Note on the number of semistar operations, XIV

Ryûki Matsuda*

Abstract

We determine conditions for a grading monoid to have only a finite number of semistar operations.

This is a note on the number of semistar operations, and is a continuation of [M3]. The notions of star operations, semistar operations, and their Kronecker function rings of integral domains have been well known. We refer to Fontana-Loper([FL]) and its references for them. Let G be a torsion-free abelian additive group, and let S be an additively closed subset containing 0 of G. Then S is called a grading monoid (or, a g-monoid). We refer to [M1] for notions of star operations, semistar operations, and their Kronecker function rings for g -monoids.

Let $\Sigma(S)$ be the set of star operations on S, and let $\Sigma^{\prime}(S)$ be the set of semistar operations on S. In $\S 1$ of this paper, we are interested in the cardinalities $|\Sigma(S)|$, and $\left|\Sigma^{\prime}(S)\right|$, especially, in when $\left|\Sigma^{\prime}(S)\right|<\infty$? We will determine conditions for $\left|\Sigma^{\prime}(S)\right|<\infty . \S 2$ is an another note on $\left|\Sigma^{\prime}(D)\right|$ for i-local domains D.

$\S 1$ The conditions for $\left|\Sigma^{\prime}(S)\right|<\infty$

Let G be the quotient group of S, and let \bar{S} be the integral closure of S. If S is a group, we have $\left|\Sigma^{\prime}(S)\right|=1$ trivially. Thus, throughout the section, let S be a g-monoid which is not a group, let M (resp. N) be the maximal ideal of S (resp. \bar{S}), let H (resp. L) be the group of units of S (resp. \bar{S}). In [M2, Theorem 14] we proved the following fact: Assume that $M=N$. Then we have that $\left|\Sigma^{\prime}(S)\right|<\infty$ if and only if $\operatorname{dim}(S)<\infty, \bar{S}$ is a valuation semigroup, and L / H is a finite group.

In this section, we will prove the following,
Theorem 1 Assume that $M \neq N$. Then the following conditions are equivalent.
(1) $\left|\Sigma^{\prime}(S)\right|<\infty$.
(2) $\operatorname{dim}(S)<\infty, \bar{S}$ is a valuation semigroup, and $\bar{S}-S$ is a finite set modulo H.
(1.1) (cf. [M2, Proposition 1]) Let V be a valuation semigroup with maximal ideal N. If N is a principal ideal of V, then $|\Sigma(V)|=1$, and if N is not a principal
ideal of V, then $|\Sigma(V)|=2$.
(1.2) Assume that $\left|\Sigma^{\prime}(S)\right|<\infty$. Then there is only a finite number of oversemigroups of S.

Proof. Let T be an oversemigroup of S. Then there arises a semistar operation $I \longmapsto I+T$ on S.
(1.3) Assume that $\left|\Sigma^{\prime}(S)\right|<\infty$. Then L / H is a finite group.

Proof. If L / H is an infinite group, then there is an infinite number of subgroups K of L containing H. Set $T=K \cup N$. Then T is an oversemigroup of S.

Let A be a subset of G. Then $S[A]$ denotes the oversemigroup of S generated by A.
(1.4) Assume that $\left|\Sigma^{\prime}(S)\right|<\infty$. Then $\operatorname{dim}(S)<\infty, \bar{S}$ is a valuation semigroup, and $\bar{S}-S$ is a finite set modulo H.

Proof. Suppose that $\operatorname{dim}(S)=\infty$. Then there is an infinite number of oversemigroups of S. Then $\left|\Sigma^{\prime}(S)\right|=\infty$ by (1.2).

Suppose that \bar{S} is not a valuation semigroup. Then there is an element $x \in G-\bar{S}$ such that $-x \notin \bar{S}$. We have $S\left[2^{n} x\right] \supsetneqq S\left[2^{n+1} x\right]$ for each positive integer n. Then $\left|\Sigma^{\prime}(S)\right|=\infty$ by (1.2).

