Kronecker function rings of semistar operations on semigroups, II

Akira Okabe* and Ryûki Matsuda**

Abstract

We study the Kronecker function ring of any semistar operation on a grading monoid.

Introduction

We know that various terms in ideal theory are defined analogously for commutative semigroups; those are ideal, integral, divisor, dimension, valuation, star operation, etc. Let G be a torsion-free abelian (additive) group and let S be its subsemigroup containing the zero element. Then S is called a grading monoid (or a g-monoid). A motivation and an outline of ideas for ideal theory of a grading monoid are as follows: Almost all of ideal theory of a commutative ring R concern properties of ideals of R with respect to the multiplication on R. Abondoning the additon on R we will extract the multiplication on R. Then we have an idea of an algebraic system S of a semigroup which is called a grading monoid.

We already have the Kronecker function ring theory of an e.a.b. semistar operation on a g-monoid ([M2]). In 2001, M. Fontana and K. Loper [FL] outlined a general approach to the theory of Kronecker function rings of an integral domain by semistar operations. In this paper, after them, we will define a Kronecker function ring $\operatorname{Kr}(S, *)$ of any semistar operation $*$ on a g-monoid S and will study it. We refer to [G], [GP1, 2] and [M4] for the general theory of a commutative semigroup ring, and [M3] for the general theory of a grading monoid.

1. Preliminary results on semistar operations

Let S be a g-monoid with quotient group G. Let E be a non-empty subset of G such that $S+E \subset E$ with $s+E \subset S$ for some $s \in S$. Then E is called a fractional ideal of S. We denote the set of all fractional ideals of S by $\mathrm{F}(S)$. A non-empty subset E of G is called an S-submodule of G if $S+E \subset E$. We denote the set of all S-submodules

[^0]of G by $\overline{\mathrm{F}}(S)$. The set of all finitely generated members in $\mathrm{F}(S)$ is denoted by $\mathrm{f}(S)$.
Definition (1.1) ([OMS]) A map $*: \overline{\mathrm{F}}(S) \longrightarrow \overline{\mathrm{F}}(S), E \longmapsto E^{*}$, is called a semistar operation on S if, for all $x \in G$, and for all $E, F \in \overline{\mathrm{~F}}(S)$, the following conditions hold:
(1) $(x+E)^{*}=x+E^{*} ; ~(2) E \subset E^{*} ;(3) E \subset F$ implies $E^{*} \subset F^{*} ;(4)\left(E^{*}\right)^{*}=E^{*}$.

We denote the set of all the semistar operations on S by $\operatorname{SStar}(S)$.
Let $E, F \in \overline{\mathrm{~F}}(S)$. Then we denote the set $\{x \in G \mid x+F \subset E\}$ by $(E: F)$.
Lemma (1.2) Let $*$ be a semistar operation on S, and let $E, F \in \overline{\mathrm{~F}}(S)$. Then we have $(E: F)^{*} \subset\left(E^{*}: F^{*}\right)=\left(E^{*}: F\right)$.

Proof. Since $(E: F)+F \subset E$, we have $(E: F)^{*}+F^{*} \subset E^{*}$. Hence $(E: F)^{*} \subset$ $\left(E^{*}: F^{*}\right)$.

Let $\mathcal{S}=\left\{S_{\lambda} \mid \lambda \in \Lambda\right\}$ be a family of oversemigroups of S. Then the semistar operation $E \longmapsto \cap_{\lambda}\left(E+S_{\lambda}\right)$ on S is denoted by $*_{\mathcal{S}}$.

A mapping $E \longmapsto E^{*}$ of $\mathrm{F}(S)$ to $\mathrm{F}(S)$ is called a star operation on S if the following conditions hold for all $x \in G$ and for all $E, F \in \mathrm{~F}(S)$ ([M1]):
(1) $(x)^{*}=(x) ;(2)(x+E)^{*}=x+E^{*} ;(3) E \subset E^{*} ;(4)$ If $E \subset F$, then $E^{*} \subset F^{*}$; (5) $\left(E^{*}\right)^{*}=E^{*}$.

Let $*$ be a star operation on S. If we set $E^{* e}=E^{*}$ for all $E \in \mathrm{~F}(S)$, and $E^{*_{e}}=G$ for all $E \in \overline{\mathrm{~F}}(S)-F(S)$, then $*_{e}$ is a semistar operation on S and is called the trivial extension of $*$ to a semistar operation.

Let $*$ be a semistar operation on S. For each $E \in \overline{\mathrm{~F}}(S)$, set $E^{*_{f}}=\cup\left\{F^{*} \mid F \in\right.$ $\mathrm{f}(S)$ with $F \subset E\}$. Then $*_{f}$ is a semistar operation on S, and is called the finite semistar operation associated to $*$. A semistar operation $*$ is said to be of finite type if $*=*_{f}$. Since $\left(*_{f}\right)_{f}=*_{f}, *_{f}$ is of finite type.

For any subset E of G, the subset $(S: E)$ is also denoted by E^{-1} (We set $\emptyset^{-1}=G$). The mapping $E \longmapsto E^{v}=\left(E^{-1}\right)^{-1}$ of $\overline{\mathrm{F}}(S)$ to $\overline{\mathrm{F}}(S)$ is a semistar operation on S and is called the v-semistar operation on S.

The finite semistar operation associated to the v-semistar operation is called the t-semistar operation on S.

If \mathcal{W} is a family of valuation oversemigroups of S, then $* \mathcal{W}$ is called a w-semistar operation (associated to \mathcal{W}). If \mathcal{W} is the family of all the valuation oversemigroups of S, then $* \mathcal{W}$ is called the b-semistar operation on S.

