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On generalized divisorial semistar operations
on integral domains

Akira Okabe∗

1. INTRODUCTION

Throughout this paper the letter D denotes an integral domain with quotient field
K. We shall denote the set of all nonzero D-submodules of K by K(D) and we shall
call each element of K(D) a Kaplansky fractional ideal (for short, K-fractional ideal )
of D as in [O3]. Let F(D) be the set of all nonzero fractional ideals of D, that is, all
elements E ∈ K(D) such that there exists a nonzero element d ∈ D with dE ⊆ D.
The set of finitely generated K-fractional ideals of D is denoted by f(D). It is evident
that f(D) ⊆ F(D) ⊆ K(D). An ideal of D means an integral ideal of D and the set of
all nonzero integral ideals of D is denoted by I(D).

If D is a quasi-local domain with maximal ideal M , then we say that (D,M) is
a quasi-local domain. In [HHP], a nonzero ideal I of D is called an m-canonical ideal
of D if I : (I : J) = J for each nonzero ideal J of D. In [HHP, Proposition 6.2] it
was shown that if (D,M) is an integrally closed qausi-local domain, then M is an
m-canonical ideal of D if and only if D is a valuation domain. In [BHLP, Proposition
4.1], it was proved that the integrally closed hypothesis in the above result can be
eliminated, that is, if (D,M) is a quasi-local domain, then D is a valuation domain if
and only if M is an m-canonical ideal of D. Recently, in [B2, Corollary 2.15], it was
proved that if a quasi-local integral domain (D,M) admits a proper m-canonical ideal
I of D, then the following statements are equivalent:

(1) D is a valuation domain.
(2) I is a divided m-canonical ideal of D.
(3) cM = I for some nonzero element c ∈ D.
(4) I : M is a principal ideal of D.
(5) I : M is an invertible ideal of D.
(6) D is an integrally closed domain and I : M is a finitely generated ideal of D.
(7) M : M = D and I : M is a finitely generated ideal of D.
(8) If J = I : M , then J is a finitely generated ideal of D and J : J = D.
Let I be a nonzero ideal of D such that I : I = D. Then in [HHP, Proposition

3.2], it was proved that the map J 7−→ I : (I : J) of F(D) into F(D) is a star operation
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on D. Hence if we denote this star operation by v(I), then I is an m-canonical ideal of
D if and only if v(I) is equal to the identity star operation d on D. As easily seen, the
star operation v(D) is equal to the divisorial star operation v on D. A star operation
v(I) on D is called an I-divisorial star operation on D. We shall call a star operation
v(I) on D a generalized divisorial star operation (for short, g-divisorial star operation)
on D.

In [P1], Picozza extended the definition of a generalized divisorial star operation to
the semistar operation case. In fact, for each A ∈ K(D), if we set Ev(A) = A : (A : E)
for each E ∈ K(D), then the map E 7−→ Ev(A) is a semistar operation on D. In [P2,
Remark 4.3], it was shown that each semistar operation on a valuation domain V is of
the form v(I) for some ideal I of V . In this paper, we shall call a semistar operation
v(A) with A ∈ K(D) a generalized divisorial semistar operation (for short, g-divisorial
semistar operation) on D.

The purpose of this paper is to continue the investigation of generalized divisorial
semistar operations and to give a new characterization of a valuation domain and a
new characterization of a strongly discrete valuation domain. In Section 2, we collect
some fundamental results on semistar operations. In Section 3, we study generalized
divisorial semistar operations. In Section 4, we introduce the notion of an ideal-
divisorial semistar domain and give a characterization of a valuation domain using this
terminology and we also introduce the notion of a prime-divisorial semistar domain and
give a characterization of a strongly discrete valuation domain using this terminology.
Moreover we introduce the notion of an almost valuation semistar domain and show
that if D is a quasi-local domain, then D is an almost valuation semistar domain if
and only if D is a valuation domain.

Throughout this paper, we denote the set of prime ideals (resp. maximal ideals)
of D by Spec(D) (resp. Max(D)) and denote the cardinality of a set X by | X |. An
integral domain which lies between D and K is called an overring of D and an overring
R of D is called a proper overring of D if R 6= D and R 6= K. We denote the set of all
overrings of D by O(D). The symbol ⊂ always means proper inclusion.