Confering (1.3), let $\alpha_{1}, \cdots, \alpha_{k}$ be a complete representative system of L modulo H. Let v be a valuation belongoing to \bar{S}. By (1.2), we have $\{S[x] \mid x \in \bar{S}-S\}=$ $\left\{S\left[x_{1}\right], \cdots, S\left[x_{m}\right]\right\}$ for some positive integer m. Let $x \in \bar{S}-S$. Then $S[x]=S\left[x_{i}\right]$ for some i. Hence $v(x)=v\left(x_{i}\right)$. Then $x-x_{i}=\alpha_{j}+h$ for some j and $h \in H$.

We have seen that (1) implies (2) in Theorem 1.
Thus, in the rest of the section, we assume that $M \neq N, \operatorname{dim}(S)<\infty, \bar{S}$ is a valuation semigroup, and $\bar{S}-S$ is a finite set modulo H. Set $\bar{S}=V$, let v be a valuation belonging to V, and let Γ be the value group of v.
(1.5) (1) Let $I \in \mathrm{~F}^{\prime}(S)$ so that $v(I)$ is not bounded below. Then $I=G$.
(2) $\mathrm{F}^{\prime}(S)=\mathrm{F}(S) \cup\{G\}$.
(3) Each star operation $*$ on S can be extended uniquely to a semistar operation on S.
(4) $|\Sigma(S)| \leq\left|\Sigma^{\prime}(S)\right|$.
(5) L / H is a finite group.
(6) Let $I \in \mathrm{~F}(S)$ so that there does not exist $\inf v(I)$. Then we have $\{x \in$ $G \mid v(x) \geq v(a)$ for some $a \in I\} \subset I$.

Proof. (1) Let $x \in G$. There are $x_{1}, x_{2}, x_{3}, \cdots$ in I so that $v(x)>v\left(x_{1}\right)>\cdots$. Then $x-x_{i} \in N$ for each i, and $x-x_{i} \not \equiv x-x_{j}$ modulo H for each $i<j$. It follows that $x-x_{n} \in S$ for some n, and hence $x \in I$.
(2) follows from (1).
(3) follows from (2).
(4) follows from (3).
(5) follows from the fact that $V-S$ is a finite set modulo H.
(6) Supppose the contrary. There are $x \notin I$ and $a_{0} \in I$ such that $v\left(a_{0}\right) \leq v(x)$. There are elements $a_{1}, a_{2}, a_{3}, \cdots$ in I so that $v\left(a_{0}\right)>v\left(a_{1}\right)>v\left(a_{2}\right)>\cdots$. Then $x-a_{i} \in V-S$ for each i, and $x-a_{i} \not \equiv x-a_{j}$ modulo H for each $i<j$; a contradiction.

Let $\alpha_{1}, \cdots, \alpha_{a}$ be a complete representative system of L modulo H. And let z_{1}, \cdots, z_{b} be a complete representative system of $N-M$ modulo H. We may assume that $v\left(z_{1}\right) \leq \cdots \leq v\left(z_{b}\right)$.
(1.6) Let T be an oversemigroup of S with $T \in \mathrm{~F}(S)$, and let $*$ be either a star operation or a semistar operation on S. Then T^{*} is an oversemigroup of S.

Proof. Let $x, y \in T^{*}$. Then $x+y \in T^{*}+T^{*} \subset\left(T^{*}+T^{*}\right)^{*}=(T+T)^{*}=T^{*}$.
(1.7) There is $\min v(N)$.

Proof. Suppose that $0<v(s)<v\left(z_{1}\right)$ for some $s \in S$. We have $z_{1}-s \equiv z_{i}$ modulo H for some i. Then $v\left(z_{1}\right)=v\left(z_{i}\right)$, and hence $v(s)=0$; a contradiction.

Let $x \in N-M$. Then $x \equiv z_{i}$ modulo H for some i. Hence $v(x)=v\left(z_{i}\right) \geq v\left(z_{1}\right)$.
We may assume that is the rank 1 convex subgroup of Γ. Take an element $\pi \in N$ such that $v(\pi)=1$.
(1.8) Let T be an oversemigroup of S. Then $T \supset V$ or $T \subset V$.

