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Kronecker function rings of semistar operations
on semigroups, II

Akira OKABE* and Rytuki MATSUDA**

Abstract
We study the Kronecker function ring of any semistar operation on a grading
monoid.
Introduction

We know that various terms in ideal theory are defined analogously for commuta-
tive semigroups; those are ideal, integral, divisor, dimension, valuation, star operation,
etc. Let G be a torsion-free abelian (additive) group and let S be its subsemigroup
containing the zero element. Then S is called a grading monoid (or a g-monoid). A
motivation and an outline of ideas for ideal theory of a grading monoid are as follows:
Almost all of ideal theory of a commutative ring R concern properties of ideals of R
with respect to the multiplication on R. Abondoning the additon on R we will extract
the multiplication on R. Then we have an idea of an algebraic system S of a semigroup
which is called a grading monoid.

We already have the Kronecker function ring theory of an e.a.b. semistar operation
on a g-monoid ([M2]). In 2001, M. Fontana and K. Loper [FL] outlined a general
approach to the theory of Kronecker function rings of an integral domain by semistar
operations. In this paper, after them, we will define a Kronecker function ring Kr(S, )
of any semistar operation * on a g-monoid S and will study it. We refer to [G], [GP1,
2] and [M4] for the general theory of a commutative semigroup ring, and [M3] for the
general theory of a grading monoid.

1. Preliminary results on semistar operations

Let S be a g-monoid with quotient group G. Let E be a non-empty subset of G
such that S+ F C E with s+ FE C S for some s € S. Then F is called a fractional ideal
of S. We denote the set of all fractional ideals of S by F(S). A non-empty subset E of
G is called an S-submodule of G if S+ FE C E. We denote the set of all S-submodules

Received 20 September, 2007; revised 9 February, 2008.
2000 Mathematics Subject Classification. 13A15.
Key Words and Phrases. Kronecker function ring, semistar operation, grading monoid.
*Professor Emeritus, Oyama National College of Technology (aokabe@aw.wakwak.com)
**Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)



2 A. Okabe and R. Matsuda

of G by F(S). The set of all finitely generated members in F(S) is denoted by f(S5).

Definition (1.1) ([OMS]) A map * : F(S) — F(S),E —— E*, is called a
semistar operation on S if, for all x € G, and for all E,F € F(S), the following
conditions hold:

(1) (x+E)*=2+E*;(2) EC E*;(3) E C Fimplies E* C F*; (4) (E*)* = E*.

We denote the set of all the semistar operations on .S by SStar(s).
Let E, F € F(S). Then we denote the set {z € G|z + F C E} by (E: F).

Lemma (1.2) Let * be a semistar operation on S, and let E, F € F(S). Then
we have (F: F)* C (E*: F*)=(E*: F).

Proof. Since (E: F)+ F C E, we have (E: F)* + F* C E*. Hence (E : F)* C
(E*: F*).

Let S = {S)\ | A € A} be a family of oversemigroups of S. Then the semistar
operation E —— Ny(E 4+ S)) on S is denoted by *s.

A mapping E —— E* of F(S) to F(S) is called a star operation on S if the
following conditions hold for all # € G and for all E, F' € F(S) ([M1]):

(1) (2)*=(2); (2) (x+E)*=2+FE* (3) EC E*; (4) If EC F, then E* C F*;
(5) (B*)" = E*.

Let * be a star operation on S. If we set E*e = E* for all E € F(S), and E*> = G
for all E € F(S) — F(9), then %, is a semistar operation on S and is called the trivial
extension of x to a semistar operation.

Let * be a semistar operation on S. For each E € F(S), set E*f = U{F* | F €
f(S) with F C E}. Then *; is a semistar operation on S, and is called the finite
semistar operation associated to *. A semistar operation * is said to be of finite type
if ¥ = . Since (xy)y = *y, *; is of finite type.

For any subset E of G, the subset (S : E) is also denoted by E~* (Weset ! = G).
The mapping E —— EV = (E~1)~! of F(S) to F(S) is a semistar operation on S and
is called the v-semistar operation on S.

The finite semistar operation associated to the v-semistar operation is called the
t-semistar operation on S.

If W is a family of valuation oversemigroups of S, then x*yy, is called a w-semistar
operation (associated to W). If W is the family of all the valuation oversemigroups of
S, then *y, is called the b-semistar operation on S.

