Kronecker function rings of semistar operations on semigroups, II

Akira OKABE* and Ryûki MATSUDA**

Abstract

We study the Kronecker function ring of any semistar operation on a grading monoid.

Introduction

We know that various terms in ideal theory are defined analogously for commutative semigroups; those are ideal, integral, divisor, dimension, valuation, star operation, etc. Let G be a torsion-free abelian (additive) group and let S be its subsemigroup containing the zero element. Then S is called a *grading monoid* (or a *g-monoid*). A motivation and an outline of ideas for ideal theory of a grading monoid are as follows: Almost all of ideal theory of a commutative ring R concern properties of ideals of Rwith respect to the multiplication on R. Abondoning the additon on R we will extract the multiplication on R. Then we have an idea of an algebraic system S of a semigroup which is called a grading monoid.

We already have the Kronecker function ring theory of an e.a.b. semistar operation on a g-monoid ([M2]). In 2001, M. Fontana and K. Loper [FL] outlined a general approach to the theory of Kronecker function rings of an integral domain by semistar operations. In this paper, after them, we will define a Kronecker function ring Kr(S, *)of any semistar operation * on a g-monoid S and will study it. We refer to [G], [GP1, 2] and [M4] for the general theory of a commutative semigroup ring, and [M3] for the general theory of a grading monoid.

1. Preliminary results on semistar operations

Let S be a g-monoid with quotient group G. Let E be a non-empty subset of G such that $S + E \subset E$ with $s + E \subset S$ for some $s \in S$. Then E is called a fractional ideal of S. We denote the set of all fractional ideals of S by F(S). A non-empty subset E of G is called an S-submodule of G if $S + E \subset E$. We denote the set of all S-submodules

Received 20 September, 2007; revised 9 February, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 13A15.

Key Words and Phrases. Kronecker function ring, semistar operation, grading monoid.

^{*}Professor Emeritus, Oyama National College of Technology (aokabe@aw.wakwak.com)

^{**}Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

of G by $\overline{F}(S)$. The set of all finitely generated members in F(S) is denoted by f(S).

Definition (1.1) ([OMS]) A map $* : \overline{F}(S) \longrightarrow \overline{F}(S), E \longmapsto E^*$, is called a semistar operation on S if, for all $x \in G$, and for all $E, F \in \overline{F}(S)$, the following conditions hold:

(1) $(x+E)^* = x+E^*$; (2) $E \subset E^*$; (3) $E \subset F$ implies $E^* \subset F^*$; (4) $(E^*)^* = E^*$.

We denote the set of all the semistar operations on S by SStar(S). Let $E, F \in \overline{F}(S)$. Then we denote the set $\{x \in G \mid x + F \subset E\}$ by (E : F).

Lemma (1.2) Let * be a semistar operation on S, and let $E, F \in \overline{F}(S)$. Then we have $(E:F)^* \subset (E^*:F^*) = (E^*:F)$.

Proof. Since $(E:F) + F \subset E$, we have $(E:F)^* + F^* \subset E^*$. Hence $(E:F)^* \subset (E^*:F^*)$.

Let $S = \{S_{\lambda} \mid \lambda \in \Lambda\}$ be a family of oversemigroups of S. Then the semistar operation $E \longmapsto \cap_{\lambda} (E + S_{\lambda})$ on S is denoted by $*_{S}$.

A mapping $E \mapsto E^*$ of F(S) to F(S) is called a star operation on S if the following conditions hold for all $x \in G$ and for all $E, F \in F(S)$ ([M1]):

(1) $(x)^* = (x)$; (2) $(x + E)^* = x + E^*$; (3) $E \subset E^*$; (4) If $E \subset F$, then $E^* \subset F^*$; (5) $(E^*)^* = E^*$.

Let * be a star operation on S. If we set $E^{*e} = E^*$ for all $E \in F(S)$, and $E^{*e} = G$ for all $E \in \overline{F}(S) - F(S)$, then $*_e$ is a semistar operation on S and is called the trivial extension of * to a semistar operation.

Let * be a semistar operation on S. For each $E \in \overline{F}(S)$, set $E^{*_f} = \bigcup \{F^* \mid F \in f(S) \text{ with } F \subset E\}$. Then $*_f$ is a semistar operation on S, and is called the finite semistar operation associated to *. A semistar operation * is said to be of finite type if $* = *_f$. Since $(*_f)_f = *_f, *_f$ is of finite type.

For any subset E of G, the subset (S : E) is also denoted by E^{-1} (We set $\emptyset^{-1} = G$). The mapping $E \mapsto E^v = (E^{-1})^{-1}$ of $\overline{F}(S)$ to $\overline{F}(S)$ is a semistar operation on S and is called *the v-semistar operation* on S.