2. BACKGROUND ON SEMISTAR OPERATIONS

In [OM], we introduced the notion of a semistar operation on D as a generalization
of a star operation.

A map E 7−→ E∗ of K(D) into K(D) is called a semistar operation on D if the
following conditions hold for all a ∈ K − {0} and E,F ∈ K(D):

(S1) (aE)∗ = aE∗;
(S2) If E ⊆ F , then E∗ ⊆ F ∗; and
(S3) E ⊆ E∗ and (E∗)∗ = E∗.
We denote the set of all semistar operations on D by SS(D). For any overring R

of D, we denote the set {∗ ∈ SS(D) | D∗ = R} by SS(D,R).
Here we recall that a map E 7−→ E? of F(D) into F(D) is called a star operation

on D, if the following conditions hold for all a ∈ K − {0} and E,F ∈ F(D):
(S0) (aD)? = aD;
(S1) (aE)? = aE?;
(S2) If E ⊆ F , then E? ⊆ F ?; and
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(S3) E ⊆ E? and (E?)? = E?.
If we set Ed = E for all E ∈ F(D) then d is a star operation on D and is called

the identity operation (or simply the d-operation). Next, for each E ∈ F(D), we set
E−1 = D : E = {x ∈ K | xE ⊆ D} and Ev = (E−1)−1 for each E ∈ F(D), then v
is a star operation on D and is called the v-operation. We shall denote the set of star
operations on D by S(D).

Proposition 1. Let ∗ be a semistar operation on D and let E,F ∈ K(D). Then
(1) (EF )∗ = (E∗F )∗ = (EF ∗)∗ = (E∗F ∗)∗;
(2) (E + F )∗ = (E∗ + F )∗ = (E + F ∗)∗ = (E∗ + F ∗)∗;
(3) (E : F )∗ ⊆ E∗ : F ∗ = (E∗ : F ) = (E∗ : F )∗;
(4) (E ∩ F )∗ ⊆ E∗ ∩ F ∗ = (E∗ ∩ F ∗)∗, if E ∩ F 6= (0).
(5) Let {Eα} be a family of K-fractional ideals of D. Then
(a) (

∑
α Eα)∗ = (

∑
α E∗

α)∗;
(b)

∩
α E∗

α = (
∩

α E∗
α)∗, if

∩
α E∗

α 6= {0}.

Example 2. (1) If we set Ed̄ = E for each E ∈ K(D), then the map E 7→ Ed̄

is a semistar operation on D and is called the identity semistar operation (or simply
the d̄-operation) on D. If we set Eē = K for all E ∈ K(D), then the map E 7−→ E ē

is a semistar operation on D and is called the trivial semistar operation (or simply the
ē-operation) on D.

(2) For each E ∈ K(D), we set E−1 = {x ∈ K | xE ⊆ D} and Ev̄ = (E−1)−1 =
D : (D : E). Then the map E 7−→ Ev̄ is a semistar operation on D and is called the
divisorial semistar operation (or simply the v̄-operation) on D. If E ∈ K(D) \ F(D),
then E−1 = (0) and so Ev̄ = K.

(3) A semistar operation ∗ on D is said to be of finite type (or of finite character) if
E∗ =

∪
{F ∗ | F ⊆ E and F ∈ f(D)}. For each ∗ ∈ SS(D) and each E ∈ K(D), we set

E∗f =
∪
{F ∗ | F ⊆ E and F ∈ f(D)}. Then the map E 7→ E∗f is a semistar operation

of finite type on D and is called the semistar operation of finite type associated to ∗.
It is easy to see that ∗ is of finite type if and only if ∗ = ∗f . The semistar operation
v̄f associated to v̄ is denoted by t̄ and is called the t̄-operation. It is easily seen that
E∗ = E∗f for all E ∈ f(D). We shall denote the set of all semistar operations of finite
type on D by SSf (D).

(4) Let R be an overring of D. If we set E∗(R) = ER for each E ∈ K(D), then the
map E 7→ E∗(R) is a semistar operation of finite type on D and is called the semistar
operation defined by an overring R.