Let $*_{1}, *_{2}$ be semistar operations on S. If $\left(*_{1}\right)_{f}=\left(*_{2}\right)_{f}$, then $*_{1}$ and $*_{2}$ are said to be equivalent, and is denoted by $*_{1} \sim *_{2}$. By definition, $*_{1}$ and $*_{2}$ are equivalent if and only if $E^{*_{1}}=E^{*_{2}}$ for each $E \in \mathrm{f}(S)$.

Definition (1.3). A semistar operation $*$ on S is said to be e.a.b. (endlich arithmetisch brauchbar) if, for all $A, B, C \in \mathrm{f}(S),(A+B)^{*} \subset(A+C)^{*}$ implies $B^{*} \subset$ C^{*}, and is said to be a.b. (arithmetisch brauchbar) if, for all $A \in \mathrm{f}(S)$ and for all $B, C \in \overline{\mathrm{~F}}(S),(A+B)^{*} \subset(A+C)^{*}$ implies $B^{*} \subset C^{*}$.

Lemma (1.4). Let $*$ be a semistar operation on S. Then the following conditions are equivalent:
(1) $*$ is e.a.b.
(2) Let $A, B \in \mathrm{f}(S)$ such that $A^{*} \subset(A+B)^{*}$. Then $0 \in B^{*}$.
(3) Let $A, B \in \mathrm{f}(S)$. Then $\left((A+B)^{*}: A\right) \subset B^{*}$.
(4) Let $A, B, C \in \mathrm{f}(S)$ such that $(A+B)^{*}=(A+C)^{*}$. Then $B^{*}=C^{*}$.

Proof. (1) $\Longrightarrow(2)$: Then $(A+S)^{*} \subset(A+B)^{*}$, hence $S^{*} \subset B^{*}$.
$(2) \Longrightarrow(3):$ Let $x \in\left((A+B)^{*}: A\right)$, then $x+A \subset(A+B)^{*}$. Then we have $A \subset(A+B-x)^{*}$. Hence $0 \in(B-x)^{*}$, and hence $x \in B^{*}$.
$(3) \Longrightarrow(4)$: Then $A+B \subset(A+C)^{*}$, hence $B \subset\left((A+C)^{*}: A\right)$. It follows that $B^{*} \subset C^{*}$. Similarly, we have $C^{*} \subset B^{*}$.
$(4) \Longrightarrow(1)$: If $(A+B)^{*} \subset(A+C)^{*}$, then
$(A+C)^{*}=\left((A+B)^{*},(A+C)^{*}\right)^{*}=(A+B, A+C)^{*}=(A+(B, C))^{*}$.
Therefore, $C^{*}=(B, C)^{*}$, thus $B^{*} \subset C^{*}$.
Proposition (1.5) Let T be an oversemigroup of S, and let $*$ be a semistar operation on S. Then we define $\alpha_{T}(*): \overline{\mathrm{F}}(T) \longrightarrow \overline{\mathrm{F}}(T)$ by setting:
$E^{\alpha_{T}(*)}=E^{*}$ for each $E \in \overline{\mathrm{~F}}(T) \subset \overline{\mathrm{F}}(S)$.
(1) $\alpha_{T}(*)$ is a semistar operation on T.
(2) If $*$ is of finite type on S, then $\alpha_{T}(*)$ is of finite type on T.
(3) If we set $*^{\prime}=\alpha_{S^{*}}(*)$, then $\left.*^{\prime}\right|_{\mathrm{F}\left(S^{*}\right)}$, the restriction of $*^{\prime}$ to $\mathrm{F}\left(S^{*}\right)$, is a star operation on S^{*}.
(4) If $*$ is an e.a.b. (respectively, a.b.) semistar operation on S, then $*^{\prime}$ is an e.a.b. (respectively, a.b.) semistar operation on S^{*}.

Proof. (1), (2) and (3) are easily shown.
(4) Let $E, F, G \in \mathrm{f}\left(S^{*}\right)$ such that $(E+F)^{*^{\prime}} \subset(E+G)^{*^{\prime}}$. Note that $E=$ $E_{0}+S^{*}, F=F_{0}+S^{*}, G=G_{0}+S^{*}$, for some $E_{0}, F_{0}, G_{0} \in \mathrm{f}(S)$. Then,
$\left(E_{0}+F_{0}\right)^{*}=\left(E_{0}+S+F_{0}+S\right)^{*}=(E+F)^{*}=(E+F)^{*}$
$\subset(E+G)^{*^{\prime}}=(E+G)^{*}=\left(E_{0}+S^{*}+G_{0}+S^{*}\right)^{*}=\left(E_{0}+G_{0}\right)^{*}$.
Since $*$ is e.a.b, we deduce that $F_{0}^{*} \subset G_{0}^{*}$, and hence $F^{*^{\prime}} \subset G^{*^{\prime}}$. Similar argument shows the a.b. statement.

Proposition (1.6) Let T be an oversemigroup of S, and let $*$ be a semistar operation on T. We define $\delta_{S}(*): \overline{\mathrm{F}}(S) \rightarrow \overline{\mathrm{F}}(S)$ by setting:
$E^{\delta_{S}(*)}=(E+T)^{*}$ for all $E \in \overline{\mathrm{~F}}(S)$.
(1) $\delta_{S}(*)$ is a semistar operation on S.
(2) If $*$ is an e.a.b. (respectively, a.b.) semistar operation on T, then $\delta_{S}(*)$ is an e.a.b. (respectively, a.b.) semistar operation on S.

Proof. (1) is straightforward.
(2) Let $E \in \mathrm{f}(S)$ and let $F, G \in \mathrm{f}(S)$ (respectively, $F, G \in \overline{\mathrm{~F}}(S)$) such that $(E+F)^{\delta_{S}(*)} \subset(E+G)^{\delta_{S}(*)}$. Then, $(E+T+F+T)^{*} \subset(E+T+G+T)^{*}$. The conclution follows from the hypothesis on $*$.

