Note on localizing systems and Kronecker function rings of semistar operations

Ryûki Matsuda*

Abstract

We study the results of M. Fontana and J. Huckaba [FHu] on localizing systems and semistar operations, and give a couple of remarks for them. After M. Fontana and K.A. Loper [FL3], we study also Nagata rings, Kronecker function rings, and related semistar operations on semigroups.

This paper consists of $\S 1$ and $\S 2$. M. Fontana and J. Huckaba [FHu] established a natural bridge between localizing systems and semistar operations. In $\S 1$ of this paper, we will study their results, and will give a couple of remarks for them. §1 consists of 4-Parts. Part 1 contains preliminary results, and will review a part of [FHu]. Part 2 concerns with relations between finite type localizing systems and finite type semistar operations. We will give an answer to the problem ([FHu]): Characterize a localizing system \mathcal{F} of D such that $\star_{\left(\mathcal{F}_{f}\right)}=\left(\star_{\mathcal{F}}\right)_{f}$. In fact, we treat this problem for all localizing systems, and not for particular ones. Part 3 concerns with \star-invertible ideals for semistar operations \star. We will study a pseudo-valuation domain D, a quasispectral semistar operation \star, and \star-invertible ideals of D, and we will show that, if I is a \star-invertible ideal of D, then I need not be $\bar{\star}$-invertible. The proof of $[\mathrm{FHu}$, Proposition 4.25] seems incomplete. We hear that such an ideal was also given in [FP]. Part 4 concerns with semistar operations which are spectral, quasi-spectral, qqspectral, and fqq-spectral. We will give a condition for a semistar operation to be spectral. The proof of [FHu, Proposition 4.8] seems incomplete.
M. Fontana and K.A. Loper [FL3] investigated Nagata rings, Kronecker function rings, and related semistar operations. A subsemigroup $\ni 0$ of a torsion-free abelian additive group is said a grading monoid (or, a g-monoid). In $\S 2$ of this paper, after [FL3], we will study Nagata rings, Kronecker function rings, and related semistar operations on g-monoids, and will show that almost all statements in [FL3] hold for g -monoids. Since the structure of a g -monoid is simpler than that of a domain, it is expected that the semigroup versions of [FL3] are only straightforward translations from rings to semigroups. However, if or not the semigroup version §2, (1.6) of [FL3, Lemma 2.6] is valid is open. In Appendix, we will give a direct proof for the fact that,

[^0]for any integral domain D and for any semistar operation on D, the Kronecker function ring which was defined by M. Fontana, F. Halter-Koch and K.A. Loper ([FL1], [Ha]) is well-defined. Besides, we will show a similar result to [FL2, Theorem 3.5] for our Kronecker function ring $\operatorname{Kr}(D, \star, S)$.

§1 Localizing systems and semistar operations

First, we will review a part of $[\mathrm{FHu}]$. The quotient field of an integral domain D is denoted by $\mathrm{q}(D)$. Let D be an integral domain with $K=\mathrm{q}(D)$. Let $\overline{\mathrm{F}}(D)$ be the set of non-zero D-submodules of K, let $\mathrm{F}(D)$ be the set of non-zero fractional ideals of D, and let $\mathrm{f}(D)$ be the set of non-zero finitely generated D-submodules of K. For every $E, F \in \overline{\mathrm{~F}}(D)$, we define $(E: F)=\{x \in K \mid x F \subset E\}$ and $E^{-1}=(D: E)$.

If we set $E^{d}=E$ (resp., $E^{e}=K$) for every $E \in \overline{\mathrm{~F}}(D)$, then the mapping $E \longmapsto E^{d}$ (resp., $E \longmapsto E^{e}$) is a semistar operation, and is called the d-semistar operation (resp., the e-semistar operation) on D. If we set $E^{v}=\left(E^{-1}\right)^{-1}$ for every $E \in \overline{\mathrm{~F}}(D)$, the mapping $E \longmapsto E^{v}$ is a semistar operation on D, and is called the v semistar operation on D. Let T be an overring of D, and let \star be a semistar operation on D. Then there is induced a canonical semistar operation $\alpha(\star)$ on T, and is called the ascent of \star to T.

We say that a semistar operation \star is stable if $(E \cap F)^{\star}=E^{\star} \cap F^{\star}$ for every $E, F \in \overline{\mathrm{~F}}(D)$.

A semistar operation \star on D is said of finite type if, for every $E \in \overline{\mathrm{~F}}(D), E^{\star}=$ $\cup\left\{F^{\star} \mid F \in \mathrm{f}(D)\right.$ with $\left.F \subset E\right\}$.

For every semistar operation \star on D, a semistar operation \star_{f} of finite type can be defined in the following way: For every $E \in \overline{\mathrm{~F}}(D), E^{\star} f=\cup\left\{F^{\star} \mid F \in \mathrm{f}(D)\right.$ with $F \subset E\}$.

We set $v_{f}=t$. Let \star_{1}, \star_{2} be semistar operations on D. If $E^{\star_{1}} \subset E^{\star_{2}}$ for every $E \in \overline{\mathrm{~F}}(D)$, we set $\star_{1} \leq \star_{2}$.

Let Δ be a non-empty subset of $\operatorname{Spec}(D)-\{(0)\}$. For every $E \in \overline{\mathrm{~F}}(D)$, define $E^{\star \Delta}=\cap\left\{E D_{P} \mid P \in \Delta\right\}$. Then the mapping $E \longmapsto E^{\star \Delta}$ is a semistar operation on D. A semistar operation \star on D is said spectral, if there is a non-empty subset $\Delta \subset$ $\operatorname{Spec}(D)-\{(0)\}$ such that $\star=\star_{\Delta}$.

A semistar operation \star on D is said quasi-spectral, if for every non-zero ideal I of D such that $I^{\star} \not \supset 1$, there is a non-zero prime ideal P with $I \subset P$ such that $P^{\star} \cap D=P$.

We note that a localizing system \mathcal{F} of D is non-empty and $\mathcal{F} \nexists(0)$ by definition.
If \star is a semistar operation on D, we consider the following localizing system $\mathcal{F}^{\star}=\left\{I \mid I\right.$ is an ideal of D with $\left.I^{\star} \ni 1\right\}$.

If $\star=e$, then $\mathcal{F}^{\star}=\{I \mid I$ is a non-zero ideal of $D\}$.
Let \star be a semistar operation on D, and let $\Pi^{\star}=\left\{P \in \operatorname{Spec}(D)-\{(0)\} \mid P^{\star} \not \supset 1\right\}$. If the set Π^{\star} is non-empty, we consider the semistar operation $\star_{s p}=\star_{\Pi^{\star}}$.

If \mathcal{F} is a localizing system of D, we consider the semistar operation $\star_{\mathcal{F}}$: For every $E \in \overline{\mathrm{~F}}(D), E^{\star \mathcal{F}}=\cup\{(E: I) \mid I \in \mathcal{F}\}$.

If $\mathcal{F}=\{I \mid I$ is a non-zero ideal of $D\}$, then $\star_{\mathcal{F}}=e$.
Let Δ be a non-empty subset of $\operatorname{Spec}(D)-\{(0)\}$. Set $\mathcal{F}(\Delta)=\{I \mid I$ is an ideal of D with $I \not \subset P$ for each $P \in \Delta\}$. Then $\mathcal{F}(\Delta)$ is a localizing system of D. A localizing system \mathcal{F} is said spectral, if there is a non-empty subset $\Delta \subset \operatorname{Spec}(D)-\{(0)\}$ such
that $\mathcal{F}=\mathcal{F}(\Delta)$.
A localizing system \mathcal{F} is said finitely spectral if, for every finitely generated ideal $I \notin \mathcal{F}$, there is a prime ideal $P \notin \mathcal{F}$ such that $P \supset I$.

If a localizing system \mathcal{F} is spectral, then \mathcal{F} is finitely spectral.
A localizing system \mathcal{F} of D is said of finite type if, for every $I \in \mathcal{F}$, there is a non-zero finitely generated ideal $J \in \mathcal{F}$ with $J \subset I$.

Given a localizing system \mathcal{F} of D, we consider the following localizing system of finite type \mathcal{F}_{f} :
$\mathcal{F}_{f}=\{I \in \mathcal{F} \mid$ There is a non-zero finitely generated ideal $J \in \mathcal{F}$ with $J \subset I\}$.
If \star is a semistar operation on D, we consider the semistar operations $\bar{\star}=\star_{\mathcal{F}} \star$ and $\left.\tilde{\star}=\star_{(\mathcal{F} \star}\right)_{f}$. We have
$E^{\bar{\star}}=\cup\left\{(E: I) \mid I\right.$ is a non-zero ideal of D with $\left.I^{\star} \ni 1\right\}$ for every $E \in \overline{\mathrm{~F}}(D)$
and
$E^{\tilde{\star}}=\cup\left\{(E: I) \mid I\right.$ is a finitely generated non-zero ideal of D with $\left.I^{\star} \ni 1\right\}$ for every $E \in \overline{\mathrm{~F}}(D)$.

The following $(0.1) \sim(0.3)$ are results in $[\mathrm{FHu}]$.
(0.1) Let \star be a semistar operation on D, and let \mathcal{F} be a localizing system of D.
(1) $\mathcal{F}^{\star}=\mathcal{F}^{\star}$.
(2) $\mathcal{F}^{\star_{f}}=\left(\mathcal{F}^{\star}\right)_{f}$.
(3) $\succsim \leq \star$.
(4) $\tilde{\star} \leq \star_{f}$.
(5) If \star is of finite type, then \star is quasi-spectral.
(6) If \star is spectral, then $\star=\star$.
(7) If \star is of finite type, then $\bar{\star}$ is of finite type.
(8) \star is stable if and only if $\star=\bar{\star}$.
(9) \star is spectral if and only if \star is quasi-spectral and stable.
(10) $\overline{\star_{f}}=\tilde{\star}$.
(11) $\mathcal{F}=\mathcal{F}^{\star \mathcal{F}}$.
(12) If \mathcal{F} is of finite type, then $\star_{\mathcal{F}}$ is of finite type.
(13) If \star is of finite type, then \mathcal{F}^{\star} is of finite type.
(14) $\star_{\mathcal{F}}$ is stable.
(15) If \star is spectral, then \mathcal{F}^{\star} is spectral.
(16) If \mathcal{F} is spectral, then $\star_{\mathcal{F}}$ is spectral.
(0.2) (1) Let Δ be a non-empty subset of $\operatorname{Spec}(D)-\{(0)\}$. Then $\star_{\Delta}=\star_{\mathcal{F}}(\Delta)$ and $\mathcal{F}^{\star \Delta}=\mathcal{F}(\Delta)$.
(2) Let \star_{1}, \star_{2} be semistar operations on D such that $\star_{1} \leq \star_{2}$. Then $\overline{\star_{1}} \leq \overline{\star_{2}}$.
(0.3) Assume that $\Pi^{\star} \neq \emptyset$.
(1) $\bar{\star} \leq \star_{s p}$.
(2) If \star is spectral, then $\mathcal{F}^{\star}=\mathcal{F}\left(\Pi^{\star}\right)$ and $\bar{\star}=\star_{s p}$.
(3) If \star is quasi-spectral, then $\star_{s p}=\bar{\star}$.
(4) \star is spectral if and only if $\star=\star_{s p}$.