(5) Let B be the set of all valuation overrings of D. If we set E b̄ =
∩
{EVα | Vα ∈

B} for each E ∈ K(D), then the map E 7−→ E b̄ of K(D) into K(D) is a semistar
operation on D and is called the b̄-operation on D. By definition, Db̄ =

∩
{Vα | Vα ∈

B} = D̄, the integral closure of D. Now let W be a set of valuation overrings of D. If
we set Ew̄ =

∩
{EVα | Vα ∈ W} for each E ∈ K(D), then the map E 7−→ Ew̄ of K(D)

into K(D) is a semistar operation on D and is called the w̄-operation on D.

Proposition 3 ([OM, Proposition 17]). Let ? be a star operation on D. Then,
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for each E ∈ K(D), we set:

E?e

=
{

E?, for E ∈ F(D)
K, for E ∈ K(D)\F(D)

Then the map E 7−→ E?e

is a semistar operation on D. This semistar operation
?e is called the trivial semistar extension of a star operation ?.

Here we denote the trivial semistar extension de of the d-operation on D by f̄ .
For each overring R of D, we denote the d-operation on R by dR and denote the trivial
semistar extension (dR)e of dR by f̄R. It is easily seen that the map v̄ is the trivial
semistar extension of v.

Proposition 4 ([OM, Proposition 17 and Corollary 18]). For each star operation
? on D, we set χ(?) = ?e. Then

(1) χ is an injective map of S(D) into SS(D).
(2) | S(D) | ≤ | SS(D) |.

In [O3], a semistar operation ∗ is said to be weak if D∗ = D and is said to be
strong if D∗ 6= D. We denote the set of weak semistar operations on D by WS(D).
Evidently ?e is a weak semistar operation for all star operations ?.

As in [DF], an integral domain D is called a conducive domain if (D : R) = {x ∈
K | xR ⊆ D} 6= (0) for each overring R of D other than K. It is evident that each
overring of a conducive domain is also conducive (see [DF, Lemma 2.0 (i)]).

Now let us recall that we can define a partial order ≤ on SS(D) in the following
way:

∗1 ≤ ∗2 ⇐⇒ E∗1 ⊆ E∗2 for each E ∈ K(D).

For ∗1, ∗2 ∈ SS(D), it is easily seen that ∗1 ≤ ∗2 if and only if (E∗1)∗2 = E∗2 for
all E ∈ K(D) (see [OM, p.6]). It is also easy to see that d̄ ≤ f̄ ≤ v̄ always holds.

Proposition 5 (cf. [O4, Proposition 7] and [MI, Proposition 2.1]). Let D be an
integral domain with quotient field K. Then the following statements are equivalent:

(1) D is a conducive domain;
(2) Every E ∈ K(D) such that D ⊆ E 6= K is a fractional ideal of D;
(3) Every E ∈ K(D) such that E 6= K is a fractional ideal of D, i.e., K(D) =

F(D)
∪
{K};

(4) Every valuation overring V 6= K of D is a fractional ideal of D;
(5) Some valuation overring V of D is a fractional ideal of D;
(6) Ev̄ 6= K for each E ∈ K(D) such that E 6= K;
(7) For each overring T ⊂ K of D and for each ∗ ∈ SS(D) \ {ē}, T ∗ ⊂ K;
(8) For each valuation overring V ⊂ K of D and for each ∗ ∈ SS(D)\{ē}, V ∗ ⊂ K;
(9) There is a valuation overring V ⊂ K of D such that V ∗ ⊂ K for each ∗ ∈

SS(D) \ {ē};
(10) d̄ = f̄ holds.



On generalized divisorial semistar operations on integral domains 5

Proposition 6 ([OM, Lemma 45]). Let R be an overring of D. Then
(1) For each ∗ ∈ SS(R), if we define EδD(∗) = (ER)∗ for all E ∈ K(D), then

δD(∗) ∈ SS(D).
(2) If we define δR/D : SS(R) → SS(D) by δR/D(∗) = δD(∗), then δR/D is an

injective map and therefore | SS(R) |≤| SS(D) |.
(3) For each ∗ ∈ SS(D), if we define EαR(∗) = E∗ for all E ∈ K(R)(⊆ K(D)),

then αR(∗) ∈ SS(R).
(4) If we define αR/D : SS(D) → SS(R) by αR/D(∗) = αR(∗), then αR/D ◦ δR/D

is the identity map of SS(R).

