Note on the number of semistar operations, XIV

Ryûki Matsuda*

Abstract

We determine conditions for a grading monoid to have only a finite number of semistar operations.

This is a note on the number of semistar operations, and is a continuation of [M3]. The notions of star operations, semistar operations, and their Kronecker function rings of integral domains have been well known. We refer to Fontana-Loper([FL]) and its references for them. Let G be a torsion-free abelian additive group, and let S be an additively closed subset containing 0 of G. Then S is called a grading monoid (or, a g-monoid). We refer to [M1] for notions of star operations, semistar operations, and their Kronecker function rings for g-monoids.

Let $\Sigma(S)$ be the set of star operations on S, and let $\Sigma'(S)$ be the set of semistar operations on S. In §1 of this paper, we are interested in the cardinalities $|\Sigma(S)|$, and $|\Sigma'(S)|$, especially, in when $|\Sigma'(S)| < \infty$? We will determine conditions for $|\Sigma'(S)| < \infty$. §2 is an another note on $|\Sigma'(D)|$ for i-local domains D.

§1 The conditions for $|\Sigma'(S)| < \infty$

Let G be the quotient group of S, and let \bar{S} be the integral closure of S. If S is a group, we have $|\Sigma'(S)| = 1$ trivially. Thus, throughout the section, let S be a g-monoid which is not a group, let M (resp. N) be the maximal ideal of S (resp. \bar{S}), let H (resp. L) be the group of units of S (resp. \bar{S}). In [M2, Theorem 14] we proved the following fact: Assume that M = N. Then we have that $|\Sigma'(S)| < \infty$ if and only if dim $(S) < \infty$, \bar{S} is a valuation semigroup, and L/H is a finite group.

In this section, we will prove the following,

Theorem 1 Assume that $M \neq N$. Then the following conditions are equivalent. (1) $|\Sigma'(S)| < \infty$.

(2) $\dim(S) < \infty, \overline{S}$ is a valuation semigroup, and $\overline{S} - S$ is a finite set modulo H.

(1.1) (cf. [M2, Proposition 1]) Let V be a valuation semigroup with maximal ideal N. If N is a principal ideal of V, then $|\Sigma(V)| = 1$, and if N is not a principal

Received 9 October, 2007; revised 15 December, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 13A15.

Key Words and Phrases. star operation, semistar operation, grading monoid.

^{*}Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

ideal of V, then $|\Sigma(V)| = 2$.

(1.2) Assume that $|\Sigma'(S)| < \infty$. Then there is only a finite number of oversemigroups of S.

Proof. Let T be an oversemigroup of S. Then there arises a semistar operation $I \longmapsto I + T$ on S.

(1.3) Assume that $|\Sigma'(S)| < \infty$. Then L/H is a finite group.

Proof. If L/H is an infinite group, then there is an infinite number of subgroups K of L containing H. Set $T = K \cup N$. Then T is an oversemigroup of S.

Let A be a subset of G. Then S[A] denotes the oversemigroup of S generated by A.

(1.4) Assume that $|\Sigma'(S)| < \infty$. Then dim $(S) < \infty, \overline{S}$ is a valuation semigroup, and $\overline{S} - S$ is a finite set modulo H.

Proof. Suppose that $\dim(S) = \infty$. Then there is an infinite number of oversemigroups of S. Then $|\Sigma'(S)| = \infty$ by (1.2).

Suppose that \overline{S} is not a valuation semigroup. Then there is an element $x \in G - \overline{S}$ such that $-x \notin \overline{S}$. We have $S[2^n x] \supseteq S[2^{n+1}x]$ for each positive integer n. Then $|\Sigma'(S)| = \infty$ by (1.2).

Confering (1.3), let $\alpha_1, \dots, \alpha_k$ be a complete representative system of L modulo H. Let v be a valuation belongoing to \overline{S} . By (1.2), we have $\{S[x] \mid x \in \overline{S} - S\} = \{S[x_1], \dots, S[x_m]\}$ for some positive integer m. Let $x \in \overline{S} - S$. Then $S[x] = S[x_i]$ for some i. Hence $v(x) = v(x_i)$. Then $x - x_i = \alpha_j + h$ for some j and $h \in H$.

We have seen that (1) implies (2) in Theorem 1.