Let T be an oversemigroup of S. Then by Propositions (1.5) and (1.6), we have canonical maps:
$\alpha: \operatorname{SStar}(S) \longrightarrow \operatorname{SStar}(T)$ and $\delta: \operatorname{SStar}(T) \longrightarrow \operatorname{SStar}(S)$.
Proposition (1.7) Let T be an oversemigroup of S. Then
(1) $\alpha(\delta(*))=*$ for each $* \in \operatorname{SStar}(T)$.
(2) The following conditions are equivalent:
(i) δ is bijective.
(ii) α is bijective.
(iii) $S=T$.

Proof. (1) is straightforward.
(2) (i) \Longrightarrow (iii): Since δ is surjective, there is $* \in \operatorname{SStar}(T)$ such that $\delta_{S}(*)$ coincides with the d-semistar operation on S. Therefore, $S=S^{d}=S^{\delta} S^{(*)}=(S+T)^{*}=$ T^{*}. It follows that $S=T^{*} \supset T$, and hence $S=T$.

2. Background on Kronecker function rings

Let D be an integral domain with quotient field $\mathrm{q}(D)=k$ and let S be a g-monoid with quotient group G. Then the semigroup ring of S over D is denoted by $D[X ; S]$. Note that $S \subset D[X ; S]$. Let $f=\sum_{i=1}^{n} a_{i} X^{t_{i}}$ be a non-zero element of $k[X ; G]$, where $a_{i} \neq 0$ for each i and $t_{i} \neq t_{j}$ for each $i \neq j$. Then the fractional ideal $\left(t_{1}, \cdots, t_{n}\right)$ of S is called the e-content of f, and is denoted by $e_{S}(f)$ or simply by $e(f)$. The subset $\left\{t_{1}, t_{2}, \cdots, t_{n}\right\}$ of G is called the e-support of f, and is denoted by $\operatorname{Supp}_{e}(f)$ or simply by $\operatorname{Supp}(f)$. We refer to [M4] for semigroup rings.

Proposition (2.1)([M2, Proposition 4]) Let $*$ be an e.a.b. semistar operation on S, let k be a field, and set
$S_{*}^{k}=\left\{f / g \mid f, g \in k[X ; S]-\{0\}\right.$ with $\left.e(f)^{*} \subset e(g)^{*}\right\} \cup\{0\}$.
(1) S_{*}^{k} is a well-defined extension domain of $k[X ; S]$ with $\mathrm{q}\left(S_{*}^{k}\right)=\mathrm{q}(k[X ; S])$ such that $S_{*}^{k} \cap G=S^{*}$.
(2) S_{*}^{k} is a Bezout domain.
(3) If $F \in \mathrm{f}(S)$, then $F S_{*}^{k} \cap G=F^{*}$ and $F S_{*}^{k}=F^{*} S_{*}^{k}$.
S_{*}^{k} is called the Kronecker function ring of S with respect to $*$ and k (or, simply the Kronecker function ring of S with respect to $*)$, and is also denoted by $\operatorname{Kr}(S, *, k)$ (or, simply by $\operatorname{Kr}(S, *)$).

Proposition (2.2) Let $*$ be an e.a.b. semistar operation on S.
(1) $\operatorname{Kr}(S, *)=\operatorname{Kr}\left(S, *_{f}\right)$.
(2) Let $\alpha(*)$ be the ascent of $*$ to S^{*}. Then $\operatorname{Kr}(S, *)=\operatorname{Kr}\left(S^{*}, \alpha(*)\right)$.

Proof. (1) is immediate from the definition.
(2) Set $T=S^{*}$. Suppose that $f, g \in k[X ; S]-\{0\}$. Then,

$$
\begin{aligned}
& \left(e_{T}(f)\right)^{\alpha(*)} \subset\left(e_{T}(g)\right)^{\alpha(*)} \text { iff }\left(e_{T}(f)\right)^{*} \subset\left(e_{T}(g)\right)^{*} \text { iff }\left(e_{S}(f)+T\right)^{*} \subset\left(e_{S}(g)+T\right)^{*} \\
& \text { iff }\left(e_{S}(f)+S\right)^{*} \subset\left(e_{S}(g)+S\right)^{*} \text { iff }\left(e_{S}(f)\right)^{*} \subset\left(e_{S}(g)\right)^{*} \text { iff } f / g \in \operatorname{Kr}(S, *) .
\end{aligned}
$$

Proposition (2.3) Let $*_{1}$ and $*_{2}$ be e.a.b. semistar operations on S.
(1) If $*_{1} \leq *_{2}$, then $\operatorname{Kr}\left(S, *_{1}\right) \subset \operatorname{Kr}\left(S, *_{2}\right)$.
(2) $*_{1} \sim *_{2}$ if and only if $\operatorname{Kr}\left(S, *_{1}\right)=\operatorname{Kr}\left(S, *_{2}\right)$.

Proof. (1) is immediate from the definition.
(2) The sufficiency: For each $F \in \mathrm{f}(S)$, we have
$F^{*_{1}}=F \operatorname{Kr}\left(S, *_{1}\right) \cap G=F \operatorname{Kr}\left(S, *_{2}\right) \cap G=F^{*_{2}}$.
Proposition (2.4) Let $\mathcal{S}=\left\{S_{\lambda} \mid \lambda \in \Lambda\right\}$ be a family of oversemigroups of S, and let $*_{\mathcal{S}}$ be the semistar operation associated to \mathcal{S}.
(1) If $*_{\left\{S_{\lambda}\right\}}$ is an e.a.b. (respectively, an a.b.) semistar operation for each λ, then $*_{\mathcal{S}}$ is an e.a.b. (respectively, an a.b.) semistar operation on S.
(2) If $*_{\left\{S_{\lambda}\right\}}$ is e.a.b. for each λ, then $\operatorname{Kr}\left(S, *_{\mathcal{S}}\right)=\cap_{\lambda} \operatorname{Kr}\left(S, *_{\left\{S_{\lambda}\right\}}\right)$.