The map δR/D (resp. αR/D ) is called the descent map (resp. the ascent map ).

3. GENERALIZED DIVISORIAL SEMISTAR OPERATIONS

Lemma 7. Let D be an integral domain and let A ∈ K(D). If we set Ev(A) = A :
(A : E) for each E ∈ K(D), then A : Ev(A) = (A : E)v(A) = A : E for each E ∈ K(D).

Proof. By definition, A : Ev(A) ⊆ A : E ⊆ (A : E)v(A) = A : (A : (A : E)) = A :
Ev(A), and therefore the equality holds. ¤

Proposition 8 (cf. [HHP, Proposition 3.2]). Let D be an integral domain and
let A ∈ K(D). Then the map E 7→ Ev(A) of K(D) into K(D) is a semistar operation
on D.

Proof. For each x ∈ K \ {0} and each E ∈ K(D), we have (xE)v(A) = A : (A :
xE) = A : (x−1(A : E)) = x(A : (A : E)) = xEv(A) and therefore the condition (S1)
is satisfied. If E ⊆ F with E,F ∈ K(D), then evidently Ev(A) ⊆ F v(A) and so the
condition (S2) holds. Lastly, E ⊆ Ev(A) is clear for each E ∈ K(D) and furthermore
(Ev(A))v(A) = Ev(A) follows from Lemma 7 and thus the condition (S3) folds for each
E ∈ K(D). ¤

For each A ∈ K(D), we call a semistar operation v(A) defined in Proposition 8 a
generalized divisorial semistar operation (for short, a g-divisorial semistar operation)
on D. In particular, if I is a nonzero integral ideal of D, then v(I) is called an I-
divisorial semistar operation on D and if P is a nonzero prime ideal of D, then v(P ) is
called a P-divisorial semistar operation on D. For each nonzero integral ideal I, v(I) is
generally called an ideal-divisorial semistar operation on D and for each nonzero prime
ideal P, v(P ) is generally called a prime-divisorial semistar operation on D.

Proposition 9. Let D be an integral domain. Then the following statements
hold:

(1) v(A) is a weak semistar opeation on D if and only if A : A = D.
(2) If D is completely integrally closed and A is a fractional ideal of D, then v(A)

is a weak semistar operation on D.
(3) If D is integrally closed and A is a finitely generated fractional ideal of D,

then v(A) is a weak semistar operation on D.
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(4) The semistar operation v(D) is equal to the v̄-operation on D.
(5) Let I be a nonzero integral ideal of D. Then Ev(I) = K for all E ∈ K(D) \

F(D).
(6) If I is an invertible fractional ideal of D, then v(I) = v̄.
(7) For each ∗ ∈ SS(D), v(D∗) is equal to the v(∗)-semistar operation on D in

[O3].

Proof. (1) By definition, Dv(A) = A : A and so our assertion is evident.
(2) and (3) immediately follow from (1), since in each case A : A = D holds.
(4) is evident from definitions of v(D) and the v̄-operation.
(5) follows from the fact that A : E = (0) for each E ∈ K(D) \ F(D).
(6) is an immediate consequence of [HHP, Lemma 2.1].
(7) follows from [O3, Definition 45]. ¤

An integral domain D is called an ideal-divisorial semistar domain (or simply
IDSD) (resp. a prime-divisorial semistar domain (or simply PDSD)) if each non-
trivial semistar operation on D is of the form v(I) for some nonzero ideal I of D (resp.
of the form v(P ) for some nonzero prime ideal P of D). In [P2, Remark 4.3], it was
proved that each valuation domain is an ideal-divisorial semistar domain. Now note
that the trivial semistar operation ē can be considered as a special prime-divisorial
semistar operation on D of the form v((0)).