Let #1, %2 be semistar operations on S. If (1) = (*2)f, then %; and %, are said
to be equivalent, and is denoted by *; ~ 5. By definition, x; and %o are equivalent if
and only if E** = E*2 for each E € {(.5).

Definition (1.3). A semistar operation * on S is said to be e.a.b. (endlich
arithmetisch brauchbar) if, for all A, B,C € {(S),(A + B)* C (A + C)* implies B* C
C*, and is said to be a.b. (arithmetisch brauchbar) if, for all A € f(.S) and for all
B,C € F(S),(A+ B)* C (A+ C)* implies B* C C*.
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Lemma (1.4). Let * be a semistar operation on S. Then the following conditions
are equivalent:

(1) = ise.a.b.

(2) Let A, B € {(S) such that A* C (A+ B)*. Then 0 € B*.

(3) Let A, B € £(S). Then ((A+ B)*: A) C B*.

(4) Let A, B,C € {(S) such that (A+ B)* = (A+ C)*. Then B* = C*.

Proof. (1) = (2): Then (A+ S)* C (A+ B)*, hence S* C B*.

(2) = (3): Let x € (A+ B)*: A), then x + A C (A+ B)*. Then we have
AC (A+ B —ux)*. Hence 0 € (B — )", and hence z € B*.

(3) = (4): Then A+ B C (A+C)*, hence B C ((A+ C)*: A). Tt follows that
B* C C*. Similarly, we have C* C B*.

(4) = (1): If (A+ B)* C (A+ C)*, then

(A+C) =((A+B)",\(A+C))*=(A+B,A+C) = (A+ (B,C))*.

Therefore, C* = (B, C)*, thus B* C C*.

Proposition (1.5) Let T be an oversemigroup of S, and let * be a semistar
operation on S. Then we define ar(*) : F(T) — F(T) by setting:

Eor() = B* for each E € F(T) C F(S).

(1) ar(x) is a semistar operation on T'.

(2) If  is of finite type on S, then ar(*) is of finite type on T

(3) If we set ¥ = ag«(x), then #'|p(g+), the restriction of *" to F(S*), is a star
operation on S*.

(4) If = is an e.a.b. (respectively, a.b.) semistar operation on S, then #" is an

e.a.b. (respectively, a.b.) semistar operation on S*.

Proof. (1), (2) and (3) are easily shown.
(4) Let E,F,G € f(S*) such that (E + F)* ¢ (E + G)*. Note that E =
Eog+ S* F =Fy+ 5%, G=Gy+ S*, for some Ey, Fy, Gy € f(S) Then,
(BEo+Fo) = (EBo+S+Fo+S)*=(E+F)"=(E+F)*
C(E+G) =(E+G)* = (Ey+S*+ Go+ 5*)* = (Ey + Go)*.
Since * is e.a.b, we deduce that F C G, and hence F* < G*'. Similar argument
shows the a.b. statement.

Proposition (1.6) Let T be an oversemigroup of S, and let * be a semistar
operation on T. We define dg () : F(S) — F(S) by setting:

E%®) = (E+4T)* for all E € F(S).

(1) ds(x) is a semistar operation on S.

(2) If * is an e.a.b. (respectively, a.b.) semistar operation on T, then dg(*) is an
e.a.b. (respectively, a.b.) semistar operation on S.

Proof. (1) is straightforward.
(2) Let E € f(S) and let F,G € f(S) (respectively, F,G € F(S)) such that
(E+ F)st) c (E+G)%s™. Then, (E+T+F+T)" C (E+T+G+T)* The
conclution follows from the hypothesis on .
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Let T be an oversemigroup of S. Then by Propositions (1.5) and (1.6), we have
canonical maps:
a: SStar(S) — SStar(T) and ¢: SStar(T) — SStar(.5).

Proposition (1.7) Let T be an oversemigroup of S. Then
(1) a(d(x)) = * for each x € SStar(T).
(2) The following conditions are equivalent:
(i) ¢ is bijective.
(ii) «ais bljectlve
(iii)) S =
Proof. (1) is straightforward.

(2) (i) = (iii): Since ¢ is surjective, there is * € SStar(T") such that dg(*)
coincides with the d-semistar operation on S. Therefore, S = S% = §%(*) = (S4T)*
T*. Tt follows that S =T7* D T, and hence S =T.

