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Kronecker function rings of semistar operations
on semigroups, II

Akira Okabe∗ and Ryûki Matsuda∗∗

Abstract

We study the Kronecker function ring of any semistar operation on a grading
monoid.

Introduction

We know that various terms in ideal theory are defined analogously for commuta-
tive semigroups; those are ideal, integral, divisor, dimension, valuation, star operation,
etc. Let G be a torsion-free abelian (additive) group and let S be its subsemigroup
containing the zero element. Then S is called a grading monoid (or a g-monoid). A
motivation and an outline of ideas for ideal theory of a grading monoid are as follows:
Almost all of ideal theory of a commutative ring R concern properties of ideals of R
with respect to the multiplication on R. Abondoning the additon on R we will extract
the multiplication on R. Then we have an idea of an algebraic system S of a semigroup
which is called a grading monoid.

We already have the Kronecker function ring theory of an e.a.b. semistar operation
on a g-monoid ([M2]). In 2001, M. Fontana and K. Loper [FL] outlined a general
approach to the theory of Kronecker function rings of an integral domain by semistar
operations. In this paper, after them, we will define a Kronecker function ring Kr(S, ∗)
of any semistar operation ∗ on a g-monoid S and will study it. We refer to [G], [GP1,
2] and [M4] for the general theory of a commutative semigroup ring, and [M3] for the
general theory of a grading monoid.

1. Preliminary results on semistar operations

Let S be a g-monoid with quotient group G. Let E be a non-empty subset of G
such that S+E ⊂ E with s+E ⊂ S for some s ∈ S. Then E is called a fractional ideal
of S. We denote the set of all fractional ideals of S by F(S). A non-empty subset E of
G is called an S-submodule of G if S +E ⊂ E. We denote the set of all S-submodules

Received 20 September, 2007; revised 9 February, 2008.
2000 Mathematics Subject Classification. 13A15.
Key Words and Phrases. Kronecker function ring, semistar operation, grading monoid.

∗Professor Emeritus, Oyama National College of Technology (aokabe@aw.wakwak.com)
∗∗Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)



2 A. Okabe and R. Matsuda

of G by F̄(S). The set of all finitely generated members in F(S) is denoted by f(S).

Definition (1.1) ([OMS]) A map ∗ : F̄(S) −→ F̄(S), E 7−→ E∗, is called a
semistar operation on S if, for all x ∈ G, and for all E,F ∈ F̄(S), the following
conditions hold:

(1) (x+E)∗ = x+E∗; (2) E ⊂ E∗; (3) E ⊂ F implies E∗ ⊂ F ∗; (4) (E∗)∗ = E∗.

We denote the set of all the semistar operations on S by SStar(S).
Let E,F ∈ F̄(S). Then we denote the set {x ∈ G | x + F ⊂ E} by (E : F ).

Lemma (1.2) Let ∗ be a semistar operation on S, and let E,F ∈ F̄(S). Then
we have (E : F )∗ ⊂ (E∗ : F ∗) = (E∗ : F ).

Proof. Since (E : F ) + F ⊂ E, we have (E : F )∗ + F ∗ ⊂ E∗. Hence (E : F )∗ ⊂
(E∗ : F ∗).

Let S = {Sλ | λ ∈ Λ} be a family of oversemigroups of S. Then the semistar
operation E 7−→ ∩λ(E + Sλ) on S is denoted by ∗S .

A mapping E 7−→ E∗ of F(S) to F(S) is called a star operation on S if the
following conditions hold for all x ∈ G and for all E,F ∈ F(S) ([M1]):

(1) (x)∗ = (x); (2) (x + E)∗ = x + E∗; (3) E ⊂ E∗; (4) If E ⊂ F , then E∗ ⊂ F ∗;
(5) (E∗)∗ = E∗.

Let ∗ be a star operation on S. If we set E∗e = E∗ for all E ∈ F(S), and E∗e = G
for all E ∈ F̄(S) − F (S), then ∗e is a semistar operation on S and is called the trivial
extension of ∗ to a semistar operation.