Proof. (1) Let $E, F, G \in \mathrm{f}(S)$ such that $(E+F)^{* s} \subset(E+G)^{* s}$. Then $E+F+S_{\lambda} \subset$ $E+G+S_{\lambda}$ for each λ. Since $*_{\left\{S_{\lambda}\right\}}$ is e.a.b., we have $F+S_{\lambda} \subset G+S_{\lambda}$. Then $F^{* s}=\cap_{\lambda}\left(F+S_{\lambda}\right) \subset \cap_{\lambda}\left(G+S_{\lambda}\right)=G^{* s}$.

The proof for the a.b. statement is similar.
(2) For $f, g \in k[X ; S]-\{0\}, e(f)^{* s} \subset e(g)^{* s}$ iff $e(f)^{*\left\{S_{\lambda}\right\}} \subset e(g)^{*\left\{S_{\lambda}\right\}}$ for each λ.

Proposition (2.5) Let $\mathcal{W}=\left\{V_{\lambda} \mid \lambda \in \Lambda\right\}$ be a family of valuation oversemigroups of S, and let W_{λ} be the trivial valuation extension ring of V_{λ} to $\mathrm{q}(k[X ; S])$. Then the w-semistar operation $*_{\mathcal{W}}$ is a.b. on S, and $\operatorname{Kr}\left(S, *_{\mathcal{W}}\right)=\cap_{\lambda} \operatorname{Kr}\left(S, *_{\left\{V_{\lambda}\right\}}\right)=\cap_{\lambda} W_{\lambda}$.

Proof. Easy consequence of (2.4) (2).

3. Some semistar operations associated to an semistar operation

Definition (3.1) Let $*$ be a semistar operation on S. An element $x \in G$ is called *-integral over S if $x \in\left(F^{*}: F^{*}\right)$ for some $F \in \mathrm{f}(S)$. The set $S^{[*]}=\cup\left\{\left(F^{*}: F^{*}\right) \mid F \in\right.$ $\mathrm{f}(S)\}$ is called the semistar integral closure of S with respect to $*$ or, simply the $*$ integral closure of S. If $S=S^{[*]}$, then S is called $*$-integrally closed.

Lemma (3.2) $S^{[*]}=\cup\left\{\left(F^{*}: F^{*}\right)^{* f} \mid F \in \mathrm{f}(S)\right\}$.
Proof. Let $x \in\left(F^{*}: F^{*}\right)^{*_{f}}$. There is $H \in \mathrm{f}(S)$ with $H \subset\left(F^{*}: F^{*}\right)$ such that $x \in H^{*}$. Since $H^{*}+F^{*} \subset F^{*}$, we have $x+F^{*} \subset F^{*}$, and $x \in\left(F^{*}: F^{*}\right)$. Therefore, $\left(F^{*}: F^{*}\right)^{* f}=\left(F^{*}: F^{*}\right)$.

Proposition (3.3) Let $*$ be a semistar operation on S. We define an operation [*] on S by setting:

$$
\begin{aligned}
& H^{[*]}=\cup\left\{\left(\left(F^{*}: F^{*}\right)+H\right)^{*_{f}} \mid F \in \mathrm{f}(S)\right\}, \text { for each } H \in \mathrm{f}(S), \\
& E^{[*]}=\cup\left\{H^{[*]} \mid H \in \mathrm{f}(S) \text { with } H \subset E\right\}, \text { for each } E \in \overline{\mathrm{~F}}(S) .
\end{aligned}
$$

Then the operation [*] is a semistar operation of finite type on S.
Proof. (i) To prove $x+E^{[*]}=(x+E)^{[*]}$, it suffices to show that $x+E^{[*]} \subset$ $(x+E)^{[*]}$. Let $a \in x+E^{[*]}$. We have $a-x \in F_{1}^{[*]}$ for some $F_{1} \in \mathrm{f}(S)$ with $F_{1} \subset E$. Then $a-x \in\left(\left(F_{2}^{*}: F_{2}^{*}\right)+F_{1}\right)^{*_{f}}$ for some $F_{2} \in \mathrm{f}(S)$. Then $a \in\left(\left(F_{2}^{*}: F_{2}^{*}\right)+x+F_{1}\right)^{*_{f}} \subset$ $\left(x+F_{1}\right)^{[*]} \subset(x+E)^{[*]}$.
(ii) Let $x \in E$, and set $(x)=H$. Then we have $x \in\left(H^{*}: H^{*}\right)+H \subset H^{[*]} \subset E^{[*]}$. Hence $E \subset E^{[*]}$.
(iii) Assume that $E_{1} \subset E_{2}$. By the definition, we have $E_{1}^{[*]} \subset E_{2}^{[*]}$.
(iv) Let $y \in\left(E^{[*]}\right)^{[*]}$. We have $y \in F^{[*]}$ for some $F \in \mathrm{f}(S)$ with $F \subset E^{[*]}$. Since F is finitely generated, we have $F \subset H^{[*]}$ for some $H \in \mathrm{f}(S)$ with $H \subset E$.

If $F=\left(x_{1}, \cdots, x_{n}\right)$, we have, for each $i, x_{i} \in\left(\left(F_{i}^{*}: F_{i}^{*}\right)+H\right)^{*_{f}}$ for some $F_{i} \in$ $\mathrm{f}(S)$. Then $F \subset\left(\left(F_{1}^{*}: F_{1}^{*}\right)+H, \cdots,\left(F_{n}^{*}: F_{n}^{*}\right)+H\right)^{*_{f}}$. Let $G_{1}=\sum_{i} F_{i}$, then $F \subset\left(\left(G_{1}^{*}: G_{1}^{*}\right)+H\right)^{*_{f}}$.