In [D1], a prime ideal P of D is said to be divided if P = PDP , or equivalently, P
is comparable to every principal ideal of D. An integral domain D is called a divided
domain if every prime ideal of D is divided. For other characterizations of a divided
domain, see [O2, Theorem 2.2]. In [B2], a proper integral ideal I of D is also said to be
divided if I ⊂ (c) for every c ∈ D \ I. An integral domain D is called a strongly divided
domain if every proper integral ideal of D is divided. It follows from [O2, Theorem
2.2] that if D is a divided domain, then every radical ideal of D is divided in the sense
of [B2]. It is easy to see that every valuation domain is a strongly divided domain.

Lemma 10. Let D be a divided domain. Then ∗(DP ) ≤ v(P ) for each P ∈
Spec(D).

Proof. Let P be a prime ideal of D. Then E∗(DP ) = EDP for each E ∈ K(D). If
t ∈ P : E, then tE ⊆ P and so tE∗(DP ) = tEDP ⊆ PDP = P . Hence E∗(DP ) ⊆ P :
(P : E) = Ev(P ) for each E ∈ K(D) which implies that ∗(DP ) ≤ v(P ). ¤

A prime ideal P of D is called strongly prime if x, y ∈ K and xy ∈ P imply that
x ∈ P or y ∈ P . An integral domain D is called a pseudo-valuation domain (for short,
PVD) if every prime ideal of D is strongly prime. It was shown in [HH1, Proposition
1.1] that every valuation domain is a PVD.

In [DF, Proposition 2.1], it was proved that every PVD is a conducive domain.
Hence it follows that every valuation domain is a conducive domain.

In [HHP], the notion of an m-canonical ideal (a multiplicative canonical ideal) was
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introduced. A nonzero ideal I of D is called an m-canonical ideal of D if Jv(I) = J
for each nonzero ideal J of D. As easily seen, if I is an m-canonical ideal of D, then
I : I = Dv(I) = D.

Lemma 11. Let D be a conducive domain and let I be a nonzero ideal of D.
Then I is an m-canonical ideal if and only if v(I) = d̄.

Proof. Since D is a conducive domain, I is an m-canonical ideal if and only if
v(I) |F(D), the restriction of v(I) to F(D), is equal to the d-operation on D if and only
if v(I) = d̄. ¤

Remark 12. Let D be an integral domain which is not necessarily conducive and
let I be a nonzero ideal of D. If v(I) = d̄, then I is necessarily an m-canonical ideal
of D.

Proposition 13 ([P2, Remark 4.3]). Let V be a valuation domain. Then v(P ) =
∗(VP ) for each P ∈ Spec(V ).

Proof. Let M be the maximal ideal of V . Then, by [BHLP, Proposition 4.1], M
is an m-canonical ideal of V . Then, by Lemma 11, v(M) = d̄ = ∗(V ) = ∗(VM ), since a
valuation domain V is a conducive domain.

Next, let P be a non-maximal prime ideal of V . Then VP is a valuation domain
with maximal ideal PVP = P . Hence it follows from Lemma 11 that v(P ) = v(PVP ) =
d̄VP = ∗(VP ). ¤

Proposition 14. Let T be an overring of D with T ∈ F(D). If we set v̄(T ) =
δT/D(v̄T ), then v̄(T ) = v(I) for some ideal I of D, where v̄T is the v̄-operation on T .

Proof. Since T ∈ F(D), dT = I ⊆ D for some 0 6= d ∈ D. Then, for each
E ∈ K(D), Ev̄(T ) = (ET )v̄T = T : (T : ET ) = T : (T : E) = (d−1I : (d−1I : E)) =
d−1I : (d−1(I : E)) = dd−1(I : (I : E)) = Ev(I) and hence v̄(T ) = v(I). ¤

We recall that an integral domain D is called an h-local domain if each nonzero
prime ideal of D is contained in a unique maximal ideal of D and each nonzero ideal
of D is contained in only finitely many maximal ideals of D [MA, p.11].

In [O2], a proper overring of D of the form I : I (resp. P : P ) for an ideal I
(resp. a prime ideal P ) of D is called a conductor overring (resp. prime conductor
overring) of D and we also say that an integral domain D has the PC-property (resp.
the PPC-property) if each proper overring of D is a conductor overring (resp. a prime
conductor overring) of D. Any valuation domain has the PPC-property [O1, Theorem
1].