Let ∗ be a semistar operation on S. For each E ∈ F̄(S), set E∗f = ∪{F ∗ | F ∈
f(S) with F ⊂ E}. Then ∗f is a semistar operation on S, and is called the finite
semistar operation associated to ∗. A semistar operation ∗ is said to be of finite type
if ∗ = ∗f . Since (∗f )f = ∗f , ∗f is of finite type.

For any subset E of G, the subset (S : E) is also denoted by E−1 (We set ∅−1 = G).
The mapping E 7−→ Ev = (E−1)−1 of F̄(S) to F̄(S) is a semistar operation on S and
is called the v-semistar operation on S.

The finite semistar operation associated to the v-semistar operation is called the
t-semistar operation on S.

If W is a family of valuation oversemigroups of S, then ∗W is called a w-semistar
operation (associated to W). If W is the family of all the valuation oversemigroups of
S, then ∗W is called the b-semistar operation on S.

Let ∗1, ∗2 be semistar operations on S. If (∗1)f = (∗2)f , then ∗1 and ∗2 are said
to be equivalent, and is denoted by ∗1 ∼ ∗2. By definition, ∗1 and ∗2 are equivalent if
and only if E∗1 = E∗2 for each E ∈ f(S).

Definition (1.3). A semistar operation ∗ on S is said to be e.a.b. (endlich
arithmetisch brauchbar) if, for all A,B,C ∈ f(S), (A + B)∗ ⊂ (A + C)∗ implies B∗ ⊂
C∗, and is said to be a.b. (arithmetisch brauchbar) if, for all A ∈ f(S) and for all
B,C ∈ F̄(S), (A + B)∗ ⊂ (A + C)∗ implies B∗ ⊂ C∗.
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Lemma (1.4). Let ∗ be a semistar operation on S. Then the following conditions
are equivalent:

(1) ∗ is e.a.b.
(2) Let A,B ∈ f(S) such that A∗ ⊂ (A + B)∗. Then 0 ∈ B∗.
(3) Let A,B ∈ f(S). Then ((A + B)∗ : A) ⊂ B∗.
(4) Let A,B,C ∈ f(S) such that (A + B)∗ = (A + C)∗. Then B∗ = C∗.

Proof. (1) =⇒ (2): Then (A + S)∗ ⊂ (A + B)∗, hence S∗ ⊂ B∗.
(2) =⇒ (3): Let x ∈ ((A + B)∗ : A), then x + A ⊂ (A + B)∗. Then we have

A ⊂ (A + B − x)∗. Hence 0 ∈ (B − x)∗, and hence x ∈ B∗.
(3) =⇒ (4): Then A + B ⊂ (A + C)∗, hence B ⊂ ((A + C)∗ : A). It follows that

B∗ ⊂ C∗. Similarly, we have C∗ ⊂ B∗.
(4) =⇒ (1): If (A + B)∗ ⊂ (A + C)∗, then
(A + C)∗ = ((A + B)∗, (A + C)∗)∗ = (A + B,A + C)∗ = (A + (B,C))∗.
Therefore, C∗ = (B,C)∗, thus B∗ ⊂ C∗.

Proposition (1.5) Let T be an oversemigroup of S, and let ∗ be a semistar
operation on S. Then we define αT (∗) : F̄(T ) −→ F̄(T ) by setting:

EαT (∗) = E∗ for each E ∈ F̄(T ) ⊂ F̄(S).
(1) αT (∗) is a semistar operation on T .
(2) If ∗ is of finite type on S, then αT (∗) is of finite type on T .
(3) If we set ∗′ = αS∗(∗), then ∗′|F(S∗), the restriction of ∗′ to F(S∗), is a star

operation on S∗.
(4) If ∗ is an e.a.b. (respectively, a.b.) semistar operation on S, then ∗′ is an

e.a.b. (respectively, a.b.) semistar operation on S∗.

Proof. (1), (2) and (3) are easily shown.
(4) Let E,F,G ∈ f(S∗) such that (E + F )∗

′ ⊂ (E + G)∗
′
. Note that E =

E0 + S∗, F = F0 + S∗, G = G0 + S∗, for some E0, F0, G0 ∈ f(S). Then,
(E0 + F0)∗ = (E0 + S + F0 + S)∗ = (E + F )∗ = (E + F )∗

′

⊂ (E + G)∗
′
= (E + G)∗ = (E0 + S∗ + G0 + S∗)∗ = (E0 + G0)∗.

