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Note on the number of semistar operations, XIV

Rytki MATSUDA*

Abstract
We determine conditions for a grading monoid to have only a finite number
of semistar operations.

This is a note on the number of semistar operations, and is a continuation of [M3].
The notions of star operations, semistar operations, and their Kronecker function rings
of integral domains have been well known. We refer to Fontana-Loper([FL]) and its
references for them. Let G be a torsion-free abelian additive group, and let S be an
additively closed subset containing 0 of G. Then S is called a grading monoid (or, a
g-monoid). We refer to [M1] for notions of star operations, semistar operations, and
their Kronecker function rings for g-monoids.

Let () be the set of star operations on S, and let ¥(S) be the set of semistar
operations on S. In §1 of this paper, we are interested in the cardinalities |X(.59)],
and |X/(S)|, especially, in when |X/(S)| < oo ? We will determine conditions for
|%/(S)| < c0. §2 is an another note on |X'(D)| for i-local domains D.

§1 The conditions for |X/(S)| < oo

Let G be the quotient group of S, and let S be the integral closure of S. If S
is a group, we have |¥'(S)| = 1 trivially. Thus, throughout the section, let S be a
g-monoid which is not a group, let M (resp. N) be the maximal ideal of S (resp. 5),
let H (resp. L) be the group of units of S (resp. S). In [M2, Theorem 14] we proved
the following fact: Assume that M = N. Then we have that |X/(S)| < oo if and only
if dim (S) < oo, S is a valuation semigroup, and L/H is a finite group.

In this section, we will prove the following,

Theorem 1 Assume that M # N. Then the following conditions are equivalent.
(1) [Z(S)| < oo )
(2) dim(S) < o0, S is a valuation semigroup, and S — S is a finite set modulo H.

(1.1) (cf. [M2, Proposition 1]) Let V be a valuation semigroup with maximal
ideal N. If N is a principal ideal of V, then |X(V)| = 1, and if N is not a principal
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ideal of V, then |X(V)| = 2.

(1.2) Assume that |¥'(S)] < co. Then there is only a finite number of oversemi-
groups of S.

Proof. Let T be an oversemigroup of S. Then there arises a semistar operation
I—I1+TonsS.

(1.3) Assume that |X/(S)| < co. Then L/H is a finite group.

Proof. If L/H is an infinite group, then there is an infinite number of subgroups
K of L containing H. Set T = K U N. Then T is an oversemigroup of S.

Let A be a subset of G. Then S[A] denotes the oversemigroup of S generated by
A.

(1.4) Assume that |[%'(S)| < co. Then dim(S) < oo, S is a valuation semigroup,
and S — S is a finite set modulo H.

Proof. Suppose that dim(S) = co. Then there is an infinite number of oversemi-
groups of S. Then |X'(S)| = oo by (1.2).

Suppose that S is not a valuation semigroup. Then there is an element z € G — S
such that —z ¢ 5. We have S[2"z] 2 S[2""x] for each positive integer n. Then
|X/(S)] = o0 by (1.2).

Confering (1.3), let aq, -+, be a complete representative system of L modulo
H. Let v be a valuation belongoing to S. By (1.2), we have {S[z] | z € § — S} =
{S[x1], -, S[xm]} for some positive integer m. Let € S — S. Then S[z] = S[x;] for

some i. Hence v(z) = v(x;). Then x — z; = a; + h for some j and h € H.

We have seen that (1) implies (2) in Theorem 1.

Thus, in the rest of the section, we assume that M # N, dim(S) < oo, S is a
valuation semigroup, and S — S is a finite set modulo H. Set S = V, let v be a
valuation belonging to V', and let I' be the value group of v.

(1.5) (1) Let I € F/(S) so that v(I) is not bounded below. Then I = G.

(2) F'(S)=F(S)U{G}.

(3) Each star operation * on S can be extended uniquely to a semistar operation
on S.

(1) [S(9)] < [5/(S)].

(5) L/H is a finite group.

