Note on the number of semistar operations, XI

Ryûki Matsuda*

Abstract

We study star operations and semistar operations on an almost pseudovaluation domain.

The notion of a star operation is classical, and that of a Kronecker function ring which arises by a star operation is also classical. Let D be an integral domain, let K be its quotient field, and let F(D) be the set of non-zero fractional ideals of D. A mapping $I \mapsto I^*$ from F(D) to F(D) is called a star operation on D, if it satisfies the following conditions: (1) $(x)^* = (x)$ for each $x \in K - \{0\}$; (2) $(xI)^* = xI^*$ for each $x \in K - \{0\}$ and $I \in F(D)$; (3) $I \subset I^*$ for each $I \in F(D)$; (4) $(I^*)^* = I^*$ for each $I \in F(D)$; (5) $I \subset J$ implies $I^* \subset J^*$ for each $I, J \in F(D)$. The Kronecker function ring of D with respect to a star operation * on D was first defined by Prüfer ([P]) and further investigated by Krull ([K]). Let F'(D) be the set of non-zero D-submodules of K. A mapping $I \longmapsto I^*$ from F'(D) to F'(D) is called a semistar operation on D, if it satisfies the following conditions: (1) $(xI)^* = xI^*$ for each $x \in K - \{0\}$ and $I \in F'(D)$; (2) $I \subset I^*$ for each $I \in F'(D)$; (3) $(I^*)^* = I^*$ for each $I \in F'(D)$; (4) $I \subset J$ implies $I^* \subset J^*$ for each $I, J \in F'(D)$. We confer Fontana-Loper([FL]) and Halter-Koch([HK]) for notions of star operations, semistar operations, and their Kronecker function rings. Let $\Sigma(D)$ (resp. $\Sigma'(D)$) be the set of star operations (resp. semistar operations)

on D. In this paper, we are interested in cardinalities $|\Sigma(D)|$ and $|\Sigma'(D)|$.

Let D be an integrally closed domain. Then D has only a finite number of semistar operations if and only if D is a finite dimensional Prüfer domain with only a finite number of maximal ideals ([M4]).

Let V be a valuation domain with dimension n, let v be a valuation belonging to V, and let Γ be its value group. Let $M = P_n \supseteq P_{n-1} \supseteq \cdots P_1 \supseteq (0)$ be the prime ideals of V, and let $\{0\} \subseteq H_{n-1} \subseteq \cdots \subseteq H_1 \subseteq \Gamma$ be the convex subgroups of Γ . Let m be a positive integer with $n+1 \leq m \leq 2n+1$. Then the following conditions are equivalent: (1) $|\Sigma'(V)| = m$; (2) The maximal ideal of V_{P_i} is principal for exactly 2n+1-m of i; (3) Γ/H_i has a minimal positive element for exactly 2n+1-m of i ([M1]).

Received 30 November, 2006; revised 7 March, 2007

²⁰⁰⁰ Mathematics Subject Classification. Primary 13A15

 $Key\ Words\ and\ Phrases.$ star operation, semistar operation, pseudo-valuation domain, almost pseudo-valuation domain

^{*}Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

In [M5], we studied star operations and semistar operations on a pseudo-valuation domain (or a PVD) D. We gave conditions for D to have only a finite number of semistar operations, and showed that conditions for $|\Sigma'(D)| < \infty$ reduce to conditions for fields.

In this paper, we concern with star operations and semistar operations on almost pseudo-valuation domains. We study almost pseudo-valuation domains with simple associated valuation rings, and will prove the following,

Theorem Let D be an almost pseudo-valuation domain, let P be the maximal ideal of D, let V = (P : P), let M be the maximal ideal of V, and let K = V/M. Assume that the valuation ring V is discrete with rank one and D/P = K. Then we have

(1) If K is a finite field, then $|\Sigma(D)| < \infty$.

(2) If $P = M^2$, then $|\Sigma(D)| = 1$ and $|\Sigma'(D)| = 3$, and if $P = M^3$, then $|\Sigma(D)| = 3$ and $|\Sigma'(D)| = 6$.

- (3) If $P = M^4$ and K is an infinite field, then $|\Sigma(D)| = \infty$ and $|\Sigma'(D)| = \infty$.
- (4) If $P = M^n$ with $n \ge 5$ and K is an infinite field, then $|\Sigma'(D)| = \infty$.

The paper consists of six sections, Section 1 is a review on almost pseudo-valuation domains, Section 2 is the general case, Section 3 is the case where $P = M^2$ or $P = M^3$, Section 4 is the case where $P = M^4$, Section 5 is the case where $P = M^n$ with $n \ge 5$, and Section 6 is examples.

§1 Review

In this section, we review a result in [M2] on semistar operations on almost pseudo-valuation domains.

Let I be an ideal of a domain D. If $ab \in I$ and $b \notin I$ imply $a^n \in I$ for some n > 0for each elements $a, b \in q(D)$, then I is called a strongly primary ideal of D, where q(D) denotes the quotient field of D. If each prime ideal of D is strongly primary, then D is called an almost pseudo-valuation domain (or an APVD). Every PVD is an almost pseudo-valuation domain. We confer Badawi-Houston([BH]) for almost pseudovaluation domains.

(1.1) Let D be an APVD, let P be a maximal ideal of D, let V = (P : P), and let M be the maximal ideal of V.

(1) $F'(D) = F(D) \cup \{q(D)\}.$

(2) D is a local ring, that is, D has only one maximal ideal.

(3) If D is not a valuation ring, then $V = P^{-1}$.

(4) The set of non-maximal prime ideals of D coincides with the set of non-maximal prime ideals of V, and dim $(V) = \dim (D)$.

(5) The integral closure \overline{D} of D is a PVD with maximal ideal M.

(6) Let T be an overring of D. Then either $T \supset V$ or $T \subsetneqq V$.

(7) Let $\Sigma'_1 = \{* \in \Sigma'(D) \mid D^* \supset V\}$. Then there exists a canonical bijection from $\Sigma'(V)$ onto Σ'_1 .