Now, we will study the following,
(1.1) $([\mathrm{FHu}])$ Characterize a localizing system \mathcal{F} such that $\star_{\mathcal{F}_{f}}=\left(\star_{\mathcal{F}}\right)_{f}$.
(1.2) Let \mathcal{F} be a localizing system of D.
(1) For every element $E \in \overline{\mathrm{~F}}(D)$, we have
$E^{\star \mathcal{F}}=\cup\{(E: I) \mid I \in \mathcal{F}\}$.
(2) For every element $E \in \mathrm{f}(D)$, we have
$E^{(* \mathcal{F})_{f}}=\cup\{(E: I) \mid I \in \mathcal{F}\}$
and
$E^{\star\left(\mathcal{F}_{f}\right)}=\cup\{(E: I) \mid I$ is a finitely generated ideal of D with $I \in \mathcal{F}\}$.
Proof. $E^{\star\left(\mathcal{F}_{f}\right)}=\cup\left\{(E: J) \mid J \in \mathcal{F}_{f}\right\}$
$=\cup\{(E: J) \mid$ There is a finitely generated ideal $I \in \mathcal{F}$ with $I \subset J\}$
$=\cup\{(E: I) \mid I$ is a finitely generated ideal with $I \in \mathcal{F}\}$.
(1.3) ([FHu, Example 3.5]) There is a domain D and a localizing system \mathcal{F} of D such that $\star_{\mathcal{F}_{f}} \neq\left(\star_{\mathcal{F}}\right)_{f}$.
(1.4) $\left(\left[\mathrm{FHu}\right.\right.$, Proposition 3.3]) For every localizing system \mathcal{F}, we have $\star \mathcal{F}_{f} \leq$ $\left(\star_{\mathcal{F}}\right)_{f}$.
(1.5) $([\mathrm{M} 2$, Lemma 7$])$ Let \mathcal{F} be a localizing system of D, and let $\star=\star_{\mathcal{F}}$.
(1) $\left(\mathcal{F}^{\star}\right)_{f}=\mathcal{F}^{\star_{f}}$.
(2) $\star_{\mathcal{F}_{f}}=\overline{\star_{f}}$.
(3) $\left(\star_{\mathcal{F}}\right)_{f}=(\bar{\star})_{f}$
(1.6) ([M2, Proposition 2]) Let \mathcal{F} be a localizing system of D, and let $\star=\star_{\mathcal{F}}$. The following conditions are equivalent.
(1) $\star_{\mathcal{F}_{f}}=\left(\star_{\mathcal{F}}\right)_{f}$.
(2) $\overline{\star_{f}}=(\bar{\star})_{f}$.
(3) For every element $E \in \mathrm{f}(D)$, we have
$\cup\left\{(E: I) \mid I\right.$ is a finitely generated ideal of D with $\left.I^{\star} \ni 1\right\}$
$=\cup\left\{(E: I) \mid I\right.$ is an ideal of D with $\left.I^{\star} \ni 1\right\}$.
(1.7) Let \mathcal{F} be a localizing system of D, and let $\star=\star_{\mathcal{F}}$.
(1) $\star_{f}=e$ if and only if $\mathcal{F}=\{I \mid I$ is a non-zero ideal of $D\}$.
(2) If $\star_{f}=e$, then $\star_{\mathcal{F}_{f}}=\left(\star_{\mathcal{F}}\right)_{f}$.
(3) If $\star_{f} \neq e$, then $\Pi^{\left(\star_{\mathcal{F}}\right)_{f}} \neq \emptyset$, hence $\left(\left(\star_{\mathcal{F}}\right)_{f}\right)_{s p}$ is well-defined.

Proof. (1) For, $\mathcal{F}=\mathcal{F}^{\star}$ by (0.1)(11).
(2) Then $\mathcal{F}=\{I \mid I$ is a non-zero ideal of $D\}$ by (1). Hence $\mathcal{F}_{f}=\mathcal{F}$ and $\star_{\mathcal{F}}=e$.
(3) There is an ideal $I \notin \mathcal{F}$ by (1). Hence the set $\{I \mid I$ is an ideal with $\left.I^{\star_{f}} \not \nexists 1\right\}=X$ is non-empty. By Zorn's Lemma, X has a maximal member P. Then P is a prime ideal of D, and $P \in \Pi^{\star}$.
(1.8) Assume that $\Pi^{\star} \neq \emptyset$. Then we have $\left(\star_{f}\right)_{s p}=\overline{\star_{f}} \leq \star_{f}$ and $\left(\left(\star_{f}\right)_{s p}\right)_{f}=$
$\left(\star_{f}\right)_{s p}$.
Proof. \star_{f} is quasi-spectral by $(0.1)(5)$. Then $\left(\star_{f}\right)_{s p}=\overline{\star_{f}}$ by $(0.3)(3)$, and $\left(\star_{f}\right)_{s p}$ is of finite type by $(0.1)(7)$.

By (1.7), if $\mathcal{F}=\{I \mid I$ is a non-zero ideal of $D\}$, then we have $\star_{\mathcal{F}_{f}}=\left(\star_{\mathcal{F}}\right)_{f}$ trivially. And, if otherwise, $\left(\left(\star_{\mathcal{F}}\right)_{f}\right)_{s p}$ is well-defined.
(1.9) Proposition Let \mathcal{F} be a localizing system of D with $\mathcal{F} \varsubsetneqq\{I \mid I$ is a non-zero ideal of $D\}$, and let $\star=\star_{\mathcal{F}}$. The following conditions are equivalent.
(1) $\star_{\mathcal{F}_{f}}=\left(\star_{\mathcal{F}}\right)_{f}$.
(2) $\overline{\star_{f}}=(\bar{\star})_{f}$.
(3) For every element $E \in \mathrm{f}(D)$ and for every ideal I with $I^{\star} \ni 1$, we have
$(E: I) \subset \cup\left\{(E: J) \mid J\right.$ is a finitely generated ideal with $\left.J^{\star} \ni 1\right\}$.
(4) For every ideal $J \in \mathrm{f}(D)$ and for every ideal I with $I^{\star} \ni 1$, we have
$(J: I) \subset \cup\left\{(J: E) \mid E\right.$ is a finitely generated ideal with $\left.E^{\star} \ni 1\right\}$.
(5) For every element $E \in \mathrm{f}(D)$ and for every ideal I with $I^{\star} \ni 1$ such that $I \subset E$, we have $J \subset E$ for some finitely generated ideal J with $J^{\star} \ni 1$.
(6) \star_{f} is stable.
(7) \star_{f} is spectral.
(8) $\left(\star_{f}\right)_{s p}=\star_{f}$.
(9) For every element $E \in \mathrm{f}(D)$ and for every ideal $I \in \mathcal{F}$, we have
$(E: I) \subset \cup\{(E: J) \mid J$ is a finitely generated ideal with $J \in \mathcal{F}\}$.
(10) For every ideal $J \in \mathrm{f}(D)$ and for every ideal $I \in \mathcal{F}$, we have
$(J: I) \subset \cup\{(J: E) \mid E$ is a finitely generated ideal with $E \in \mathcal{F}\}$.
(11) For every element $E \in \mathrm{f}(D)$ and for every ideal $I \in \mathcal{F}$ such that $I \subset E$, we have $J \subset E$ for some finitely generated ideal $J \in \mathcal{F}$.
(12) For every element $E \in \mathrm{f}(D)$ with $E^{\star} \ni 1$, there is a finitely generated ideal I with $I^{\star} \ni 1$ such that $I \subset E$.

Proof. (1), (2),(3) are equivalent by (1.6).
$(4) \Longrightarrow(3)$: Let $x \in(E: I)$. There is an element $d \in D-\{0\}$ such that $d E \subset D$. Since $d x \in(d E: I)$, there is a finitely generated ideal J with $J^{\star} \ni 1$ such that $d x \in(d E: J)$. Then we have $x \in(E: J)$.
$(3) \Longrightarrow(4)$: Trivial.
$(5) \Longrightarrow(3)$: Let $0 \neq x \in(E: I)$. Then we have $I \subset \frac{1}{x} E$. Hence there is a finitely generated ideal J with $J^{\star} \ni 1$ such that $J \subset \frac{1}{x} E$. Then $x \in(E: J)$.
$(3) \Longrightarrow(5)$: Since $1 \in(E: I)$, we have $1 \in(E: J)$ for some finitely generated ideal J with $J^{\star} \ni 1$. Then $J \subset E$.
$(6) \Longrightarrow(1): \quad \mathcal{F}_{f}=\mathcal{F}^{\star_{f}}$ by $(0.1)(2)$. Then $\star_{\mathcal{F}_{f}}=\star_{f}$ by (0.1)(8).
$(1) \Longrightarrow(6): ~ B y ~(0.1)(14)$.
$(7) \Longrightarrow(6): \star_{f}=\overline{\star_{f}}$ by $(0.1)(6)$, and \star_{f} is stable by (0.1)(8).
$(6) \Longrightarrow(7): \star_{f}$ is quasi-spectral by $(0.1)(5)$. Then \star_{f} is spectral by $(0.1)(9)$.
$(8) \Longleftrightarrow(7):$ By (0.3)(4).
$(9) \Longleftrightarrow(3),(10) \Longleftrightarrow(4)$, and $,(11) \Longleftrightarrow(5):$ Because $\mathcal{F}=\mathcal{F}^{\star}$ by $(0.1)(11)$.
$(6) \Longrightarrow(12):$ Because $1 \in E^{\star} \cap D^{\star}=E^{\star} \cap D^{\star_{f}}=(E \cap D)^{\star_{f}}$.
$(12) \Longrightarrow(5)$: Trivial.
We note that $(1) \Longleftrightarrow(6)$ in (1.9) Proposition was proved in [O, Theorem 6].
Now, we will study a pseudo-valuation domain D, a quasi-spectral semistar operation \star on D, and \star-invertible ideals of D.
(2.1) ([FHu, Proposition 4.25]) Let \star be a quasi-spectral semistar operation on D, and let I, J be ideals of D.
(1) $(I J)^{\star}=D^{\star}$ if and only if $(I J)^{\star}=D^{\star}$.
(2) Assume that $\mathcal{F}^{\star}=\{D\}$. Then $(I J)^{\star}=D^{\star}$ if and only if $I=J=D$.

Proof. (1) The sufficiency: We have $\bar{x} \leq \star$ by $(0.1)(3)$, and hence $(I J)^{\star}=D^{\star}$.
The necessity: Suppose that $(I J)^{\star} \varsubsetneqq D^{\star}$. Then we have $I J \notin \mathcal{F}^{\nwarrow}$. Since $\mathcal{F}^{\star}=\mathcal{F}^{\star}$ by $(0.1)(1)$, we have $I J \notin \mathcal{F}^{\star}$. Hence there is a prime ideal P with $P^{\star} \nexists 1$ such that $P \supset I J$. It follows that $(I J)^{\star} \subset P^{\star} \varsubsetneqq D^{\star}$; a contradiction.
(2) If $(I J)^{\star}=D^{\star}$, then $I J \in \mathcal{F}^{\star}$, hence $I J=D$.
(2.2) ([FHu, Corollary 4.26]) Let \star be a semistar operation on D, and let I, J be ideals of D.
(1) $(I J)^{\star_{f}}=D^{\star_{f}}$ if and only if $(I J)^{\tilde{\star}}=D^{\tilde{\star}}$.
(2) $(I J)^{t}=D^{t}$ if and only if $(I J)^{\tilde{v}}=D^{\tilde{v}}$.

Proof. $\overline{\star_{f}}=\tilde{\star}$ by $(0.1)(10) . \star_{f}$ is quasi-spectral by $(0.1)(5)$. Then we may apply (2.1).

If, for every ideal I with $I^{\star} \not \supset 1$, there is a prime ideal P with $P^{\star} \nsupseteq 1$ such that $P \supset I$, then \star is said a qq-spectral semistar operation (or, a quasi-quasi-spectral semistar operation).

Every quasi-spectral semistar operation is a qq-spectral semistar operation.
(2.3) Let \star be a qq-spectral semistar operation on D, and let I, J be ideals of D.
(1) $(I J)^{\star}=D^{\star}$ if and only if $(I J)^{\star}=D^{\star}$.
(2) Assume that $\mathcal{F}^{\star}=\{D\}$. Then $(I J)^{\star}=D^{\star}$ if and only if $I=J=D$.

The proof is similar to that of (2.1).
An element $E \in \overline{\mathrm{~F}}(D)$ is said \star-invertible if there is an element $F \in \overline{\mathrm{~F}}(D)$ such that $(E F)^{\star}=D^{\star}$. If E is d-invertible, then E is said invertible.

Set $\operatorname{Inv}^{\star}(D)=\{E \in \overline{\mathrm{~F}}(D) \mid E$ is \star-invertible $\}$, and set $\operatorname{Princ}(D)=\{x D \mid x \in$ $K-\{0\}\}$. $\operatorname{Inv}^{\star}(D)$ forms a group under a canonical product, and $\operatorname{Prin}(D)$ is a subgroup of $\operatorname{Inv}^{\star}(D)$. Then the quotient group $\mathrm{Cl}^{\star}(D)=\frac{\operatorname{Inv}^{\star}(D)}{\operatorname{Princ}(D)}$ is said the \star-class group of D.
(2.4) Let $E \in \overline{\mathrm{~F}}(D)$. If E is $\bar{\star}$-invertible, then E is \star-invertible. If E is $\tilde{\star}$ invertible, then E is \star_{f}-invertible. If E is \tilde{v}-invertible, then E is t-invertible.

