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Note on the number of semistar operations, XIV

Ryûki Matsuda∗

Abstract

We determine conditions for a grading monoid to have only a finite number
of semistar operations.

This is a note on the number of semistar operations, and is a continuation of [M3].
The notions of star operations, semistar operations, and their Kronecker function rings
of integral domains have been well known. We refer to Fontana-Loper([FL]) and its
references for them. Let G be a torsion-free abelian additive group, and let S be an
additively closed subset containing 0 of G. Then S is called a grading monoid (or, a
g-monoid). We refer to [M1] for notions of star operations, semistar operations, and
their Kronecker function rings for g-monoids.

Let Σ(S) be the set of star operations on S, and let Σ′(S) be the set of semistar
operations on S. In §1 of this paper, we are interested in the cardinalities |Σ(S)|,
and |Σ′(S)|, especially, in when |Σ′(S)| < ∞ ? We will determine conditions for
|Σ′(S)| < ∞. §2 is an another note on |Σ′(D)| for i-local domains D.

§1 The conditions for |Σ′(S)| < ∞

Let G be the quotient group of S, and let S̄ be the integral closure of S. If S
is a group, we have |Σ′(S)| = 1 trivially. Thus, throughout the section, let S be a
g-monoid which is not a group, let M (resp. N) be the maximal ideal of S (resp. S̄),
let H (resp. L) be the group of units of S (resp. S̄). In [M2, Theorem 14] we proved
the following fact: Assume that M = N . Then we have that |Σ′(S)| < ∞ if and only
if dim (S) < ∞, S̄ is a valuation semigroup, and L/H is a finite group.

In this section, we will prove the following,

Theorem 1 Assume that M 6= N . Then the following conditions are equivalent.
(1) |Σ′(S)| < ∞.
(2) dim(S) < ∞, S̄ is a valuation semigroup, and S̄ − S is a finite set modulo H.

(1.1) (cf. [M2, Proposition 1]) Let V be a valuation semigroup with maximal
ideal N . If N is a principal ideal of V , then |Σ(V )| = 1, and if N is not a principal
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ideal of V , then |Σ(V )| = 2.

(1.2) Assume that |Σ′(S)| < ∞. Then there is only a finite number of oversemi-
groups of S.

Proof. Let T be an oversemigroup of S. Then there arises a semistar operation
I 7−→ I + T on S.

(1.3) Assume that |Σ′(S)| < ∞. Then L/H is a finite group.

Proof. If L/H is an infinite group, then there is an infinite number of subgroups
K of L containing H. Set T = K ∪ N . Then T is an oversemigroup of S.

Let A be a subset of G. Then S[A] denotes the oversemigroup of S generated by
A.

(1.4) Assume that |Σ′(S)| < ∞. Then dim(S) < ∞, S̄ is a valuation semigroup,
and S̄ − S is a finite set modulo H.

Proof. Suppose that dim(S) = ∞. Then there is an infinite number of oversemi-
groups of S. Then |Σ′(S)| = ∞ by (1.2).

Suppose that S̄ is not a valuation semigroup. Then there is an element x ∈ G− S̄
such that −x 6∈ S̄. We have S[2nx] % S[2n+1x] for each positive integer n. Then
|Σ′(S)| = ∞ by (1.2).

Confering (1.3), let α1, · · · , αk be a complete representative system of L modulo
H. Let v be a valuation belongoing to S̄. By (1.2), we have {S[x] | x ∈ S̄ − S} =
{S[x1], · · · , S[xm]} for some positive integer m. Let x ∈ S̄ − S. Then S[x] = S[xi] for
some i. Hence v(x) = v(xi). Then x − xi = αj + h for some j and h ∈ H.

We have seen that (1) implies (2) in Theorem 1.
Thus, in the rest of the section, we assume that M 6= N , dim(S) < ∞, S̄ is a

valuation semigroup, and S̄ − S is a finite set modulo H. Set S̄ = V , let v be a
valuation belonging to V , and let Γ be the value group of v.

(1.5) (1) Let I ∈ F′(S) so that v(I) is not bounded below. Then I = G.
(2) F′(S) = F(S) ∪ {G}.
(3) Each star operation ∗ on S can be extended uniquely to a semistar operation

on S.
(4) |Σ(S)| ≤ |Σ′(S)|.
(5) L/H is a finite group.
(6) Let I ∈ F(S) so that there does not exist inf v(I). Then we have {x ∈

G | v(x) ≥ v(a) for some a ∈ I} ⊂ I.