(8) Let $\Sigma'_2 = \{ * \in \Sigma'(D) \mid D^* \subsetneq V \}$. Then $\Sigma'(D) = \Sigma'_1 \cup \Sigma'_2$.

(9) If $|\Sigma'(D)| < \infty$, then dim $(D) < \infty$, $V = \overline{D}$, V is a finitely generated D-module, and V/M is a simple extension field of D/P with $[V/M : D/P] < \infty$.

(1.2) Let D be an APVD which is not a PVD, let P be the maximal ideal of D, and let V = (P : P). Assume that $\dim(D) < \infty$, and let $\{T_{\lambda} \mid \lambda \in \Lambda\}$ be the set of overrings T of D with $T \subsetneq V$. Let Σ'_1 be the set of semistar operations * on D such that $D^* \supset V$, and let Σ'_2 be the set of semistar operations * on D such that $D^* \subsetneqq V$. Then we have

(1) $\Sigma'(D) = \Sigma'_1 \cup \Sigma'_2$.

 $(2) \mid \Sigma'(V) \mid < \infty.$

 $(3) \mid \Sigma'_1 \mid = \mid \Sigma'(V) \mid.$

(4) There exists a canonical bijection from the disjoint union $\bigcup_{\lambda} \Sigma(T_{\lambda})$ onto Σ'_{2} .

§2 The general case

Throughout the paper but the final §6, let D be an APVD which is not a PVD, let P be the maximal ideal of D, let V = (P : P), let M be the maximal ideal of V, let v be a valuation belonging to V, and set V/M = K. We assume that v is \mathbb{Z} -valued and that K = (D+M)/M, and let $\{\alpha_i \mid i \in \mathcal{I}\} = \mathcal{K}$ be a system of complete representatives of V modulo M, where $\{0, 1\} \subset \{\alpha_i \mid i \in \mathcal{I}\} \subset D$.

Note: Let V be a **Z**-valued valuation domain of the form K + M, where K is a field and M is the maximal ideal of V. Let k be a subfield of K, and let D = k + M. Assume that $\dim(D) < \infty$, and K is a simple extension of k with finite degree. Then $|\Sigma(D)|$ need not be finite ([M3]).

There exists $\pi \in V$ such that $M = \pi V$. Then we have $v(\pi) = 1$.

We have $V = P : P = P^{-1}$, where P : P denotes $\{x \in q(D) \mid xP \subset P\}$ and P^{-1} denotes D : P.

Let $I, J \in F(D)$. If there exists $x \in q(D)$ such that xJ = I, then I and J are said to be similar, and is denoted by $I \sim J$. For each $I \in F(D)$, set $\{J \in F(D) \mid J \sim I\} = cl(I)$.

Let Σ'_1 be the set of semistar operations * on D such that $D^* \supset V$, and let Σ'_2 be the set of semistar operations on D such that $D^* \subsetneq V$. We can apply (1.1) and (1.2) for D.

(2.1) Let $x \in q(D) - \{0\}$, and let k be a positive integer with k > v(x). Then x can be expressed uniquely as $x = \alpha_l \pi^l + \alpha_{l+1} \pi^{l+1} + \cdots + \alpha_{k-1} \pi^{k-1} + \pi^k a$, where l = v(x) and each $\alpha_i \in \mathcal{K}$ with $\alpha_l \neq 0$ and $a \in V$.

(2.2) There exists a positive integer $n \ge 2$ uniquely so that $P = M^n$.

Proof. Set $\min\{v(x) \mid x \in P\} = n$. Since PV = P, we have $P = M^n$. If n = 1, then D is a valuation ring; a contradiction.

For every subset $A \subset q(D)$, we denote by (A) the D-submodule of q(D) generated by A. If $P = M^n$, then we have $P = (\pi^n, \pi^{n+1}, \cdots, \pi^{2n-2}, \pi^{2n-1})$, and $V = (1, \pi, \cdots, \pi^{n-1})$.

(2.3) (1) We have $P^v = P$, where P^v denotes $(P^{-1})^{-1}$. (2) The set Spec(D) of prime ideals of D is $\{P, (0)\}$.

(2) follows from (1.1)(4).

The mapping $I \mapsto I^v$ from F(D) to F(D) is a star operation on D, and is called the v-operation. The identity mapping d from F(D) to F(D) is a star operation on D, and is called the d-operation.

We note that V is a divisorial fractional ideal of D, that is, $V^{v} = V$. Each star operation on D can be uniquely extended to a semistar operation on D. Also let D' be an overring of D. Then there exists a canonical mapping δ from $\Sigma'(D')$ to $\Sigma'(D)$, and is called the descent mapping. And δ is an injective mapping.

We have $|\Sigma'_1| = |\Sigma'(V)| = 2$. If $P = M^2$, then we have $\{I \in F(D) \mid D \subset I \subset V\} = \{(1), (1, \pi)\}.$

(2.4) Example Assume that $P = M^3$. Set $(1) = I_0, (1, \pi^2) = I_{0,2}, (1, \pi, \pi^2) = I_{0,1,2}$, and $(1, \pi + \alpha \pi^2) = I_{0,1}^{\alpha}$, where $\alpha \in \mathcal{K}$. Then we have $\{I \in F(D) \mid D \subset I \subset V\} = \{I_0, I_{0,2}, I_{0,1,2}\} \cup \{I_{0,1}^{\alpha} \mid \alpha \in \mathcal{K}\}.$

Proof. Because, $\{v(x) \mid x \in I - P\}$ is either $\{0\}$ or $\{0, 1\}$ or $\{0, 2\}$ or $\{0, 1, 2\}$.