For, $\bar{\star} \leq \star$ by $(0.1)(3)$, and $\tilde{\star} \leq \star_{f}$ by (0.1)(4).
(2.5) Let \star be a semistar operation with $D^{\star}=D$, and let $E \in \overline{\mathrm{~F}}(D)$.
(1) E is \star-invertible if and only if E is $\bar{\star}$-invertible.
(2) Assume that $\mathcal{F}^{\star}=\{D\}$. Then E is \star-invertible if and only if E is invertible.

Proof. Let $F \in \overline{\mathrm{~F}}(D)$ such that $(E F)^{\star}=D$. Then $E F \in \mathcal{F}^{\star}$. Since $\mathcal{F}^{\star}=\mathcal{F}^{\bar{\star}}$ by (0.1)(1), we have $E F \in \mathcal{F}^{\star}$. Hence $(E F)^{\bar{\star}}=D$.
(2.6) (cf. [K, Theorem 59]) Assume that D is a quasi-local domain, that is, D has a unique maximal ideal. Then every invertible ideal of D is principal.

Let I be an ideal of D. If, for every element $a, b \in K, a b \in I$ and $b \notin I$ imply $a \in I$, then I is called strongly prime. If every prime ideal of D is strongly prime, then D is called a pseud-valuation domain (or, a PVD). We refer to Hedstrom-Houston ([HeHo]) for the notion of a PVD. Thus, every PVD is a quasi-local domain, and if D is a PVD with maximal ideal M, then $V=(M: M)$ is a valuation overring of D with maximal ideal M.
(2.7) Let \star be a quasi-spectral semistar operation on D, and let I be a non-zero ideal of D.
(1) If I is \star-invertible, then I need not be $\bar{\star}$-invertible.
(2) If $\mathcal{F}^{\star}=\{D\}$, and if I is \star-invertible, then I need not be invertible.

For a counter example, let D be a PVD which is not a valuation domain, let M be the maximal ideal of D, let $V=(M: M)$, and let \star be the semistar operation $E \longmapsto E V$ on D. Then V is a valuation domain, $M^{\star}=M, D^{\star}=V, \star$ is quasi-spectral, $\mathcal{F}^{\star}=\{D\}$, and $E^{\star}=(E: D)=E$ for every $E \in \overline{\mathrm{~F}}(D)$. Since D is not a valuation domain, there are elements $a, b \in D-\{0\}$ such that $\frac{a}{b} \notin D$ and $\frac{b}{a} \notin D$. Then $I=(a, b)$ is not a principal ideal of D. Since $I V$ is a finitely generated ideal of V, we have $I V=x V$ for some element $x \in K-\{0\}$. Then $\left(I x^{-1}\right)^{\star}=V=D^{\star}$, that is, I is a \star-invertible ideal of D. Suppose that I is $\bar{\star}$-invertible. There is an element $E \in \overline{\mathrm{~F}}(D)$ such that $(I E)^{\bar{\star}}=D^{\bar{\star}}$, that is, $I E=D$. Then (2.6) implies that I is a principal ideal of D; a contradiction.
(2.8) Let \star be a semistar operation on D with $D^{\star}=D$.
(1) $\mathrm{Cl}^{\star}(D)=\mathrm{Cl}^{\star}(D)$.
(2) $\mathrm{Cl}^{t}(D)=\mathrm{Cl}^{\tilde{v}}(D)$.

Proof. $\overline{\star_{f}}=\tilde{\star}$ by $(0.1)(10)$. Then we may apply (2.5).
(2.9) Let \star be a semistar operation on D. Then $\mathrm{Cl}^{\star}(D)=\mathrm{Cl}^{\tilde{\star}}(D)$ need not be
true.

For a counter example, let D, \star, I be those in the counter example of (2.7). Then we have $\star=\star_{f}$. Let J be an ideal of D with $J^{\star} \ni 1$. Since $M^{\star}=M$, we have $J=D$. It follows that $E^{\tilde{\star}}=E$ for every element $E \in \overline{\mathrm{~F}}(D)$. The ideal $I=(a, b)$ is \star_{f}-invertible. Suppose that I is $\tilde{\star}$-invertible. There is an element $F \in \overline{\mathrm{~F}}(D)$ such that $(I F)^{\tilde{\star}}=D^{\tilde{\star}}$. Then $I F=D .(2.6)$ implies a contradiction.

Now, we will study conditions for a semistar operation to be spectral.
(3.1) Proposition Let \star be a semistar operation on D with $\Pi^{\star} \neq \emptyset$. The following conditions are equivalent.
(1) $\star_{s p} \leq \star$.
(2) \star is qq-spectral.
(3) $E^{\star}=\cap\left\{E^{\star} D_{P} \mid P \in \Pi^{\star}\right\}$ for every element $E \in \overline{\mathrm{~F}}(D)$.

Proof. Let $\Pi^{\star}=\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}$.
$(1) \Longrightarrow(2)$: Let I be an ideal of D such that $I^{\star} \not \supset 1$. Since $\star_{s p} \leq \star$, we have $I^{\star_{s p}} \not \supset 1$. Hence we have $I \subset P_{\lambda}$ for some λ, and hence \star is qq-spectral.
$(2) \Longrightarrow(3)$: Suppose that there is an element $z \notin E^{\star}$ such that $z \in \cap\left\{E^{\star} D_{P_{\lambda}} \mid \lambda \in\right.$ $\Lambda\}$. If we set $J=\left(E^{\star} z^{-1}\right) \cap D$, then $J^{\star} \not \supset 1$. For every λ, we have $z=\frac{x_{\lambda}}{y_{\lambda}}$ for some element $x_{\lambda} \in E^{\star}$ and for some element $y_{\lambda} \in D-P_{\lambda}$. It follows that $J \not \subset P_{\lambda}$, and that \star is not qq-spectral; a contradiction.
$(3) \Longrightarrow(1): E^{\star_{s p}}=\cap\left\{E D_{P_{\lambda}} \mid \lambda \in \Lambda\right\} \subset \cap\left\{E^{\star} D_{P_{\lambda}} \mid \lambda \in \Lambda\right\}=E^{\star}$.
For every semistar operation $\star, \star_{s p}$ is spectral by the definition. Hence $\star_{s p}=\overline{\star_{s p}}$ by (0.1)(6).
(3.2) Proposition Assume that $\Pi^{\star} \neq \emptyset$. The following conditions are equivalent.
(1) \star is qq-spectral.
(2) $\star_{s p}=\bar{\star}$.
(3) $\begin{aligned} & \text { is spectral. }\end{aligned}$
(4) $\mathcal{F}^{\star}=\mathcal{F}\left(\Pi^{\star}\right)$.
(5) \mathcal{F}^{\star} is spectral.

Proof. (1) $\Longrightarrow(2): \star_{s p} \leq \star$ by (3.1), hence $\overline{\star_{s p}} \leq \bar{\star}$ by $(0.2)(2)$. On the other hand, $\bar{\star} \leq \star_{s p}$ by $(0.3)(1)$, and $\star_{s p}=\overline{\star_{s p}}$ by $(0.1)(6)$. Then we have $\star_{s p}=\overline{\star_{s p}} \leq \bar{\star} \leq$ $\star_{s p}$.
$(2) \Longrightarrow(4):$ By $(0.1)(1)$ and $(0.2)(1)$, we have
$\mathcal{F}^{\star}=\mathcal{F}^{\star}=\mathcal{F}^{\star}{ }^{\star}=\mathcal{F}^{\star}\left(\Pi^{\star}\right)=\mathcal{F}\left(\Pi^{\star}\right)$.
$(4) \Longrightarrow$ (5): Trivial.
$(5) \Longrightarrow(3)$: There is a non-empty subset $\Delta \subset \operatorname{Spec}(D)-\{(0)\}$ such that $\mathcal{F}^{\star}=$ $\mathcal{F}(\Delta)$. Then $(0.2)(1)$ implies that
$\bar{\star}=\star_{\mathcal{F} \star}=\star_{(\mathcal{F}(\Delta))}=\star_{\Delta}$.
$(3) \Longrightarrow(1): \quad \mathcal{F}^{\star}=\mathcal{F}^{\bar{\star}}$ by $(0.1)(1)$, and $\mathcal{F}^{\bar{\star}}=\mathcal{F}\left(\Pi^{\bar{\star}}\right)$ by $(0.3)(2)$, and hence
\mathcal{F}^{\star} is spectral. Set $\Delta=\Pi^{\star}$, and hence $\mathcal{F}^{\star}=\mathcal{F}(\Delta)$. If I is an ideal with $I^{\star} \not \supset 1$, then $I \notin \mathcal{F}^{\star}=\mathcal{F}(\Delta)$. Hence there is a prime ideal $P \in \Delta$ such that $I \subset P$. Since $P \not \supset \mathcal{F}(\Delta)=\mathcal{F}^{\star}$, we have $P^{\star} \not \supset 1$.
(3.3) Proposition Assume that $\Pi^{\star} \neq \emptyset$. If \star is qq-spectral and stable, then \star is spectral.

(3.4) Assume that $\Pi^{\star} \neq \emptyset$. If \star is qq-spectral, is \star quasi-spectral?
(3.5) Assume that $\Pi^{\star} \neq \emptyset$, and that \star is qq-spectral. If \star is of finite fype, or if $\operatorname{dim}(D)<\infty$, then \star is quasi-spectral.

Proof. Let I be an ideal of D with $I^{\star} \nexists 1$. Then the set $X=\left\{P \in \Pi^{\star} \mid P \supset I\right\}$ is non-empty. If $\operatorname{dim}(D)<\infty$, obviously X has a maximal member. If \star is of finite type, we may use Zorn's Lemma to find a maximal member in X. Let P be a maximal member in X. Since $P^{\star} \not \supset 1$, there is a prime ideal Q with $Q^{\star} \not \ngtr 1$ such that $Q \supset P^{\star} \cap D$. By the choice of P, we have $Q=P$. It follows that $P^{\star} \cap D=P$.
(3.6) ([FHu]) Is there an example of a finitely spectral non-spectral localizing system distinct with $\{I \mid I$ is a non-zero ideal of $D\}$?

If, for every finitely generated ideal I of D with $I^{\star} \not \supset 1$, there is a prime ideal P with $P^{\star} \not \supset 1$ such that $P \supset I$, then \star is said a fqq-spectral semistar operation (or, a finitely quasi-quasi-spectral semistar operation).

Every qq-spectral semistar operation is a fqq-spectral semistar operation.
(3.7) Let $\star=\star_{\mathcal{F}}$. The following conditions are equivalent.
(1) \mathcal{F} is finitely spectral.
(2) \star is a fqq-spectral semistar operation.

Proof. $(1) \Longrightarrow(2)$: Let I be a finitely generated ideal with $I^{\star} \not \ni 1$. Since $\mathcal{F}=\mathcal{F}^{\star}$ by $(0.1)(11)$, we have $I \notin \mathcal{F}$. Hence there is a prime ideal $P \notin \mathcal{F}$ such that $I \subset P$. Since $P \notin \mathcal{F}^{\star}$, we have $P^{\star} \nexists 1$.

The proof of $(2) \Longrightarrow(1)$ is similar.
(3.8) Proposition Let \mathcal{F} be a localizing system of D and let $\star=\star_{\mathcal{F}}$. The following conditions are equivalent.
(1) \mathcal{F} is a finitely spectral non-spectral localizing system distinct with $\{I \mid I$ is a non-zero ideal of $D\}$.
(2) \star is a non-spectral fqq-spectral semistar operation distinct with e.

Proof. $\quad(1) \Longrightarrow(2)$: \star is non-spectral by $(0.1)(15) . \star$ is a fqq-spectral semistar operation by (3.7). Clearly, $\star \neq e$. And, \star is stable by (0.1)(14).

The proof of $(2) \Longrightarrow(1)$ is similar.
(3.8) shows that (3.6) is equivalent to the following,
(3.9) Is there a stable non-spectral fqq-spectral semistar operation distinct with e ?
(3.10) Let \star be a fqq-spectral semistar operation on D distinct with e. Then we have $\Pi^{\star} \neq \emptyset$.