2. Background on Kronecker function rings

Let D be an integral domain with quotient field q(D) = k and let S be a g-monoid
with quotient group G. Then the semigroup ring of S over D is denoted by D[X;5].

Note that S C D[X;S]. Let f = ZaiXt be a non-zero element of k[X;G], where

a; # 0 for each ¢ and t; # t; for each i # j. Then the fractional ideal (t1,--- ,¢,) of
S is called the e-content of f , and is denoted by eg(f) or simply by e(f). The subset
{t1,ta, - ,t,} of G is called the e-support of f, and is denoted by Supp.(f) or simply
by Supp(f). We refer to [M4] for semigroup rings.

Proposition (2.1)([M2, Proposition 4]) Let * be an e.a.b. semistar operation
on S, let k be a field, and set

SE=1{f/g| f,9 € k[X; 5] — {0} with e(f)* C e(g)°} U {0}.

(1) S* is a well-defined extension domain of k[X; S] with q(S*) = q(k[X; S]) such
that S¥ NG = S*.

(2) S* is a Bezout domain.

(3) If F € f(9), then FS* NG = F* and FSk = F*S*.

Sk is called the Kronecker function ring of S with respect to * and k (or, simply
the Kronecker function ring of S with respect to *), and is also denoted by Kr(S, *, k)
(or, simply by Kr(S, *)).

Proposition (2.2) Let x be an e.a.b. semistar operation on S.
(1) Kr(S,*) = Kr(S,*y).
(2) Let a(x) be the ascent of * to S*. Then Kr(95, *) = Kr(S*, a(x)).

Proof. (1) is immediate from the definition.
(2) Set T'=S*. Suppose that f,g € k[X;S] — {0}. Then,
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(er(f))*™) C (er(9)*™) iff (eT( )" C (e ( )" iff (es(f) +T)" C (es(g) + 1)
iff (es(f) +5)" C (es(g) + )" iff (es(f))" C (es(9))” iff f/g € Kx (S, *).

Proposition (2.3) Let #; and %3 be e.a.b. semistar operations on S.
(1) If %1 < g, then Kr(S,*1) CKr(S, *3).
(2) #1 ~ %o if and only if Kr(S,*1) = Kr(S, *2).

Proof. (1) is immediate from the definition.
(2) The sufficiency: For each F' € {(.S), we have
F*1 = FKr(S,%1) NG = FKr(S,%2) NG = F*2.

Proposition (2.4) Let S = {S\ | A € A} be a family of oversemigroups of S,
and let xs be the semistar operation associated to S.

(1) If #;g,y is an e.a.b. (respectively, an a.b.) semistar operation for each ), then
*s is an e.a.b. (respectively, an a.b.) semistar operation on S.

(2) If *g,} is e.a.b. for each A, then Kr(S, xs) = Nx Kr(S, *1g,}).

Proof. (1) Let E, F,G € {(S) such that (E+F)*s C (E+G)*s. Then E4+F+S) C
E + G + Sy for each A\. Since *(g,) is e.a.b., we have F' + Sy C G + Sx. Then
Fr*s = N\(F +85)) CNA(G + Sy) = G*s.

The proof for the a.b. statement is similar.

(2) For f,g € k[X;S] —{0}, e(f)*s Ce(g)*s iff e(f)*15x} C e(g)*t5x} for each A.

Proposition (2.5) Let W = {V) | A € A} be a family of valuation oversemigroups
of S, and let W) be the trivial valuation extension ring of V) to q(k[X;S]). Then the
w-semistar operation *yy is a.b. on S, and Kr(S, *y) = Nx Kr(S, *v,y) = MaW.

Proof. Easy consequence of (2.4) (2).
3. Some semistar operations associated to an semistar operation

Definition (3.1) Let % be a semistar operation on S. An element z € G is called
s-integral over S if x € (F* : F*) for some F € £(S). The set S/ = U{(F*: F*) | F ¢
f(S)} is called the semistar integral closure of S with respect to * or, simply the -
integral closure of S. If § = SI1 then S is called x-integrally closed.

Lemma (3.2) SU =U{(F*: F*)* | F € {(S)}.

Proof. Let z € (F* : F*)*/. There is H € {(S) with H C (F* : F*) such that
x € H*. Since H* + F* C F*, we have x + F* C F*, and « € (F* : F’*). Therefore,
(F*: F*)*f = (F*: F*).