Proof. (1) Let x ∈ G. There are x1, x2, x3, · · · in I so that v(x) > v(x1) > · · · .
Then x − xi ∈ N for each i, and x − xi 6≡ x − xj modulo H for each i < j. It follows
that x − xn ∈ S for some n, and hence x ∈ I.
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(2) follows from (1).
(3) follows from (2).
(4) follows from (3).
(5) follows from the fact that V − S is a finite set modulo H.
(6) Supppose the contrary. There are x 6∈ I and a0 ∈ I such that v(a0) ≤ v(x).

There are elements a1, a2, a3, · · · in I so that v(a0) > v(a1) > v(a2) > · · · . Then
x−ai ∈ V −S for each i, and x−ai 6≡ x−aj modulo H for each i < j; a contradiction.

Let α1, · · · , αa be a complete representative system of L modulo H. And let
z1, · · · , zb be a complete representative system of N −M modulo H. We may assume
that v(z1) ≤ · · · ≤ v(zb).

(1.6) Let T be an oversemigroup of S with T ∈ F(S), and let ∗ be either a star
operation or a semistar operation on S. Then T ∗ is an oversemigroup of S.

Proof. Let x, y ∈ T ∗. Then x + y ∈ T ∗ + T ∗ ⊂ (T ∗ + T ∗)∗ = (T + T )∗ = T ∗.

(1.7) There is min v(N).

Proof. Suppose that 0 < v(s) < v(z1) for some s ∈ S. We have z1 − s ≡ zi

modulo H for some i. Then v(z1) = v(zi), and hence v(s) = 0; a contradiction.
Let x ∈ N − M . Then x ≡ zi modulo H for some i. Hence v(x) = v(zi) ≥ v(z1).

We may assume that is the rank 1 convex subgroup of Γ. Take an element π ∈ N
such that v(π) = 1.

(1.8) Let T be an oversemigroup of S. Then T ⊃ V or T ⊂ V .

Proof. Assume that T 6⊂ V , and take an element x0 ∈ T − V . Then −x0 ∈ N .
Let x ∈ V . We have x − kx0 ∈ V for each k ≥ 0. If 0 < i < j, then x − ix0 6≡ x − jx0

modulo H. Therefore x − mx0 ∈ S for some m. Then x ∈ S[x0], and hence V ⊂ T .

(1.9) There is only a finite number of oversemigroups of S.

Proof. It follows from (1.8), dim(V ) < ∞, and the hypothesis that V − S is a
finite set modulo H.

(1.10) Let dim(S) = 1. Then V v = V , that is, V is a divisorial fractional ideal
of S.

Proof. V v is an oversemigroup of V by (1.6), and we have dim(V ) = 1. Suppose
that V v 6= V . Then V v = G. Take an element x0 ∈ M . Let 1 ≤ i ≤ b, and
let 0 < j < k. Then zi + jx0 6≡ zi + kx0 modulo H. Hence there is mi so that
zi + mx0 ∈ S for each m ≥ mi, that is, zi ∈ (−mx0). Similarly, there is m′

j so that
αj ∈ (−mx0) for each m ≥ m′

j . Let max{mi,m
′
j | i, j} = m0. Then V ⊂ (−mx0) for

each m ≥ m0. Since V v = ∩{(x) | (x) ⊃ V }, we have (−mx0) = G for each m ≥ m0;
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this is clearly impossible.

(1.11) We have V v = V .

Proof. By (1.10), we may assume that dim(S) ≥ 2. Let Q be a prime ideal of V
with ht(Q) = ht(N)−1, and let P = S∩Q, where ht(N) (resp. ht(Q)) means the height
of N (resp. the height of Q). Suppose that V v 6= V . Then V v ⊃ VQ. Take an element
x0 ∈ M − P . The similar argumnet to the proof of (1.10) shows that (−mx0) ⊃ VQ

for all sufficiently large m. Since (m+1)x0 6∈ Q, we have −(m+1)x0 ∈ VQ ⊂ (−mx0),
and hence −x0 ∈ S; a contradiction.

(1.12) Let I ∈ F(S) so that there does not exist inf v(I). Then Iv = I.

Proof. Suppose that Iv % I. Take an element x ∈ Iv − I. Then v(x) is a lower
bound of v(I) by (1.5)(6). There is a lower bound v(y) of v(I) with v(x) < v(y). Set
I − y = J . Since J ⊂ V , we have Jv ⊂ V by (1.11). We have x − y ∈ Iv − y = Jv,
and v(x − y) < 0. Hence Jv 6⊂ V ; a contradiction.

(1.13) |Σ(S)| < ∞.

Proof. Let I ∈ F(S) with S ⊂ I ⊂ V . Then I is generated on S by a subset of
{αi, zj | i, j}. Therefore the set {I ∈ F(S) | S ⊂ I ⊂ V } = X is a finite set.