Proof. Then we have $D^{\star} \varsubsetneqq K$. Hence there is an element $a \in D-\{0\}$ such that $a D^{\star} \not \supset 1$. Then there is a prime ideal P with $P^{\star} \not \supset 1$ such that $P \supset a D$.
(3.10) shows that if \star is fqq-spectral distinct with e, then $\star_{s p}$ is well-defined.
(3.11) An example of a domain D, a semistar operation \star on D, a maximal ideal M of D such that $M \varsubsetneqq M^{\star} \not \supset 1$.

Example: Let k be a field, let x be an indeterminate over k, and let $T=k[x]$. Let $D=k\left[x^{2}, x^{4}, x^{5}\right]$, and let $M=\left(x^{2}, x^{4}, x^{5}\right)$ be a maximal ideal of D. Let \star be a semistar operation $E \longmapsto E T$ on D. Then we have $M \not \supset x^{3} \in M T=M^{\star} \not \supset 1$.
(3.12) Assume that, for each prime ideal P in Π^{\star}, P is a maximal ideal of some overring T of D. Then, if \star is qq-spectral, then \star is quasi-spectral.

Proof. Let I be an ideal of D with $I^{\star} \not \supset 1$. Then there is a prime ideal P of D with $P^{\star} \nexists 1$ such that $P \supset I$. There is an overring T of D with maximal ideal P. We have $P^{\star} T \subset\left(P^{\star} T\right)^{\star}=(P T)^{\star}=P^{\star}$, hence P^{\star} is a T-module. Since $P^{\star} \not \supset 1$, it follows that $P^{\star} \cap T=P$, and $P^{\star} \cap D=P$.

For every element $a, b \in K$, if $a b \in I$ and $b \notin I$ imply $a^{n} \in I$ for some positive integer n, then I is called strongly primary. If every prime ideal of D is strongly primary, then D is called an almost pseudo-valuation domain (or, an APVD). We refer to Badawi-Houston ([BHo]) for the notion of an APVD. Thus, every APVD is a quasi-local domain. Let M be the maximal ideal of D. Then $V=(M: M)$ is a valuation domain, M is a primary ideal of V, and M is primary to the maximal ideal of V. The set of non-maximal prime ideals of D coincides with the set of non-maximal prime ideals of V.
(3.13) Let D be an APVD. Then every qq-spectral semistar operation \star on D is a quasi-spectral semistar operation.

Proof. Let P be a prime ideal in Π^{\star}. Assume that P is not a maximal ideal of D. Then P is a prime ideal of the valuation domain $V=(M: M)$, where M is the maximal ideal of D. It follows that P is the maximal ideal of the valuation domain V_{P}. Then (3.12) completes the proof.
(3.14) The following conditions are equivalent.
(1) Assume that $\Pi^{\star} \neq \emptyset$ and that \star is qq-spectral. Then \star is quasi-spectral.
(2) Assume that $\Pi^{\star} \neq \emptyset$ and that \star is qq-spectral with $D^{\star}=D$. Then \star is quasispectral.

Proof. $\quad(2) \Longrightarrow(1)$: \star induces a canonical semistar operation \star^{\prime} on D^{\star}. Since $\left(D^{\star}\right)^{\star^{\prime}}=D^{\star}, \star^{\prime}$ is quasi-spectral. Let I be a non-zero ideal of D with $I^{\star} \not \supset 1$. I^{\star} is an ideal of D^{\star} with $\left(I^{\star}\right)^{\star^{\prime}} \not \supset 1$. There is a prime ideal Q of D^{\star} with $Q^{\star^{\prime}}=Q$ such that $Q \supset I^{\star}$. Set $D \cap Q=P$. Then P is a prime ideal of D with $P^{\star} \cap D=P$ such that $P \supset I$.

§2 Kronecker function rings on semigroups

Throughout the Section, let D be an infinite domain with quotient field K, and let S be a g-monoid $\supsetneqq\{0\}$ with quotient group $\mathrm{q}(S)=G$. We refer to [G2] and [M1] for the general theory of g-monoids. Let $\overline{\mathrm{F}}(S)$ be the set of non-empty subset $E \subset G$ such that $S+E \subset E$, let $\mathrm{F}(S)$ be the set of fractional ideals of S, and let $\mathrm{f}(S)$ be the set of finitely generated fractional ideals of S. Set $E^{e}=G$ for every $E \in \overline{\mathrm{~F}}(S)$. Then the semistar operation $E \longmapsto E^{e}$ is said the e-semistar operation on S. Set $E^{d}=E$ for every $E \in \overline{\mathrm{~F}}(S)$. Then the semistar operation $E \longmapsto E^{d}$ is said the d-semistar operation on S.

For every $E, F \in \overline{\mathrm{~F}}(S)$, we denote $\{x \in G \mid x+E \subset F\}$ by $(F: E)$. Set $E^{-1}=(S: E)=\{x \in G \mid x+E \subset S\}$, set $\emptyset^{-1}=G$, and set $E^{v}=\left(E^{-1}\right)^{-1}$ for every $E \in \overline{\mathrm{~F}}(S)$. Then the semistar operation $E \longmapsto E^{v}$ is said the v-semistar operation on S. Let \star be a semistar operation on S. We define a semistar operation $\star_{f}: E \longmapsto \cup\left\{F^{\star} \mid F \in \mathrm{f}(S)\right.$ with $\left.F \subset E\right\} . t=v_{f}$ is said the t-semistar operation on S.

Let \star be a semistar operation on S, and let T be an oversemigroup of S. There is induced a canonical semistar operation $\alpha_{T}(\star)=\alpha(\star)$ on T, and is said the ascent of \star to T.

If \star_{1}, \star_{2} are semistar operations on S, we say $\star_{1} \leq \star_{2}$ if $E^{\star_{1}} \subset E^{\star_{2}}$ for every $E \in \overline{\mathrm{~F}}(S)$.

An ideal I of S is said \star-ideal if $I^{\star}=I$. A fractional ideal E of S is said a \star-fractional ideal if $E^{\star}=E$.

A prime ideal P satisfies $P \not \supset 0$ by the definition.
An ideal I of S is said a quasi-*-ideal of S if $I^{\star} \cap S=I$.
A prime ideal P of S is said a \star-prime ideal if $P^{\star}=P$.
A prime ideal P of S is said a quasi-ぇ-prime ideal if $P^{\star} \cap S=P$.
An ideal I of S is said a \star-maximal ideal if I is maximal in the set $\{I \mid I$ is an ideal with $\left.S \supsetneqq I^{\star}=I\right\}$.

An ideal I of S is said a quasi-»-maximal ideal if I is maximal in the set $\{I \mid I$ is an ideal with $\left.S \supsetneqq I=I^{\star} \cap S\right\}$.
(1.1) Let $\alpha_{S^{\star}}(\star)=\alpha(\star)$, and let I be an ideal of S. Then I a quasi- \star-ideal of S if and only if $I=E \cap S$, where E is an $\alpha(\star)$-ideal of S^{\star}.

Proof. The sufficiency: $\quad I^{\star} \cap S=(E \cap S)^{\star} \cap S \subset E^{\star} \cap S=E \cap S=I$.

We denote by $\operatorname{Spec}^{\star}(S)$ the set of \star-prime ideals of S, by $\operatorname{Max}^{\star}(S)$ the set of \star maximal ideals of S, by $\operatorname{QSpec}^{\star}(S)$ the set of quasi-ぇ-prime ideals of S, by $\mathrm{QMax}^{\star}(S)$ the set of quasi-ᄎ-maximal ideals of S.

We set $\Pi^{\star}=\left\{P \in \operatorname{Spec}(S) \mid P^{\star} \not \supset 0\right\}$, and set $\Pi_{\max }^{\star}=\{P \mid P$ is a maximal element in $\left.\Pi^{\star}\right\}$.
(1.2) Let $e \neq \star=\star_{f}$.
(1) If I is an ideal of S with $0 \notin I=I^{\star} \cap S$, then there is $J \in \operatorname{QMax}^{\star}(S)$ such that $I \subset J$.
(2) If I is a quasi-ぇ-maximal ideal of S, then I is a quasi-»-prime ideal of S.
(3) If Q is a quasi- \star-maximal ideal of S, then there is an $\alpha(\star)$-maximal ideal N of S^{\star} such that $Q=N \cap S$.
(4) If E is an $\alpha(\star)$-prime ideal of S^{\star}, then $E \cap S$ is a quasi- \star-prime ideal of S.
(5) $\operatorname{QSpec}^{\star}(S) \subset \Pi^{\star}$ and $\emptyset \neq \Pi_{\text {max }}^{\star}=\operatorname{QMax}^{\star}(S)$.

Proof. (1) $\sim(4)$ are straightforward.
(5) There is an element $a \in S$ such that $a+S^{\star} \varsubsetneqq S^{\star}$. Then there is a prime ideal P with $P^{\star} \not \supset 0$ such that $P \supset\left(a+S^{\star}\right) \cap S$. Hence $\Pi^{\star} \neq \emptyset$.

Let $e \neq \star=\star_{f}$. Then we set $\mathcal{M}(\star)=\Pi_{\text {max }}^{\star}$.
Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$. Then we define a semistar operation $\star_{\Delta}: E \longmapsto \cap\{E+$ $\left.S_{P} \mid P \in \Delta\right\}$.
(1.3) Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$, and set $\star=\star_{\Delta}$.
(1) $E^{\star}+S_{P}=E+S_{P}$, for every $E \in \overline{\mathrm{~F}}(S)$ and $P \in \Delta$.
(2) $(E \cap F)^{\star}=E^{\star} \cap F^{\star}$, for every $E, F \in \overline{\mathrm{~F}}(S)$.
(3) $P^{\star} \cap S=P$ for every $P \in \Delta$.
(4) Let I be an ideal with $I^{\star} \not \supset 0$, then $I \subset P$ for some $P \in \Delta$.
(5) Assume that $\emptyset \neq \Delta_{\text {max }}$, and that each $P \in \Delta$ is contained in some $Q \in \Delta_{\max }$. Then $\star=\star_{\left(\Delta_{\text {max }}\right)}$.

The proof is straightforward.
\star is said spectral if $\star=\star_{\Delta}$ for some $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$.
\star is said quasi-spectral if, for every ideal I with $I^{\star} \not \supset 0$, there is a prime ideal P with $P^{\star} \cap S=P$ such that $I \subset P$.
(1.4) Let $\star \neq e$.
(1) \star is spectral if and only if \star is quasi-spectral and stable.
(2) Assume that $\star=\star_{f}$. Then \star is quasi-spectral and $\mathcal{M}(\star) \neq \emptyset$.

Proof. (1) The sufficiency: Since $\Pi^{\star} \neq \emptyset$ by the proof of (1.2)(5), [M3, $\left.\S 2,(2.3)\right]$ completes the proof.
(2) \star is quasi-spectral by $[\mathrm{M} 3, \S 1,(3.16)]$. And $\mathcal{M}(\star) \neq \emptyset$ by $(1.2)(5)$.

If $\Pi^{\star} \neq \emptyset$, we set $\star_{s p}=\star_{\Pi^{\star}}$.
Let $\star \neq e$, and assume that \star is of finite type, then $\Pi^{\star} \neq \emptyset$ by (1.2)(5), hence $\star_{s p}$ is well defined.

If, for every ideal I with $I^{\star} \not \supset 0$, there is a prime ideal P with $P^{\star} \not \supset 0$ such that $P \supset I$, then \star is said a qq-spectral semistar operation.

Every quasi-spectral semistar operation is a qq-spectral semistar operation.
(1.5) Is a qq-semistar operation a quasi-spectral semistar operation?

A canonical semigroup version of Lemma 2.6 in [FL3] is the following.
(1.6) Let $\Pi^{\star} \neq \emptyset$.
(1) \star is spectral if and only if $\star=\star_{s p}$.
(2) The following statements are equivalent.
(i) $\star_{s p} \leq \star$.
(ii) \star is quasi-spectral.
(iii) $E^{\star}=\cap\left\{E^{\star}+S_{P} \mid P \in \Pi^{\star}\right\}$ for every $\left.E \in \overline{\mathrm{~F}}(S)\right\}$.
(1.7) Let $\Pi^{\star} \neq \emptyset$.
(1) \star is spectral if and only if $\star=\star_{s p}$.
(2) The following statements are equivalent.
(i) $\star_{s p} \leq \star$.
(ii) \star is qq-spectral.
(iii) $E^{\star}=\cap\left\{E^{\star}+S_{P} \mid P \in \Pi^{\star}\right\}$ for every $E \in \overline{\mathrm{~F}}(S)$.