Proof. Assume that $T \not \subset V$, and take an element $x_{0} \in T-V$. Then $-x_{0} \in N$. Let $x \in V$. We have $x-k x_{0} \in V$ for each $k \geq 0$. If $0<i<j$, then $x-i x_{0} \not \equiv x-j x_{0}$ modulo H. Therefore $x-m x_{0} \in S$ for some m. Then $x \in S\left[x_{0}\right]$, and hence $V \subset T$.
(1.9) There is only a finite number of oversemigroups of S.

Proof. It follows from (1.8), $\operatorname{dim}(V)<\infty$, and the hypothesis that $V-S$ is a finite set modulo H.
(1.10) Let $\operatorname{dim}(S)=1$. Then $V^{v}=V$, that is, V is a divisorial fractional ideal of S.

Proof. V^{v} is an oversemigroup of V by (1.6), and we have $\operatorname{dim}(V)=1$. Suppose that $V^{v} \neq V$. Then $V^{v}=G$. Take an element $x_{0} \in M$. Let $1 \leq i \leq b$, and let $0<j<k$. Then $z_{i}+j x_{0} \not \equiv z_{i}+k x_{0}$ modulo H. Hence there is m_{i} so that $z_{i}+m x_{0} \in S$ for each $m \geq m_{i}$, that is, $z_{i} \in\left(-m x_{0}\right)$. Similarly, there is m_{j}^{\prime} so that $\alpha_{j} \in\left(-m x_{0}\right)$ for each $m \geq m_{j}^{\prime}$. Let $\max \left\{m_{i}, m_{j}^{\prime} \mid i, j\right\}=m_{0}$. Then $V \subset\left(-m x_{0}\right)$ for each $m \geq m_{0}$. Since $V^{v}=\cap\{(x) \mid(x) \supset V\}$, we have $\left(-m x_{0}\right)=G$ for each $m \geq m_{0}$;
this is clearly impossible.
(1.11) We have $V^{v}=V$.

Proof. By (1.10), we may assume that $\operatorname{dim}(S) \geq 2$. Let Q be a prime ideal of V with $\operatorname{ht}(Q)=\operatorname{ht}(N)-1$, and let $P=S \cap Q$, where ht (N) (resp. ht (Q)) means the height of N (resp. the height of Q). Suppose that $V^{v} \neq V$. Then $V^{v} \supset V_{Q}$. Take an element $x_{0} \in M-P$. The similar argumnet to the proof of (1.10) shows that $\left(-m x_{0}\right) \supset V_{Q}$ for all sufficiently large m. Since $(m+1) x_{0} \notin Q$, we have $-(m+1) x_{0} \in V_{Q} \subset\left(-m x_{0}\right)$, and hence $-x_{0} \in S$; a contradiction.
(1.12) Let $I \in \mathrm{~F}(S)$ so that there does not exist $\inf v(I)$. Then $I^{v}=I$.

Proof. Suppose that $I^{v} \supsetneqq I$. Take an element $x \in I^{v}-I$. Then $v(x)$ is a lower bound of $v(I)$ by (1.5)(6). There is a lower bound $v(y)$ of $v(I)$ with $v(x)<v(y)$. Set $I-y=J$. Since $J \subset V$, we have $J^{v} \subset V$ by (1.11). We have $x-y \in I^{v}-y=J^{v}$, and $v(x-y)<0$. Hence $J^{v} \not \subset V$; a contradiction.
(1.13) $|\Sigma(S)|<\infty$.

Proof. Let $I \in \mathrm{~F}(S)$ with $S \subset I \subset V$. Then I is generated on S by a subset of $\left\{\alpha_{i}, z_{j} \mid i, j\right\}$. Therefore the set $\{I \in \mathrm{~F}(S) \mid S \subset I \subset V\}=X$ is a finite set.

Let $* \in \Sigma(S)$ and let $I \in X$. Set $I^{*}=g_{*}(I)$. Then g_{*} is a mapping from X to X by (1.11), that is, $g_{*} \in X^{X}$. Then g is a mapping from $\Sigma(S)$ to X^{X}.