The finite semistar operation associated to the v-semistar operation is called the t-semistar operation on S.

If \mathcal{W} is a family of valuation oversemigroups of S, then $*_{\mathcal{W}}$ is called a *w*-semistar operation (associated to \mathcal{W}). If \mathcal{W} is the family of all the valuation oversemigroups of S, then $*_{\mathcal{W}}$ is called the *b*-semistar operation on S.

Let $*_1, *_2$ be semistar operations on S. If $(*_1)_f = (*_2)_f$, then $*_1$ and $*_2$ are said to be equivalent, and is denoted by $*_1 \sim *_2$. By definition, $*_1$ and $*_2$ are equivalent if and only if $E^{*_1} = E^{*_2}$ for each $E \in f(S)$.

Definition (1.3). A semistar operation * on S is said to be e.a.b. (endlich arithmetisch brauchbar) if, for all $A, B, C \in f(S), (A + B)^* \subset (A + C)^*$ implies $B^* \subset C^*$, and is said to be a.b. (arithmetisch brauchbar) if, for all $A \in f(S)$ and for all $B, C \in \overline{F}(S), (A + B)^* \subset (A + C)^*$ implies $B^* \subset C^*$.

Lemma (1.4). Let * be a semistar operation on S. Then the following conditions are equivalent:

(1) * is e.a.b.

- (2) Let $A, B \in f(S)$ such that $A^* \subset (A+B)^*$. Then $0 \in B^*$.
- (3) Let $A, B \in f(S)$. Then $((A+B)^* : A) \subset B^*$.
- (4) Let $A, B, C \in f(S)$ such that $(A + B)^* = (A + C)^*$. Then $B^* = C^*$.

Proof. (1) \Longrightarrow (2): Then $(A + S)^* \subset (A + B)^*$, hence $S^* \subset B^*$. (2) \Longrightarrow (3): Let $x \in ((A + B)^* : A)$, then $x + A \subset (A + B)^*$. Then we have $A \subset (A + B - x)^*$. Hence $0 \in (B - x)^*$, and hence $x \in B^*$. (3) \Longrightarrow (4): Then $A + B \subset (A + C)^*$, hence $B \subset ((A + C)^* : A)$. It follows that

 $B^* \subset C^*$. Similarly, we have $C^* \subset B^*$.

(4) \implies (1): If $(A+B)^* \subset (A+C)^*$, then

 $(A+C)^* = ((A+B)^*, (A+C)^*)^* = (A+B, A+C)^* = (A+(B,C))^*.$ Therefore, $C^* = (B,C)^*$, thus $B^* \subset C^*.$

Proposition (1.5) Let T be an oversemigroup of S, and let * be a semistar operation on S. Then we define $\alpha_T(*): \overline{F}(T) \longrightarrow \overline{F}(T)$ by setting:

 $E^{\alpha_T(*)} = E^*$ for each $E \in \overline{\mathbf{F}}(T) \subset \overline{\mathbf{F}}(S)$.

(1) $\alpha_T(*)$ is a semistar operation on T.

(2) If * is of finite type on S, then $\alpha_T(*)$ is of finite type on T.

(3) If we set $*' = \alpha_{S^*}(*)$, then $*'|_{F(S^*)}$, the restriction of *' to $F(S^*)$, is a star operation on S^* .

(4) If * is an e.a.b. (respectively, a.b.) semistar operation on S, then *' is an e.a.b. (respectively, a.b.) semistar operation on S^* .

Proof. (1), (2) and (3) are easily shown.

(4) Let $E, F, G \in f(S^*)$ such that $(E+F)^{*'} \subset (E+G)^{*'}$. Note that $E = E_0 + S^*, F = F_0 + S^*, G = G_0 + S^*$, for some $E_0, F_0, G_0 \in f(S)$. Then,

 $(E_0 + F_0)^* = (E_0 + S + F_0 + S)^* = (E + F)^* = (E + F)^{*'}$

 $\subset (E+G)^{*'} = (E+G)^* = (E_0+S^*+G_0+S^*)^* = (E_0+G_0)^*.$

Since * is e.a.b, we deduce that $F_0^* \subset G_0^*$, and hence $F^{*'} \subset G^{*'}$. Similar argument shows the a.b. statement.

Proposition (1.6) Let T be an oversemigroup of S, and let * be a semistar operation on T. We define $\delta_S(*): \overline{F}(S) \to \overline{F}(S)$ by setting:

 $E^{\delta_S(*)} = (E+T)^*$ for all $E \in \overline{F}(S)$.

(1) $\delta_S(*)$ is a semistar operation on S.

(2) If * is an e.a.b. (respectively, a.b.) semistar operation on T, then $\delta_S(*)$ is an e.a.b. (respectively, a.b.) semistar operation on S.