Proof. (1) is $[\mathrm{M} 3, \S 1,(3.10)]$, and (2) is $[\mathrm{M} 3, \S 2,(1.2)]$.
$(1.6)(2)$ is valid if and only if the answer to (1.5) is yes.
A non-empty subset \mathcal{F} of ideals of S is said a localizing system of S if it satisfies the following conditions:
(1) If $I \in \mathcal{F}$ and J is an ideal of S with $I \subset J$, then $J \in \mathcal{F}$.
(2) If $I \in \mathcal{F}$ and J is an ideal of S such that $(J: x) \cap S \in \mathcal{F}$ for every $x \in I$, then $J \in \mathcal{F}$.

If \star is a semistar operation on S. Then $\mathcal{F}^{\star}=\left\{I \mid I\right.$ is an ideal of S with $\left.I^{\star} \ni 0\right\}$ is a localizing system of S.

If \mathcal{F} is a localizing system of S, then $\mathcal{F}_{f}=\{I \mid I$ is an ideal of S which contains a finitely generated ideal $J \in \mathcal{F}\}$ is a localizing system of S.

If \mathcal{F} is a localizing system of S, then the mapping $\star_{\mathcal{F}}: E \longmapsto \cup\{(E: I) \mid I \in \mathcal{F}\}$ is a semistar operation on S.

We set the semistar operation $\tilde{\star}=\star\left(\mathcal{F}^{\star}\right)_{f}$.
(1.8) Assume that $\star \neq e$. Then $\tilde{\star}=\left(\star_{f}\right)_{s p}$.

Proof. $\tilde{\star}=\star_{\left(\mathcal{F}^{\star}\right)_{f}}=\star_{\mathcal{F}^{\left(\star_{f}\right)}}$ by $[\mathrm{M} 3, \S 1,(2.4)]$. Since $\tilde{\star}$ is stable and of finite type by $[\mathrm{M} 3, \S 1,(2.6)]$, $\tilde{\star}$ is spectral by $[\mathrm{M} 3, \S 1,(3.16)$ and $\S 2,(2.3)]$.

Since $\mathcal{F}^{\star_{f}}=\mathcal{F}^{\tilde{\chi}}$ by $[\mathrm{M} 3, \S 1,(2.10)]$, we have $\Pi^{\tilde{\star}}=\Pi^{\star} \neq \emptyset$ by (1.2)(5). By [M3, $\S 1,(3.10)]$, we have $\tilde{\star}=(\tilde{\star})_{s p}=\star_{\Pi^{\tilde{\star}}}=\star_{\Pi^{\left(\star_{f}\right)}}=\left(\star_{f}\right)_{s p}$.
(1.9) Let $\star \neq e$.
(1) $\tilde{\star}=\star_{\mathcal{M}\left(\star_{f}\right)} \leq \star_{f}$ and $\tilde{\star} \neq e$.
(2) For every $E \in \overline{\mathrm{~F}}(S)$,
(a) $E^{\star_{f}}=\cap\left\{E^{\star_{f}}+S_{Q} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$,
(b) $E^{\tilde{\star}}=\cap\left\{E+S_{Q} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.

Proof. (1) Set $\Delta=\Pi^{\star_{f}}$, then $\Delta_{\max }=\Pi_{\max }^{\star_{f}}=\mathcal{M}\left(\star_{f}\right)$. By (1.8), we have $\tilde{\star}=\left(\star_{f}\right)_{s p}=\star_{\Delta}=\star_{\left(\Delta_{\max }\right)}=\star_{\mathcal{M}\left(\star_{f}\right)}$.
$\tilde{\star} \leq \star_{f}$ by $[\mathrm{M} 3, \S 1,(2.8)(3)]$, and hence $\tilde{\star} \neq e$.
(2) (a) Since \star_{f} is quasi-spectral, we may use (1.7)(2). Then
$\cap\left\{E^{\star_{f}}+S_{Q} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}=\cap\left\{E^{\star_{f}}+S_{Q} \mid Q \in \Pi_{\max }^{\star_{f}}\right\}$
$=\cap\left\{E^{\star_{f}}+S_{Q} \mid Q \in \Pi^{\star_{f}}\right\}=E^{\star_{f}}$.
(b) follows from (1).

Set $D(x)=\{P \in \operatorname{Spec}(S) \mid P \not \supset x\}$ for every $x \in S$. Then $\operatorname{Spec}(S)$ is a topological space with basis $\{D(x) \mid x \in S\}$. A subset $\Delta \subset \operatorname{Spec}(S)$ is said quasi-compact if Δ is contained in a union of open sets $\left\{G_{\lambda} \mid \lambda \in \Lambda\right\}$, then theire is a finie subset $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\} \subset \Lambda$ such that $\Delta \subset \cup_{1}^{n} G_{\lambda_{i}}$.
(1.10) (a) Let v be the v-semistar operation on S. We have $E^{\tilde{v}}=\cup\{(E: I) \mid I$ is a finitely generated ideal with $\left.I^{v} \ni 0\right\}$ for every $E \in \overline{\mathrm{~F}}(S)$.
(b) Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$. If Δ is quasi-compact, then $\star_{\Delta}=\left(\star_{\Delta}\right)_{f}$ and $\mathcal{M}\left(\star_{\Delta}\right)=$ $\Delta_{\text {max }}$.

Proof. (a) follows from $[\mathrm{M} 3, \S 1,(2.6)(2)]$.
(b) We have $\mathcal{F}^{\star \Delta}=\mathcal{F}(\Delta)$ by $[\mathrm{M} 3, \S 1,(3.4)]$. Let $\Delta=\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}$, and let $I \in \mathcal{F}(\Delta)$. There is an element $x_{\lambda} \in I-P_{\lambda}$ for every λ. Then $\Delta \subset \cup_{\lambda} D\left(x_{\lambda}\right)$. Hence, there is a finite subset $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\} \subset \Lambda$ such that $\Delta \subset D\left(x_{\lambda_{1}}\right) \cup \cdots \cup D\left(x_{\lambda_{n}}\right)$. Then $J=\left(x_{\lambda_{1}}, \cdots, x_{\lambda_{n}}\right) \subset I$, and $J \in \mathcal{F}(\Delta)$, that is, $\mathcal{F}^{\star \Delta}$ is of finite type. Then \star_{Δ} is of finite type by $\left[\mathrm{M} 3, \S 1,(1.10)(\mathrm{B})(2)\right.$ and (2.3)], hence $\star_{\Delta}=\left(\star_{\Delta}\right)_{f}$. And $\mathcal{M}\left(\star_{\Delta}\right)=\Pi_{\text {max }}^{\star}=\Delta_{\max }$ by definitions.
(1.11) Proposition Let \star be a semistar operation on S. Let $\left\{I_{\lambda} \mid \lambda \in \Lambda\right\}$ be a non-empty set of ideals of S such that if $\lambda_{1}, \lambda_{2} \in \Lambda$, then $I_{\lambda_{1}} \cup I_{\lambda_{2}} \subset I_{\lambda_{3}}$ for some λ_{3}.
(1) If each I_{λ} is a \star_{f}-ideal, then $I=\cup\left\{I_{\lambda} \mid \lambda \in \Lambda\right\}$ is a \star_{f}-ideal.
(2) If each I_{λ} is a \star_{f}-prime ideal, then $I=\cup\left\{I_{\lambda} \mid \lambda \in \Lambda\right\}$ is a \star_{f}-prime ideal.

The proof is straightforward.
(1.12) In (1.11), assume that each $I_{\lambda} \varsubsetneqq S$.
(1) If each I_{λ} is a quasi- \star_{f}-ideal, then I is a quasi- \star_{f}-ideal with $I \varsubsetneqq S$.
(2) If each I_{λ} is a quasi- \star_{f}-prime ideal, then I is a quasi- \star_{f}-prime ideal.

The proof is straightforward.
Let D be an infinite domain with quotient field $\mathrm{q}(D)=K$. Let $f=\sum_{1}^{n} a_{i} X^{t_{i}}$ be a non-zero element of $K[X ; G]$, where $a_{i} \neq 0$ for each i and $t_{i} \neq t_{j}$ for each $i \neq j$. Then the fractional ideal $\left(a_{1}, \cdots, a_{n}\right)$ of D is said the c-content of f, and is denoted by $c_{D}(f)$ (or, simply by $c(f)$). The subset $\left\{a_{1}, \cdots, a_{n}\right\}$ of K is denoted by $\operatorname{Coef}(f)$. The fractional ideal $\left(t_{1}, \cdots, t_{n}\right)$ of S is said the e-content of f, and is denoted by $e_{S}(f)$ (or, simply by $e(f)$). The subset $\left\{t_{1}, \cdots, t_{n}\right\}$ of G is denoted by $\operatorname{Exp}(f)$.

We set $N(\star)=\left\{f \in D[X ; S]-\{0\} \mid e(f)^{\star} \ni 0\right\}$. Obviously, $N(\star)=N\left(\star_{f}\right)$. We set $D(X ; S)_{e}=D[X ; S]_{N(d)}$.
(2.1) Proposition Let $\star \neq e$.
(1) $N(\star)$ is a multiplicatively closed subset of $D[X ; S]$.

If $f, g \in D[X ; S]-\{0\}$ such that $f g \in N(\star)$, then $f, g \in N(\star)$.
(2) $N(\star)=D[X ; S]-\cup\left\{Q D[X ; S] \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.
(3) $\operatorname{Max}\left(D[X ; S]_{N(\star)}\right)=\left\{Q D[X ; S]_{N(\star)} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.
(4) $D[X ; S]_{N(\star)}=\cap\left\{D\left(X ; S_{Q}\right)_{e} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.
(5) $\mathcal{M}\left(\star_{f}\right)=\left\{M \cap S \mid M \in \operatorname{Max}\left(D[X ; S]_{N(\star)}\right)\right\}$.

Proof. (1) follows from Dedekind-Mertens Lemma for S ([GP, 6.2.PROPOSITION]).
(2) Let $f \in D[X ; S]-\{0\}$. If $e(f)^{\star} \not \supset 0$, there is a quasi- \star_{f}-maximal ideal Q such that $e(f) \subset Q$. Then $f \in Q D[X ; S]$.
(3) It is sufficient to show that each prime ideal H of $D[X ; S]$ contained inside $\cup\left\{Q D[X ; S] \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$ is contained in $Q D[X ; S]$ for some $Q \in \mathcal{M}\left(\star_{f}\right)$. Set $\cup\{e(f) \mid f \in H-\{0\}\}=I$. It suffices to show that $I^{\star_{f}} \not \supset 0$. Suppose the contrary. There are $f_{1}, \cdots, f_{n} \in H-\{0\}$ such that $\left(e\left(f_{1}\right) \cup \cdots \cup e\left(f_{n}\right)\right)^{\star_{f}} \ni 0$. There are $c_{1}, \cdots, c_{n} \in D-\{0\}$ with $c_{1} f_{1}+\cdots+c_{n} f_{n}=g$ such that $\operatorname{Exp}(g)=\operatorname{Exp}\left(f_{1}\right) \cup \cdots \cup$ $\operatorname{Exp}\left(f_{n}\right)$. Hence $e(g)^{\star f} \ni 0$, and hence $g \in H \cap N(\star)$; a contradiction.
(4) and (5) are consequences of (3).
(2.2) Is (2.1) valid for a finite domain?

We denote $D[X ; S]_{N(\star)}$ by $\mathrm{Na}(S, \star, D)$ (or, simply by $\mathrm{Na}(S, \star)$), and we say it the Nagata ring of S with respect to \star and D (or, simply the Nagata ring of S with respect to \star). Obviously, $\mathrm{Na}(S, \star)=\mathrm{Na}\left(S, \star_{f}\right)$.
(2.3) Let Q be a prime ideal of S. Then Q is a maximal t-ideal of S if and only if $Q=M \cap S$ for some $M \in \operatorname{Max}(\operatorname{Na}(S, v))$.