Let $*, *^{\prime} \in \Sigma(S), I \in \mathrm{~F}(S)$, and assume that $g_{*}=g_{*^{\prime}}$. If there does not exist inf $v(I)$, then $I^{*}=I^{*^{\prime}}=I$ by (1.12). If there is $\inf v(I)=v(x)$, then $\min v(I-x)=0$ by (1.7). Hence $S \subset I-y \subset V$ for some $y \in I$. Since $g_{*}=g_{*^{\prime}}$, we have $(I-y)^{*}=(I-y)^{*^{\prime}}$, and hence $I^{*}=I^{*^{\prime}}$. We have proved that $*=*^{\prime}$, and hence g is an injection. It follows that $|\Sigma(S)|<\infty$.
(1.14) Let T be an oversemigroup of S with $T \subset V$. Then $|\Sigma(T)|<\infty$.

Proof. Let M^{\prime} be the maximal ideal of T, and let H^{\prime} be the group of units of T. We have that $\bar{T}=V, \operatorname{dim}(T)=\operatorname{dim}(S)<\infty$, and L / H^{\prime} is a finite group. If $M^{\prime}=N$, we have $\left|\Sigma^{\prime}(T)\right|<\infty$ by [M2, Theorem 14], and hence $|\Sigma(T)|<\infty$ by (1.5)(4). If $M^{\prime} \neq N$, we have $|\Sigma(T)|<\infty$ by (1.13).
(1.15) Let T be an oversemigroup of S. Then $|\Sigma(T)|<\infty$.

Proof. We may assume that $T \not \subset V$ by (1.14). Then $T \supset V$ by (1.8). Then $|\Sigma(T)| \leq 2$ by (1.1).

Confering (1.9), let $\left\{T_{1}, \cdots, T_{c}\right\}$ be the set of oversemigroups of S. For each $1 \leq i \leq c, * \in \Sigma\left(T_{i}\right)$ and $I \in \mathrm{~F}(S)$, set $\left(I+T_{i}\right)^{*}=I^{\sigma(*)}$ and $G=G^{\sigma(*)}$.
(1.16) (1) If $i \neq j$, then $\Sigma\left(T_{i}\right) \cap \Sigma\left(T_{j}\right)=\emptyset$.
(2) There is a canonical mapping σ from $\bigcup_{1}^{c} \Sigma\left(T_{i}\right)$ to $\Sigma^{\prime}(S)$.

Proof. (1) We have $\mathrm{F}\left(T_{i}\right) \neq \mathrm{F}\left(T_{j}\right)$, and $\Sigma\left(T_{i}\right)$ (resp. $\Sigma\left(T_{j}\right)$) is a set of mappings from $\mathrm{F}\left(T_{i}\right)$ to $\mathrm{F}\left(T_{i}\right)$ (resp. from $\mathrm{F}\left(T_{j}\right)$ to $\mathrm{F}\left(T_{j}\right)$).
(2) We see easily that $\sigma(*)$ satisfies the conditions of a semistar operation on S.
(1.17) The mapping σ is a bijection onto $\Sigma^{\prime}(S)$.

Proof. Let $* \in \Sigma^{\prime}(S)$. Then $S^{*}=T_{i}$ for some T_{i}. There is a star operation $*^{\prime}: J \longmapsto J^{*}$ on T_{i}. Then we have $\sigma\left(*^{\prime}\right)=*$, and hence σ is a surjection.

Let $*_{i} \in \Sigma\left(T_{i}\right)$ and $*_{j} \in \Sigma\left(T_{j}\right)$ such that $\sigma\left(*_{i}\right)=\sigma\left(*_{j}\right)$. Then we have $T_{i}=$ $S^{\sigma\left(*_{i}\right)}=S^{\sigma\left(*_{j}\right)}=T_{j}$.
(1.18) $\left|\Sigma^{\prime}(S)\right|<\infty$.

Proof. It follows from (1.15), (1.16), and (1.17).
The proof of Theorem 1 is complete.