On the other hand, $y \in\left(\left(G_{2}^{*}: G_{2}^{*}\right)+F\right)^{*_{f}}$ for some $G_{2} \in \mathrm{f}(S)$. Then,
$y \in\left(\left(G_{2}^{*}: G_{2}^{*}\right)+\left(\left(G_{1}^{*}: G_{1}^{*}\right)+H\right)^{*_{f}}\right)^{*_{f}}=\left(\left(G_{2}^{*}: G_{2}^{*}\right)+\left(G_{1}^{*}: G_{1}^{*}\right)+H\right)^{*_{f}} \subset$ $\left(\left(\left(G_{1}+G_{2}\right)^{*}:\left(G_{1}+G_{2}\right)^{*}\right)+H\right)^{*_{f}} \subset H^{[*]} \subset E^{[*]}$. Therefore, $\left(E^{[*]}\right)^{[*]}=E^{[*]}$.

Proposition (3.4) Let $*$ be a semistar operation on S. Then we have
(1) $S^{[*]}$ is an oversemigroup of S.
(2) $S^{[*]}$ is integrally closed.

Proof. (1) Let $a, b \in S^{[*]}$. Then $a \in\left(F_{1}^{*}: F_{2}^{*}\right)$ and $b \in\left(F_{2}^{*}: F_{2}^{*}\right)$ for some $F_{1}, F_{2} \in \mathrm{f}(S)$. Then $a+b \in\left(\left(F_{1}+F_{2}\right)^{*}:\left(F_{1}+F_{2}\right)^{*}\right) \in S^{[*]}$.
(2) Let $x \in G$ be integral over $S^{[*]}$. We have $n x=a \in S^{[*]}$ for some positive integer n. Since $a \in S^{[*]}$, we have $a \in\left(F^{*}: F^{*}\right)$ for some $F \in \mathrm{f}(S)$. Set $H=$ $(F, F+x, \cdots, F+(n-1) x)$. Then $x+H \subset H^{*}$. It follows that $x \in\left(H^{*}: H^{*}\right) \subset S^{[*]}$.

Definition (3.5) Let $*$ be a semistar operation on S. We define the map $*_{a}$: $\overline{\mathrm{F}}(S) \longrightarrow \overline{\mathrm{F}}(S)$ by setting
$F^{* a}=\cup\left\{\left((F+H)^{*}: H^{*}\right) \mid H \in \mathrm{f}(S)\right\}$, for each $F \in \mathrm{f}(S)$,
$E^{* a}=\cup\left\{F^{* a} \mid F \in \mathrm{f}(S)\right.$ with $\left.F \subset E\right\}$, for each $E \in \overline{\mathrm{~F}}(S)$.
Proposition (3.6) Let $*$ be a semistar operation on S.
(1) $*_{a}$ is a semistar operation of finite type.
(2) $*_{a}$ is e.a.b.
(3) $*_{f} \leq[*] \leq *_{a}$.
(4) $[*]=\left[*_{f}\right]=[*]_{f}$.
(5) $*_{a}=\left(*_{f}\right)_{a}=\left(*_{a}\right)_{f}$.
(6) $*_{a}=*_{f}$ if and only if $*_{f}$ is an e.a.b. semistar operation.
(7) $*_{1} \leq *_{2}$ implies $\left(*_{1}\right)_{a} \leq\left(*_{2}\right)_{a}$.
(8) $*_{1} \leq *_{2}$ implies $\left[*_{1}\right] \leq\left[*_{2}\right]$.
(9) $\left(*_{a}\right)_{a}=*_{a}$.
(10) $[*]_{a}=\left[*_{a}\right]=*_{a}$.
(11) $*_{f} \leq[*] \leq[[*]] \leq *_{a}$.
(12) $S^{[*]}=S^{* a}=S^{[[*]]}$.