Thus, in the rest of the section, we assume that $M \neq N$, $\dim(S) < \infty$, \overline{S} is a valuation semigroup, and $\overline{S} - S$ is a finite set modulo H. Set $\overline{S} = V$, let v be a valuation belonging to V, and let Γ be the value group of v.

(1.5) (1) Let $I \in F'(S)$ so that v(I) is not bounded below. Then I = G.

(2) $F'(S) = F(S) \cup \{G\}.$

(3) Each star operation * on S can be extended uniquely to a semistar operation on S.

(4) $|\Sigma(S)| \le |\Sigma'(S)|.$

(5) L/H is a finite group.

(6) Let $I \in F(S)$ so that there does not exist inf v(I). Then we have $\{x \in G \mid v(x) \ge v(a) \text{ for some } a \in I\} \subset I$.

Proof. (1) Let $x \in G$. There are x_1, x_2, x_3, \cdots in I so that $v(x) > v(x_1) > \cdots$. Then $x - x_i \in N$ for each i, and $x - x_i \not\equiv x - x_j$ modulo H for each i < j. It follows that $x - x_n \in S$ for some n, and hence $x \in I$.

- (2) follows from (1).
- (3) follows from (2).
- (4) follows from (3).
- (5) follows from the fact that V S is a finite set modulo H.

(6) Suppose the contrary. There are $x \notin I$ and $a_0 \in I$ such that $v(a_0) \leq v(x)$. There are elements a_1, a_2, a_3, \cdots in I so that $v(a_0) > v(a_1) > v(a_2) > \cdots$. Then $x - a_i \in V - S$ for each i, and $x - a_i \not\equiv x - a_j$ modulo H for each i < j; a contradiction.

Let $\alpha_1, \dots, \alpha_a$ be a complete representative system of L modulo H. And let z_1, \dots, z_b be a complete representative system of N - M modulo H. We may assume that $v(z_1) \leq \dots \leq v(z_b)$.

(1.6) Let T be an oversemigroup of S with $T \in F(S)$, and let * be either a star operation or a semistar operation on S. Then T^* is an oversemigroup of S.

Proof. Let $x, y \in T^*$. Then $x + y \in T^* + T^* \subset (T^* + T^*)^* = (T + T)^* = T^*$.

(1.7) There is min v(N).

Proof. Suppose that $0 < v(s) < v(z_1)$ for some $s \in S$. We have $z_1 - s \equiv z_i$ modulo H for some i. Then $v(z_1) = v(z_i)$, and hence v(s) = 0; a contradiction.

Let $x \in N - M$. Then $x \equiv z_i$ modulo H for some i. Hence $v(x) = v(z_i) \ge v(z_1)$.

We may assume that is the rank 1 convex subgroup of Γ . Take an element $\pi \in N$ such that $v(\pi) = 1$.

(1.8) Let T be an oversemigroup of S. Then $T \supset V$ or $T \subset V$.

Proof. Assume that $T \not\subset V$, and take an element $x_0 \in T - V$. Then $-x_0 \in N$. Let $x \in V$. We have $x - kx_0 \in V$ for each $k \ge 0$. If 0 < i < j, then $x - ix_0 \not\equiv x - jx_0$ modulo H. Therefore $x - mx_0 \in S$ for some m. Then $x \in S[x_0]$, and hence $V \subset T$.

(1.9) There is only a finite number of oversemigroups of S.

Proof. It follows from (1.8), $\dim(V) < \infty$, and the hypothesis that V - S is a finite set modulo H.

(1.10) Let $\dim(S) = 1$. Then $V^v = V$, that is, V is a divisorial fractional ideal of S.

Proof. V^v is an oversemigroup of V by (1.6), and we have $\dim(V) = 1$. Suppose that $V^v \neq V$. Then $V^v = G$. Take an element $x_0 \in M$. Let $1 \leq i \leq b$, and let 0 < j < k. Then $z_i + jx_0 \not\equiv z_i + kx_0$ modulo H. Hence there is m_i so that $z_i + mx_0 \in S$ for each $m \geq m_i$, that is, $z_i \in (-mx_0)$. Similarly, there is m'_j so that $\alpha_j \in (-mx_0)$ for each $m \geq m'_j$. Let $\max\{m_i, m'_j \mid i, j\} = m_0$. Then $V \subset (-mx_0)$ for each $m \geq m_0$. Since $V^v = \cap\{(x) \mid (x) \supset V\}$, we have $(-mx_0) = G$ for each $m \geq m_0$; this is clearly impossible.