The proof follows from (2.1)(5).
(2.4) (1) Let P be a prime ideal of S, and let \star be the semistar operation $E \longmapsto E+S_{P}$ on S.
(a) $\mathcal{M}\left(\star_{f}\right)=\{P\}$.
(b) $\mathrm{Na}(S, \star)=D\left(X ; S_{P}\right)_{e}$.
(c) $\star=\star_{f}=\star_{s p}=\tilde{\star}$.
(2) Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$, let $\Delta^{\downarrow}=\{H \in \operatorname{Spec}(S) \mid H \subset P$ for some $P \in \Delta\}$, and let $\star=\star_{\Delta}$. Assume that each $P \in \Delta$ is contained in some $Q \in \Delta_{\max }$.
(a) $\Delta \subset \operatorname{QSpec}^{\star}(S) \subset \Delta^{\downarrow}$ and $\operatorname{QMax}^{\star}(S)=\Delta_{\text {max }}$.

Assume that $\Delta_{\max }$ is a quasi-compact subspace of $\operatorname{Spec}(S)$. Then
(b) $\mathrm{Na}\left(S, \star_{\Delta}\right)=\cap\left\{D\left(X ; S_{Q}\right)_{e} \mid Q \in \Delta_{\max }\right\}=\cap\left\{D\left(X ; S_{P}\right)_{e} \mid P \in \Delta\right\}$,
(c) $\widetilde{\left(\star_{\Delta}\right)}=\star_{\Delta}$.

Proof. (2) (b) $\star=\star_{f}$ by [M3, §2,(4.1)]. Since $\mathcal{M}(\star)=\Delta_{\max }$, we have $\operatorname{Max}(\mathrm{Na}(S, \star))=\left\{Q \mathrm{Na}(S, \star) \mid Q \in \Delta_{\max }\right\}$ by (2.1)(3). It follows that
$\mathrm{Na}(S, \star)=\cap\left\{\mathrm{Na}(S, \star)_{Q \mathrm{Na}(S, \star)} \mid Q \in \Delta_{\max }\right\}=\cap\left\{D[X ; S]_{Q D[X ; S]} \mid Q \in \Delta_{\max }\right\}=$ $\cap\left\{D\left(X ; S_{Q}\right)_{e} \mid Q \in \Delta_{\max }\right\}=\cap\left\{D\left(X ; S_{P}\right)_{e} \mid P \in \Delta\right\}$.
(c) Since \star is spectral, $\star_{s p}=\star$. Hence $\tilde{\star}=\left(\star_{f}\right)_{s p}=\star_{s p}=\star$.
(2.5) Proposition Let $\star \neq e$, and let $E \in \overline{\mathrm{~F}}(S)$.
(1) $E \mathrm{Na}(S, \star)=\cap\left\{E D\left(X ; S_{Q}\right)_{e} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.
(2) $E \mathrm{Na}(S, \star) \cap G=\cap\left\{E+S_{Q} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.
(3) $E^{\tilde{\star}}=E \mathrm{Na}(S, \star) \cap G$.

If $E=E^{\star}$, then $E=E \mathrm{Na}(S, \star) \cap G$.
(4) Assume that $\star=\star_{f}$. Then
(i) $\tilde{\star}=\star_{s p}$.
(ii) $S^{\star_{s p}}=\cap\left\{S_{Q} \mid Q \in \mathcal{M}(\star)\right\}$.
(iii) $\star_{s p}$ is of finite type.

Proof. (1) By (2.1), we have
$E N a(S, \star)=\cap\left\{\left(E D[X ; S]_{N(\star)}\right)_{M} \mid M \in \operatorname{Max}\left(D[X ; S]_{N(\star)}\right)\right\}$
$=\cap\left\{E D[X ; S]_{Q D[X ; S]} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}=\cap\left\{E D\left(X ; S_{Q}\right)_{e} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.
(2) We have $E \mathrm{Na}(S, \star) \cap G=\cap\left\{E D\left(X ; S_{Q}\right)_{e} \cap G \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$ by (1). Easily, $E D\left(X ; S_{Q}\right)_{e} \cap G=E+S_{Q}$.
(3) We have that $E^{\star}=\cap\left\{E+S_{Q} \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$ by (1.9)(2). Then $E^{\tilde{\star}}=$ $E \mathrm{Na}(S, \star) \cap G$ by (2).

Assume that $E=E^{\star}$. Since $\tilde{\star} \leq \star$ by $(1.9)(1), E=E^{\tilde{\star}}$. Hence $E=E N a(S, \star) \cap G$.
(4) (i) $\tilde{\star}=\star_{\mathcal{M}(\star)}$ by $(1.9)(1)$, and $\star_{s p}=\star_{\Pi^{\star}}=\star_{\Pi_{\text {max }}^{\star}}=\star_{\mathcal{M}(\star)}$.
(ii) $S^{\star_{s p}}=S^{\star \mathcal{M}(\star)}=\cap\left\{S_{Q} \mid Q \in \mathcal{M}(\star)\right\}$.
(iii) $\tilde{\star}$ is of finite type by $[\mathrm{M} 3, \S 1,(2.6)(7)]$. Hence $\star_{s p}$ is of finite type by (i).
(2.6) Let $\star \neq e$.
(1) $(\tilde{\star})_{f}=\tilde{\star}=(\tilde{\star})_{s p}=\tilde{\tilde{\star}}$.
(2) $\mathcal{M}\left(\star_{f}\right)=\mathcal{M}(\tilde{\star})$.
(3) $\mathrm{Na}(S, \star)=\mathrm{Na}(S, \tilde{\star})=\mathrm{Na}\left(S^{\tilde{\star}}, \alpha(\tilde{\star})\right)$.

Proof. (1) $(\tilde{\star})_{f}=\tilde{\star}$ by $[\mathrm{M} 3, \S 1,(2.6)(7)]$. Hence $\tilde{\star}$ is quasi-spectral by [M3, $\S 1,(3.16)]$. $\tilde{\star}$ is stable by $[\mathrm{M} 3, \S 1,(2.6)(6)]$. Hence $\tilde{\star}=(\tilde{\star})_{s p}$ by $[\mathrm{M} 3, \S 2,(2.3)$ and $\S 1,(3.10)] . \tilde{\tilde{\star}}=\tilde{\star}$ by $[\mathrm{M} 3, \S 1,(2.7)]$.
(2) Because $\tilde{\star}=\star_{\mathcal{M}\left(\star_{f}\right)}$ by $(1.9)(1)$.
(3) $N(\star)=N(\tilde{\star})$ by $(2.1)(2)$. Hence $\mathrm{Na}(S, \star)=\mathrm{Na}(S, \tilde{\star})$.

The case (C), where $\star=\star_{f}=\star_{\Delta}$ and $\emptyset \neq \Delta=\left\{Q_{\lambda} \mid \lambda \in \Lambda\right\} \subset \operatorname{Spec}(S)$ with $Q_{\lambda} \not \subset Q_{\lambda^{\prime}}$ for each $\lambda \neq \lambda^{\prime}$. Then we have $S^{\star}=\cap_{\lambda} S_{Q_{\lambda}}$ and $\mathcal{M}(\star)=\Delta$. If $Q \in \Delta$, then $\left(Q+S_{Q}\right) \cap S^{\star}=\cap_{\lambda}\left(\left(Q+S_{Q}\right) \cap S_{Q_{\lambda}}\right)=\cap_{\lambda}\left(Q+S_{Q_{\lambda}}\right)=Q^{\star}$, and $Q^{\star} \cap S=$ $\left(Q+S_{Q}\right) \cap S^{\star} \cap S=Q$.

Let $M \in \mathcal{M}(\alpha(\star))$. Then $M \subset S^{\star}$ and $M=M^{\alpha(\star)}=M^{\star}=\cap_{\lambda}\left(M+S_{Q_{\lambda}}\right)$. Hence $M+S_{Q} \not \supset 0$ for some $Q \in \Delta$. Then $M \subset\left(Q+S_{Q}\right) \cap S^{\star}=Q^{\star}$. By the choice of M, $M=Q^{\star}$ by (1.2)(3).

It follows that $\mathcal{M}(\alpha(\star))=\left\{Q^{\star} \mid Q \in \Delta\right\}$.
Since $\left(S_{Q}\right)_{Q+S_{Q}} \supset\left(S^{\star}\right)_{Q^{\star}} \supset S_{Q}$, we have $\left(S^{\star}\right)_{Q^{\star}}=S_{Q}$. By (2.1)(4),
$\mathrm{Na}\left(S^{\star}, \alpha(\star)\right)=\cap_{\lambda} D\left(X ;\left(S^{\star}\right)_{Q_{\lambda}^{\star}}\right)_{e}=\cap_{\lambda} D\left(X ; S_{Q_{\lambda}}\right)_{e}=\mathrm{Na}(S, \star)$.
The general case: Set $\mathcal{M}\left(\star_{f}\right)=\Delta$, then $\tilde{\star}=\star_{\Delta}$. By the case (C), we have $\mathrm{Na}\left(S^{\tilde{\star}}, \alpha(\tilde{\star})\right)=\mathrm{Na}(S, \tilde{\star})$.
(2.7) Let \star be quasi-spectral such that $\Pi^{\star} \neq \emptyset$. Then $\mathrm{Na}(S, \star)=\mathrm{Na}\left(S, \star_{s p}\right)=$ $\mathrm{Na}(S, \tilde{\star})$.

Proof. We have $\tilde{\star}=\left(\star_{f}\right)_{s p} \leq \star_{s p}$ by [M3, $\S 1,(3.8),(4)$ and (5)]. Hence $\mathrm{Na}(S, \tilde{\star}) \subset$ $\mathrm{Na}\left(S, \star_{s p}\right)$. Since $\star_{s p} \leq \star$ by $(1.7)(2)$, we have $\mathrm{Na}\left(S, \star_{s p}\right) \subset \mathrm{Na}(S, \star)$. The first equality of (2.6)(3) completes the proof.
(2.8) Theorem Assume that $\star \neq e$. We have $\operatorname{Max}(\mathrm{Na}(S, \star))=\left\{Q D\left(X ; S_{Q}\right)_{e} \cap\right.$ $\left.\mathrm{Na}(S, \star) \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$.

Proof. (2.1), (3) and (4) show that the maximal ideals of $\mathrm{Na}(S, \star)$ are the ideals of the set $\left\{Q \mathrm{Na}(S, \star) \mid Q \in \mathcal{M}\left(\star_{f}\right)\right\}$, and $\mathrm{Na}(S, \star) \supsetneqq Q D\left(X ; S_{Q}\right)_{e} \cap \mathrm{Na}(S, \star) \supset Q \mathrm{Na}(S, \star)$. The proof is complete.

A valuation oversemigroup V of S is said a \star-valuation oversemigroup of S if, for every element $F \in \mathrm{f}(S), F^{\star} \subset F+V$.
(2.9) Theorem Assume that $\star \neq e$. Let V be a valuation oversemigroup of S. Then V is a $\tilde{\star}$-valuation oversemigroup if and only if V is an oversemigroup of S_{P} for some $P \in \mathcal{M}\left(\star_{f}\right)$.

Proof. We may assume that $V \varsubsetneqq G$. The sufficiency: $\tilde{\star}=\star_{\mathcal{M}\left(\star_{f}\right)}$ by (1.9)(1). Set $\mathcal{M}\left(\star_{f}\right)=\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}$, and let $F \in \mathrm{f}(S)$. Then $F^{\tilde{\tilde{}}}=\cap\left\{F+S_{P_{\lambda}} \mid \lambda \in \Lambda\right\} \subset$ $F+S_{P} \subset F+V$.

The necessity: Let M be the maximal ideal of V, let $Q=M \cap S$, and set $\Delta=\mathcal{M}\left(\star_{f}\right)$. Since $\tilde{\star}$ is of finite type, $Q^{\tilde{\star}}=\cup\left\{F^{\tilde{\star}} \mid F \in \mathrm{f}(S), F \subset Q\right\}$. And $F^{\tilde{\star}} \subset$ $F+V \subset M$. Hence $Q^{\tilde{\star}} \subset M$.

Suppose that $Q \not \subset P$ for each $P \in \mathcal{M}\left(\star_{f}\right)$. Then $Q^{\tilde{\star}}=Q^{\star \Delta}=\cap\left\{Q+S_{P} \mid P \in\right.$ $\Delta\} \ni 0$; a contradiction.