Since ∗ is e.a.b, we deduce that F ∗
0 ⊂ G∗

0, and hence F ∗′ ⊂ G∗′
. Similar argument

shows the a.b. statement.

Proposition (1.6) Let T be an oversemigroup of S, and let ∗ be a semistar
operation on T . We define δS(∗) : F̄(S) → F̄(S) by setting:

EδS(∗) = (E + T )∗ for all E ∈ F̄(S).
(1) δS(∗) is a semistar operation on S.
(2) If ∗ is an e.a.b. (respectively, a.b.) semistar operation on T , then δS(∗) is an

e.a.b. (respectively, a.b.) semistar operation on S.

Proof. (1) is straightforward.
(2) Let E ∈ f(S) and let F,G ∈ f(S) (respectively, F,G ∈ F̄(S)) such that

(E + F )δS(∗) ⊂ (E + G)δS(∗). Then, (E + T + F + T )∗ ⊂ (E + T + G + T )∗. The
conclution follows from the hypothesis on ∗.
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Let T be an oversemigroup of S. Then by Propositions (1.5) and (1.6), we have
canonical maps:

α: SStar(S) −→ SStar(T ) and δ: SStar(T ) −→ SStar(S).

Proposition (1.7) Let T be an oversemigroup of S. Then
(1) α(δ(∗)) = ∗ for each ∗ ∈ SStar(T ).
(2) The following conditions are equivalent:
(i) δ is bijective.
(ii) α is bijective.
(iii) S = T .

Proof. (1) is straightforward.
(2) (i) =⇒ (iii): Since δ is surjective, there is ∗ ∈ SStar(T ) such that δS(∗)

coincides with the d-semistar operation on S. Therefore, S = Sd = SδS(∗) = (S+T )∗ =
T ∗. It follows that S = T ∗ ⊃ T , and hence S = T .

2. Background on Kronecker function rings

Let D be an integral domain with quotient field q(D) = k and let S be a g-monoid
with quotient group G. Then the semigroup ring of S over D is denoted by D[X;S].

Note that S ⊂ D[X;S]. Let f =
n∑

i=1

aiX
ti be a non-zero element of k[X;G], where

ai 6= 0 for each i and ti 6= tj for each i 6= j. Then the fractional ideal (t1, · · · , tn) of
S is called the e-content of f , and is denoted by eS(f) or simply by e(f). The subset
{t1, t2, · · · , tn} of G is called the e-support of f , and is denoted by Suppe(f) or simply
by Supp(f). We refer to [M4] for semigroup rings.

Proposition (2.1)([M2, Proposition 4]) Let ∗ be an e.a.b. semistar operation
on S, let k be a field, and set

Sk
∗ = {f/g | f, g ∈ k[X;S] − {0} with e(f)∗ ⊂ e(g)∗} ∪ {0}.

(1) Sk
∗ is a well-defined extension domain of k[X;S] with q(Sk

∗ ) = q(k[X;S]) such
that Sk

∗ ∩ G = S∗.
(2) Sk

∗ is a Bezout domain.
(3) If F ∈ f(S), then FSk

∗ ∩ G = F ∗ and FSk
∗ = F ∗Sk

∗ .

Sk
∗ is called the Kronecker function ring of S with respect to ∗ and k (or, simply

the Kronecker function ring of S with respect to ∗), and is also denoted by Kr(S, ∗, k)
(or, simply by Kr(S, ∗)).

Proposition (2.2) Let ∗ be an e.a.b. semistar operation on S.
(1) Kr(S, ∗) = Kr(S, ∗f ).
(2) Let α(∗) be the ascent of ∗ to S∗. Then Kr(S, ∗) = Kr(S∗, α(∗)).