Proof. (1) is straightforward.

(2) Let $E \in f(S)$ and let $F, G \in f(S)$ (respectively, $F, G \in \overline{F}(S)$) such that $(E+F)^{\delta_S(*)} \subset (E+G)^{\delta_S(*)}$. Then, $(E+T+F+T)^* \subset (E+T+G+T)^*$. The conclution follows from the hypothesis on *.

Let T be an oversemigroup of S. Then by Propositions (1.5) and (1.6), we have canonical maps:

 α : SStar(S) \longrightarrow SStar(T) and δ : SStar(T) \longrightarrow SStar(S).

Proposition (1.7) Let T be an oversemigroup of S. Then

(1) $\alpha(\delta(*)) = *$ for each $* \in SStar(T)$.

(2) The following conditions are equivalent:

- (i) δ is bijective.
- (ii) α is bijective.
- (iii) S = T.

Proof. (1) is straightforward.

(2) (i) \implies (iii): Since δ is surjective, there is $* \in \text{SStar}(T)$ such that $\delta_S(*)$ coincides with the d-semistar operation on S. Therefore, $S = S^d = S^{\delta_S(*)} = (S+T)^* = T^*$. It follows that $S = T^* \supset T$, and hence S = T.

2. Background on Kronecker function rings

Let D be an integral domain with quotient field q(D) = k and let S be a g-monoid with quotient group G. Then the semigroup ring of S over D is denoted by D[X;S].

Note that $S \subset D[X;S]$. Let $f = \sum_{i=1}^{n} a_i X^{t_i}$ be a non-zero element of k[X;G], where $a_i \neq 0$ for each i and $t_i \neq t_j$ for each $i \neq j$. Then the fractional ideal (t_1, \dots, t_n) of S is called the *e*-content of f, and is denoted by $e_S(f)$ or simply by e(f). The subset $\{t_1, t_2, \dots, t_n\}$ of G is called the *e*-support of f, and is denoted by $\operatorname{Supp}_e(f)$ or simply by $\operatorname{Supp}(f)$. We refer to [M4] for semigroup rings.

Proposition (2.1)([M2, Proposition 4]) Let * be an e.a.b. semistar operation on S, let k be a field, and set

 $S_*^k = \{ f/g \mid f, g \in k[X; S] - \{0\} \text{ with } e(f)^* \subset e(g)^* \} \cup \{0\}.$

(1) S_*^k is a well-defined extension domain of k[X;S] with $q(S_*^k) = q(k[X;S])$ such that $S_*^k \cap G = S^*$.

(2) S^k_* is a Bezout domain.

(3) If $F \in f(S)$, then $FS_*^k \cap G = F^*$ and $FS_*^k = F^*S_*^k$.

 S_*^k is called the Kronecker function ring of S with respect to * and k (or, simply the Kronecker function ring of S with respect to *), and is also denoted by $\operatorname{Kr}(S, *, k)$ (or, simply by $\operatorname{Kr}(S, *)$).

Proposition (2.2) Let * be an e.a.b. semistar operation on S.

(1) $\operatorname{Kr}(S, *) = \operatorname{Kr}(S, *_f).$

(2) Let $\alpha(*)$ be the ascent of * to S^* . Then $\operatorname{Kr}(S,*) = \operatorname{Kr}(S^*, \alpha(*))$.

Proof. (1) is immediate from the definition.

(2) Set $T = S^*$. Suppose that $f, g \in k[X; S] - \{0\}$. Then,

 $\mathbf{4}$

 $(e_T(f))^{\alpha(*)} \subset (e_T(g))^{\alpha(*)}$ iff $(e_T(f))^* \subset (e_T(g))^*$ iff $(e_S(f) + T)^* \subset (e_S(g) + T)^*$ iff $(e_S(f) + S)^* \subset (e_S(g) + S)^*$ iff $(e_S(f))^* \subset (e_S(g))^*$ iff $f/g \in \operatorname{Kr}(S, *)$.

Proposition (2.3) Let $*_1$ and $*_2$ be e.a.b. semistar operations on S. (1) If $*_1 \leq *_2$, then $\operatorname{Kr}(S, *_1) \subset \operatorname{Kr}(S, *_2)$. (2) $*_1 \sim *_2$ if and only if $\operatorname{Kr}(S, *_1) = \operatorname{Kr}(S, *_2)$.

Proof. (1) is immediate from the definition. (2) The sufficiency: For each $F \in f(S)$, we have $F^{*_1} = F \operatorname{Kr}(S, *_1) \cap G = F \operatorname{Kr}(S, *_2) \cap G = F^{*_2}$.

Proposition (2.4) Let $S = \{S_{\lambda} \mid \lambda \in \Lambda\}$ be a family of oversemigroups of S, and let $*_{S}$ be the semistar operation associated to S.