$\S 2$ An another note

In [M4], we determined conditions for $\left|\Sigma^{\prime}(D)\right|<\infty$ for any APVD (or, an almost pseudo-valuation domain) D, and in $\S 1$, we determined conditions for $\left|\Sigma^{\prime}(S)\right|<\infty$ for any g-monoid S. Every g-monoid that is not a group has a unique maximal ideal, and every APVD D has the property that D and its integral closure \bar{D} has a unique maximal ideal. We refer to [BH] for APVD's. Thus it is natural to consider the class of domains D such that \bar{D} has a unique maximal ideal. We call such a domain an i-local domain. In $\S 2$, we will study $\left|\Sigma^{\prime}(D)\right|$ for i-local domains D.
(2.1) Let D be an i-local domain. Assume that \bar{D} is a valuation domain with maximal ideal M, v be a valuation belonging to \bar{D}, and $M^{n} \subset D$ for some positive integer n. Then either D is a PVD (or, a pseudo-valuation domain), or there is min $v(M)$.

Proof. Suppose the contrary. Let $0 \neq x \in M$. There are elements $x_{1}, \cdots, x_{n} \in M$ such that $v(x)>v\left(x_{1}\right)>\cdots>v\left(x_{n}\right)>0$. Then $x=\frac{x}{x_{1}} \frac{x_{1}}{x_{2}} \cdots \frac{x_{n-1}}{x_{n}} x_{n} \in M^{n} \subset D$. Hence D is a PVD; a contradiction.

Let D be a valuation domain with maximal ideal M, let v be a valuation belonging to D, and let Γ be the balue group of v. If there is $\min v(M)$, then we may assume that is the rank one convex subgroup of Γ, and $\min v(M)=1 \in \vec{Z} \subset \Gamma$.

For, the rank one convex subgroup of Γ is isomorphic with the ordered group . Therefore Γ is order isomorphic with an ordered group Γ^{\prime} the rank one convex subgroup of which is .
(2.2) Let D be an i-local domain with maximal ideal P, let M be the maximal ideal of \bar{D}, and assume that $\left|\Sigma^{\prime}(D)\right|<\infty$. Then we have,
(1) $\operatorname{dim}(D)<\infty$.
(2) There is only a finite number of overrings of D.
(3) $\bar{D}=V$ is a valuation domain.
(4) V is a finitely generated D-module.
(5) $V / M=K$ is a simple extension field of $D / P=k$ with $[K: k]<\infty$.
(6) $V, M \in \mathrm{~F}(D)$.
(7) $\mathrm{F}^{\prime}(D)=\mathrm{F}(D) \cup\{\mathrm{q}(D)\}$.

Proof. (1) follows from (2).
(2) If T is an overring of D, then there is a semistar operation $I \longmapsto I T$ on D.
(3) Let $\left\{V_{\lambda} \mid \lambda \in \Lambda\right\}$ be the set of valuation overrings of D. Then we have $\bar{D}=\cap_{\lambda} V_{\lambda}$.
(4) \bar{D} is a finitely generated overring of D.
(5) There is only a finite number of intermediate fields between k and K.
(6) There are elements $x_{1}, \cdots, x_{n} \in V$ such that $V=\sum_{1}^{n} D x_{i}$ for some positive integer n.
(7) There is $0 \neq d \in D$ such that $d V \subset D$. Let v be a valuation belonging to V. Let $I \in \mathrm{~F}^{\prime}(D)$ so that $v(I)$ is not bounded below. Let $x \in \mathrm{q}(D)$. There is $a \in I$ such that $v(a)<v(x)$. Then $x \in a V \subset(a / d) D \subset(1 / d) I$. Hence $\mathrm{q}(D) \subset(1 / d) I$, and hence $I=\mathrm{q}(D)$.
(2.3) Let D be an i-local domain such that $\bar{D}=V$ is a valuation ring, and let M be the maximal ideal of \bar{D}. Assume that $M^{n} \subset D$ for some positive integer n. Then we have,
(1) $\mathrm{F}^{\prime}(D)=\mathrm{F}(D) \cup\{\mathrm{q}(D)\}$.
(2) Let T be an overring of D. Then either $T \supset V$ or $T \subset V$.
(3) Let $\Sigma_{1}^{\prime}=\left\{* \in \Sigma^{\prime}(D) \mid D^{*} \supset V\right\}$. Then there is a canonical bijection from $\Sigma^{\prime}(V)$ onto Σ_{1}^{\prime}.
(4) Let $\Sigma_{2}^{\prime}=\left\{* \in \Sigma^{\prime}(D) \mid D^{*} \varsubsetneqq V\right\}$. Then $\Sigma^{\prime}(D)=\Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime}$.
(5) Let $\left\{T_{\lambda} \mid \lambda \in \Lambda\right\}$ be the set of overrings T of D with $T \varsubsetneqq V$. Then there is a canonical bijection from the disjoint union $\bigcup_{\lambda} \Sigma\left(T_{\lambda}\right)$ onto Σ_{2}^{\prime}.