Proof. (1) (i) To prove $(x+E)^{*_{a}}=x+E^{* a}$, it suffices to show that $x+E^{*_{a}} \subset$ $(x+E)^{* a}$. Let $y \in x+E^{* a}$. Since $y-x \in E^{* a}$, there is $F \in \mathrm{f}(S)$ with $F \subset E$ such that $y-x \in F^{* a}$. Hence $y-x \in\left((F+H)^{*}: H^{*}\right)$ for some $H \in \mathrm{f}(S)$. Then $y \in\left((x+F+H)^{*}: H^{*}\right) \subset(x+F)^{*_{a}} \subset(x+E)^{*_{a}}$. It follows that $x+E^{*_{a}} \subset(x+E)^{*_{a}}$.
(ii) Let $x \in E$, and set $(x)=H$. Then $x \in\left((H+H)^{*}: H^{*}\right) \subset H^{*_{a}} \subset E^{*_{a}}$. Hence $E \subset E^{* a}$.
(iii) Let $E_{1} \subset E_{2}$. By definition, we have $E_{1}^{*_{a}} \subset E_{2}^{*_{a}}$.
(iv) Let $y \in\left(E^{*_{a}}\right)^{*_{a}}$. Then $y \in F^{*_{a}}$ for some $F \in \mathrm{f}(S)$ with $F \subset E^{* a}$. Since F is finitely generated, we have $F \subset H^{* a}$ for some $H \in \mathrm{f}(S)$ with $H \subset E$. If $F=$ $\left(x_{1}, \cdots, x_{n}\right)$, we have, for each $i, x_{i}+F_{i}^{*} \subset\left(H+F_{i}\right)^{*}$ for some $F_{i} \in \mathrm{f}(S)$. Let $G_{1}=\sum_{i} F_{i}$, then $F+G_{1} \subset\left(H+G_{1}\right)^{*}$. On the other hand, $y+G_{2} \subset\left(F+G_{2}\right)^{*}$ for some $G_{2} \in \mathrm{f}(S)$. Then $y+G_{1}+G_{2} \subset\left(F+G_{1}+G_{2}\right)^{*} \subset\left(H+G_{1}+G_{2}\right)^{*}$. Hence $y \in H^{* a} \subset E^{* a}$. Hence $\left(E^{* a}\right)^{* a}=E^{* a}$.
(2) Let $I, J \in \mathrm{f}(S)$, we will show that $\left((I+J)^{*_{a}}: I\right) \subset J^{*_{a}}$. Let $z \in\left((I+J)^{*_{a}}: I\right)$, then $z+I \subset(I+J)^{* a}$. If $I=\left(x_{1}, \cdots, x_{n}\right)$, we have, for each $i, z+x_{i}+F_{i}^{*} \subset\left(I+J+F_{i}\right)^{*}$ for some $F_{i} \in \mathrm{f}(S)$. Let $G=\sum_{i} F_{i}$, then $z+I+G \subset(I+J+G)^{*}$. It follows that $z \in\left((J+I+G)^{*}:(I+G)^{*}\right) \subset J^{* a}$.
(3) Let $x \in E^{*_{f}}$. We have $x \in H^{*}$ for some $H \in \mathrm{f}(S)$ with $H \subset E$. Then we have $x \in\left(\left(S^{*}: S^{*}\right)+H\right)^{*_{f}} \subset H^{[*]} \subset E^{[*]}$.
Hence $E^{*_{f}} \subset E^{[*]}$, and $*_{f} \leq[*]$.
Next, let $x \in E^{[*]}$. We have $x \in H^{[*]}$ for some $H \in \mathrm{f}(S)$ with $H \subset E$. There is $F \in$ $\mathrm{f}(S)$ such that $x \in\left(\left(F^{*}: F^{*}\right)+H\right)^{*_{f}}$. Then $x+F \subset\left(\left(F^{*}: F^{*}\right)+H\right)^{*_{f}}+F^{*} \subset(F+H)^{*}$. Hence $x \in H^{* a} \subset E^{*_{a}}$. Therefore $E^{[*]} \subset E^{* a}$, and $[*] \leq *_{a}$.
(4), (5), (7) and (8) are obvious from the definitions.
(6) The necessity follows from (2).

The sufficiency: Let $F \in \mathrm{f}(S)$, and let $x \in F^{*}{ }^{*}$. Then $x+H \subset(F+H)^{*}$ for some $H \in \mathrm{f}(S)$. Since $*_{f}$ is e.a.b., we have $x \in F^{*_{f}}$. Hence $F^{*_{a}} \subset F^{*_{f}}$, and $*_{a} \leq *_{f}$. The conclusion follows from (3).
(9) Since $*_{a}=\left(*_{a}\right)_{f}$ is e.a.b. by (2), we have $\left(*_{a}\right)_{a}=\left(*_{a}\right)_{f}$ by (6). Hence $\left(*_{a}\right)_{a}=*_{a}$.
(10) By (3),(7), we have $\left(*_{f}\right)_{a} \leq[*]_{a} \leq\left(*_{a}\right)_{a}$ (resp. $\left.\left.\left(*_{a}\right)_{f} \leq\left[*_{a}\right] \leq\left(*_{a}\right)_{a}\right)\right)$. By (5),(9), we have $*_{a} \leq\left[*_{a} \leq *_{a}\right.$ (resp., $*_{a} \leq\left[*_{a}\right] \leq *_{a}$). Hence $[*]_{a}=*_{a}$ (resp. $*_{a}=\left[*_{a}\right]$).
(11) By (3),(8), we have $\left[*_{f}\right] \leq[[*]] \leq\left[*_{a}\right]$. Then (4),(10) imply the assertion.
(12) We have $S^{* a}=\cup\left\{\left((S+H)^{*}: H^{*}\right) \mid H \in \mathrm{f}(S)\right\}=\cup\left\{\left(H^{*}: H^{*}\right) \mid H \in\right.$ $\mathrm{f}(S)\}=S^{[*]}$. Then (11) completes the proof.

4. The Kronecker function ring of any semistar operation

Lemma (4.1) (Dedekind-Mertens Lemma for semigroups)([GP1]) Let $f, g \in$ $k[X ; S]-\{0\}$. Then there is a positive integer m such that

$$
(m+1) e(g)+e(f)=m e(g)+e(f g)
$$

Lemma (4.2) Let $*$ be a semistar operation on S. Let $f, g, f^{\prime}, g^{\prime} \in k[X ; S]-\{0\}$ with $f / g=f^{\prime} / g^{\prime}$ such that $(e(f)+e(h))^{*} \subset(e(g)+e(h))^{*}$ for some $h \in k[X ; S]-\{0\}$.