Proposition (3.3) Let % be a semistar operation on S. We define an operation
[¥] on S by setting:

HMY = U{((F*: F*) + H)*s | F € {(S)}, for each H € (9),

BV = U{HU | H € £(S) with H C E}, for each E € F(S).
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Then the operation [«] is a semistar operation of finite type on S.

Proof. (i) To prove x + Ell = (z + E)!, it suffices to show that = + Ell

(x + E)F. Let a € x + E. We have a — x € Fl[*] for some Fy € f(S) with F} C E.
Then a—x € ((Fy : Fi)+F1)*f for some Fy € {(S). Thena € ((Fy : Fy)+x+F)* C
(2 + F)M (21 B).

(ii) Let x € F, and set () = H. Then we have 2 € (H* : H*)+ H c H¥ c EP.
Hence E C EP.

(iii) Assume that Ey C E5. By the definition, we have EE*] - Eé*].

(iv) Let y € (B, We have y € FI* for some F € f(S) with F ¢ EM. Since
F is finitely generated, we have F' C H!*] for some H € f(S) with H C E.

If F = (x1, - ,2n), we have, for each i, z; € ((F} : F) + H)*s for some F; €
£(S). Then F C ((Ff : Ff)+ H,--- (F* : F*)+ H)*. Let G; = Y, F}, then
Fc(G:Gy)+H)*.

On the other hand, y € ((G% : G3) + F)*/ for some Gg € £(S). Then,

y € (G5 : G3) + (G : Gi)+ HY ") = ((G3 : G3) + (G : G) + H)*I C
((G1+ Ga)* : (Gy + Go)*) + H)*s ¢ HI! ¢ EFL. Therefore, (B = B,

Proposition (3.4) Let * be a semistar operation on S. Then we have
(1) SM is an oversemigroup of S.
(2) S is integrally closed.

Proof. (1) Let a,b € Sl Then a € (Fy : Fy) and b € (Fy : Fy¥) for some
Fy,Fy € £(S). Then a+b € ((Fy + Fo)* : (Fy + Fp)*) € SB.

(2) Let 2 € G be integral over S*l. We have nx = a € SIl for some positive
integer n. Since a € S*, we have a € (F* : F*) for some F € f(S). Set H =
(F,F+z,--- ,F+(n—1)z). Then z+ H C H*. Tt follows that = € (H* : H*) c Sl

Definition (3.5) Let * be a semistar operation on S. We define the map *, :
F(S) — F(9) by setting

F* =U{((F+ H)*: H*) | H € {(S)}, for each F' € {(5),

E*e = U{F*« | F € f(S) with F C E}, for each E € F(9).

Proposition (3.6) Let * be a semistar operation on S.

*, 1s a semistar operation of finite type.

x, 1S e.a.b.

sp <[] < *q.

[#] = [rr] =[] -

*a = (¥f)a = (*a)f-

*q = *¢ if and only if *¢ is an e.a.b. semistar operation.
x1 < %o implies (x1)q < (*2)q.

k1 < %o implies [#;] < [*2].

N = O — N
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Proof. (1) (i) To prove (z 4+ E)*e = x + E*« it suffices to show that x + E* C
(x + E)*. Let y € x + E**. Since y —x € E*=, there is F € f(S) with FF C E
such that y —x € F**. Hence y —x € ((F'+ H)* : H*) for some H € {(5). Then
y€((@+F+H)*:H*)C (x+F)* C (r+ E)*. It follows that  + E** C (x4 E)**.

(ii) Let z € E, and set (x) = H. Then z € (H+ H)* : H*) C H* C E*.
Hence E C E*e.

(i) Let By C Es. By definition, we have Ej* C Ej3°.

(iv) Let y € (E*e)*». Then y € F*« for some F' € {(S) with F' C E*+. Since
F' is finitely generated, we have F' C H*e for some H € {(S) with H C E. If F =
(1, ,2n), we have, for each i, z; + F; C (H + F;)* for some F; € £(S). Let
Gy =), F;, then F+ G, C (H + G1)*. On the other hand, y + G2 C (F + G2)* for
some Go € f(S). Then y+ Gy + G2 C (F 4+ G1 + G2)* C (H + G1 + G2)*. Hence
y € H*» C E**. Hence (E*a)* = E*a.