Proposition 15. Let D be an ideal-divisorial semistar domain. Then
(1) D has an m-canonical ideal of D and therefore D is an h-local domain;
(2) D has the PC-property.
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Proof. (1) By hypothesis, d̄ = v(I) for some nonzero ideal I of D and then I is
an m-canonical ideal of D. Hence D is an h-local domain by [HHP, Proposition 2.4].

(2) Let R be a proper overring of D. Then ∗(R) = v(I) for some nonzero ideal
I of D and then R = DR = D∗(R) = Dv(I) = I : (I : D) = I : I. Hence D has the
PC-property. ¤

Proposition 16. If D is a prime-divisorial semistar domain, then D is an h-local
domain and D has the PPC-property.

Proof. The proof is the same as that of Proposition 15. ¤

An integral domain D is called a divisorial domain if each nonzero ideal I of D is
divisorial, i.e., I = Iv. Hence D is a divisorial domain if and only if d = v. An integral
domain D is said to be totally divisorial if each overring of D is divisorial. Note that
D is a divisorial domain if and only if f̄ = v̄, as f̄ = de and v̄ = ve.

Proposition 17 ([HHP, Proposition 3.6]). The following statements are equiva-
lent:

(1) D is a divisorial domain;
(2) D has a principal m-canonical ideal;
(3) D has an invertible m-canonical ideal;
(4) D has a divisorial m-canonical ideal.

Proposition 18 ([MI, Proposition 2.2]). Let D be an integral domain. Then
v̄ = d̄ if and only if D is a conducive divisorial domain.

Proposition 19. Let D be a conducive integral domain. Then the following
statements are equivalent:

(1) D is a totally divisorial domain.
(2) ∗(T ) = v̄(T ) for each overring T of D.

Proof. (1) =⇒ (2) Let T be an overring of D and assume that T is a divisorial
domain. Then, since T is a conducive divisorial domain, d̄T = v̄T by Proposition 18
and then ∗(T ) = δT/D(d̄T ) = δT/D(v̄T ) = v̄(T ).

(1) ⇐= (2) Let T be an overring of D and assume that ∗(T ) = v̄(T ). Then
d̄T = αT/D(δT/D(d̄T )) = αT/D(∗(T )) = αT/D(v̄(T )) = αT/D(δT/D(v̄T )) = v̄T and
hence T is a divisorial domain. Thus D is a totally divisorial domain. ¤

4. CHARACTERIZATIONS OF VALUATION DOMAINS

We recall that a valuation domain V is discrete if each branched prime ideal of
V is not idempotent [G, p.192] and a valuation domain V is strongly discrete if each
nonzero prime ideal of V is not idempotent[FHP, p.145]. It easily follows from these
definitions that each strongly discrete valuation domain is a discrete valuation domain.

Proposition 20. Every strongly discrete valuation domain is a prime-divisorial
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semistar domain.

Proof. This follows from [P2, Proposition 4.2 and Remark 4.3]. ¤

Lemma 21. Let P and Q be prime ideals of an integral domain D such that
DP = Q : Q. Then Q ⊆ P and P : P ⊆ Q : Q = DP ⊆ DQ.

Proof. If DP = Q : Q, then P (Q : Q) = PDP is the maximal ideal of Q : Q and
therefore Q ⊆ P (Q : Q) = PDP . Then Q ⊆ PDP

∩
D = P and then, by [O1, Lemma

9 (1)], P : P ⊆ Q : Q = DP ⊆ DQ. ¤

Lemma 22. Let P and Q be prime ideals of a divided domain D. If DP = Q : Q,
then P = Q and so DP = P : P .

Proof. By Lemma 21, Q ⊆ P and Q : Q ⊆ DQ. But, since D is a divided domain,
by [O2, Theorem 2.2], DQ ⊆ Q : Q. Hence we get DQ = Q : Q = DP and therefore
P = Q. Thus DP = P : P as wanted. ¤

Let D be an integral domain. Then D is called an almost valuation semistar
domain (or simply AVSD), if v(P ) = ∗(DP ) for all P ∈ Spec(D). By Proposition 13,
each valuation domain is an AVSD.