Proof. (1) is immediate from the definition.
(2) Set T = S∗. Suppose that f, g ∈ k[X;S] − {0}. Then,
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(eT (f))α(∗) ⊂ (eT (g))α(∗) iff (eT (f))∗ ⊂ (eT (g))∗ iff (eS(f) + T )∗ ⊂ (eS(g) + T )∗

iff (eS(f) + S)∗ ⊂ (eS(g) + S)∗ iff (eS(f))∗ ⊂ (eS(g))∗ iff f/g ∈ Kr(S, ∗).

Proposition (2.3) Let ∗1 and ∗2 be e.a.b. semistar operations on S.
(1) If ∗1 ≤ ∗2, then Kr(S, ∗1) ⊂Kr(S, ∗2).
(2) ∗1 ∼ ∗2 if and only if Kr(S, ∗1) = Kr(S, ∗2).

Proof. (1) is immediate from the definition.
(2) The sufficiency: For each F ∈ f(S), we have

F ∗1 = FKr(S, ∗1) ∩ G = FKr(S, ∗2) ∩ G = F ∗2 .

Proposition (2.4) Let S = {Sλ | λ ∈ Λ} be a family of oversemigroups of S,
and let ∗S be the semistar operation associated to S.

(1) If ∗{Sλ} is an e.a.b. (respectively, an a.b.) semistar operation for each λ, then
∗S is an e.a.b. (respectively, an a.b.) semistar operation on S.

(2) If ∗{Sλ} is e.a.b. for each λ, then Kr(S, ∗S) = ∩λ Kr(S, ∗{Sλ}).

Proof. (1) Let E,F,G ∈ f(S) such that (E+F )∗S ⊂ (E+G)∗S . Then E+F+Sλ ⊂
E + G + Sλ for each λ. Since ∗{Sλ} is e.a.b., we have F + Sλ ⊂ G + Sλ. Then
F ∗S = ∩λ(F + Sλ) ⊂ ∩λ(G + Sλ) = G∗S .

The proof for the a.b. statement is similar.
(2) For f, g ∈ k[X;S]− {0}, e(f)∗S ⊂ e(g)∗S iff e(f)∗{Sλ} ⊂ e(g)∗{Sλ} for each λ.

Proposition (2.5) Let W = {Vλ | λ ∈ Λ} be a family of valuation oversemigroups
of S, and let Wλ be the trivial valuation extension ring of Vλ to q(k[X;S]). Then the
w-semistar operation ∗W is a.b. on S, and Kr(S, ∗W) = ∩λ Kr(S, ∗{Vλ}) = ∩λWλ.

Proof. Easy consequence of (2.4) (2).

3. Some semistar operations associated to an semistar operation

Definition (3.1) Let ∗ be a semistar operation on S. An element x ∈ G is called
∗-integral over S if x ∈ (F ∗ : F ∗) for some F ∈ f(S). The set S[∗] = ∪{(F ∗ : F ∗) | F ∈
f(S)} is called the semistar integral closure of S with respect to ∗ or, simply the ∗-
integral closure of S. If S = S[∗], then S is called ∗-integrally closed.

Lemma (3.2) S[∗] = ∪{(F ∗ : F ∗)∗f | F ∈ f(S)}.

Proof. Let x ∈ (F ∗ : F ∗)∗f . There is H ∈ f(S) with H ⊂ (F ∗ : F ∗) such that
x ∈ H∗. Since H∗ + F ∗ ⊂ F ∗, we have x + F ∗ ⊂ F ∗, and x ∈ (F ∗ : F ∗). Therefore,
(F ∗ : F ∗)∗f = (F ∗ : F ∗).

Proposition (3.3) Let ∗ be a semistar operation on S. We define an operation
[∗] on S by setting:

H [∗] = ∪{((F ∗ : F ∗) + H)∗f | F ∈ f(S)}, for each H ∈ f(S),
E[∗] = ∪{H [∗] | H ∈ f(S) with H ⊂ E}, for each E ∈ F̄(S).
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Then the operation [∗] is a semistar operation of finite type on S.

Proof. (i) To prove x + E[∗] = (x + E)[∗], it suffices to show that x + E[∗] ⊂
(x + E)[∗]. Let a ∈ x + E[∗]. We have a − x ∈ F

[∗]
1 for some F1 ∈ f(S) with F1 ⊂ E.