(2.5) Example Assume that $P = M^4$. For every element $\alpha_i \in \mathcal{K}$, set (1) = I_0 , (1, $\pi + \alpha_1 \pi^2 + \alpha_2 \pi^3$) = $I_{0,1}^{\alpha_1,\alpha_2}$, (1, $\pi^2 + \alpha_1 \pi^3$) = $I_{0,2}^{\alpha_1}$, (1, π^3) = $I_{0,3}$, (1, $\pi + \alpha_1 \pi^3, \pi^2 + \alpha_2 \pi^3$) = $I_{0,1,2}^{\alpha_1,\alpha_2}$, (1, $\pi + \alpha_1 \pi^2, \pi^3$) = $I_{0,2,3}$, (1, π, π^2, π^3) = $I_{0,1,2,3}$. Then we have { $I \in F(D) \mid D \subset I \subset V$ } = { $I_0, I_{0,1}^{\alpha_1,\alpha_2}, I_{0,2}^{\alpha_1}, I_{0,1,2}^{\alpha_1,\alpha_2}, I_{0,1,3}^{\alpha_1,\alpha_2}, I_{0,1,3}^{\alpha_1,\alpha_2}, I_{0,1,2,3}^{\alpha_1} \mid$ each $\alpha_i \in \mathcal{K}$ }.

Proof. Let *I* be a fractional ideal of *D* such that $D \subset I \subset V$. Let $\tau = \{v(x) | x \in I - P\}$, say let $\tau = \{0, 1, 3\}$. Then *I* contains elements $a, b \in V$ of the form $a = \pi + \alpha_1 \pi^2, b = \pi^3$, where $\alpha_1 \in \mathcal{K}$. We have $I \supset (1, a, b)$. Let $I \ni x = \beta_0 + \beta_1 \pi + \beta_2 \pi^2 + \beta_3 \pi^3 + p$, where each $\beta_i \in \mathcal{K}$ and $p \in P$. We have $x = \beta_0 + \beta_1 a + \beta_3 b + \beta' \pi^2 + p'$ for some $\beta' \in \mathcal{K}$ and $p' \in P$. By the choice of τ , we have $\beta' = 0$. Hence I = (1, a, b).

(2.6) Example Assume that $P = M^5$. For every element $\alpha_i \in \mathcal{K}$, set $(1) = I_0$, $(1, \pi + \alpha_1 \pi^2 + \alpha_2 \pi^3 + \alpha_3 \pi^4) = I_{0,1}^{\alpha_1, \alpha_2, \alpha_3}$, $(1, \pi^2 + \alpha_1 \pi^3 + \alpha_2 \pi^4) = I_{0,2}^{\alpha_1, \alpha_2}$,

$$\begin{split} &(1,\pi^3+\alpha_1\pi^4)=I_{0,3}^{\alpha_1},\\ &(1,\pi^4)=I_{0,4},\\ &(1,\pi+\alpha_1\pi^3+\alpha_2\pi^4,\pi^2+\alpha_3\pi^3+\alpha_4\pi^4)=I_{0,1,2}^{\alpha_1,\alpha_2,\alpha_3,\alpha_4},\\ &(1,\pi+\alpha_1\pi^2+\alpha_2\pi^4,\pi^3+\alpha_3\pi^4)=I_{0,1,4}^{\alpha_1,\alpha_2,\alpha_3},\\ &(1,\pi+\alpha_1\pi^2+\alpha_2\pi^3,\pi^4)=I_{0,2,3}^{\alpha_1,\alpha_2},\\ &(1,\pi^2+\alpha_1\pi^4,\pi^3+\alpha_2\pi^4)=I_{0,2,3}^{\alpha_1,\alpha_2},\\ &(1,\pi^3,\pi^4)=I_{0,3,4},\\ &(1,\pi+\alpha_1\pi^4,\pi^2+\alpha_2\pi^4,\pi^3+\alpha_3\pi^4)=I_{0,1,2,3}^{\alpha_1,\alpha_2,\alpha_3},\\ &(1,\pi+\alpha_1\pi^3,\pi^2+\alpha_2\pi^3,\pi^4)=I_{0,1,2,4}^{\alpha_1,\alpha_2,\alpha_3},\\ &(1,\pi+\alpha_1\pi^2,\pi^3,\pi^4)=I_{0,1,2,3,4}^{\alpha_1},\\ &(1,\pi,\pi^2,\pi^3,\pi^4)=I_{0,1,2,3,4}.\\ &\text{Then we have}\\ &\{I\in \mathcal{F}(D)\mid D\subset I\subset V\}=\{I_0,I_{0,1}^{\alpha_1,\alpha_2,\alpha_3},I_{0,2}^{\alpha_1,\alpha_2},I_{0,3}^{\alpha_1},I_0,\\ \end{split}$$

 $\{ I \in \mathcal{F}(D) \mid D \subset I \subset V \} = \{ I_0, I_{0,1}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,2}^{\alpha_1, \alpha_2}, I_{0,3}^{\alpha_1}, I_{0,4}, I_{0,1,2}^{\alpha_1, \alpha_2, \alpha_3, \alpha_4}, I_{0,1,3}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,4}^{\alpha_1, \alpha_2, \alpha_3, \alpha_4}, I_{0,1,3}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,3,4}^{\alpha_1, \alpha_2, \alpha_3, \alpha_4}, I_{0,1,2,3,4}^{\alpha_1, \alpha_2, \alpha_4}, I_{0,1,2,3}^{\alpha_1, \alpha_2, \alpha_4}, I_{0,1,2,3}^{\alpha_1, \alpha_2, \alpha_4}, I_{0,1,2,3}^{\alpha_1, \alpha_4}, I_{0,1,2,3}^{\alpha_1, \alpha_2, \alpha_4}, I_{0,1,2,3}^{\alpha_1, \alpha_2, \alpha_4}, I_{0,1,2,3}^$

Proof. Let *I* be a fractional ideal of *D* such that $D \subset I \subset V$. Let $\tau = \{v(x) | x \in I - P\}$, say let $\tau = \{0, 1, 3\}$. Then *I* contains elements $a, b \in V$ of the form $a = \pi + \alpha_1 \pi^2 + \alpha_2 \pi^4, b = \pi^3 + \alpha_3 \pi^4$, where $\alpha_1, \alpha_2, \alpha_3 \in \mathcal{K}$. We have $I \supset (1, a, b)$. Let $I \ni x = \beta_0 + \beta_1 \pi + \beta_2 \pi^2 + \beta_3 \pi^3 + \beta_4 \pi^4 + p$, where each $\beta_i \in \mathcal{K}$ and $p \in P$. We have $x = \beta_0 + \beta_1 a + \beta_3 b + \beta'_1 \pi^2 + \beta'_2 \pi^4 + p'$ for some $\beta'_i \in \mathcal{K}$ and $p' \in P$. By the choice of τ , we have $\beta'_1 = \beta'_2 = 0$. Hence I = (1, a, b).