(6) Let I € F(S) so that there does not exist inf v(I). Then we have {z €
G | v(z) > v(a) for some a € I} C I.

Proof. (1) Let z € G. There are x1, 2,23, in I so that v(z) > v(x1) > - -
Then x — x; € N for each ¢, and  — x; # x — x; modulo H for each ¢ < j. It follows
that x — z,, € S for some n, and hence =z € I.
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follows from (1).

follows from (2).

follows from (3).

follows from the fact that V' — S is a finite set modulo H.

(6) Supppose the contrary. There are x ¢ I and ag € I such that v(ag) < v(z).
There are elements aj,az,as, -+ in I so that v(ag) > v(a1) > v(az) > ---. Then
x—a; € V-8 for each i, and © — a; # x —a; modulo H for each i < j; a contradiction.
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Let a1, -+ ,a, be a complete representative system of L modulo H. And let
z1, -+ ,2p be a complete representative system of N — M modulo H. We may assume
that v(z1) < -+ < v(zp).

(1.6) Let T be an oversemigroup of S with T' € F(S), and let x be either a star
operation or a semistar operation on S. Then T™ is an oversemigroup of S.

Proof. Let z,y € T*. Thenz +y e T*+T*C (T*+T*)*=(T+ 1)  =T*.
(1.7) There is min v(N).

Proof. Suppose that 0 < v(s) < v(z1) for some s € S. We have z1 — s = z
modulo H for some i. Then v(z1) = v(z;), and hence v(s) = 0; a contradiction.
Let x € N — M. Then x = z; modulo H for some i. Hence v(z) = v(z;) > v(z1).

We may assume that is the rank 1 convex subgroup of I'. Take an element 7 € N
such that v(7) = 1.

(1.8) Let T be an oversemigroup of S. Then T DV or T C V.

Proof. Assume that T' ¢ V, and take an element g € T'— V. Then —zy € N.
Let x € V. We have x — kaxg € V for each k > 0. If 0 < i < j, then x — ixg #Z x — jxg
modulo H. Therefore x — mxy € S for some m. Then = € S[z¢], and hence V' C T.

(1.9) There is only a finite number of oversemigroups of S.

Proof. It follows from (1.8), dim(V) < oo, and the hypothesis that V — S is a
finite set modulo H.

(1.10) Let dim(S) = 1. Then V¥ =V, that is, V is a divisorial fractional ideal
of S.

Proof. V7 is an oversemigroup of V by (1.6), and we have dim(V) = 1. Suppose
that V¥ £ V. Then V¥ = G. Take an element zp € M. Let 1 < i < b, and
let 0 < j < k. Then z; + jxg # 2z + kxrg modulo H. Hence there is m; so that
zi + mxg € S for each m > my, that is, 2; € (—mxp). Similarly, there is m/ so that
a; € (—maxg) for each m > m/. Let max{m;, m) | 4,j} = mo. Then V C (—muwo) for
each m > my. Since V¥ = N{(z) | () D V}, we have (—maxo) = G for each m > my;



14 R. Matsuda

this is clearly impossible.
(1.11) We have VV =V.

Proof. By (1.10), we may assume that dim(S) > 2. Let @ be a prime ideal of V
with ht(Q) = ht(N)—1, and let P = SNQ, where ht(N) (resp. ht(Q))) means the height
of N (resp. the height of Q). Suppose that V¥ # V. Then V¥ D V. Take an element
xo € M — P. The similar argumnet to the proof of (1.10) shows that (—mx) D Vg
for all sufficiently large m. Since (m+ 1)z ¢ Q, we have —(m+ 1)z € Vo C (—mayo),
and hence —zg € S; a contradiction.

(1.12) Let I € F(S) so that there does not exist inf v(I). Then IV = I.

Proof. Suppose that IV 2 I. Take an element € IV — I. Then v(z) is a lower
bound of v(I) by (1.5)(6). There is a lower bound v(y) of v(I) with v(z) < v(y). Set
I —y=J. Since J C V, we have J* C V by (1.11). We have z —y € I —y = J",
and v(z — y) < 0. Hence JY ¢ V; a contradiction.