Then a−x ∈ ((F ∗
2 : F ∗

2 )+F1)∗f for some F2 ∈ f(S). Then a ∈ ((F ∗
2 : F ∗

2 )+x+F1)∗f ⊂
(x + F1)[∗] ⊂ (x + E)[∗].

(ii) Let x ∈ E, and set (x) = H. Then we have x ∈ (H∗ : H∗)+H ⊂ H [∗] ⊂ E[∗].
Hence E ⊂ E[∗].

(iii) Assume that E1 ⊂ E2. By the definition, we have E
[∗]
1 ⊂ E

[∗]
2 .

(iv) Let y ∈ (E[∗])[∗]. We have y ∈ F [∗] for some F ∈ f(S) with F ⊂ E[∗]. Since
F is finitely generated, we have F ⊂ H [∗] for some H ∈ f(S) with H ⊂ E.

If F = (x1, · · · , xn), we have, for each i, xi ∈ ((F ∗
i : F ∗

i ) + H)∗f for some Fi ∈
f(S). Then F ⊂ ((F ∗

1 : F ∗
1 ) + H, · · · , (F ∗

n : F ∗
n) + H)∗f . Let G1 =

∑
i Fi, then

F ⊂ ((G∗
1 : G∗

1) + H)∗f .
On the other hand, y ∈ ((G∗

2 : G∗
2) + F )∗f for some G2 ∈ f(S). Then,

y ∈ ((G∗
2 : G∗

2) + ((G∗
1 : G∗

1) + H)∗f )∗f = ((G∗
2 : G∗

2) + (G∗
1 : G∗

1) + H)∗f ⊂
(((G1 + G2)∗ : (G1 + G2)∗) + H)∗f ⊂ H [∗] ⊂ E[∗]. Therefore, (E[∗])[∗] = E[∗].

Proposition (3.4) Let ∗ be a semistar operation on S. Then we have
(1) S[∗] is an oversemigroup of S.
(2) S[∗] is integrally closed.

Proof. (1) Let a, b ∈ S[∗]. Then a ∈ (F ∗
1 : F ∗

2 ) and b ∈ (F ∗
2 : F ∗

2 ) for some
F1, F2 ∈ f(S). Then a + b ∈ ((F1 + F2)∗ : (F1 + F2)∗) ∈ S[∗].

(2) Let x ∈ G be integral over S[∗]. We have nx = a ∈ S[∗] for some positive
integer n. Since a ∈ S[∗], we have a ∈ (F ∗ : F ∗) for some F ∈ f(S). Set H =
(F, F + x, · · · , F + (n− 1)x). Then x + H ⊂ H∗. It follows that x ∈ (H∗ : H∗) ⊂ S[∗].

Definition (3.5) Let ∗ be a semistar operation on S. We define the map ∗a :
F̄(S) −→ F̄(S) by setting

F ∗a = ∪{((F + H)∗ : H∗) | H ∈ f(S)}, for each F ∈ f(S),
E∗a = ∪{F ∗a | F ∈ f(S) with F ⊂ E}, for each E ∈ F̄(S).

Proposition (3.6) Let ∗ be a semistar operation on S.
(1) ∗a is a semistar operation of finite type.
(2) ∗a is e.a.b.
(3) ∗f ≤ [∗] ≤ ∗a.
(4) [∗] = [∗f ] = [∗]f .
(5) ∗a = (∗f )a = (∗a)f .
(6) ∗a = ∗f if and only if ∗f is an e.a.b. semistar operation.
(7) ∗1 ≤ ∗2 implies (∗1)a ≤ (∗2)a.
(8) ∗1 ≤ ∗2 implies [∗1] ≤ [∗2].
(9) (∗a)a = ∗a.
(10) [∗]a = [∗a] = ∗a.
(11) ∗f ≤ [∗] ≤ [[∗]] ≤ ∗a.
(12) S[∗] = S∗a = S[[∗]].
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Proof. (1) (i) To prove (x + E)∗a = x + E∗a , it suffices to show that x + E∗a ⊂
(x + E)∗a . Let y ∈ x + E∗a . Since y − x ∈ E∗a , there is F ∈ f(S) with F ⊂ E
such that y − x ∈ F ∗a . Hence y − x ∈ ((F + H)∗ : H∗) for some H ∈ f(S). Then
y ∈ ((x+F +H)∗ : H∗) ⊂ (x+F )∗a ⊂ (x+E)∗a . It follows that x+E∗a ⊂ (x+E)∗a .