Each subset τ of $\{0, 1, 2, 3, 4\}$ which contains 0 is called a type associated to D. We have the number 16 of associated types to D. The set of types has a canonical order so that $\{0\}$ is the minimal member and $\{0, 1, 2, 3, 4\}$ is the maximal member: $\{0\}, \{0, 1\}, \{0, 2\}, \{0, 3\}, \{0, 4\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{0, 2, 3\}, \{0, 2, 4\}, \{0, 3, 4\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 4\}, \{0, 1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 2, 3, 4\}$. Let τ be a type associated to D, say let $\tau = \{0, 1, 2\}$. Then the tuple $< \alpha_1, \alpha_2, \alpha_3, \alpha_4 >$ of elements in \mathcal{K} is called a system of parameters of τ (or, a system of parameters associated to τ), and 4 is called the length of the system of parameters $< \alpha_1, \alpha_2, \alpha_3, \alpha_4 >$. The pair $< 0, 1, 2; \alpha_1, \alpha_2, \alpha_3, \alpha_4 > = \sigma$ of τ and $< \alpha_1, \alpha_2, \alpha_3, \alpha_4 >$ is called a data of τ (or, a data associated to τ). Set $1 = f_1^{\sigma}, \pi + \alpha_1 \pi^3 + \alpha_2 \pi^4 = f_2^{\sigma}, \pi^2 + \alpha_3 \pi^3 + \alpha_4 \pi^4 = f_3^{\sigma}$. Then the tuple $< f_1^{\sigma}, f_2^{\sigma}, f_3^{\sigma} >$ is called an associated to σ , and is denoted by I^{σ} . The tuple $< f_1^{\sigma}, f_2^{\sigma}, f_3^{\sigma} >$ is also called a canonical system of generators for I associated to σ .

Assume that $P = M^n$ for a positive integer $n \ge 2$. We confer the previous examples. Each subset τ of $\{0, 1, 2, \dots, n-1\}$ which contains 0 is called a type associated to D. We have the number 2^{n-1} of associated types to D. The set of types has a canonical order so that $\{0\} = \tau_1$ is the minimal member and $\{0, 1, \dots, n-1\} =$ $\tau_{2^{n-1}}$ is the maximal member. Let $\tau = \{0, k_1, \dots, k_m\}$ be a type associated to Dwith $0 < k_1 < \dots < k_m$. We can define a system of parameters $< \alpha_1, \dots, \alpha_l >$ of τ . It is a tuple of elements in \mathcal{K} . The pair $< 0, k_1, \dots, k_m; \alpha_1, \dots, \alpha_l > = \sigma$ of τ and

 $< \alpha_1, \dots, \alpha_l >$ is called a data of τ (or, a data associated to τ). We can define an associated system $< f_1^{\sigma}, f_2^{\sigma}, \dots, f_{m+1}^{\sigma} >$ of generators to σ . It is a tuple of elements in V. We donote also $f_i^{\sigma} = f_i(\sigma)$. The fractional ideal $(f_1^{\sigma}, f_2^{\sigma}, \dots, f_{m+1}^{\sigma}) = I$ is said to be associated to σ , and is denoted by I^{σ} (or, by $I(\sigma)$). The tuple $< f_1^{\sigma}, f_2^{\sigma}, \dots, f_{m+1}^{\sigma} >$ is also called a canonical system of generators for I associated to σ .

(2.7) **Proposition** Assume that $P = M^n$ with $n \ge 2$. Then we have

 $\{I \in F(D) \mid D \subset I \subset V\} = \{I(\sigma_1), \cdots, I(\sigma_{2^{n-1}}) \mid \text{each } \sigma_i \text{ is a data associated to the type } \tau_i \text{ for } 1 \leq i \leq 2^{n-1}\}.$

§3 The case where $P = M^2$ or $P = M^3$

(3.1) **Proposition** Assume that $P = M^2$. Then we have $|\Sigma(D)| = 1$ and $|\Sigma'(D)| = 3$.

Proof. Since $\pi^2(1,\pi) = P$, each $I \in F(D)$ is divisorial. It follows that $|\Sigma(D)| = 1$. Let T be an overring of D with $V \supseteq T \supseteq D$, and take $t \in T - D$. There may arise the following two cases: (1) v(t) = 1, and (2) v(t) = 0.

Case (1): We may assume that $t = \pi + p$ for some $p \in P$. Hence we have $T \ni \pi$, and hence T = V; a contradiction.

Case (2): We may assume that $t = 1 + \alpha \pi + p$ for some $\alpha \in \mathcal{K}$ and $p \in P$. Since $t \notin D$, we have $\alpha \pi \in T - D$. Case (1) implies that T = V; a contradiction.

We will apply (1.2). Since $|\Sigma'_1| = 2$, we have $|\Sigma'(D)| = 2 + |\Sigma(D)| = 3$.

Throughout the rest of the section, assume that $P = M^3$.

(**3.2**) We have

 $\{T \mid T \text{ is an overring of } D \text{ with } T \subsetneqq V\} = \{D, D + M^2\}.$

Proof. Let T be an overring of D with $V \supseteq T \supseteq D$, and take $t \in T - D$. The proof of (3.1) shows that, if $T \supseteq D + M^2$ then T = V. There may arise the following three cases: (1) v(t) = 2, (2) v(t) = 1, and (3) v(t) = 0.