Proof. (1) Similar to (2.2)(7).
(2) Assume that $T \not \subset V$, and take an element $x \in T-V$. We may assume that $1 / x \in M^{n}$. Let $a \in V$. Then $a(1 / x) \in P$, hence $a \in x P \subset T$.
(3) The map $* \longmapsto \delta_{D}(*)$ gives a bijection from $\Sigma^{\prime}(V)$ onto Σ_{1}^{\prime}.
(4) follows from (1).
(5) Similar to (3).
(2.4) Let D be an i-local domain. Assume that $\bar{D}=V$ is a valuation ring with maximal ideal M, let \mathcal{K} be a complete representative system of V modulo M, v be a valuation belonging to V with value group Γ, assume that is the rank one convex subgroup of Γ, and $v(\pi)=1 \in \vec{Z}$ for some $\pi \in V$. Let $x \in \mathrm{q}(D)-\{0\}$ with $v(x) \in \vec{Z}$. Let k be a positive integer with $k>v(x)$. Then x can be expressed uniquely as
$x=\alpha_{l} \pi^{l}+\alpha_{l+1} \pi^{l+1}+\cdots+\alpha_{k-1} \pi^{k-1}+a \pi^{k}$, where $l=v(x)$ and each $\alpha_{i} \in \mathcal{K}$ with $\alpha_{l} \not \equiv 0(\bmod M)$ and $a \in V$.

Proof. Since $\frac{x}{\pi^{l}}$ is a unit of V, we have $\frac{x}{\pi^{l}} \equiv \alpha_{l}(\bmod M)$ for a unique $0 \not \equiv \alpha_{l} \in \mathcal{K}$.
(2.5) Proposition Let D be an i-local domain with maximal ideal P, and assume that $\bar{D}=V$ is a valuation ring with maximal ideal M, v be a valuation belonging to V with the value group Γ. Asume that $D \supset M^{3}$. Then,
(1) D is either a PVD or, we may assume that is the rank one convex subgroup of Γ.
(2) If $D / P=V / M$, then D is an APVD.

Proof. (1) follows from (2.1).
(2) Suppose the contrary. Then we may apply (2.4), and we may assume that $\mathcal{K} \subset D$. Since D is not an APVD, we may choose $x \in P-M^{3}$. If $v(x)=1$, then $x^{2} \in P-M^{3}$ and $x^{2} \in M^{2}$. Hence we may assume that $v(x)=2$. We have $x=\alpha \pi^{2}+a \pi^{3}$ for $\alpha \in \mathcal{K}$ and $a \in V$. Since $\alpha \in D-P$, we have $\pi^{2} \in P$, and hence $M^{2} \subset P$. Since D is not an APVD, we may choose $x \in P-M^{2}$. Then $\pi \in P$, and hence $M=P$; a contradiction.

References

[BH] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg. 30 (2002), 15911606.
[FL] M. Fontana and K. Loper, An historical overview of Kronecker function rings, Nafata rings, and related star and semistar operations, Multiplicative ideal theory in commutative algebra, 169-187, Springer, New York, 2006.
[M1] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd ed., 2002, Kaisei, Tokyo.
[M2] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ. 37 (2005), 53-79.
[M3] R. Matsuda, Note on the number of semistar operations, XIII, Advances in Algebra and Analysis 1 (2006), 147-158.
[M4] R. Matsuda, Semistar operations on almost pseudo-valuation domains, J. Commutative Algebra, to appear.