Let ∗ ∈ Σ(S) and let I ∈ X. Set I∗ = g∗(I). Then g∗ is a mapping from X to X
by (1.11), that is, g∗ ∈ XX . Then g is a mapping from Σ(S) to XX .

Let ∗, ∗′ ∈ Σ(S), I ∈ F(S), and assume that g∗ = g∗′ . If there does not exist inf
v(I), then I∗ = I∗

′
= I by (1.12). If there is inf v(I) = v(x), then min v(I −x) = 0 by

(1.7). Hence S ⊂ I−y ⊂ V for some y ∈ I. Since g∗ = g∗′ , we have (I−y)∗ = (I−y)∗
′
,

and hence I∗ = I∗
′
. We have proved that ∗ = ∗′, and hence g is an injection. It follows

that |Σ(S)| < ∞.

(1.14) Let T be an oversemigroup of S with T ⊂ V . Then |Σ(T )| < ∞.

Proof. Let M ′ be the maximal ideal of T , and let H ′ be the group of units of T .
We have that T̄ = V , dim(T ) = dim(S) < ∞, and L/H ′ is a finite group. If M ′ = N ,
we have |Σ′(T )| < ∞ by [M2, Theorem 14], and hence |Σ(T )| < ∞ by (1.5)(4). If
M ′ 6= N , we have |Σ(T )| < ∞ by (1.13).

(1.15) Let T be an oversemigroup of S. Then |Σ(T )| < ∞.

Proof. We may assume that T 6⊂ V by (1.14). Then T ⊃ V by (1.8). Then
|Σ(T )| ≤ 2 by (1.1).

Confering (1.9), let {T1, · · · , Tc} be the set of oversemigroups of S. For each
1 ≤ i ≤ c, ∗ ∈ Σ(Ti) and I ∈ F(S), set (I + Ti)∗ = Iσ(∗) and G = Gσ(∗).

(1.16) (1) If i 6= j, then Σ(Ti) ∩ Σ(Tj) = ∅.
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(2) There is a canonical mapping σ from
∪c

1 Σ(Ti) to Σ′(S).

Proof. (1) We have F(Ti) 6= F(Tj), and Σ(Ti) (resp. Σ(Tj)) is a set of mappings
from F(Ti) to F(Ti) (resp. from F(Tj) to F(Tj)).

(2) We see easily that σ(∗) satisfies the conditions of a semistar operation on S.

(1.17) The mapping σ is a bijection onto Σ′(S).

Proof. Let ∗ ∈ Σ′(S). Then S∗ = Ti for some Ti. There is a star operation
∗′ : J 7−→ J∗ on Ti. Then we have σ(∗′) = ∗, and hence σ is a surjection.

Let ∗i ∈ Σ(Ti) and ∗j ∈ Σ(Tj) such that σ(∗i) = σ(∗j). Then we have Ti =
Sσ(∗i) = Sσ(∗j) = Tj .

(1.18) |Σ′(S)| < ∞.

Proof. It follows from (1.15), (1.16), and (1.17).

The proof of Theorem 1 is complete.

§2 An another note

In [M4], we determined conditions for |Σ′(D)| < ∞ for any APVD (or, an almost
pseudo-valuation domain) D, and in §1, we determined conditions for |Σ′(S)| < ∞
for any g-monoid S. Every g-monoid that is not a group has a unique maximal ideal,
and every APVD D has the property that D and its integral closure D̄ has a unique
maximal ideal. We refer to [BH] for APVD’s. Thus it is natural to consider the class
of domains D such that D̄ has a unique maximal ideal. We call such a domain an
i-local domain. In §2, we will study |Σ′(D)| for i-local domains D.

(2.1) Let D be an i-local domain. Assume that D̄ is a valuation domain with
maximal ideal M , v be a valuation belonging to D̄, and Mn ⊂ D for some positive
integer n. Then either D is a PVD (or, a pseudo-valuation domain), or there is min
v(M).

Proof. Suppose the contrary. Let 0 6= x ∈ M . There are elements x1, · · · , xn ∈ M

such that v(x) > v(x1) > · · · > v(xn) > 0. Then x =
x

x1

x1

x2
· · · xn−1

xn
xn ∈ Mn ⊂ D.

Hence D is a PVD; a contradiction.

Let D be a valuation domain with maximal ideal M , let v be a valuation belonging
to D, and let Γ be the balue group of v. If there is min v(M), then we may assume
that is the rank one convex subgroup of Γ, and min v(M) = 1 ∈ ~Z ⊂ Γ.