Case (1): We may assume that $t = \pi^2 + p$ for some $p \in P$. Hence we have $T \ni \pi^2$, and $T \supset D + M^2$.

Case (2): We may assume that $t = \pi + \alpha \pi^2 + p$ for some $\alpha \in \mathcal{K}$ and $p \in P$. Since $T \ni t^2$, we have $T \ni \pi^2$, and hence $T \supset D + M^2$.

Case (3): We may assume that $t = 1 + \alpha_1 \pi + \alpha_2 \pi^2 + p$ for some $\alpha_1, \alpha_2 \in \mathcal{K}$ and $p \in P$. Since $t \notin D$, we have $\alpha_1 \pi + \alpha_2 \pi^2 \in T - D$. Cases 1 and 2 imply that $T \supset D + M^2$.

(3.3) (1) $I_{0,2}$ and $I_{0,1}^{\alpha}$ are incomparable for each $\alpha \in \mathcal{K}$. (2) $I_{0,1}^{\alpha} \subset I_{0,1}^{\beta}$ if and only if $\alpha = \beta$.

Proof. (2) Assume that $I_{0,1}^{\alpha} \subset I_{0,1}^{\beta}$. Then $\pi + \alpha \pi^2 \in (1, \pi + \beta \pi^2)$ implies $\pi + \alpha \pi^2 = (\pi + \beta \pi^2) + p$ for some $p \in P$. Hence $\alpha = \beta$.

16

(3.4) (1) Each two in $\{I_0, I_{0,2}, I_{0,1,2}, I_{0,1}^{\alpha}\}$ are not similar for each $\alpha \in \mathcal{K}$. (2) $I_{0,1}^{\alpha}$ and $I_{0,1}^{\beta}$ are similar for each $\alpha, \beta \in \mathcal{K}$.

Proof. (2) Set $1 + \alpha \pi + \alpha^2 \pi^2 = x$. Then we have $x(1, \pi) = (1, \pi + \alpha \pi^2)$.

(3.5) Let * be a star operation on D. Then $(I_{0,2})^*$ is either $I_{0,2}$ or V, and $(I_{0,1})^*$ is either $I_{0,1}^0$ or V.

Proof. Since V is a divisorial fractional ideal of D, we have $(I_{0,2})^* \subset V$ and $(I_{0,1}^0)^* \subset V.$

(3.6) (1) If we set $(I_{0,2})^{*_1} = I_{0,2}$ and $(I_{0,1}^0)^{*_1} = I_{0,1}^0$, then there is determined a unique mapping $*_1$ from F(D) to F(D).

(2) If we set $(I_{0,2})^{*_2} = I_{0,2}$ and $(I_{0,1}^0)^{*_2} = V$, then there is determined a unique mapping $*_2$ from F(D) to F(D).

(3) If we set $(I_{0,2})^{*_3} = V$ and $(I_{0,1}^0)^{*_3} = I_{0,1}^0$, then there is determined a unique mapping $*_3$ from F(D) to F(D).

(4) If we set $(I_{0,2})^{*_4} = V$ and $(I_{0,1}^0)^{*_4} = V$, then there is determined a unique mapping $*_4$ from F(D) to F(D).

For, each element $I \in F(D)$ is similar to one and only one in $\{I_0, I_{0,2}, I_{0,1,2}, I_{0,1}^0\}$.

(3.7) (1) $*_1$ is a star operation on D, and $*_1 = d$.

(2) $*_2$ is a star operation on D.

(3) $*_3$ is not a star operation on D.

(4) $*_4$ is a star operation on D, and $*_4 = v$.

Proof. (2) For each $x \in q(D) - \{0\}$, we have $(x)^{*_2} = (x)$. For each $x \in q(D) - \{0\}$ and each $I \in F(D)$, we have $(xI)^{*_2} = xI^{*_2}$. For each $I \in F(D)$, we have $I \subset I^{*_2}$. For each $I \in F(D)$, we have $(I^{*_2})^{*_2} = I^{*_2}$.

Let $I_1, I_2 \in F(D)$ with $I_1 \subset I_2$. To prove $I_1^{*_2} \subset I_2^{*_2}$, it is sufficient to show that, if $xI_{0,1}^0 \subset J$ then $xV \subset J$ for each $x \in q(D) - \{0\}$ and each $J \in \{I_0, I_{0,2}, I_{0,1,2}\}$. (3) Set $\pi + \pi^2 = x$. Then we have $x(1, \pi^2) \subset (1, \pi + \pi^2)$ and $xV \not\subset (1, \pi + \pi^2)$.

(3.8) Proposition Assume that $P = M^3$. Then we have $|\Sigma(D)| = 3$ and $|\Sigma'(D)| = 6.$

Proof. It follows that $\Sigma(D) = \{d, v, *_2\}$, and that $|\Sigma(D)| = 3$. We can apply (3.1) for $D' = D + M^2$. Then we have

 $|\Sigma_2'| = |\Sigma(D)| + |\Sigma(D + M^2)| = 3 + 1 = 4.$ Since $|\Sigma'(V)| = 2$, it follows that $|\Sigma'(D)| = |\Sigma'_1| + |\Sigma'_2| = 2 + 4 = 6.$

§4 The case where $P = M^4$

In this section, we assume that $P = M^4$.

(4.1) **Proposition** If K is a finite field, then we have $|\Sigma(D)| < \infty$.

Proof. Let

 $X = \{I_0, I_{0,1}^{\alpha_1, \alpha_2}, I_{0,2}^{\alpha_1}, I_{0,3}, I_{0,1,2}^{\alpha_1, \alpha_2}, I_{0,1,3}^{\alpha_1}, I_{0,2,3}, I_{0,1,2,3} \mid \text{each } \alpha_i \in \mathcal{K}\}.$

Then X is a finite set. Let * be a star operation on D. Since V is a divisorial fractional ideal of D, we have $D \subset I^* \subset V$ for each $I \in X$. If we set $I^* = g_*(I)$, each element $* \in \Sigma(D)$ gives rise to an element $g_* \in X^X$, where X^X is the set of mappings from X to X. And the mapping $g : * \longmapsto g_*$ from $\Sigma(D)$ to X^X is an injection.