(1) If $*_{\{S_{\lambda}\}}$ is an e.a.b. (respectively, an a.b.) semistar operation for each λ , then $*_{\mathcal{S}}$ is an e.a.b. (respectively, an a.b.) semistar operation on S.

(2) If $*_{\{S_{\lambda}\}}$ is e.a.b. for each λ , then $\operatorname{Kr}(S, *_{\mathcal{S}}) = \cap_{\lambda} \operatorname{Kr}(S, *_{\{S_{\lambda}\}})$.

Proof. (1) Let $E, F, G \in f(S)$ such that $(E+F)^{*s} \subset (E+G)^{*s}$. Then $E+F+S_{\lambda} \subset E+G+S_{\lambda}$ for each λ . Since $*_{\{S_{\lambda}\}}$ is e.a.b., we have $F+S_{\lambda} \subset G+S_{\lambda}$. Then $F^{*s} = \cap_{\lambda}(F+S_{\lambda}) \subset \cap_{\lambda}(G+S_{\lambda}) = G^{*s}$.

The proof for the a.b. statement is similar.

(2) For $f, g \in k[X; S] - \{0\}, e(f)^{*s} \subset e(g)^{*s}$ iff $e(f)^{*\{s_{\lambda}\}} \subset e(g)^{*\{s_{\lambda}\}}$ for each λ .

Proposition (2.5) Let $\mathcal{W} = \{V_{\lambda} \mid \lambda \in \Lambda\}$ be a family of valuation oversemigroups of S, and let W_{λ} be the trivial valuation extension ring of V_{λ} to q(k[X;S]). Then the *w*-semistar operation $*_{\mathcal{W}}$ is a.b. on S, and $Kr(S, *_{\mathcal{W}}) = \cap_{\lambda} Kr(S, *_{\{V_{\lambda}\}}) = \cap_{\lambda} W_{\lambda}$.

Proof. Easy consequence of (2.4) (2).

3. Some semistar operations associated to an semistar operation

Definition (3.1) Let * be a semistar operation on S. An element $x \in G$ is called *-integral over S if $x \in (F^* : F^*)$ for some $F \in f(S)$. The set $S^{[*]} = \bigcup \{(F^* : F^*) \mid F \in f(S)\}$ is called the semistar integral closure of S with respect to * or, simply the *-integral closure of S. If $S = S^{[*]}$, then S is called *-integrally closed.

Lemma (3.2) $S^{[*]} = \bigcup \{ (F^* : F^*)^{*_f} \mid F \in f(S) \}.$

Proof. Let $x \in (F^* : F^*)^{*_f}$. There is $H \in f(S)$ with $H \subset (F^* : F^*)$ such that $x \in H^*$. Since $H^* + F^* \subset F^*$, we have $x + F^* \subset F^*$, and $x \in (F^* : F^*)$. Therefore, $(F^* : F^*)^{*_f} = (F^* : F^*)$.

Proposition (3.3) Let * be a semistar operation on S. We define an operation [*] on S by setting:

 $H^{[*]} = \bigcup \{ ((\bar{F^*} : F^*) + H)^{*_f} \mid F \in f(S) \}, \text{ for each } H \in f(S), \\ E^{[*]} = \bigcup \{ H^{[*]} \mid H \in f(S) \text{ with } H \subset E \}, \text{ for each } E \in \bar{F}(S).$

Then the operation [*] is a semistar operation of finite type on S.

Proof. (i) To prove $x + E^{[*]} = (x + E)^{[*]}$, it suffices to show that $x + E^{[*]} \subset (x + E)^{[*]}$. Let $a \in x + E^{[*]}$. We have $a - x \in F_1^{[*]}$ for some $F_1 \in f(S)$ with $F_1 \subset E$. Then $a - x \in ((F_2^* : F_2^*) + F_1)^{*_f}$ for some $F_2 \in f(S)$. Then $a \in ((F_2^* : F_2^*) + x + F_1)^{*_f} \subset (x + F_1)^{[*]} \subset (x + E)^{[*]}$.

(ii) Let $x \in E$, and set (x) = H. Then we have $x \in (H^* : H^*) + H \subset H^{[*]} \subset E^{[*]}$. Hence $E \subset E^{[*]}$.

(iii) Assume that $E_1 \subset E_2$. By the definition, we have $E_1^{[*]} \subset E_2^{[*]}$.

(iv) Let $y \in (E^{[*]})^{[*]}$. We have $y \in F^{[*]}$ for some $F \in f(S)$ with $F \subset E^{[*]}$. Since F is finitely generated, we have $F \subset H^{[*]}$ for some $H \in f(S)$ with $H \subset E$.