(1.13) [2(9)] < oo.

Proof. Let I € F(S) with S C I C V. Then I is generated on S by a subset of
{ai,z; | 1,7}, Therefore the set {I € F(S) | S CI CV} = X is a finite set.

Let x € 3(S) and let I € X. Set I* = g.(I). Then g, is a mapping from X to X
by (1.11), that is, g. € X*. Then g is a mapping from (S5) to X*.

Let *,+" € X(S5),I € F(S), and assume that g, = g.. If there does not exist inf
v(I), then I* = I*" = I by (1.12). If there is inf v(I) = v(z), then min v(I —z) = 0 by
(1.7). Hence S € I—y C V for some y € I. Since g, = g, we have (I—y)* = (I—y)* ,
and hence I* = I*'. We have proved that * = /, and hence g is an injection. It follows
that |2(5)| < co.

(1.14) Let T be an oversemigroup of S with 7' C V. Then |X(T)| < co.

Proof. Let M’ be the maximal ideal of T', and let H' be the group of units of 7'.
We have that T =V, dim(T") = dim(S) < oo, and L/H' is a finite group. If M’ = N,
we have |X'(T')| < oo by [M2, Theorem 14], and hence |X(T)| < oo by (1.5)(4). If
M’ # N, we have |X(T)| < oo by (1.13).

(1.15) Let T be an oversemigroup of S. Then |X(T)| < oco.

Proof. We may assume that T ¢ V by (1.14). Then T' D> V by (1.8). Then
()] < 2 by (L1).

Confering (1.9), let {T1,---,T.} be the set of oversemigroups of S. For each
1<i<c,*€XN(T;) and I € F(S), set (I +T;)* = 1°*) and G = G7™).

(1.16) (1) If i # 4, then X(T;) N 2(T}) = 0.
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(2) There is a canonical mapping o from (J] (T;) to ¥'(S).

Proof. (1) We have F(T;) # F(T}), and 3(T;) (resp. X(Tj)) is a set of mappings
from F(T;) to F(T;) (resp. from F(T}) to F(T})).
(2) We see easily that o(x) satisfies the conditions of a semistar operation on S.

(1.17) The mapping o is a bijection onto X'(S).

Proof. Let x € ¥'(S). Then S* = T, for some T;. There is a star operation
*' : J— J* on T;. Then we have o(%') = %, and hence o is a surjection.

Let x; € X(T;) and %; € X(7}) such that o(%;) = o(*;). Then we have T; =
S§o(xi) — go(+;) — T;.

(1.18) |X'(9)]| < o0.

Proof. Tt follows from (1.15), (1.16), and (1.17).
The proof of Theorem 1 is complete.

82 An another note

In [M4], we determined conditions for |¥/(D)| < oo for any APVD (or, an almost
pseudo-valuation domain) D, and in §1, we determined conditions for |X'(S)| < oo
for any g-monoid S. Every g-monoid that is not a group has a unique maximal ideal,
and every APVD D has the property that D and its integral closure D has a unique
maximal ideal. We refer to [BH] for APVD’s. Thus it is natural to consider the class
of domains D such that D has a unique maximal ideal. We call such a domain an
i-local domain. In §2, we will study |X/(D)| for i-local domains D.

(2.1) Let D be an i-local domain. Assume that D is a valuation domain with
maximal ideal M, v be a valuation belonging to D, and M™ C D for some positive
integer n. Then either D is a PVD (or, a pseudo-valuation domain), or there is min
v(M).

Proof. Suppose the contrary. Let 0 # © € M. There are elements z1, -+ ,x, € M
T x Ty

such that v(z) > v(z1) > --- > v(z,) > 0. Then x = ——... %=Ly e M™ C D.
1 T2 In

Hence D is a PVD; a contradiction.

Let D be a valuation domain with maximal ideal M, let v be a valuation belonging
to D, and let T be the balue group of v. If there is min v(M), then we may assume
that is the rank one convex subgroup of ', and min v(M) =1 € Z cT.