For, the rank one convex subgroup of Γ is isomorphic with the ordered group .
Therefore Γ is order isomorphic with an ordered group Γ′ the rank one convex subgroup
of which is .
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(2.2) Let D be an i-local domain with maximal ideal P , let M be the maximal
ideal of D̄, and assume that |Σ′(D)| < ∞. Then we have,

(1) dim(D) < ∞.
(2) There is only a finite number of overrings of D.
(3) D̄ = V is a valuation domain.
(4) V is a finitely generated D-module.
(5) V/M = K is a simple extension field of D/P = k with [K : k] < ∞.
(6) V,M ∈ F(D).
(7) F′(D) = F(D) ∪ {q(D)}.

Proof. (1) follows from (2).
(2) If T is an overring of D, then there is a semistar operation I 7−→ IT on D.
(3) Let {Vλ | λ ∈ Λ} be the set of valuation overrings of D. Then we have

D̄ = ∩λVλ.
(4) D̄ is a finitely generated overring of D.
(5) There is only a finite number of intermediate fields between k and K.
(6) There are elements x1, · · · , xn ∈ V such that V =

∑n
1 Dxi for some positive

integer n.
(7) There is 0 6= d ∈ D such that dV ⊂ D. Let v be a valuation belonging to V .

Let I ∈ F′(D) so that v(I) is not bounded below. Let x ∈ q(D). There is a ∈ I such
that v(a) < v(x). Then x ∈ aV ⊂ (a/d)D ⊂ (1/d)I. Hence q(D) ⊂ (1/d)I, and hence
I = q(D).

(2.3) Let D be an i-local domain such that D̄ = V is a valuation ring, and let M
be the maximal ideal of D̄. Assume that Mn ⊂ D for some positive integer n. Then
we have,

(1) F′(D) = F(D) ∪ {q(D)}.
(2) Let T be an overring of D. Then either T ⊃ V or T ⊂ V .
(3) Let Σ′

1 = {∗ ∈ Σ′(D) | D∗ ⊃ V }. Then there is a canonical bijection from
Σ′(V ) onto Σ′

1.
(4) Let Σ′

2 = {∗ ∈ Σ′(D) | D∗ $ V }. Then Σ′(D) = Σ′
1 ∪ Σ′

2.
(5) Let {Tλ | λ ∈ Λ} be the set of overrings T of D with T $ V . Then there is a

canonical bijection from the disjoint union
∪

λ Σ(Tλ) onto Σ′
2.

Proof. (1) Similar to (2.2)(7).
(2) Assume that T 6⊂ V , and take an element x ∈ T − V . We may assume that

1/x ∈ Mn. Let a ∈ V . Then a(1/x) ∈ P , hence a ∈ xP ⊂ T .
(3) The map ∗ 7−→ δD(∗) gives a bijection from Σ′(V ) onto Σ′

1.
(4) follows from (1).
(5) Similar to (3).

(2.4) Let D be an i-local domain. Assume that D̄ = V is a valuation ring with
maximal ideal M , let K be a complete representative system of V modulo M , v be
a valuation belonging to V with value group Γ, assume that is the rank one convex
subgroup of Γ, and v(π) = 1 ∈ ~Z for some π ∈ V . Let x ∈ q(D) − {0} with v(x) ∈ ~Z.
Let k be a positive integer with k > v(x). Then x can be expressed uniquely as
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x = αlπ
l + αl+1π

l+1 + · · · + αk−1π
k−1 + aπk, where l = v(x) and each αi ∈ K with

αl 6≡ 0 (mod M) and a ∈ V .

Proof. Since
x

πl
is a unit of V , we have

x

πl
≡ αl (mod M) for a unique 0 6≡ αl ∈ K.

(2.5) Proposition Let D be an i-local domain with maximal ideal P , and assume
that D̄ = V is a valuation ring with maximal ideal M , v be a valuation belonging to
V with the value group Γ. Asume that D ⊃ M3. Then,

(1) D is either a PVD or, we may assume that is the rank one convex subgroup
of Γ.

(2) If D/P = V/M , then D is an APVD.

Proof. (1) follows from (2.1).
(2) Suppose the contrary. Then we may apply (2.4), and we may assume that

K ⊂ D. Since D is not an APVD, we may choose x ∈ P − M3. If v(x) = 1,
then x2 ∈ P − M3 and x2 ∈ M2. Hence we may assume that v(x) = 2. We have
x = απ2 + aπ3 for α ∈ K and a ∈ V . Since α ∈ D − P , we have π2 ∈ P , and hence
M2 ⊂ P . Since D is not an APVD, we may choose x ∈ P − M2. Then π ∈ P , and
hence M = P ; a contradiction.
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