Lemma 23. Each almost valuation semistar domain is a divided domain.

Proof. For each P ∈ Spec(D), DP = D∗(DP ) = Dv(P ) = P : P and hence D is a
divided domain by [O2, Theorem 2.2]. ¤

Proposition 24. Let (D,M) be a quasi-local domain. Then D is an AVSD if
and only if D is a valuation domain.

Proof. (=⇒) By hypothesis, v(M) = ∗(DM ) = ∗(D) = d̄ and so, by Remark 12,
M is an m-canonical ideal of D. Hence, by [BHLP, Proposition 4.1], D is a valuation
domain.

(⇐=) This follows from Proposition 13. ¤

In this paper, a semistar operation ∗ is said to be of extension type if ∗ = ∗(R)

for some overring R of D, or equivalently, ∗ = ∗(D∗), and a domain D is an extension
semistar domain if each semistar operation on D is of extension type. We denote the
set of all semistar operations of extension type on D by SSe(D).

Proposition 25. Let D be an integral domain. Then the following statements
are equivalent:

(1) D is an extension semistar domain.
(2) D is a conducive and totally divisorial domain.
(3) v̄R = d̄R for each overring R ⊂ K of D.
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Proof. (1) =⇒ (2) This follows from [O6, Proposition 51 and Corollaries 61 and
62].

(2) =⇒ (1) This follows from [P2, Proposition 4.9 (ii) ⇒ (i)].
(2) ⇐⇒ (3) This follows from [DF, Lemma 2.0 (i)] and Proposition 18. ¤

Corollary 26. If D is an extension semistar domain, then D is an ideal-divisorial
semistar domain.

Proof. By Proposition 25, D is a conducive domain and so every overring T of D
is a fractional ideal of D. Since D is also totally divisorial by Proposition 25, for each
overring T of D, we have ∗(T ) = v̄(T ) = v(I) for some ideal I of D by Propositions 14
and 19. Hence D is an ideal-divisorial semistar domain. ¤

Proposition 27. Assume that D is an extension semistar domain. Then the
following statements hold:

(1) Every proper overring of D is also an extension semistar domain.
(2) | SS(D) |=| SSf (D) |=| O(D) |.
(3) D is integrally closed if and only if D is a Prüfer domain.

Proof. (1) follows from [O6, Proposition 51], (2) follows from [O6, Proposition 54
(4)] and (3) follows from [O6, Corollary 63]. ¤

Proposition 28. Each ideal-divisorial semistar domain is a conducive domain.

Proof. Let D be an ideal-divisorial semistar domain and let T be an overring
of D such taht T 6= K. Then ∗(T ) = v(I) for some nonzero ideal I of D and then
T = D∗(T ) = Dv(I) = I : I. Hence I is an ideal of T and so IT ⊆ I ⊆ D. Therefore
D : T 6= (0), since I ⊆ D : T . ¤

Proposition 29 (cf. [HHP, Lemma 3.1]). Let A and E be K-fractional ideals of
D. Then Ev(A) = A : (A : E) =

∩
{Au | u ∈ K and E ⊆ Au}.

Proof. Let x ∈ Ev(A) = A : (A : E) and E ⊆ Au. Then, since u−1 ∈ A : E, we
get xu−1 ∈ A , that is, x ∈ Au. Hence Ev(A) ⊆

∩
{Au | u ∈ K and E ⊆ Au}.

Conversely let x ∈
∩
{Au | u ∈ K and E ⊆ Au}. If t ∈ A : E, then E ⊆ At−1

and therefore x ∈ At−1. i.e., xt ∈ A. Thus we get x ∈ A : (A : E) = Ev(A). Hence∩
{Au | u ∈ K and E ⊆ Au} ⊆ Ev(A) also holds. ¤

Proposition 30 (cf. [MI, Corollary 3.4]). Let D be an integral domain. Then
the following statements are equivalent:

(1) D is a Prüfer domain.
(2) D is integrally closed and SSf (D) = SSe(D).