If $F = (x_1, \dots, x_n)$, we have, for each $i, x_i \in ((F_i^* : F_i^*) + H)^{*_f}$ for some $F_i \in f(S)$. Then $F \subset ((F_1^* : F_1^*) + H, \dots, (F_n^* : F_n^*) + H)^{*_f}$. Let $G_1 = \sum_i F_i$, then $F \subset ((G_1^* : G_1^*) + H)^{*_f}$.

On the other hand, $y \in ((G_2^*: G_2^*) + F)^{*_f}$ for some $G_2 \in f(S)$. Then,

 $y \in ((G_2^*:G_2^*) + ((G_1^*:G_1^*) + H)^{*_f})^{*_f} = ((G_2^*:G_2^*) + (G_1^*:G_1^*) + H)^{*_f} \subset (((G_1 + G_2)^*) : (G_1 + G_2)^*) + H)^{*_f} \subset H^{[*]} \subset E^{[*]}.$ Therefore, $(E^{[*]})^{[*]} = E^{[*]}.$

Proposition (3.4) Let * be a semistar operation on S. Then we have

(1) $S^{[*]}$ is an oversemigroup of S.

(2) $S^{[*]}$ is integrally closed.

Proof. (1) Let $a, b \in S^{[*]}$. Then $a \in (F_1^* : F_2^*)$ and $b \in (F_2^* : F_2^*)$ for some $F_1, F_2 \in f(S)$. Then $a + b \in ((F_1 + F_2)^* : (F_1 + F_2)^*) \in S^{[*]}$.

(2) Let $x \in G$ be integral over $S^{[*]}$. We have $nx = a \in S^{[*]}$ for some positive integer n. Since $a \in S^{[*]}$, we have $a \in (F^* : F^*)$ for some $F \in f(S)$. Set $H = (F, F + x, \dots, F + (n-1)x)$. Then $x + H \subset H^*$. It follows that $x \in (H^* : H^*) \subset S^{[*]}$.

Definition (3.5) Let * be a semistar operation on S. We define the map $*_a : \bar{F}(S) \longrightarrow \bar{F}(S)$ by setting

 $\begin{aligned} F^{*_a} &= \cup \{ ((F+H)^* : H^*) \mid H \in \mathbf{f}(S) \}, \text{ for each } F \in \mathbf{f}(S), \\ E^{*_a} &= \cup \{ F^{*_a} \mid F \in \mathbf{f}(S) \text{ with } F \subset E \}, \text{ for each } E \in \bar{\mathbf{F}}(S). \end{aligned}$

Proposition (3.6) Let * be a semistar operation on S.

(1) $*_a$ is a semistar operation of finite type.

 $\begin{array}{ll} (2) & *_a \text{ is e.a.b.} \\ (3) & *_f \leq [*] \leq *_a. \\ (4) & [*] = [*_f] = [*]_f. \\ (5) & *_a = (*_f)_a = (*_a)_f. \\ (6) & *_a = *_f \text{ if and only if } *_f \text{ is an e.a.b. semistar operation.} \\ (7) & *_1 \leq *_2 \text{ implies } (*_1)_a \leq (*_2)_a. \\ (8) & *_1 \leq *_2 \text{ implies } [*_1] \leq [*_2]. \\ (9) & (*_a)_a = *_a. \\ (10) & [*]_a = [*_a] = *_a. \\ (11) & *_f \leq [*] \leq [[*]] \leq *_a. \\ (12) & S^{[*]} = S^{*_a} = S^{[[*]]}. \end{array}$

Proof. (1) (i) To prove $(x+E)^{*_a} = x + E^{*_a}$, it suffices to show that $x + E^{*_a} \subset (x+E)^{*_a}$. Let $y \in x + E^{*_a}$. Since $y - x \in E^{*_a}$, there is $F \in f(S)$ with $F \subset E$ such that $y - x \in F^{*_a}$. Hence $y - x \in ((F+H)^* : H^*)$ for some $H \in f(S)$. Then $y \in ((x+F+H)^* : H^*) \subset (x+F)^{*_a} \subset (x+E)^{*_a}$. It follows that $x + E^{*_a} \subset (x+E)^{*_a}$. (ii) Let $x \in E$, and set (x) = H. Then $x \in ((H+H)^* : H^*) \subset H^{*_a} \subset E^{*_a}$. Hence $E \subset E^{*_a}$.

(iii) Let $E_1 \subset E_2$. By definition, we have $E_1^{*_a} \subset E_2^{*_a}$.