Then there is $h^{\prime} \in k[X ; S]-\{0\}$ such that $\left(e\left(f^{\prime}\right)+e\left(h^{\prime}\right)\right)^{*} \subset\left(e\left(g^{\prime}\right)+e\left(h^{\prime}\right)\right)^{*}$.
Proof. Then we have $f g^{\prime}=f^{\prime} g$. By (4.1), there is a positive integer m such that $(m+1) e(g)+e\left(f^{\prime}\right)=m e(g)+e\left(f^{\prime} g\right)$,
$(m+1) e(f)+e\left(g^{\prime}\right)=m e(f)+e\left(f g^{\prime}\right)$.
Then it follows that $\left\{(m+1) e(g)+e\left(f^{\prime}\right)\right\}+m e(f)=\left\{(m+1) e(f)+e\left(g^{\prime}\right)\right\}+m e(g)$.
Now, there are a finite set of elements $s_{1}, s_{2}, \cdots, s_{n}$ of S with
$s_{i} \neq s_{j}$ for each $i \neq j$ such that $(m+1)(e(g)+e(h))+m(e(f)+e(h))=$
$\left(s_{1}, s_{2}, \cdots, s_{n}\right)$. We set $h^{\prime}=X^{s_{1}}+X^{s_{2}}+\cdots+X^{s_{n}} \in k[X ; S]-\{0\}$.
Then we have $e\left(h^{\prime}\right)=(m+1)(e(g)+e(h))+m(e(f)+e(h))$ and therefore
$e\left(f^{\prime}\right)+e\left(h^{\prime}\right)=\left\{(m+1) e(g)+e\left(f^{\prime}\right)+m e(f)\right\}+(2 m+1) e(h)$
$=\left\{(m+1) e(f)+e\left(g^{\prime}\right)+m e(g)\right\}+(2 m+1) e(h)$
$=(e(f)+e(h))+m(e(f)+e(h))+m(e(g)+e(h))+e\left(g^{\prime}\right)$
$\subset(e(g)+e(h))^{*}+m(e(f)+e(h))+m(e(g)+e(h))+e\left(g^{\prime}\right)$
$\subset\left(e\left(g^{\prime}\right)+e\left(h^{\prime}\right)\right)^{*}$, as wanted.
Set $\operatorname{Kr}(S, *)=\left\{f / g \mid f, g \in k[X ; S]-\{0\}\right.$ such that $(e(f)+e(h))^{*} \subset(e(g)+e(h))^{*}$ for some $h \in k[X ; S]-\{0\}\} \cup\{0\}$. (4.2) shows that $\operatorname{Kr}(S, *)$ is a well-defined subset of $\mathrm{q}(k[X ; S])$. If $*$ is e.a.b., this coincides with $\operatorname{Kr}(S, *)$ in (2.1).

Proposition (4.3) $\mathrm{Kr}(S, *)$ is an integral domain with quotient field $\mathrm{q}(k[X ; S])$.
Proof. Let $f / g, f^{\prime} / g \in \operatorname{Kr}(S, *)-\{0\}$. Then there are $h, h^{\prime} \in k[X ; S]-\{0\}$ such that
$(e(f)+e(h))^{*} \subset(e(g)+e(h))^{*},\left(e\left(f^{\prime}\right)+e\left(h^{\prime}\right)\right)^{*} \subset\left(e(g)+e\left(h^{\prime}\right)\right)^{*}$. There is $j \in$ $k[X ; S]-\{0\}$ such that $e(j)=e(h)+e\left(h^{\prime}\right)$. Then we have
$(e(f)+e(j))^{*} \subset(e(g)+e(j))^{*},\left(e\left(f^{\prime}\right)+e(j)\right)^{*} \subset(e(g)+e(j))^{*}$.
We may assume that $f+f^{\prime} \neq 0$. Then it follows that
$\left(e\left(f+f^{\prime}\right)+e(j)\right)^{*} \subset(e(g)+e(j))^{*}$. Hence $f / g+f^{\prime} / g \in \operatorname{Kr}(S, *)$.
Next, we have $(m+2) e(g)=m e(g)+e\left(g^{2}\right)$ for some m. There is $j^{\prime} \in k[X ; S]-\{0\}$ such that $e\left(j^{\prime}\right)=(m+2) e(g)+2 e(j)$. Then we have
$e\left(f f^{\prime}\right)+e\left(j^{\prime}\right)$
$\subset\left\{e(f)+e\left(f^{\prime}\right)\right\}+\{(m+2) e(g)+2 e(j)\}$
$=\{e(f)+e(j)\}+\left\{e\left(f^{\prime}\right)+e(j)\right\}+(m+2) e(g)$
$\subset 2(e(g)+e(j))^{*}+(m+2) e(g)$
$=2(e(g)+e(j))^{*}+\left\{m e(g)+e\left(g^{2}\right)\right\}$
$\subset\left(e\left(g^{2}\right)+e\left(j^{\prime}\right)\right)^{*}$.
Therefore $\left(e\left(f f^{\prime}\right)+e\left(j^{\prime}\right)\right)^{*} \subset\left(e\left(g^{2}\right)+e\left(j^{\prime}\right)\right)^{*}$. Hence $\left(f f^{\prime}\right) /\left(g g^{\prime}\right) \in \operatorname{Kr}(S, *)$.
Proposition (4.4) $\operatorname{Kr}(S, *)$ is a Bezout domain.
Proof. Set $R=\operatorname{Kr}(S, *)$, and let $f \in k[X ; S]-\{0\}$ with $\operatorname{Supp}(f)=\left\{s_{1}, \cdots, s_{n}\right\}$. Then we have $f R=\left(X^{s_{1}}, \cdots, X^{s_{n}}\right) R$.

Let ξ and η be non-zero elements of R. We set $\xi=f / g$ and $\eta=f^{\prime} / g$ with $f, f^{\prime}, g \in k[X ; S]-\{0\}$, and let $\operatorname{Supp}(f)=\left\{s_{1}, \cdots, s_{n}\right\}$, let $\operatorname{Supp}\left(f^{\prime}\right)=\left\{t_{1}, \cdots, t_{m}\right\}$ and let $\operatorname{Supp}(f) \cup \operatorname{Supp}\left(f^{\prime}\right)=\left\{u_{1}, \cdots, u_{l}\right\}$ with $u_{i} \neq u_{j}$ for each $i \neq j$. Then we have
$(\xi, \eta) R=\left(\frac{X^{s_{1}}}{g}, \cdots, \frac{X^{s_{n}}}{g}, \eta\right) R$
$=\left(\frac{X^{s_{1}}}{g}, \cdots, \frac{X^{s_{n}}}{g}, \frac{X^{t_{1}}}{g}, \cdots, \frac{X^{t_{m}}}{g}\right) R$
$=\left(\frac{X^{u_{1}}}{g}, \cdots, \frac{X^{u_{l}}}{g}\right) R=\left(\frac{\sum_{i} X^{u_{i}}}{g}\right) R$.
Therefore $(\xi, \eta) R$ is a principal ideal of R.
Lemma (4.5) If $*_{1} \leq *_{2}$, then $\operatorname{Kr}\left(S, *_{1}\right) \subset \operatorname{Kr}\left(S, *_{2}\right)$.
Proof. Let $f, g \in k[X ; S]-\{0\}$ such that $(e(f)+e(h))^{*_{1}} \subset(e(g)+e(h))^{*_{1}}$ for some $h \in k[X ; S]-\{0\}$. Then we have $(e(f)+e(h))^{*_{2}} \subset(e(g)+e(h))^{*_{2}}$.