(1.11) We have $V^v = V$.

Proof. By (1.10), we may assume that $\dim(S) \geq 2$. Let Q be a prime ideal of V with $\operatorname{ht}(Q) = \operatorname{ht}(N) - 1$, and let $P = S \cap Q$, where $\operatorname{ht}(N)$ (resp. $\operatorname{ht}(Q)$) means the height of N (resp. the height of Q). Suppose that $V^v \neq V$. Then $V^v \supset V_Q$. Take an element $x_0 \in M - P$. The similar argument to the proof of (1.10) shows that $(-mx_0) \supset V_Q$ for all sufficiently large m. Since $(m+1)x_0 \notin Q$, we have $-(m+1)x_0 \in V_Q \subset (-mx_0)$, and hence $-x_0 \in S$; a contradiction.

(1.12) Let $I \in F(S)$ so that there does not exist inf v(I). Then $I^v = I$.

Proof. Suppose that $I^v \supseteq I$. Take an element $x \in I^v - I$. Then v(x) is a lower bound of v(I) by (1.5)(6). There is a lower bound v(y) of v(I) with v(x) < v(y). Set I - y = J. Since $J \subset V$, we have $J^v \subset V$ by (1.11). We have $x - y \in I^v - y = J^v$, and v(x - y) < 0. Hence $J^v \not\subset V$; a contradiction.

(1.13) $|\Sigma(S)| < \infty$.

Proof. Let $I \in F(S)$ with $S \subset I \subset V$. Then I is generated on S by a subset of $\{\alpha_i, z_j \mid i, j\}$. Therefore the set $\{I \in F(S) \mid S \subset I \subset V\} = X$ is a finite set.

Let $* \in \Sigma(S)$ and let $I \in X$. Set $I^* = g_*(I)$. Then g_* is a mapping from X to X by (1.11), that is, $g_* \in X^X$. Then g is a mapping from $\Sigma(S)$ to X^X .

Let $*, *' \in \Sigma(S), I \in F(S)$, and assume that $g_* = g_{*'}$. If there does not exist inf v(I), then $I^* = I^{*'} = I$ by (1.12). If there is inf v(I) = v(x), then min v(I-x) = 0 by (1.7). Hence $S \subset I - y \subset V$ for some $y \in I$. Since $g_* = g_{*'}$, we have $(I-y)^* = (I-y)^{*'}$, and hence $I^* = I^{*'}$. We have proved that * = *', and hence g is an injection. It follows that $|\Sigma(S)| < \infty$.

(1.14) Let T be an oversemigroup of S with $T \subset V$. Then $|\Sigma(T)| < \infty$.

Proof. Let M' be the maximal ideal of T, and let H' be the group of units of T. We have that $\overline{T} = V$, $\dim(T) = \dim(S) < \infty$, and L/H' is a finite group. If M' = N, we have $|\Sigma'(T)| < \infty$ by [M2, Theorem 14], and hence $|\Sigma(T)| < \infty$ by (1.5)(4). If $M' \neq N$, we have $|\Sigma(T)| < \infty$ by (1.13).

(1.15) Let T be an oversemigroup of S. Then $|\Sigma(T)| < \infty$.

Proof. We may assume that $T \not\subset V$ by (1.14). Then $T \supset V$ by (1.8). Then $|\Sigma(T)| \leq 2$ by (1.1).

Confering (1.9), let $\{T_1, \dots, T_c\}$ be the set of oversemigroups of S. For each $1 \leq i \leq c, * \in \Sigma(T_i)$ and $I \in F(S)$, set $(I + T_i)^* = I^{\sigma(*)}$ and $G = G^{\sigma(*)}$.

(1.16) (1) If $i \neq j$, then $\Sigma(T_i) \cap \Sigma(T_j) = \emptyset$.

(2) There is a canonical mapping σ from $\bigcup_{i=1}^{c} \Sigma(T_i)$ to $\Sigma'(S)$.

Proof. (1) We have $F(T_i) \neq F(T_j)$, and $\Sigma(T_i)$ (resp. $\Sigma(T_j)$) is a set of mappings from $F(T_i)$ to $F(T_i)$ (resp. from $F(T_j)$ to $F(T_j)$).