Proof. (1) =⇒ (2) Each Prüfer domain is integrally closed and SSf (D) = SSe(D)
follows from [P2, Lemma 4.4].

(1) ⇐= (2) If we take ∗ = t̄, then, by hypothesis, t̄ = ∗(Dt̄) = ∗(D) = d̄. Hence D
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is a Prüfer domain by [G, Proposition 34.12]. ¤

Proposition 31 ([P2, Proposition 4.2]). Let P be a prime ideal of a valuation
domain V .

(1) If P 6= P 2, then SS(V, VP ) = {∗(VP )}.
(2) If P = P 2, then SS(V, VP ) = {∗(VP ), v̄(VP )}, where v̄(VP ) = δVP /V (v̄VP ).
(3) SS(V ) = {∗(VP ) | P ∈ Spec(V )}

∪
{v̄(VQ) | Q ∈ Spec(V ) and Q = Q2}

Proposition 32 ([B2, Corollary 2.5]). Let (D,M) be a quasi-local domain. Then
D is a valuation domain if and only if D admits a divided proper m-canonical ideal.

Theorem 33. Let (D,M) be a quasi-local domain. Then the following conditions
sre equivalent:

(1) D is a valuation domain.
(2) D is a strongly divided domain and an ideal-divisorial semistar domain.

Proof. (1) =⇒ (2) First, it is easily seen that every proper ideal of a valuation
domain is divided and so every valuation domain is strongly divided. Next, it follows
from Propositions 13, 14 and 31 that every valuation domain is an ideal-divisorial
semistar domain, since a valuation domain is conducive.

(2) =⇒ (1) Assume that D is an ideal-divisorial semistar domain and a strongly
divided domain. First, since D is an ideal-divisorial semistar domain, d̄ = v(I) for
some proper ideal I of D. Then I is a proper m-canonical ideal of D by Remark
12. Next, since D is a strongly divided domain, I is also a divided ideal of D. Thus
D admits a divided proper m-canonical ideal I and so D is a valuation domain by
Proposition 32. ¤

Proposition 34 ([BHLP, Proposition 4.1]). Let (D,M) be a quasi-local domain.
Then M is an m-canonical ideal if and only if D is a valuation domain.

Lemma 35. Let (D,M) be a quasi-local domain. If D is a prime-divisorial
semistar domain, then D is a valuation domain.

Proof. If D is a prime-divisorial semistar domain, then d̄ = v(P ) for some prime
ideal P of D. Then P is an m-canonical ideal of D by Remark 12 and then P is a
maximal ideal of D by [HHP, Lemma 2.2 (i)] and so P = M . Hence M is an m-
canonical ideal of D and therefore D is a valuation domain by Proposition 34. ¤

Theorem 36. Let D be an integral domain. Then the following statements are
equivalent.

(1) D is a divided prime-divisorial semistar domain.
(2) D is a strongly discrete valuation domain.

Proof. (1) =⇒ (2) Let D be a divided prime-divisorial semistar domain and let
P be a prime ideal of D. Then, by hypothesis, ∗(DP ) = v(Q) for some Q ∈ Spec(D).
Then DP = Q : Q and therefore P = Q by Lemma 22. Thus ∗(DP ) = v(P ) for all
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P ∈ Spec(D). Hence D is a quasi-local almost valuation semistar domain and then D is
a valuation domain by Proposition 24. Next we shall show that D is strongly discrete.
By hypothesis, v̄(DP ) = v(Q) for some Q ∈ Spec(D). Then DP = (DP )v̄DP =
DδDP /D(v̄DP

) = Dv̄(DP ) = Dv(Q) = Q : Q and so P = Q by Lemma 22. Hence
v̄(DP ) = v(P ) = ∗(DP ) for all P ∈ Spec(D). Then it follows from Proposition 31 that
every prime ideal P of D is not idempotent and therefore D is strongly discrete.

(1) ⇐= (2) It is well-known that every valuation domain is a divided domain.
Next, by Proposition 20, every strongly discrete valuation domain is a prime-divisorial
semistar domain. ¤

Remark 37. The fact that each divided prime-divisorial semistar domain is a
valuation domain also follows from Lemma 35, since each divided domain is evidently
quasi-local.
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