For, the rank one convex subgroup of I' is isomorphic with the ordered group .
Therefore I is order isomorphic with an ordered group I'’ the rank one convex subgroup
of which is .
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(2.2) Let D be an i-local domain with maximal ideal P, let M be the maximal
ideal of D, and assume that |¥/(D)| < co. Then we have,
) dim(D) < oo.
) There is only a finite number of overrings of D.
) D =V is a valuation domain.
) V is a finitely generated D-module.
) V/M = K is a simple extension field of D/P = k with [K : k] < oo
) V,M € F(D).
) F/(D) = F(D) U {a(D)}.

Proof. (1) follows from (2).

(1
(
(
(
(
(
(

(2) If T is an overring of D, then there is a semistar operation I — IT on D.

(3) Let {Vi\ | A € A} be the set of valuation overrings of D. Then we have
D= NV

(4) D is a finitely generated overring of D.

(5) There is only a finite number of intermediate fields between k and K.

(6) There are elements x1,- -+ , 2, € V such that V' ="} Dz; for some positive
integer n.

(7) There is 0 # d € D such that dV C D. Let v be a valuation belonging to V.
Let I € F/(D) so that v(I) is not bounded below. Let x € q(D). There is a € I such
that v(a) < v(x). Then x € aV C (a/d)D C (1/d)I. Hence q(D) C (1/d)I, and hence
I =q(D).

(2.3) Let D be an i-local domain such that D = V is a valuation ring, and let M
be the maximal ideal of D. Assume that M™ C D for some positive integer n. Then
we have,

(1) F'(D) = F(D) U{a(D)}.

(2) Let T be an overring of D. Then either T DV or T C V.

(3) Let X} = {* € ¥/(D) | D* D V}. Then there is a canonical bijection from
¥'(V') onto 3.

(4) Let ¥4 = {x € ¥/(D) | D* G V}. Then ¥/(D) = ¥} U X5,

(5) Let {Tx | A € A} be the set of overrings T of D with T S V. Then there is a
canonical bijection from the disjoint union (J, ¥(7) onto 3.

Proof. (1) Similar to (2.2)(7).

(2) Assume that T' ¢ V, and take an element x € T — V. We may assume that
1/x € M™. Let a € V. Then a(1/z) € P, hence a € zP C T.

(3) The map * — dp(x) gives a bijection from ¥'(V') onto .

(4) follows from (1).

(5) Similar to (3).

(2.4) Let D be an i-local domain. Assume that D = V is a valuation ring with
maximal ideal M, let L be a complete representative system of V modulo M, v be
a valuation belonging to V' with value group I', assume that is the rank one convex
subgroup of I', and v(7) = 1 € Z for some 7 € V. Let = € q(D) — {0} with v(z) € Z.
Let k be a positive integer with k& > v(z). Then z can be expressed uniquely as



Note on the number of semistar operations, XIV 17

r=aqr + ot o+ ap 7T + an®, where | = v(z) and each o; € K with
o Z£0 (mod M) and a € V.

Proof. Since El is a unit of V, we have il = «; (mod M) for a unique 0 # «; € K.
0 0

(2.5) Proposition Let D be an i-local domain with maximal ideal P, and assume
that D = V is a valuation ring with maximal ideal M, v be a valuation belonging to
V with the value group I'. Asume that D D M3. Then,

(1) D is either a PVD or, we may assume that is the rank one convex subgroup
of T.

(2) If D/P =V/M, then D is an APVD.

Proof. (1) follows from (2.1).

(2) Suppose the contrary. Then we may apply (2.4), and we may assume that
K c D. Since D is not an APVD, we may choose z € P — M3. 1If v(z) = 1,
then 22 € P — M? and 2*> € M?. Hence we may assume that v(z) = 2. We have
x = an?+and for a € K and a € V. Since o € D — P, we have 72 € P, and hence
M? c P. Since D is not an APVD, we may choose x € P — M?. Then 7 € P, and
hence M = P; a contradiction.
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