(iv) Let $y \in (E^{*_a})^{*_a}$. Then $y \in F^{*_a}$ for some $F \in f(S)$ with $F \subset E^{*_a}$. Since F is finitely generated, we have $F \subset H^{*_a}$ for some $H \in f(S)$ with $H \subset E$. If $F = (x_1, \cdots, x_n)$, we have, for each $i, x_i + F_i^* \subset (H + F_i)^*$ for some $F_i \in f(S)$. Let $G_1 = \sum_i F_i$, then $F + G_1 \subset (H + G_1)^*$. On the other hand, $y + G_2 \subset (F + G_2)^*$ for some $G_2 \in f(S)$. Then $y + G_1 + G_2 \subset (F + G_1 + G_2)^* \subset (H + G_1 + G_2)^*$. Hence $y \in H^{*_a} \subset E^{*_a}$. Hence $(E^{*_a})^{*_a} = E^{*_a}$.

(2) Let $I, J \in f(S)$, we will show that $((I+J)^{*_a}: I) \subset J^{*_a}$. Let $z \in ((I+J)^{*_a}: I)$, then $z+I \subset (I+J)^{*_a}$. If $I = (x_1, \cdots, x_n)$, we have, for each $i, z+x_i+F_i^* \subset (I+J+F_i)^*$ for some $F_i \in f(S)$. Let $G = \sum_i F_i$, then $z+I+G \subset (I+J+G)^*$. It follows that $z \in ((J+I+G)^*: (I+G)^*) \subset J^{*_a}$.

(3) Let $x \in E^{*_f}$. We have $x \in H^*$ for some $H \in f(S)$ with $H \subset E$. Then we have $x \in ((S^* : S^*) + H)^{*_f} \subset H^{[*]} \subset E^{[*]}$.

Hence $E^{*_f} \subset E^{[*]}$, and $*_f \leq [*]$.

Next, let $x \in E^{[*]}$. We have $x \in H^{[*]}$ for some $H \in f(S)$ with $H \subset E$. There is $F \in f(S)$ such that $x \in ((F^*:F^*)+H)^{*_f}$. Then $x+F \subset ((F^*:F^*)+H)^{*_f}+F^* \subset (F+H)^*$. Hence $x \in H^{*_a} \subset E^{*_a}$. Therefore $E^{[*]} \subset E^{*_a}$, and $[*] \leq *_a$.

(4), (5), (7) and (8) are obvious from the definitions.

(6) The necessity follows from (2).

The sufficiency: Let $F \in f(S)$, and let $x \in F^{*_a}$. Then $x + H \subset (F + H)^*$ for some $H \in f(S)$. Since $*_f$ is e.a.b., we have $x \in F^{*_f}$. Hence $F^{*_a} \subset F^{*_f}$, and $*_a \leq *_f$. The conclusion follows from (3).

(9) Since $*_a = (*_a)_f$ is e.a.b. by (2), we have $(*_a)_a = (*_a)_f$ by (6). Hence $(*_a)_a = *_a$.

(10) By (3),(7), we have $(*_f)_a \leq [*]_a \leq (*_a)_a$ (resp. $(*_a)_f \leq [*_a] \leq (*_a)_a$)). By (5),(9), we have $*_a \leq [*]_a \leq *_a$ (resp., $*_a \leq [*_a] \leq *_a$). Hence $[*]_a = *_a$ (resp. $*_a = [*_a]$).

(11) By (3),(8), we have $[*_f] \leq [[*]] \leq [*_a]$. Then (4),(10) imply the assertion.

(12) We have $S^{*_a} = \bigcup \{ ((S + H)^* : H^*) \mid H \in f(S) \} = \bigcup \{ (H^* : H^*) \mid H \in f(S) \} = S^{[*]}$. Then (11) completes the proof.

4. The Kronecker function ring of any semistar operation

Lemma (4.1) (Dedekind-Mertens Lemma for semigroups)([GP1]) Let $f, g \in k[X; S] - \{0\}$. Then there is a positive integer m such that (m+1)e(g) + e(f) = me(g) + e(fg).

Lemma (4.2) Let * be a semistar operation on S. Let $f, g, f', g' \in k[X; S] - \{0\}$ with f/g = f'/g' such that $(e(f) + e(h))^* \subset (e(g) + e(h))^*$ for some $h \in k[X; S] - \{0\}$.

Then there is $h' \in k[X; S] - \{0\}$ such that $(e(f') + e(h'))^* \subset (e(g') + e(h'))^*$.