(ii) Let x ∈ E, and set (x) = H. Then x ∈ ((H + H)∗ : H∗) ⊂ H∗a ⊂ E∗a .
Hence E ⊂ E∗a .

(iii) Let E1 ⊂ E2. By definition, we have E∗a
1 ⊂ E∗a

2 .
(iv) Let y ∈ (E∗a)∗a . Then y ∈ F ∗a for some F ∈ f(S) with F ⊂ E∗a . Since

F is finitely generated, we have F ⊂ H∗a for some H ∈ f(S) with H ⊂ E. If F =
(x1, · · · , xn), we have, for each i, xi + F ∗

i ⊂ (H + Fi)∗ for some Fi ∈ f(S). Let
G1 =

∑
i Fi, then F + G1 ⊂ (H + G1)∗. On the other hand, y + G2 ⊂ (F + G2)∗ for

some G2 ∈ f(S). Then y + G1 + G2 ⊂ (F + G1 + G2)∗ ⊂ (H + G1 + G2)∗. Hence
y ∈ H∗a ⊂ E∗a . Hence (E∗a)∗a = E∗a .

(2) Let I, J ∈ f(S), we will show that ((I+J)∗a : I) ⊂ J∗a . Let z ∈ ((I+J)∗a : I),
then z+I ⊂ (I+J)∗a . If I = (x1, · · · , xn), we have, for each i, z+xi+F ∗

i ⊂ (I+J+Fi)∗

for some Fi ∈ f(S). Let G =
∑

i Fi, then z + I + G ⊂ (I + J + G)∗. It follows that
z ∈ ((J + I + G)∗ : (I + G)∗) ⊂ J∗a .

(3) Let x ∈ E∗f . We have x ∈ H∗ for some H ∈ f(S) with H ⊂ E. Then we have
x ∈ ((S∗ : S∗) + H)∗f ⊂ H [∗] ⊂ E[∗].
Hence E∗f ⊂ E[∗], and ∗f ≤ [∗].
Next, let x ∈ E[∗]. We have x ∈ H [∗] for some H ∈ f(S) with H ⊂ E. There is F ∈

f(S) such that x ∈ ((F ∗ : F ∗)+H)∗f . Then x+F ⊂ ((F ∗ : F ∗)+H)∗f +F ∗ ⊂ (F +H)∗.
Hence x ∈ H∗a ⊂ E∗a . Therefore E[∗] ⊂ E∗a , and [∗] ≤ ∗a.

(4), (5), (7) and (8) are obvious from the definitions.
(6) The necessity follows from (2).
The sufficiency: Let F ∈ f(S), and let x ∈ F ∗a . Then x + H ⊂ (F + H)∗ for some

H ∈ f(S). Since ∗f is e.a.b., we have x ∈ F ∗f . Hence F ∗a ⊂ F ∗f , and ∗a ≤ ∗f . The
conclusion follows from (3).

(9) Since ∗a = (∗a)f is e.a.b. by (2), we have (∗a)a = (∗a)f by (6). Hence
(∗a)a = ∗a.

(10) By (3),(7), we have (∗f )a ≤ [∗]a ≤ (∗a)a (resp. (∗a)f ≤ [∗a] ≤ (∗a)a)).
By (5),(9), we have ∗a ≤ [∗]a ≤ ∗a (resp., ∗a ≤ [∗a] ≤ ∗a). Hence [∗]a = ∗a (resp.
∗a = [∗a]).

(11) By (3),(8), we have [∗f ] ≤ [[∗]] ≤ [∗a]. Then (4),(10) imply the assertion.
(12) We have S∗a = ∪{((S + H)∗ : H∗) | H ∈ f(S)} = ∪{(H∗ : H∗) | H ∈

f(S)} = S[∗]. Then (11) completes the proof.