In the following (3.1) and (3.2), for convenience, we will review [OM, (4.2) and (4.3)] briefly.
(3.1) Let \star be a semistar operation on S. Let $f, g, f^{\prime}, g^{\prime} \in D[X ; S]-\{0\}$ with $\frac{f}{g}=\frac{f^{\prime}}{g^{\prime}}$ such that $(e(f)+e(h))^{\star} \subset(e(g)+e(h))^{\star}$ for some $h \in D[X ; S]-\{0\}$. Then there is $h^{\prime} \in D[X ; S]-\{0\}$ such that $\left(e\left(f^{\prime}\right)+e\left(h^{\prime}\right)\right)^{\star} \subset\left(e\left(g^{\prime}\right)+e\left(h^{\prime}\right)\right)^{\star}$.

Proof. By [GP, 6.2. PROPOSITION], there is a positive integer m such that $(m+1) e(g)+e\left(f^{\prime}\right)=m e(g)+e\left(f^{\prime} g\right)$ and $(m+1) e(f)+e\left(g^{\prime}\right)=m e(f)+e\left(f g^{\prime}\right)$. It follows that $\left\{(m+1) e(g)+e\left(f^{\prime}\right)\right\}+m e(f)=\left\{(m+1) e(f)+e\left(g^{\prime}\right)\right\}+m e(g)$.

There are elements $s_{1}, s_{2}, \cdots, s_{n}$ of S with $s_{i} \neq s_{j}$ for each $i \neq j$ such that $(m+1)(e(g)+e(h))+m(e(f)+e(h))=\left(s_{1}, s_{2}, \cdots, s_{n}\right)$. If we set $h^{\prime}=X^{s_{1}}+X^{s_{2}}+$ $\cdots+X^{s_{n}} \in D[X ; S]-\{0\}$, we have $e\left(h^{\prime}\right)=(m+1)(e(g)+e(h))+m(e(f)+e(h))$, and therefore

$$
\begin{aligned}
& e\left(f^{\prime}\right)+e\left(h^{\prime}\right)=\left\{(m+1) e(g)+e\left(f^{\prime}\right)+m e(f)\right\}+(2 m+1) e(h) \\
& =\left\{(m+1) e(f)+e\left(g^{\prime}\right)+m e(g)\right\}+(2 m+1) e(h) \\
& =(e(f)+e(h))+m(e(f)+e(h))+m(e(g)+e(h))+e\left(g^{\prime}\right) \\
& \subset(e(g)+e(h))^{\star}+m(e(f)+e(h))+m(e(g)+e(h))+e\left(g^{\prime}\right) \\
& \subset\left(e\left(g^{\prime}\right)+e\left(h^{\prime}\right)\right)^{\star} .
\end{aligned}
$$

The set $\left\{\left.\frac{f}{g} \right\rvert\, f, g \in D[X ; S]-\{0\}\right.$ such that $(e(f)+e(h))^{\star} \subset(e(g)+e(h))^{\star}$ for some $h \in D[X ; S]-\{0\}\} \cup\{0\}$ is denoted by $\operatorname{Kr}(S, \star, D)$ (or, simply by $\operatorname{Kr}(S, \star)$), and is said the Kronecker function ring of S with respect to \star and D (or, simply with respect to \star). (3.1) and (3.2) show that $\operatorname{Kr}(S, \star)$ is a well-defined overring of $D[X ; S]$.
(3.2) $\operatorname{Kr}(S, \star)$ is an integral domain with quotient field $\mathrm{q}(D[X ; S])$.

Proof. Let $\frac{f}{g}, \frac{f^{\prime}}{g} \in \operatorname{Kr}(S, \star)-\{0\}$. Then there are $h, h^{\prime} \in D[X ; S]-\{0\}$ such that $(e(f)+e(h))^{\star} \subset(e(g)+e(h))^{\star}$ and $\left(e\left(f^{\prime}\right)+e\left(h^{\prime}\right)\right)^{\star} \subset\left(e(g)+e\left(h^{\prime}\right)\right)^{\star}$. There is $j \in D[X ; S]-\{0\}$ such that $e(j)=e(h)+e\left(h^{\prime}\right)$. Then we have
$(e(f)+e(j))^{\star} \subset(e(g)+e(j))^{\star},\left(e\left(f^{\prime}\right)+e(j)\right)^{\star} \subset(e(g)+e(j))^{\star}$.
We may assume that $f+f^{\prime} \neq 0$. Then it follows that $\left(e\left(f+f^{\prime}\right)+e(j)\right)^{\star} \subset$ $(e(g)+e(j))^{\star}$. Hence $\frac{f}{g}+\frac{f^{\prime}}{g} \in \operatorname{Kr}(S, \star)$.

Next, we have $(m+2) e(g)=m e(g)+e\left(g^{2}\right)$ for some m. There is $j^{\prime} \in D[X ; S]-\{0\}$ such that $e\left(j^{\prime}\right)=(m+2) e(g)+2 e(k)$. Then we have
$e\left(f f^{\prime}\right)+e\left(j^{\prime}\right) \subset\left\{e(f)+e\left(f^{\prime}\right)\right\}+\{(m+2) e(g)+2 e(j)\}$
$=\{e(f)+e(j)\}+\left\{e\left(f^{\prime}\right)+e(j)\right\}+(m+2) e(g)$
$\subset 2(e(g)+e(j))^{\star}+(m+2) e(g)$
$=2(e(g)+e(j))^{\star}+\left\{m e(g)+e\left(g^{2}\right)\right\} \subset\left(e\left(g^{2}\right)+e\left(j^{\prime}\right)\right)^{\star}$.
Therefore $\left(e\left(f f^{\prime}\right)+e\left(j^{\prime}\right)\right)^{\star} \subset\left(e\left(g^{2}\right)+e\left(j^{\prime}\right)\right)^{\star}$. Hence $\frac{f f^{\prime}}{g g^{\prime}} \in \operatorname{Kr}(S, \star)$.
We define the mapping $\star_{a}: \overline{\mathrm{F}}(S) \longrightarrow \overline{\mathrm{F}}(S)$ by setting
$F^{\star a}=\cup\left\{\left((F+H)^{\star}: H^{\star}\right) \mid H \in \mathrm{f}(S)\right\}$ for every $F \in \mathrm{f}(S)$,
$E^{\star a}=\cup\left\{F^{\star a} \mid F \in \mathrm{f}(S)\right.$ with $\left.F \subset E\right\}$ for every $E \in \overline{\mathrm{~F}}(S)$.

The following (3.3) appears in [OM, (3.6),(4.5) and (4.7)].
(3.3) (1) \star_{a} is a semistar operation of finite type on S.
(2) \star_{a} is e.a.b. (that is, endlich arithmetisch brauchbar).
(3) $\star_{f}=\star_{a}$ if and only if \star_{f} is e.a.b.
(4) If $\star_{1} \leq \star_{2}$, then $\left(\star_{1}\right)_{a} \leq\left(\star_{2}\right)_{a}$.
(5) If $\star_{1} \leq \star_{2}$, then $\operatorname{Kr}\left(S, \star_{1}\right) \subset \operatorname{Kr}\left(S, \star_{2}\right)$.
(6) Let \star be a semistar operation on S. Then, for every $E \in \overline{\mathrm{~F}}(S)$, we have $E^{\star a}=\cup\{F \operatorname{Kr}(S, \star) \cap G \mid F \in \mathrm{f}(S)$ with $F \subset E\}$.
(3.4) Proposition (1) $\star_{f} \leq \star_{a}$.
(2) $\operatorname{Kr}(S, \star)=\operatorname{Kr}\left(S, \star_{f}\right)=\operatorname{Kr}\left(S, \star_{a}\right)=\operatorname{Kr}\left(S^{\star_{a}}, \alpha\left(\star_{a}\right)\right)$.
(3) $\mathrm{Kr}(S, \star)$ is a Bezout domain.
(4) $\mathrm{Na}(S, \star) \subset \operatorname{Kr}(S, \star)$.
(5) $E^{\star a}=E \operatorname{Kr}(S, \star) \cap G$ for each $E \in \overline{\mathrm{~F}}(S)$.

Proof. The proof follows from $[\mathrm{OM},(3.6),(4.4),(4.6)$ and $(4,8)]$ and (3.3)(6).
(3.5) If \star is a semistar operation on S distinct with e, then $\star_{a} \neq e$.

Proof. Suppose the contrary. Since $\star_{a}=e$, we have $S^{\star_{a}}=G$. Since \star_{a} is of finite type, $S^{\star}=G$. Therefore $\star=e$.
(3.6) A valuation oversemigroup V of S is a \star-valuation oversemigroup if and only if there is a valuation overring W of $\operatorname{Kr}(S, \star)$ such that $W \cap G=V$.

Proof. Let v be a valuation on G, let $f=\sum_{1}^{n} a_{i} X^{t_{i}} \in K[X ; G]$, where $a_{i} \neq 0$ for each i and $t_{i} \neq t_{j}$ for each $i \neq j$. If we set $v^{\prime}(f)=\min _{i} v\left(t_{i}\right)$, we have a valuation v^{\prime} on $\mathrm{q}(K[X ; G])$.

Let V be a \star-valuation oversemigroup, let v^{\prime} be the canonical extension of v to $\mathrm{q}(D[X ; S])$, and let V^{\prime} be the valuation ring of v^{\prime}. Let $\frac{f}{g} \in \operatorname{Kr}(S, \star)$. There is an element $h \in D[X ; S]-\{0\}$ such that $(e(f)+e(h))^{\star} \subset(e(g)+e(h))^{\star}$. Let $f=\sum_{1}^{n} a_{i} X^{s_{i}}, g=\sum_{1}^{m} b_{j} X^{t_{j}}, h=\sum_{1}^{l} c_{k} X^{u_{k}}$, and let $v\left(s_{i_{0}}\right)=\min _{i} v\left(s_{i}\right), v\left(t_{j_{0}}\right)=$ $\min _{j} v\left(t_{j}\right), v\left(c_{u_{0}}\right)=\min _{k} v\left(u_{k}\right)$. We have
$(e(f)+e(h))^{\star}+V=e(f)+e(h)+V=e(f)+V+e(h)+V=s_{i_{0}}+V+e_{u_{0}}+V=$ $s_{i_{0}}+u_{k_{0}}+V$.

Similarly, we have $(e(g)+e(h))^{\star}+V=t_{j_{0}}+u_{k_{0}}+V$. Since $s_{i_{0}}+u_{k_{0}}+V \subset$ $t_{j_{0}}+u_{k_{0}}+V$, we have $v\left(s_{i_{0}}\right) \geq v\left(t_{j_{0}}\right)$. Then $v^{\prime}\left(\frac{f}{g}\right)=v^{\prime}(f)-v^{\prime}(g)=v\left(s_{i_{0}}\right)-v\left(t_{j_{0}}\right) \geq 0$. Hence $\frac{f}{g} \in V^{\prime}$.

Let W be a valuation overring of $\operatorname{Kr}(S, \star)$, and let $V=W \cap G$. Let $F=$ $\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathrm{f}(S)$ with $\alpha_{i} \neq \alpha_{j}$ for each $i \neq j$, and let $f=X^{\alpha_{1}}+\cdots+X^{\alpha_{n}}$.

Let $v\left(\alpha_{i_{0}}\right)=\min _{i} v\left(\alpha_{i}\right)$. If $z \in F^{\star}$, we have $(z)^{\star} \subset e(f)^{\star}$. Then we have $\frac{z}{f} \in$ $\operatorname{Kr}(S, \star) \subset W$, hence $v(z)-v\left(\alpha_{i_{0}}\right) \geq 0$. It follows that $z \in \alpha_{i_{0}}+V \subset F+V$, hence $F^{\star} \subset F+V$.
(3.7) Let W be a valuation overring of $\operatorname{Kr}(S, \star)$, and let $V=W \cap G$. Then W is the canonically extended valuation ring of V to $\mathrm{q}(D[X ; S])$.