(2) Let I, J € £(S), we will show that ((I+.J)* : I) C J*. Let z € (I+J)* : I),
then z+1 C (I+J)*. If I = (z1,--- ,p), we have, for each ¢, 242, +F* C (I+J+F;)*
for some F; € f(S). Let G = >, F;, then 2+ 1+ G C (I + J + G)*. It follows that
z€(J+I+G)*:(I+G)*) C J*.

(3) Let x € E*/. We have x € H* for some H € {(S) with H C E. Then we have

x € ((S*: 8%+ H)*s c H¥ ¢ EF.

Hence E*f C Bl and *; < [4].

Next, let z € E. We have 2 € HI¥l for some H € {(S) with H C E. Thereis F €
f(S) such that x € ((F* : F*)+H)*/. Thenx+F C ((F*: F*)+H)* +F* C (F+H)*.
Hence z € H** C E*a. Therefore E* € E*e and [¥] < #,.

(4), (5), (7) and (8) are obvious from the definitions.

(6) The necessity follows from (2).

The sufficiency: Let F' € £(S), and let © € F**. Then x + H C (F + H)* for some
H € {(S). Since *; is e.a.b., we have x € F*/. Hence F*» C F*/, and %, < *y. The
conclusion follows from (3).

(9) Since *, = (%q)f is e.a.b. by (2), we have (xq)q = (*q)f by (6). Hence

(10) aBy (3),(7), we have (xf)q < [*]a < (*a)a (resp. (*%a)f < [*a] < (%4)a))-
By (5),(9), we have x, < [#]q < %4 (resp., x4 < [#4] < %,). Hence [x], = #, (resp.

(11) .By (3),(8), we have [f] < [[]] < [#4]. Then (4),(10) imply the assertion.
(12) We have S* = U{((S+ H)* : H*) | H € f(S)} = U{(H* : H*) | H €
f(S)} = S, Then (11) completes the proof.

4. The Kronecker function ring of any semistar operation

Lemma (4.1) (Dedekind-Mertens Lemma for semigroups)([GP1]) Let f,g €
k[X;S] — {0}. Then there is a positive integer m such that

(m+1)e(g) + e(f) = me(g) + e(fg).

Lemma (4.2) Let * be a semistar operation on S. Let f, g, f',g' € k[X;S]—{0}
with f/g = f'/g¢’ such that (e(f) +e(h))* C (e(g)+e(h))* for some h € k[X;S]—{0}.
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Then there is A’ € k[X;S] — {0} such that (e(f’) +e(h'))* C (e(g’) + e(h))*.

Proof. Then we have f¢' = f’g. By (4.1), there is a positive integer m such that
(m+ )e(g) +e(f) = me(g) + e(f'g).

(m+ e(f) +e(g) = me(f) +e(fg).

Then it follows that {(m+1)e(g)+e(f')}+me(f) = {(m+1)e(f)+e(g’)} +me(g).
Now, there are a finite set of elements s1, s2,--- , S, of S with

s; # s; for each @ # j such that (m + 1)(e(g) + e(h)) + m(e(f) +e(h)) =
(81,82, ,8n). Weset i/ = X5 + X2 ... 4 X € k[ X; 5] — {0}.

Then we have e(h’') = (m + 1)(e(g) + e(h)) + m(e(f) + e(h)) and therefore

e(f)) +e(h’) = {(m + De(g) + e(f') +me(f)} + (2m + De(h)

{(m+1)e(f) + e(g") +me(g)} + (2m + 1)e(h)

(e(f) +e(h)) +m(e(f) + e(h)) +m(e(g) +e(h)) + e(g')

(€l £ ) el ) ) + el +€00) + )

e(g’) +e(h'))*, as wanted.

NN

Set Kr(S, %) = {f/g | f,9 € k[X; 5] —{0} such that (e(f) +e(h))” C (e(g) +e(h))*
for some h € k[X;S] —{0}} U {0}. (4.2) shows that Kr(S, *) is a well-defined subset
of q(k[X;S]). If % is e.a.b., this coincides with Kr(S,*) in (2.1).

Proposition (4.3) Kr(S, ) is an integral domain with quotient field q(k[X; S]).