4. The Kronecker function ring of any semistar operation

Lemma (4.1) (Dedekind-Mertens Lemma for semigroups)([GP1]) Let f, g ∈
k[X;S] − {0}. Then there is a positive integer m such that

(m + 1)e(g) + e(f) = me(g) + e(fg).

Lemma (4.2) Let ∗ be a semistar operation on S. Let f, g, f ′, g′ ∈ k[X;S]−{0}
with f/g = f ′/g′ such that (e(f)+ e(h))∗ ⊂ (e(g)+ e(h))∗ for some h ∈ k[X;S]−{0}.
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Then there is h′ ∈ k[X;S] − {0} such that (e(f ′) + e(h′))∗ ⊂ (e(g′) + e(h′))∗.

Proof. Then we have fg′ = f ′g. By (4.1), there is a positive integer m such that
(m + 1)e(g) + e(f ′) = me(g) + e(f ′g),
(m + 1)e(f) + e(g′) = me(f) + e(fg′).
Then it follows that {(m+1)e(g)+e(f ′)}+me(f) = {(m+1)e(f)+e(g′)}+me(g).
Now, there are a finite set of elements s1, s2, · · · , sn of S with
si 6= sj for each i 6= j such that (m + 1)(e(g) + e(h)) + m(e(f) + e(h)) =
(s1, s2, · · · , sn). We set h′ = Xs1 + Xs2 + · · · + Xsn ∈ k[X;S] − {0}.
Then we have e(h′) = (m + 1)(e(g) + e(h)) + m(e(f) + e(h)) and therefore
e(f ′) + e(h′) = {(m + 1)e(g) + e(f ′) + me(f)} + (2m + 1)e(h)
= {(m + 1)e(f) + e(g′) + me(g)} + (2m + 1)e(h)
= (e(f) + e(h)) + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g′)
⊂ (e(g) + e(h))∗ + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g′)
⊂ (e(g′) + e(h′))∗, as wanted.

Set Kr(S, ∗) = {f/g | f, g ∈ k[X;S]−{0} such that (e(f)+e(h))∗ ⊂ (e(g)+e(h))∗

for some h ∈ k[X;S] − {0}} ∪ {0}. (4.2) shows that Kr(S, ∗) is a well-defined subset
of q(k[X;S]). If ∗ is e.a.b., this coincides with Kr(S, ∗) in (2.1).

Proposition (4.3) Kr(S, ∗) is an integral domain with quotient field q(k[X;S]).

Proof. Let f/g, f ′/g ∈ Kr(S, ∗) − {0}. Then there are h, h′ ∈ k[X;S] − {0} such
that

(e(f) + e(h))∗ ⊂ (e(g) + e(h))∗, (e(f ′) + e(h′))∗ ⊂ (e(g) + e(h′))∗. There is j ∈
k[X;S] − {0} such that e(j) = e(h) + e(h′). Then we have

(e(f) + e(j))∗ ⊂ (e(g) + e(j))∗, (e(f ′) + e(j))∗ ⊂ (e(g) + e(j))∗.
We may assume that f + f ′ 6= 0. Then it follows that
(e(f + f ′) + e(j))∗ ⊂ (e(g) + e(j))∗. Hence f/g + f ′/g ∈ Kr(S, ∗).
Next, we have (m+2)e(g) = me(g)+e(g2) for some m. There is j′ ∈ k[X;S]−{0}

such that e(j′) = (m + 2)e(g) + 2e(j). Then we have
e(ff ′) + e(j′)
⊂ {e(f) + e(f ′)} + {(m + 2)e(g) + 2e(j)}
= {e(f) + e(j)} + {e(f ′) + e(j)} + (m + 2)e(g)
⊂ 2(e(g) + e(j))∗ + (m + 2)e(g)
= 2(e(g) + e(j))∗ + {me(g) + e(g2)}
⊂ (e(g2) + e(j′))∗.
Therefore (e(ff ′) + e(j′))∗ ⊂ (e(g2) + e(j′))∗. Hence (ff ′)/(gg′) ∈ Kr(S, ∗).