Proof. Then we have fg' = f'g. By (4.1), there is a positive integer m such that (m+1)e(g) + e(f') = me(g) + e(f'g), (m+1)e(f) + e(g') = me(f) + e(fg'). Then it follows that $\{(m+1)e(g) + e(f')\} + me(f) = \{(m+1)e(f) + e(g')\} + me(g)$. Now, there are a finite set of elements s_1, s_2, \dots, s_n of S with $s_i \neq s_j$ for each $i \neq j$ such that (m+1)(e(g) + e(h)) + m(e(f) + e(h)) = (s_1, s_2, \dots, s_n) . We set $h' = X^{s_1} + X^{s_2} + \dots + X^{s_n} \in k[X; S] - \{0\}$. Then we have e(h') = (m+1)(e(g) + e(h)) + m(e(f) + e(h)) and therefore $e(f') + e(h') = \{(m+1)e(g) + e(f') + me(f)\} + (2m+1)e(h)$ $= \{(m+1)e(f) + e(g') + me(g)\} + (2m+1)e(h)$ = (e(f) + e(h)) + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g') $\subset (e(g) + e(h))^* + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g')$

Set $\operatorname{Kr}(S, *) = \{f/g \mid f, g \in k[X; S] - \{0\}$ such that $(e(f) + e(h))^* \subset (e(g) + e(h))^*$ for some $h \in k[X; S] - \{0\}\} \cup \{0\}$. (4.2) shows that $\operatorname{Kr}(S, *)$ is a well-defined subset of q(k[X; S]). If * is e.a.b., this coincides with $\operatorname{Kr}(S, *)$ in (2.1).

Proposition (4.3) Kr(S, *) is an integral domain with quotient field q(k[X; S]).

Proof. Let $f/g, f'/g \in Kr(S, *) - \{0\}$. Then there are $h, h' \in k[X; S] - \{0\}$ such that $(e(f) + e(h))^* \subset (e(g) + e(h))^*, (e(f') + e(h'))^* \subset (e(g) + e(h'))^*$. There is $j \in [e(g) + e(h)]^*$.

 $\begin{aligned} &(e(f) + e(h)) \subset (e(g) + e(h)), (e(f') + e(h')) \subset (e(g) + e(h')) \\ & \text{ Indee is } f \in \\ & k[X;S] - \{0\} \text{ such that } e(j) = e(h) + e(h'). \text{ Then we have} \\ & (e(f) + e(j))^* \subset (e(g) + e(j))^*, (e(f') + e(j))^* \subset (e(g) + e(j))^*. \end{aligned}$ $\begin{aligned} & \text{We may assume that } f + f' \neq 0. \text{ Then it follows that} \\ & (e(f + f') + e(j))^* \subset (e(g) + e(j))^*. \text{ Hence } f/g + f'/g \in \text{Kr}(S, *). \end{aligned}$ $\begin{aligned} & \text{Next, we have } (m+2)e(g) = me(g) + e(g^2) \text{ for some } m. \text{ There is } j' \in k[X;S] - \{0\} \end{aligned}$ $\begin{aligned} & \text{such that } e(j') = (m+2)e(g) + 2e(j). \text{ Then we have} \\ & e(ff') + e(j') \\ & \subset \{e(f) + e(f')\} + \{(m+2)e(g) + 2e(j)\} \\ & = \{e(f) + e(j)\} + \{e(f') + e(j)\} + (m+2)e(g) \\ & \subset 2(e(g) + e(j))^* + (m+2)e(g) \\ & = 2(e(g) + e(j))^* + \{me(g) + e(g^2)\} \end{aligned}$

Therefore $(e(ff') + e(j'))^* \subset (e(g^2) + e(j'))^*$. Hence $(ff')/(gg') \in Kr(S, *)$.

Proposition (4.4) Kr(S, *) is a Bezout domain.

 $\subset (e(g^2) + e(j'))^*.$

Proof. Set $R = \operatorname{Kr}(S, *)$, and let $f \in k[X; S] - \{0\}$ with $\operatorname{Supp}(f) = \{s_1, \cdots, s_n\}$. Then we have $fR = (X^{s_1}, \cdots, X^{s_n})R$.

Let ξ and η be non-zero elements of R. We set $\xi = f/g$ and $\eta = f'/g$ with $f, f', g \in k[X; S] - \{0\}$, and let $\operatorname{Supp}(f) = \{s_1, \dots, s_n\}$, let $\operatorname{Supp}(f') = \{t_1, \dots, t_m\}$ and let $\operatorname{Supp}(f) \cup \operatorname{Supp}(f') = \{u_1, \dots, u_l\}$ with $u_i \neq u_j$ for each $i \neq j$. Then we have

$$\begin{aligned} &(\xi,\eta)R = (\frac{X^{s_1}}{g}, \cdots, \frac{X^{s_n}}{g}, \eta)R \\ &= (\frac{X^{s_1}}{g}, \cdots, \frac{X^{s_n}}{g}, \frac{X^{t_1}}{g}, \cdots, \frac{X^{t_m}}{g})R \\ &= (\frac{X^{u_1}}{g}, \cdots, \frac{X^{u_l}}{g})R = (\frac{\sum_i X^{u_i}}{g})R. \end{aligned}$$

Therefore $(\xi, \eta)R$ is a principal ideal of R.