(2) We see easily that $\sigma(*)$ satisfies the conditions of a semistar operation on S.

(1.17) The mapping σ is a bijection onto $\Sigma'(S)$.

Proof. Let $* \in \Sigma'(S)$. Then $S^* = T_i$ for some T_i . There is a star operation $*': J \longmapsto J^*$ on T_i . Then we have $\sigma(*') = *$, and hence σ is a surjection.

Let $*_i \in \Sigma(T_i)$ and $*_j \in \Sigma(T_j)$ such that $\sigma(*_i) = \sigma(*_j)$. Then we have $T_i = S^{\sigma(*_i)} = S^{\sigma(*_j)} = T_j$.

(1.18) $|\Sigma'(S)| < \infty$.

Proof. It follows from (1.15), (1.16), and (1.17).

The proof of Theorem 1 is complete.

§2 An another note

In [M4], we determined conditions for $|\Sigma'(D)| < \infty$ for any APVD (or, an almost pseudo-valuation domain) D, and in §1, we determined conditions for $|\Sigma'(S)| < \infty$ for any g-monoid S. Every g-monoid that is not a group has a unique maximal ideal, and every APVD D has the property that D and its integral closure \overline{D} has a unique maximal ideal. We refer to [BH] for APVD's. Thus it is natural to consider the class of domains D such that \overline{D} has a unique maximal ideal. We call such a domain an i-local domain. In §2, we will study $|\Sigma'(D)|$ for i-local domains D.

(2.1) Let D be an i-local domain. Assume that \overline{D} is a valuation domain with maximal ideal M, v be a valuation belonging to \overline{D} , and $M^n \subset D$ for some positive integer n. Then either D is a PVD (or, a pseudo-valuation domain), or there is min v(M).

Proof. Suppose the contrary. Let $0 \neq x \in M$. There are elements $x_1, \dots, x_n \in M$ such that $v(x) > v(x_1) > \dots > v(x_n) > 0$. Then $x = \frac{x}{x_1} \frac{x_1}{x_2} \cdots \frac{x_{n-1}}{x_n} x_n \in M^n \subset D$. Hence D is a PVD; a contradiction.

Let D be a valuation domain with maximal ideal M, let v be a valuation belonging to D, and let Γ be the balue group of v. If there is min v(M), then we may assume that is the rank one convex subgroup of Γ , and min $v(M) = 1 \in \mathbb{Z} \subset \Gamma$.

For, the rank one convex subgroup of Γ is isomorphic with the ordered group . Therefore Γ is order isomorphic with an ordered group Γ' the rank one convex subgroup of which is .

R. Matsuda

(2.2) Let D be an i-local domain with maximal ideal P, let M be the maximal ideal of \overline{D} , and assume that $|\Sigma'(D)| < \infty$. Then we have,

(1) $\dim(D) < \infty$.

(2) There is only a finite number of overrings of D.

(3) $\overline{D} = V$ is a valuation domain.

(4) V is a finitely generated D-module.

(5) V/M = K is a simple extension field of D/P = k with $[K:k] < \infty$.

(6) $V, M \in F(D)$.

(7) $F'(D) = F(D) \cup \{q(D)\}.$

Proof. (1) follows from (2).

(2) If T is an overring of D, then there is a semistar operation $I \longmapsto IT$ on D.

(3) Let $\{V_{\lambda} \mid \lambda \in \Lambda\}$ be the set of valuation overrings of D. Then we have $\bar{D} = \cap_{\lambda} V_{\lambda}.$

(4) \overline{D} is a finitely generated overring of D.

(5) There is only a finite number of intermediate fields between k and K.

(6) There are elements $x_1, \dots, x_n \in V$ such that $V = \sum_{i=1}^{n} Dx_i$ for some positive integer n.

(7) There is $0 \neq d \in D$ such that $dV \subset D$. Let v be a valuation belonging to V. Let $I \in F'(D)$ so that v(I) is not bounded below. Let $x \in q(D)$. There is $a \in I$ such that v(a) < v(x). Then $x \in aV \subset (a/d)D \subset (1/d)I$. Hence $q(D) \subset (1/d)I$, and hence I = q(D).