Proposition (4.6) Let $*$ be a semistar operation on S. Then we have
$\operatorname{Kr}(S, *)=\operatorname{Kr}(S,[*])=\operatorname{Kr}\left(S, *_{a}\right)$.
Proof. From the definitions, we have $\operatorname{Kr}\left(S, *_{f}\right)=\operatorname{Kr}(S, *)$.
Since $*_{f} \leq[*] \leq *_{a}$ by $(3.6)(3)$, we have $\operatorname{Kr}(S, *) \subset \operatorname{Kr}(S,[*]) \subset \operatorname{Kr}\left(S, *_{a}\right)$. Let $\xi \in \operatorname{Kr}\left(S, *_{a}\right)-\{0\}$. Then $\xi=f / g$ with $f, g \in k[X, S]-\{0\}$ such that $(e(f)+e(h))^{*_{a}} \subset$ $(e(g)+e(h))^{* a}$ for some $h \in k[X ; S]-\{0\}$. Let $e(f)+e(h)=\left(a_{1}, \cdots, a_{n}\right)$. Then, for each $i, a_{i}+F_{i} \subset\left(e(f)+e(g)+F_{i}\right)^{*}$ for some $F_{i} \in \mathrm{f}(S)$. Set $F=\sum_{i} F_{i}$, then $\left(a_{1}, \cdots, a_{n}\right)+F \subset(e(g)+e(h)+F)^{*}$. Therefore $(e(f)+e(h)+F)^{*} \subset(e(g)+e(h)+F)^{*}$. It follows that $f / g \in \operatorname{Kr}(S, *)$.

Proposition (4.7) Let $*$ be a semistar operation on S. Then, for each $E \in \overline{\mathrm{~F}}(S)$, we have $E^{* a}=\cup\{\operatorname{FKr}(S, *) \cap G \mid F \in \mathrm{f}(S)$ with $F \subset E\}$.

Proof. $\quad E^{* a}=\cup\left\{F^{*_{a}} \mid F \in f(S)\right.$ with $\left.F \subset E\right\}=\cup\left\{F \operatorname{Kr}\left(S, *_{a}\right) \cap G \mid F \in \mathrm{f}(S)\right.$ with $F \subset E\}=\cup\{F \operatorname{Kr}(S, *) \cap G \mid F \in \mathrm{f}(S)$ with $F \subset E\}$.

Proposition (4.8) Let $*$ be a semistar operation on S. Set
$T=S^{* a}$ and $*_{T}=\alpha_{T}\left(*_{a}\right)=\alpha\left(*_{a}\right)$.
Then, T is an integrally closed oversemigroup of S, and $*_{T}$ is an e.a.b. semistar operation on T such that $T^{* T}=T$ and $\operatorname{Kr}(S, *)=\operatorname{Kr}\left(T, *_{T}\right)$.

Proof. Since $T=S^{[*]}$, T is integrally closed by (3.4)(2). By (3.6)(2), $*_{a}$ is e.a.b. and, by (1.5)(4), $*_{T}$ is e.a.b. Since $\left(E^{* a}\right)^{*_{a}}=E^{* a}$ for each $E \in \mathrm{~F}(S)$, we have $T^{* T}=T^{\alpha\left(*_{a}\right)}=T^{*_{a}}=\left(S^{*_{a}}\right)^{*_{a}}=S^{*_{a}}=T$. By (2.2) and (4.6), we have $\operatorname{Kr}(S, *)=$ $\operatorname{Kr}\left(S, *_{a}\right)=\operatorname{Kr}\left(T, *_{T}\right)$.

References

[FL] M. Fontana and K. Loper, Kronecker function rings: a general approach, In: Ideal Theoretic Methods in Commutative Algebra, Lecture Notes Pure Appl. Math. 220, Marcel Dekker, 2001, 189-205.
[G] R. Gilmer, Commutative Semigroup Rings, The Univ. Chicago Press, 1984.
[GP1] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.
[GP2] R. Gilmer and T. Parker, Semigroup rings as Prüfer rings, Duke Math. J. 41(1974), 219-230.
[M1] R. Matsuda, Torsion-free abelian semigroup rings VI, Bull. Fac. Sci., Ibaraki Univ. 18 (1986), 23-43.
[M2] R. Matsuda, Kronecker function rings of semistar-operations on semigroups, Math. J. Toyama Univ. 19 (1996), 159-170.
[M3] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd ed., Kaisei, Tokyo, 2002.
[M4] R.Matsuda, Commutative Semigroup Rings, 2nd ed., Kaisei, Tokyo, 2003.
[OMS] H. Ozawa, R. Matsuda, and K. Satô, Semistar-operations on semigroups, Memoirs Tohoku Inst. Tech. 16 (1996), 1-14.

[^0]: Received 20 September, 2007; revised 9 February, 2008.
 2000 Mathematics Subject Classification. 13A15.
 Key Words and Phrases. Kronecker function ring, semistar operation, grading monoid.
 *Professor Emeritus, Oyama National College of Technology (aokabe@aw.wakwak.com)
 ${ }^{* *}$ Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