Lemma (4.5) If $*_1 \le *_2$, then $Kr(S, *_1) \subset Kr(S, *_2)$.

Proof. Let $f, g \in k[X; S] - \{0\}$ such that $(e(f) + e(h))^{*_1} \subset (e(g) + e(h))^{*_1}$ for some $h \in k[X; S] - \{0\}$. Then we have $(e(f) + e(h))^{*_2} \subset (e(g) + e(h))^{*_2}$.

Proposition (4.6) Let * be a semistar operation on S. Then we have $\operatorname{Kr}(S,*) = \operatorname{Kr}(S,[*]) = \operatorname{Kr}(S,*_a).$

Proof. From the definitions, we have $Kr(S, *_f) = Kr(S, *)$.

Since $*_f \leq [*] \leq *_a$ by (3.6)(3), we have $\operatorname{Kr}(S, *) \subset \operatorname{Kr}(S, [*]) \subset \operatorname{Kr}(S, *_a)$. Let $\xi \in \operatorname{Kr}(S, *_a)$ -{0}. Then $\xi = f/g$ with $f, g \in k[X, S] - \{0\}$ such that $(e(f) + e(h))^{*_a} \subset (e(g) + e(h))^{*_a}$ for some $h \in k[X; S] - \{0\}$. Let $e(f) + e(h) = (a_1, \cdots, a_n)$. Then, for each $i, a_i + F_i \subset (e(f) + e(g) + F_i)^*$ for some $F_i \in f(S)$. Set $F = \sum_i F_i$, then $(a_1, \cdots, a_n) + F \subset (e(g) + e(h) + F)^*$. Therefore $(e(f) + e(h) + F)^* \subset (e(g) + e(h) + F)^*$. It follows that $f/g \in \operatorname{Kr}(S, *)$.

Proposition (4.7) Let * be a semistar operation on S. Then, for each $E \in \overline{F}(S)$, we have $E^{*_a} = \bigcup \{ FKr(S, *) \cap G \mid F \in f(S) \text{ with } F \subset E \}.$

Proof. $E^{*_a} = \bigcup \{F^{*_a} \mid F \in f(S) \text{ with } F \subset E\} = \bigcup \{F\operatorname{Kr}(S, *_a) \cap G \mid F \in f(S) \text{ with } F \subset E\} = \bigcup \{F\operatorname{Kr}(S, *) \cap G \mid F \in f(S) \text{ with } F \subset E\}.$

Proposition (4.8) Let * be a semistar operation on S. Set

 $T = S^{*_a}$ and $*_T = \alpha_T(*_a) = \alpha(*_a).$

Then, T is an integrally closed oversemigroup of S, and $*_T$ is an e.a.b. semistar operation on T such that $T^{*_T} = T$ and $\operatorname{Kr}(S, *) = \operatorname{Kr}(T, *_T)$.

Proof. Since $T = S^{[*]}$, T is integrally closed by (3.4)(2). By (3.6)(2), $*_a$ is e.a.b. and, by (1.5)(4), $*_T$ is e.a.b. Since $(E^{*_a})^{*_a} = E^{*_a}$ for each $E \in \overline{F}(S)$, we have $T^{*_T} = T^{\alpha(*_a)} = T^{*_a} = (S^{*_a})^{*_a} = S^{*_a} = T$. By (2.2) and (4.6), we have $Kr(S, *) = Kr(S, *_a) = Kr(T, *_T)$.

References

- [FL] M. Fontana and K. Loper, Kronecker function rings: a general approach, In: Ideal Theoretic Methods in Commutative Algebra, Lecture Notes Pure Appl. Math. 220, Marcel Dekker, 2001, 189-205.
- [G] R. Gilmer, Commutative Semigroup Rings, The Univ. Chicago Press, 1984.
- [GP1] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.
- [GP2] R. Gilmer and T. Parker, Semigroup rings as Prüfer rings, Duke Math. J. 41(1974), 219-230.
- [M1] R. Matsuda, Torsion-free abelian semigroup rings VI, Bull. Fac. Sci., Ibaraki Univ. 18 (1986), 23-43.
- [M2] R. Matsuda, Kronecker function rings of semistar-operations on semigroups, Math. J. Toyama Univ. 19 (1996), 159-170.
- [M3] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd ed., Kaisei, Tokyo, 2002.
- [M4] R.Matsuda, Commutative Semigroup Rings, 2nd ed., Kaisei, Tokyo, 2003.
- [OMS] H. Ozawa, R. Matsuda, and K. Satô, Semistar-operations on semigroups, Memoirs Tohoku Inst. Tech. 16 (1996), 1-14.