(2.3) Let D be an i-local domain such that $\overline{D} = V$ is a valuation ring, and let M be the maximal ideal of \overline{D} . Assume that $M^n \subset D$ for some positive integer n. Then we have,

(1) $F'(D) = F(D) \cup \{q(D)\}.$

(2) Let T be an overring of D. Then either $T \supset V$ or $T \subset V$.

(3) Let $\Sigma'_1 = \{ * \in \Sigma'(D) \mid D^* \supset V \}$. Then there is a canonical bijection from $\Sigma'(V)$ onto Σ'_1 .

(4) Let $\Sigma'_2 = \{ * \in \Sigma'(D) \mid D^* \subsetneq V \}$. Then $\Sigma'(D) = \Sigma'_1 \cup \Sigma'_2$. (5) Let $\{T_\lambda \mid \lambda \in \Lambda\}$ be the set of overrings T of D with $T \gneqq V$. Then there is a canonical bijection from the disjoint union $\bigcup_{\lambda} \Sigma(T_{\lambda})$ onto Σ'_2 .

Proof. (1) Similar to (2.2)(7).

(2) Assume that $T \not\subset V$, and take an element $x \in T - V$. We may assume that $1/x \in M^n$. Let $a \in V$. Then $a(1/x) \in P$, hence $a \in xP \subset T$.

(3) The map $* \longmapsto \delta_D(*)$ gives a bijection from $\Sigma'(V)$ onto Σ'_1 .

(4) follows from (1).

(5) Similar to (3).

(2.4) Let D be an i-local domain. Assume that $\overline{D} = V$ is a valuation ring with maximal ideal M, let \mathcal{K} be a complete representative system of V modulo M, v be a valuation belonging to V with value group Γ , assume that is the rank one convex subgroup of Γ , and $v(\pi) = 1 \in \vec{Z}$ for some $\pi \in V$. Let $x \in q(D) - \{0\}$ with $v(x) \in \vec{Z}$. Let k be a positive integer with k > v(x). Then x can be expressed uniquely as $x = \alpha_l \pi^l + \alpha_{l+1} \pi^{l+1} + \dots + \alpha_{k-1} \pi^{k-1} + a \pi^k$, where l = v(x) and each $\alpha_i \in \mathcal{K}$ with $\alpha_l \neq 0 \pmod{M}$ and $a \in V$.

Proof. Since $\frac{x}{\pi^l}$ is a unit of V, we have $\frac{x}{\pi^l} \equiv \alpha_l \pmod{M}$ for a unique $0 \not\equiv \alpha_l \in \mathcal{K}$.

(2.5) Proposition Let D be an i-local domain with maximal ideal P, and assume that $\overline{D} = V$ is a valuation ring with maximal ideal M, v be a valuation belonging to V with the value group Γ . Asume that $D \supset M^3$. Then,

(1) D is either a PVD or, we may assume that is the rank one convex subgroup of Γ .

(2) If D/P = V/M, then D is an APVD.

Proof. (1) follows from (2.1).

(2) Suppose the contrary. Then we may apply (2.4), and we may assume that $\mathcal{K} \subset D$. Since D is not an APVD, we may choose $x \in P - M^3$. If v(x) = 1, then $x^2 \in P - M^3$ and $x^2 \in M^2$. Hence we may assume that v(x) = 2. We have $x = \alpha \pi^2 + a \pi^3$ for $\alpha \in \mathcal{K}$ and $a \in V$. Since $\alpha \in D - P$, we have $\pi^2 \in P$, and hence $M^2 \subset P$. Since D is not an APVD, we may choose $x \in P - M^2$. Then $\pi \in P$, and hence M = P; a contradiction.

References

- [BH] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg. 30 (2002), 1591-1606.
- [FL] M. Fontana and K. Loper, An historical overview of Kronecker function rings, Nafata rings, and related star and semistar operations, Multiplicative ideal theory in commutative algebra, 169-187, Springer, New York, 2006.
- [M1] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd ed., 2002, Kaisei, Tokyo.
- [M2] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ. 37 (2005), 53-79.
- [M3] R. Matsuda, Note on the number of semistar operations, XIII, Advances in Algebra and Analysis 1 (2006), 147-158.
- [M4] R. Matsuda, Semistar operations on almost pseudo-valuation domains, J. Commutative Algebra, to appear.