(4.2) Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathcal{K}$. $I_{0,1}^{\alpha_1,\alpha_2} \subset I_{0,1}^{\beta_1,\beta_2}$ if and only if $\alpha_1 = \beta_1, \alpha_2 = \beta_2$. $I_{0,2}^{\alpha_1} \subset I_{0,2}^{\beta_1}$ if and only if $\alpha_1 = \beta_1$. $I_{0,1,2}^{\alpha_1,\alpha_2} \subset I_{0,1,2}^{\beta_1,\beta_2}$ if and only if $\alpha_1 = \beta_1, \alpha_2 = \beta_2$. $I_{0,1,3}^{\alpha_1} \subset I_{0,1,3}^{\beta_1}$ if and only if $\alpha_1 = \beta_1$.

Proof. For instance, assume that $I_{0,1,2}^{\alpha_1,\alpha_2} \subset I_{0,1,2}^{\beta_1,\beta_2}$. Then we have $\pi + \alpha_1 \pi^3 = (\pi + \beta_1 \pi^3) + (\pi^2 + \beta_3 \pi^3) p_1 + p_2$ for some $p_i \in P$. Hence $\alpha_1 = \beta_1$. We have $\pi^2 + \alpha_2 \pi^3 = (\pi^2 + \beta_2 \pi^3) + p_3$ for some

 $p_3 \in P$. Hence $\alpha_2 = \beta_2$.

- (4.3) (1) $I_{0,1}^{\alpha_1,\alpha_2} \sim I_{0,1}^{\beta_1,\beta_2}$ if and only if $\beta_1^2 \beta_2 \equiv \alpha_1^2 \alpha_2 \pmod{P}$.
- (2) $I_{0,2}^{\alpha} \sim I_{0,2}^{\beta}$ if and only if $\alpha = \beta$. (3) $I_{0,1,2}^{\alpha_{1},\alpha_{2}} \sim I_{0,1,2}^{\beta_{1},\beta_{2}}$ for each $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathcal{K}$. (4) $I_{0,1,3}^{\alpha} \sim I_{0,1,3}^{\beta}$ for each $\alpha, \beta \in \mathcal{K}$.

Proof. (1) Assume that $\beta_1^2 - \beta_2 \equiv \alpha_1^2 - \alpha_2 \pmod{P}$. Set $1 + (\pi + \beta_1 \pi^2 + \beta_2 \pi^3)(\beta_1 - \alpha_1) = x$. Then we have $xI_{0,1}^{\alpha_1, \alpha_2} = I_{0,1}^{\beta_1, \beta_2}$.

- (3) Set $1 \alpha_2 \pi \alpha_1 \pi^2 = x$. Then we have $x I_{0,1,2}^{\alpha_1,\alpha_2} = I_{0,1,2}^{0,0}$.
- (4) Set $1 \alpha \pi = x$. Then we have $x I_{0,1,3}^{\alpha} = I_{0,1,3}^{\alpha}$.

(4.4) Each two in $\{I_0, I_{0,1}^{\alpha_1, \alpha_2}, I_{0,2}^{\alpha_3}, I_{0,3}, I_{0,1,2}^{\alpha_4, \alpha_5}, I_{0,1,3}^{\alpha_6}, I_{0,2,3}, I_{0,1,2,3}\}$ are not similar for each $\alpha_i \in \mathcal{K}$.

Proof. For instance, suppose that there exists $x \in q(D)$ so that $I_{0,1}^{\alpha_1,\alpha_2} = x I_{0,1,3}^{\alpha_6}$. We may assume that $x = 1 + \beta_1 \pi + \beta_2 \pi^2 + \beta_3 \pi^3 + p$ for some $\beta_i \in \mathcal{K}$ and $p \in P$. Then $x\pi^3 \in I_{0,1}^{\alpha_1,\alpha_2}$ implies a contradiction.

(4.5) Let $x \in q(D) - \{0\}$. (1) $xI_{0,1}^{\alpha_1,\alpha_2} \subset I_0$ implies $xV \subset I_0$. (2) $xI_{0,1,2}^{\alpha_1,\alpha_2} \subset I_0$ implies $xV \subset I_0$.

 $\begin{array}{ll} (3) & xI_{0,1,3}^{\alpha_1} \subset I_0 \text{ implies } xV \subset I_0. \\ (4) & xI_{0,1}^{\alpha_{(1)},\alpha_{(2)}} \subset I_{0,1}^{\alpha_{1},\alpha_{2}} \text{ with } \alpha_{(1)}^2 - \alpha_{(2)} \not\equiv \alpha_1^2 - \alpha_2 \pmod{P} \text{ implies } xV \subset I_{0,1}^{\alpha_{1},\alpha_{2}}. \\ (5) & xI_{0,1}^{\alpha_{1},\alpha_{2}} \subset I_{0,2} \text{ implies } xV \subset I_{0,2}^{\beta}. \\ (6) & xI_{0,1}^{\alpha_{1},\alpha_{2}} \subset I_{0,3} \text{ implies } xV \subset I_{0,2,3}. \\ (7) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,1}^{\beta_{1},\beta_{2}} \text{ implies } xV \subset I_{0,1}^{\beta_{1},\beta_{2}}. \\ (8) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,1}^{\beta_{1},\beta_{2}} \text{ implies } xV \subset I_{0,1}^{\beta_{1},\beta_{2}}. \\ (9) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,2}^{\beta} \text{ implies } xV \subset I_{0,2}^{\beta_{1},\beta_{2}}. \\ (10) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,2}^{\beta} \text{ implies } xV \subset I_{0,2}^{\beta}. \\ (11) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,2} \text{ implies } xV \subset I_{0,2}^{\beta}. \\ (12) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,3} \text{ implies } xV \subset I_{0,3}. \\ (13) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,2,3} \text{ implies } xV \subset I_{0,3}. \\ (14) & xI_{0,1,2}^{\alpha_{1},\alpha_{2}} \subset I_{0,2,3} \text{ implies } xV \subset I_{0,2,3}. \\ (15) & xI_{0,1,3}^{\alpha_{1},\alpha_{2}} \subset I_{0,2,3} \text{ implies } xV \subset I_{0,2,3}. \\ \end{array}$

