∈ P . Hence α3 = β3 and α4 = β4.

(5.3) Assume that P = M5. Then each two in {I0, I
α1,α2,α3
0,1 , Iα4,α5

0,2 , Iα6
0,3, I0,4,

Iα7,α8,α9,α10
0,1,2 , Iα11,α12,α13

0,1,3 , Iα14,α15
0,1,4 , Iα16,α17

0,2,3 , Iα18
0,2,4, I0,3,4, Iα19,α20,α21

0,1,2,3 , Iα22,α23
0,1,2,4 , Iα24

0,1,3,4,
I0,2,3,4, I0,1,2,3,4} are not similar for each αi ∈ K.

Proof. Because the each two have distinct types.

(5.4) Proposition Assume that P = Mn with n ≥ 6 and K is a finite field.
Then we have |Σ(D)| < ∞.

The proof is similar to that of (5.1).

(5.5) Proposition Assume that P = Mn with n ≥ 5 and K is an infinite field.
Then we have |Σ′(D)| = ∞.

Proof. Set D + M4 = D′. Then D′ is an APVD with maximal ideal M4. D′ is
not a PVD. We have |Σ(D′)| = ∞ by (4.7). Hence |Σ′(D′)| = ∞. Since the descent
map δ from Σ′(D′) to Σ′(D) is an injection, we have |Σ′(D)| = ∞.

The proof of our Theorem is complete.
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§6 Examples

In this final section, D does not necessarily denote an APVD which is not a PVD.
We will apply our Theorem to some APVD’s.

(6.1) Proposition Let V be a rank one discrete valuation domain of the form
K + M , where K is a field and M is the maximal ideal of V , and let D = K + Mn for
a positive integer n ≥ 2. Then we have

(1) If K is a finite field, then |Σ(D)| < ∞.
(2) If n = 2, then |Σ(D)| = 1 and |Σ′(D)| = 3, and if n = 3, then |Σ(D)| = 3 and

|Σ′(D)| = 6.
(3) If n = 4 and K is an infinite field, then |Σ(D)| = ∞ and |Σ′(D)| = ∞.
(4) If n ≥ 5 and K is an infinite field, then |Σ′(D)| = ∞.

Proof. Then D is an APVD which is not a PVD, P = Mn is the maximal ideal
of D, V = (P : P ), and (D + M)/M = V/M .

(6.2) Let V = K[[X]] be the formal power series ring of a variable X over a field
K, let M be the maximal ideal of V , and let D = K +Mn for a positive integer n ≥ 2.
Then we have the same (1) ∼ (4) of (6.1).

(6.3) Let V be a rank one discrete valuation domain of the form K + M , where
K is a field and M is the maximal ideal of V , and let D = k + Mn for a positive
integer n ≥ 2 and for a subfield k of K. Then, if n ≥ 4 and K is an infinite field, then
|Σ′(D)| = ∞.

Proof. Set K + Mn = D′. Then |Σ′(D′)| = ∞ by (6.1). Since the descent map
δ from Σ′(D′) to Σ′(D) is an injection, we have |Σ′(D)| = ∞.
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41(1936), 545-577.



22 R. Matsuda

[M1] R. Matsuda, Note on the number of semistar-operations, Math. J. Ibaraki Univ.
31 (1999), 47-53.

[M2] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki
Univ. 37 (2005), 53-79.

[M3] R. Matsuda, Note on the number of semistar operations, VII, J. Commutative
Algebra, to appear.

[M4] R. Matsuda, Integrally closed domains with a finite number of semistar opera-
tions, J. Commutative Algebra, to appear.

[M5] R. Matsuda, Semistar operations on a pseudo-valuation domain, J. Commutative
Algebra, to appear.
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