Proof. Let f/g,f'/g € Kr(S,*) — {0}. Then there are h,h’ € k[X;S] — {0} such
that

(e(f) +e(h))” C (e(g) + e(h
k[X;S] — {0} such that e(j) =

)7 (e(f') + e(h))” C (e(g) + e(h'))*. There is j €
e(h) 4+ e(h’). Then we have

(e(f) +e(h))" < (elg) +e(4))": (e(f') + e(h))" C (e(g) +e(4))".

We may assume that f + f’ # 0. Then it follows that

(e(f + 1) +e(h)" C (eg) +e(4))". Hence f/g+ f'/g € Kr(S, ).

Next, we have (m+2)e(g) = me(g)+e(g?) for some m. There is j' € k[X; S]—{0}
such that e(j') = (m + 2)e(g) + 2e(j). Then we have

e(f1') +eld")

C f{e(f) + Ef’} {(m +2)e(g)

*

)
={e(f) te(i)}+ {e(f’)+€(1)}
C 2(e(g) +e + (m+2)e(g)
=2(e(g) +e e(g?)}
+e

C (e(g?)

Therefore (e

7)

()"

((])))* {me(g) +
J

(ff) +e(d"))" C (e(g?) +e(i")*. Hence (ff)/(g9') € Kr(S, #).
Proposition (4.4) Kr(S, ) is a Bezout domain.

Proof. Set R = Kr(S,*), and let f € k[X;S] — {0} with Supp(f) = {s1, ", Sn}-
Then we have fR = (X%,---  X°")R.

Let £ and 1 be non-zero elements of R. We set £ = f/g and n = f’/g with
fyf', g € k[X;S] — {0}, and let Supp(f) = {s1, - ,sn}, let Supp(f’) = {t1, - ,tm}
and let Supp(f) U Supp(f’) = {uw1,--- ,w} with u; # u; for each i # j. Then we have
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X5 X
(évn)R:( q Ty g an)R
X X Xt Xtm
:( AR , AR )R
ERNNON
— ,oor,— )R = =1 R
( 7 7 )R = ( )

Therefore (£,1)R is a principal ideal of R.
Lemma (4.5) If x; < kg, then Kr(S, 1) C Kr(S, *3).

Proof. Let f,g € k[X;S] — {0} such that (e(f) 4+ e(h))** C (e(g) + e(h))** for
some h € k[X;S] — {0}. Then we have (e(f) + e(h))*> C (e(g) + e(h))*2

Proposition (4.6) Let x be a semistar operation on S. Then we have
Kr(S,*) = Kr(S, [#]) = Kr(S, *,).

Proof. From the definitions, we have Kr(S,y) = Kr(S, ).

Since x5 < [¥] < %, by (3.6)(3), we have Kr(S,*) C Kr(S, [*]) C Kr(S,*,). Let
& € Kr(S,%4)-{0}. Then & = f/g with f,g € k[X,S]— {0} such that (e(f)+e(h))* C
(e(g) + e(h))* for some h € k[X;S] — {0}. Let e(f)+ e(h) = (a1,--- ,an). Then,
for each i, a; + F; C (e(f) + e(g) + F;)* for some F; € {(S). Set F = ZZ F;, then
(a1, ,an)+F C (e(g)+e(h)+F)*. Therefore (e(f)+e(h)+F)* C (e(g)+e(h)+F)*.
It follows that f/g € Kr(S, ).

Proposition (4.7) Let * be a semistar operation on S. Then, for each E € F(9),
we have E** = U{FKr(S,+*) NG | F € {(S) with F' C E}.

Proof. E*« = U{F*« | F € f(S) with F C E} = U{FKr(S,%,) NG | F € {(5)
with F C E} = U[FKr(S, %) NG | F € £(S) with F C E}.

Proposition (4.8) Let * be a semistar operation on S. Set

T = S* and *1r = ar(xq) = a(*,).

Then, T is an integrally closed oversemigroup of S, and *p is an e.a.b. semistar
operation on T such that 7*7 = T and Kr(S, x) = Kr(T, *1).

Proof. Since T' = SI*I| T is integrally closed by (3.4)(2). By (3.6)(2), *, is
e.a.b. and, by (1.5)(4), *r is e.a.b. Since (E*e)*« = E*« for each E € F(S), we have
T*r = T(a) = T*a = (§*a)*e = §* = T. By (2.2) and (4.6), we have Kr(S,*) =
Kr(S, *q) = Kr(T, *7).
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