Proposition (4.4) Kr(S, ∗) is a Bezout domain.

Proof. Set R = Kr(S, ∗), and let f ∈ k[X;S]−{0} with Supp(f) = {s1, · · · , sn}.
Then we have fR = (Xs1 , · · · , Xsn)R.

Let ξ and η be non-zero elements of R. We set ξ = f/g and η = f ′/g with
f, f ′, g ∈ k[X;S] − {0}, and let Supp(f) = {s1, · · · , sn}, let Supp(f ′) = {t1, · · · , tm}
and let Supp(f) ∪ Supp(f ′) = {u1, · · · , ul} with ui 6= uj for each i 6= j. Then we have
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(ξ, η)R = (
Xs1

g
, · · · ,

Xsn

g
, η)R

= (
Xs1

g
, · · · ,

Xsn

g
,
Xt1

g
, · · · ,

Xtm

g
)R

= (
Xu1

g
, · · · ,

Xul

g
)R = (

∑
i Xui

g
)R.

Therefore (ξ, η)R is a principal ideal of R.

Lemma (4.5) If ∗1 ≤ ∗2, then Kr(S, ∗1) ⊂ Kr(S, ∗2).

Proof. Let f, g ∈ k[X;S] − {0} such that (e(f) + e(h))∗1 ⊂ (e(g) + e(h))∗1 for
some h ∈ k[X;S] − {0}. Then we have (e(f) + e(h))∗2 ⊂ (e(g) + e(h))∗2 .

Proposition (4.6) Let ∗ be a semistar operation on S. Then we have
Kr(S, ∗) = Kr(S, [∗]) = Kr(S, ∗a).

Proof. From the definitions, we have Kr(S, ∗f ) = Kr(S, ∗).
Since ∗f ≤ [∗] ≤ ∗a by (3.6)(3), we have Kr(S, ∗) ⊂ Kr(S, [∗]) ⊂ Kr(S, ∗a). Let

ξ ∈ Kr(S, ∗a)-{0}. Then ξ = f/g with f, g ∈ k[X,S]−{0} such that (e(f)+ e(h))∗a ⊂
(e(g) + e(h))∗a for some h ∈ k[X;S] − {0}. Let e(f) + e(h) = (a1, · · · , an). Then,
for each i, ai + Fi ⊂ (e(f) + e(g) + Fi)∗ for some Fi ∈ f(S). Set F =

∑
i Fi, then

(a1, · · · , an)+F ⊂ (e(g)+e(h)+F )∗. Therefore (e(f)+e(h)+F )∗ ⊂ (e(g)+e(h)+F )∗.
It follows that f/g ∈ Kr(S, ∗).

Proposition (4.7) Let ∗ be a semistar operation on S. Then, for each E ∈ F̄(S),
we have E∗a = ∪{FKr(S, ∗) ∩ G | F ∈ f(S) with F ⊂ E}.

Proof. E∗a = ∪{F ∗a | F ∈ f(S) with F ⊂ E} = ∪{FKr(S, ∗a) ∩ G | F ∈ f(S)
with F ⊂ E} = ∪{FKr(S, ∗) ∩ G | F ∈ f(S) with F ⊂ E}.

Proposition (4.8) Let ∗ be a semistar operation on S. Set
T = S∗a and ∗T = αT (∗a) = α(∗a).
Then, T is an integrally closed oversemigroup of S, and ∗T is an e.a.b. semistar

operation on T such that T ∗T = T and Kr(S, ∗) = Kr(T, ∗T ).

Proof. Since T = S[∗], T is integrally closed by (3.4)(2). By (3.6)(2), ∗a is
e.a.b. and, by (1.5)(4), ∗T is e.a.b. Since (E∗a)∗a = E∗a for each E ∈ F̄(S), we have
T ∗T = Tα(∗a) = T ∗a = (S∗a)∗a = S∗a = T . By (2.2) and (4.6), we have Kr(S, ∗) =
Kr(S, ∗a) = Kr(T, ∗T ).
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