Proof. (4) We may assume that v(x) = 0. Then we may assume that $x = 1 + (\pi + \alpha_1 \pi^2 + \alpha_2 \pi^3) \alpha + p$ for some $\alpha \in \mathcal{K}$ and $p \in P$. Then $x(\pi + \alpha_{(1)}\pi^2 + \alpha_{(2)}\pi^3) \in I_{0,1}^{\alpha_1,\alpha_2}$ implies $\alpha_{(1)}^2 - \alpha_{(2)} \equiv \alpha_1^2 - \alpha_2 \pmod{P}$; a contradiction. It follows that $x \in M^4$, and hence $xV \subset I_{0,1}^{\alpha_1,\alpha_2}$.

(4.6) Fix a data < 0,1; $\alpha_{(1)}, \alpha_{(2)}$ >, and set $(I_{0,1}^{\alpha_{(1)},\alpha_{(2)}})^* = V$. For $I_{0,1}^{\alpha_{1,\alpha_{2}}}$ with $\alpha_{1}^{2} - \alpha_{2} \not\equiv \alpha_{(1)}^{2} - \alpha_{(2)} \pmod{P}$, set $(I_{0,1}^{\alpha_{1},\alpha_{2}})^* = I_{0,1}^{\alpha_{1,\alpha_{2}}}$. For each $\beta_{1}, \beta_{2} \in \mathcal{K}$, set $(I_{0,2}^{\beta_{1}})^* = I_{0,2}^{\beta_{1}}, (I_{0,1,2}^{\beta_{1},\beta_{2}})^* = V, (I_{0,1,3}^{\beta_{1}})^* = V$, and set $(I_{0,3})^* = I_{0,3}, (I_{0,2,3})^* = I_{0,2,3}$. Then we have

- (1) There is determined a unique mapping * from F(D) to F(D).
- (2) For each $x \in q(D) \{0\}$, we have $(x)^* = (x)$.
- (3) For each $x \in q(D) \{0\}$ and each $I \in F(D)$, we have $(xI)^* = xI^*$.
- (4) For each $I \in F(D)$, we have $I \subset I^*$.
- (5) For each $I \in F(D)$, we have $(I^*)^* = I^*$.
- (6) For each $I_1, I_2 \in F(D)$ with $I_1 \subset I_2$, we have $I_1^* \subset I_2^*$.

(6) follows from (4.5).

(4.7) **Proposition** Assume that $P = M^4$ and K is an infinite field. Then we have $|\Sigma(D)| = \infty$ and $|\Sigma'(D)| = \infty$.

Proof. Let $*_{\alpha_{(1)},\alpha_{(2)}}$ be the star operation on D determined in (4.6). If $I_{0,1}^{\alpha_1,\alpha_2} \not\sim I_{0,1}^{\beta_1,\beta_2}$, we have $*_{\alpha_1,\alpha_2} \neq *_{\beta_1,\beta_2}$. It follows that $|\Sigma(D)| = \infty$.

§5 The case where $P = M^n$ with $n \ge 5$

(5.1) **Proposition** Assume that $P = M^5$ and K is a finite field. Then we have $|\Sigma(D)| < \infty$.

Proof. Let

 $\begin{aligned} X &= \{ I_0, I_{0,1}^{\alpha_1,\alpha_2,\alpha_3}, I_{0,2}^{\alpha_1,\alpha_2}, I_{0,3}^{\alpha_1}, I_{0,4}, I_{0,1,2}^{\alpha_1,\alpha_2,\alpha_3,\alpha_4}, I_{0,1,3}^{\alpha_1,\alpha_2,\alpha_3}, I_{0,1,4}^{\alpha_1,\alpha_2}, I_{0,2,3}^{\alpha_1,\alpha_2}, I_{0,2,4}^{\alpha_1}, \\ I_{0,3,4}, I_{0,1,2,3}^{\alpha_1,\alpha_2,\alpha_3}, I_{0,1,2,4}^{\alpha_1,\alpha_2}, I_{0,1,3,4}^{\alpha_1}, I_{0,2,3,4}, I_{0,1,2,3,4} \mid \text{each } \alpha_i \in \mathcal{K} \}. \end{aligned}$ The similar argument to the proof of (4.1) completes the proof.

(5.2) Assume that $P = M^5$. Let $\alpha_i, \beta_j \in \mathcal{K}$ for each i, j. $I_{0,1}^{\alpha_1,\alpha_2,\alpha_3} \subset I_{0,1}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,2}^{\alpha_1,\alpha_2} \subset I_{0,2}^{\beta_1,\beta_2}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,3}^{\alpha_1} \subset I_{0,3}^{\beta_1}$ if and only if $\alpha_1 = \beta_1$. $I_{0,1,2}^{\alpha_1,\alpha_2,\alpha_3,\alpha_4} \subset I_{0,1,2}^{\beta_1,\beta_2,\beta_3,\beta_4}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,1,3}^{\alpha_1,\alpha_2,\alpha_3} \subset I_{0,1,3}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,1,3}^{\alpha_1,\alpha_2} \subset I_{0,2,3}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,2,3}^{\alpha_1,\alpha_2} \subset I_{0,2,3}^{\beta_1,\beta_2}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,2,4}^{\alpha_1,\alpha_2,\alpha_3} \subset I_{0,2,3}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,1,3}^{\alpha_1,\alpha_2,\alpha_3} \subset I_{0,1,2,3}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,1,2,3}^{\alpha_1,\alpha_2,\alpha_3} \subset I_{0,1,2,3}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,1,2,4}^{\alpha_1,\alpha_2} \subset I_{0,1,2,4}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,1,2,4}^{\alpha_1,\alpha_2} \subset I_{0,1,2,4}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i. $I_{0,1,2,4}^{\alpha_1,\alpha_2} \subset I_{0,1,2,4}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_i = \beta_i$ for each i.

Proof. For instance, assume that $I_{0,1,2}^{\alpha_1,\alpha_2,\alpha_3,\alpha_4} \subset I_{0,1,2}^{\beta_1,\beta_2,\beta_3,\beta_4}$. Then we have $\pi + \alpha_1 \pi^3 + \alpha_2 \pi^4 = (\pi + \beta_1 \pi^3 + \beta_2 \pi^4) + (\pi^2 + \beta_3 \pi^3 + \beta_4 \pi^4) p_1 + p_2$ for some $p_i \in P$. Hence $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$. We have $\pi^2 + \alpha_3 \pi^3 + \alpha_4 \pi^4 = (\pi^2 + \beta_3 \pi^3 + \beta_4 \pi^4) + p_3$

for some $p_3 \in P$. Hence $\alpha_3 = \beta_3$ and $\alpha_4 = \beta_4$.

(5.3) Assume that $P = M^5$. Then each two in $\{I_0, I_{0,1}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,2}^{\alpha_4, \alpha_5}, I_{0,3}^{\alpha_6}, I_{0,4}, I_{0,1,2}^{\alpha_7, \alpha_8, \alpha_9, \alpha_{10}}, I_{0,1,3}^{\alpha_{11,\alpha_{12},\alpha_{13}}}, I_{0,1,4}^{\alpha_{14,\alpha_{15}}}, I_{0,2,3}^{\alpha_{16,\alpha_{17}}}, I_{0,2,4}^{\alpha_{18}}, I_{0,3,4}, I_{0,1,2,3}^{\alpha_{19,\alpha_{20},\alpha_{21}}}, I_{0,1,2,4}^{\alpha_{22,\alpha_{23}}}, I_{0,1,3,4}^{\alpha_{22,\alpha_{23}}}, I_{0,1,3,4}^{\alpha_{23,\alpha_{23}}}, I_{0,1,3,4}^{\alpha_{23,\alpha_{$

Proof. Because the each two have distinct types.

(5.4) **Proposition** Assume that $P = M^n$ with $n \ge 6$ and K is a finite field. Then we have $|\Sigma(D)| < \infty$.

The proof is similar to that of (5.1).

(5.5) **Proposition** Assume that $P = M^n$ with $n \ge 5$ and K is an infinite field. Then we have $|\Sigma'(D)| = \infty$.

Proof. Set $D + M^4 = D'$. Then D' is an APVD with maximal ideal M^4 . D' is not a PVD. We have $|\Sigma(D')| = \infty$ by (4.7). Hence $|\Sigma'(D')| = \infty$. Since the descent map δ from $\Sigma'(D')$ to $\Sigma'(D)$ is an injection, we have $|\Sigma'(D)| = \infty$.

The proof of our Theorem is complete.

20

§6 Examples

In this final section, D does not necessarily denote an APVD which is not a PVD. We will apply our Theorem to some APVD's.

(6.1) Proposition Let V be a rank one discrete valuation domain of the form K + M, where K is a field and M is the maximal ideal of V, and let $D = K + M^n$ for a positive integer $n \ge 2$. Then we have

(1) If K is a finite field, then $|\Sigma(D)| < \infty$.

(2) If n = 2, then $|\Sigma(D)| = 1$ and $|\Sigma'(D)| = 3$, and if n = 3, then $|\Sigma(D)| = 3$ and $|\Sigma'(D)| = 6$.

(3) If n = 4 and K is an infinite field, then $|\Sigma(D)| = \infty$ and $|\Sigma'(D)| = \infty$.

(4) If $n \ge 5$ and K is an infinite field, then $|\Sigma'(D)| = \infty$.

Proof. Then D is an APVD which is not a PVD, $P = M^n$ is the maximal ideal of D, V = (P : P), and (D + M)/M = V/M.

(6.2) Let V = K[[X]] be the formal power series ring of a variable X over a field K, let M be the maximal ideal of V, and let $D = K + M^n$ for a positive integer $n \ge 2$. Then we have the same $(1) \sim (4)$ of (6.1).

(6.3) Let V be a rank one discrete valuation domain of the form K + M, where K is a field and M is the maximal ideal of V, and let $D = k + M^n$ for a positive integer $n \ge 2$ and for a subfield k of K. Then, if $n \ge 4$ and K is an infinite field, then $|\Sigma'(D)| = \infty$.

Proof. Set $K + M^n = D'$. Then $|\Sigma'(D')| = \infty$ by (6.1). Since the descent map δ from $\Sigma'(D')$ to $\Sigma'(D)$ is an injection, we have $|\Sigma'(D)| = \infty$.

References

- [BH] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg. 30(2002), 1591-1606.
- [FL] M. Fontana and K. Loper, Kronecker function rings: a general approach, Ideal theoretic methods in commutative algebra, Lecture notes in Pure and Appl. Math., 220, Dekker, New York, 2001, 189-205.
- [HK] F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, Marcel Dekker, 1998.
- [K] W. Krull, Beiträge zur Arithmetik kommutativer Integritätesbereiche, Math. Zeit. 41(1936), 545-577.

- [M1] R. Matsuda, Note on the number of semistar-operations, Math. J. Ibaraki Univ. 31 (1999), 47-53.
- [M2] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ. 37 (2005), 53-79.
- [M3] R. Matsuda, Note on the number of semistar operations, VII, J. Commutative Algebra, to appear.
- [M4] R. Matsuda, Integrally closed domains with a finite number of semistar operations, J. Commutative Algebra, to appear.
- [M5] R. Matsuda, Semistar operations on a pseudo-valuation domain, J. Commutative Algebra, to appear.
- [P] H. Prüfer, Untersufungen über Teilbarkeitseigenshaften in Körpern, J. reine angew. Math. 168(1932), 1-36.