Proof. Let w be a valuation on $\mathrm{q}(D[X ; S])$ belonging to W, and set $v(s)=w\left(X^{s}\right)$ for every $s \in S$. Then v is a valuation on G belonging to V. Let v^{\prime} be the canonical extension of v to $\mathrm{q}(D[X ; S])$. If $f=a_{0} X^{s_{0}}+\cdots+a_{n} X^{s_{n}} \in D[X ; S]$ with $a_{i} \neq 0$ for each i and $s_{i} \neq s_{j}$ for each $i \neq j$, and if $v\left(s_{0}\right)=\min { }_{i} v\left(s_{i}\right)$, we have $v^{\prime}(f)=v\left(s_{0}\right)$ and $w(f) \geq \inf _{i} w\left(a_{i} X^{s_{i}}\right)=v\left(s_{0}\right)$. Since $\frac{X^{s_{0}}}{f} \in \operatorname{Kr}(S, \star) \subset W, 0 \leq w\left(\frac{X^{s_{0}}}{f}\right)=v\left(s_{0}\right)-w(f)$. Hence $w(f)=v\left(s_{0}\right)=v^{\prime}(f)$. Therefore $w=v^{\prime}$.
(3.8) Theorem Assume that $e \neq \star=\star_{f}$.
(1) Let W be a valuation oversemigroup of $\operatorname{Kr}(S, \star)$ with maximal ideal $N \varsubsetneqq W$. Set $N_{0}=N \cap S$ and $N_{1}=N \cap D[X ; S]$. Then
(a) $N_{1}=N_{0} D[X ; S], N \cap \mathrm{Na}(S, \star)=N_{0} \mathrm{Na}(S, \star)=N_{1} \mathrm{Na}(S, \star)$ and $N \cap$ $\mathrm{Na}\left(S, \star_{a}\right)=N_{0} \mathrm{Na}\left(S, \star_{a}\right)=N_{1} \mathrm{Na}\left(S, \star_{a}\right)$.
(b) N_{0} is a quasi- \star_{a}-prime ideal.
(2) If P is a quasi- \star_{a}-prime ideal of S, then there is a quasi- \star_{a}-maximal ideal Q of S and a valuation overring W of $\operatorname{Kr}(S, \star)$ such that $P \subset Q=N \cap S$, where N is the maximal ideal of W.
(3) $\mathcal{M}\left(\star_{a}\right)$ is contained in the canonical image in S of $\operatorname{Max}(\operatorname{Kr}(S, \star))$.
(4) For each $Q \in \mathcal{M}\left(\star_{a}\right)$, there is a \star-valuation oversemigroup V of S containing S_{Q}.

Proof. (1) (a) Let $0 \neq f \in N_{1}$, and let $\operatorname{Exp}(f)=\left\{s_{1}, \cdots, s_{n}\right\}$. Then $N \supset$ $f \mathrm{Kr}(S, \star)=\left(s_{1}, \cdots, s_{n}\right) \operatorname{Kr}(S, \star)$ and $\left(s_{1}, \cdots, s_{n}\right) \subset N_{0}$. Hence $f \in N_{0} D[X ; S]$, and hence $N_{1}=N_{0} D[X ; S]$.

Let $\frac{f}{g} \in N \cap \operatorname{Na}(S, \star)$ with $g \in N(\star)$. Then $f \in g N \subset N$, hence $f \in N_{1}$. Hence $\frac{f}{g} \in N_{1} \mathrm{Na}(S, \star)$. It follows that $N \cap \mathrm{Na}(S, \star)=N_{1} \mathrm{Na}(S, \star)=N_{0} \mathrm{Na}(S, \star)$. Since $\operatorname{Kr}(S, \star)=\operatorname{Kr}\left(S, \star_{a}\right)$, we have $N \cap \mathrm{Na}\left(S, \star_{a}\right)=N_{0} \mathrm{Na}\left(S, \star_{a}\right)=N_{1} \mathrm{Na}\left(S, \star_{a}\right)$.
(b) By (3.4), we have $N_{0}^{\star_{a}}=N_{0} \operatorname{Kr}(S, \star) \cap G \subset N \cap \operatorname{Kr}\left(S, \star_{a}\right) \cap G=N \cap S^{\star_{a}}$. Hence $N_{0}^{\star_{a}} \cap S \subset N \cap S^{\star_{a}} \cap S=N_{0}$.
(2) Since \star_{a} is of finite type, there is a quasi- \star_{a}-maximal ideal Q with $Q \supset P$. $Q^{\star_{a}}=Q \operatorname{Kr}(S, \star) \cap G$ by (3.4)(5). Hence $Q \operatorname{Kr}(S, \star) \not \supset 1$. Let M be a maximal ideal of $\operatorname{Kr}(S, \star)$ with $M \supset Q \operatorname{Kr}(S, \star) . W=\operatorname{Kr}(S, \star)_{M}$ is a valuation overring of $\operatorname{Kr}(S, \star)$ with maximal ideal $N=M W$. Since Q is a quasi- \star_{a}-maximal ideal, $N \cap S=Q$ by (1)(b).
(3) follows from the proof of (2).
(4) If $Q \in \mathcal{M}\left(\star_{a}\right)$, we can find a valuation overring W of $\operatorname{Kr}(S, \star)$ such that $N \cap S=Q$ by (2), where N is the maximal ideal of W. Set $V=W \cap G$. Then V is a
*-valuation oversemigroup of S containing S_{Q} by (3.6).
(3.9) Let \star be e.a.b., of finite type and $S=S^{\star}$ with $\star \neq e$. Let P be a \star-maximal ideal of S. Then P is the center of a minimal \star-valuation oversemigroup of S.

Proof. $\quad \star_{a}=\star$ by $(3.3)(3)$. By $(3.8)(3)$, there is a maximal ideal M of $\operatorname{Kr}(S, \star)$ such that $M \cap S=P$. Set $W=\operatorname{Kr}(S, \star)_{M}$, and let N be the maximal ideal of W. Then $W \cap G=V$ is a \star-valuation oversemigroup of S, and P is the center of V in S. Suppose that there is a \star-valuation oversemigroup V^{\prime} with $V^{\prime} \subset V$, let v^{\prime} be a valuation on G belonging to V^{\prime}, and let W^{\prime} be the canonical extension of V^{\prime}, then W^{\prime} is a valuation overring of $\operatorname{Kr}(S, \star)$. Let $0 \neq \varphi \in W^{\prime}$. Then $\varphi=\frac{\sum a_{i} X^{\alpha_{i}}}{\sum b_{j} \beta_{j}}$, where each $\alpha_{i}, \beta_{j} \in V^{\prime}$ with $\beta_{j_{0}}=0$ for some j_{0}. It follows that $\varphi \in W$. Hence $W^{\prime}=W$, and $V^{\prime}=V$.
(3.10) Assume that $e \neq \star=\star_{f}$.
(1) $\tilde{\star} \leq \widetilde{\left(\star_{a}\right)}=\left(\star_{a}\right)_{s p} \leq \star_{a}$ and $\tilde{\star} \leq(\tilde{\star})_{a} \leq \star_{a}$.
(2) $\mathrm{Na}(S, \star)=\mathrm{Na}(S, \tilde{\star}) \subset \mathrm{Na}\left(S, \widetilde{\left(\star_{a}\right)}\right)=\mathrm{Na}\left(S, \star_{a}\right) \subset \operatorname{Kr}\left(S, \star_{a}\right)=\operatorname{Kr}(S, \star)$.
(3) $\mathrm{Na}(S, \star)=\mathrm{Na}(S, \tilde{\star}) \subset \mathrm{Na}\left(S,(\tilde{\star})_{a}\right) \subset \operatorname{Kr}\left(S,(\tilde{\star})_{a}\right)=\operatorname{Kr}(S, \tilde{\star}) \subset \operatorname{Kr}(S, \star)$.
(4) For every $E \in \overline{\mathrm{~F}}(S)$,
(a) $E^{\left(\star_{a}\right)}=E \mathrm{Na}\left(S, \star_{a}\right) \cap G \supset E \mathrm{Na}(S, \star) \cap G=E^{\tilde{\star}}$.
(b) $E^{(\tilde{\star})_{a}}=E \operatorname{Kr}(S, \tilde{\star}) \cap G \subset E K r(S, \star) \cap G=E^{\star a}$.

Proof. (1) Since $\star \leq \star_{a}$ by $(3.4)(1), \tilde{\star} \leq \widetilde{\left(\star_{a}\right)}$ by [M3, $\left.\S 1,(2.7)(4)\right]$. Since \star_{a} is of finite type by $(3.3)(1), \widetilde{\left(\star_{a}\right)}=\left(\left(\star_{a}\right)_{f}\right)_{s p}=\left(\star_{a}\right)_{s p}$. Since \star_{a} is quasi-spectral by [M3, $\S 1,(3.16)],\left(\star_{a}\right)_{s p} \leq \star_{a}$ by $[\mathrm{M} 3, \S 2,(1.2)]$. Since $\tilde{\star}$ is of finite type by $[\mathrm{M} 3, \S 1,(2.6)]$, $\tilde{\star} \leq(\tilde{\star})_{a}$ by $(3.4)(1)$. Since $\tilde{\star} \leq \star$ by $[M 3, \S 1,(2.6)(3)],(\tilde{\star})_{a} \leq \star_{a}$ by (3.3)(4).
(2) By (2.6)(3), we have $\mathrm{Na}(S, \star)=\mathrm{Na}(S, \tilde{\star})$ and $\mathrm{Na}\left(S, \star_{a}\right)=\mathrm{Na}\left(S,\left(\star_{a}\right)\right)$. By (1), $\mathrm{Na}(S, \tilde{\star}) \subset \mathrm{Na}\left(S,\left(\star_{a}\right)\right)$.
(3) $\mathrm{Na}(S, \star)=\mathrm{Na}(S, \tilde{\star})$ by $(2.6)(3)$.

Since $\tilde{\star} \leq(\tilde{\star})_{a}, \mathrm{Na}(S, \tilde{\star}) \subset \mathrm{Na}\left(S,(\tilde{\star})_{a}\right)$.
$\mathrm{Na}\left(S,(\tilde{\star})_{a}\right) \subset \operatorname{Kr}\left(S,(\tilde{\star})_{a}\right)$ by (3.4)(4).
$\operatorname{Kr}\left(S,(\tilde{\star})_{a}\right)=\operatorname{Kr}(S, \tilde{\star})$ by (3.4)(2).
Since $\tilde{\star} \leq \star, \operatorname{Kr}(S, \tilde{\star}) \subset \operatorname{Kr}(S, \star)$.
(4) (a) Since $\star_{f} \leq \star_{a}, \mathrm{Na}(S, \star) \subset \mathrm{Na}\left(S, \star_{a}\right)$.
$E^{\left(\star_{a}\right)}=E \mathrm{Na}\left(S, \star_{a}\right) \cap G$ by $(2.5)(3)$.
(b) From (3.4)(5) and from the fact $\tilde{\star} \leq \star$, we have $E^{(\tilde{\star})_{a}}=E \operatorname{Kr}(S, \tilde{\star}) \cap G \subset$ $E \operatorname{Kr}(S, \star) \cap G=E^{\star a}$.
(3.11) Proposition Assume that $\star \neq e$. The following conditions are equivalent.
(1) $\tilde{\star}=\widetilde{\left(\star_{a}\right)}$.
(2) $\mathcal{M}\left(\star_{f}\right)=\mathcal{M}\left(\star_{a}\right)$.
(3) $\mathrm{Na}(S, \star)=\mathrm{Na}\left(S, \star_{a}\right)$.

Proof. (2) $\Longrightarrow(1)$: Since \star_{a} is of finite type, $\left(\star_{a}\right)_{f}=\star_{a}$.
By $(1.9)(1), \tilde{\star}=\star_{\mathcal{M}\left(\star_{f}\right)}$ and $\widetilde{\left(\star_{a}\right)}=\star_{\mathcal{M}\left(\star_{a}\right)}$.
(1) $\Longrightarrow(2)$: Follows from (2.6)(2).
$(2) \Longrightarrow(3): ~ B y ~(2.1)(2), N(\star)=N\left(\star_{a}\right)$. Hence $\mathrm{Na}(S, \star)=\mathrm{Na}\left(S, \star_{a}\right)$.
$(3) \Longrightarrow(2)$: From (2.1)(5).
(3.12) Assume that $\star \neq e$. The following conditions are equivalent.
(1) $\star_{a}=(\tilde{\star})_{a}$.
(2) The set of $\tilde{\star}$-valuation oversemigroups of S coincides with the set of \star-valuation oversemigroups of S.
(3) $\operatorname{Kr}(S, \tilde{\star})=\operatorname{Kr}(S, \star)$.

Moreover, each of the previous conditions implies
(4) $\mathcal{M}\left(\star_{a}\right)=\mathcal{M}\left((\tilde{\star})_{a}\right)$.

Proof. (2) \Longleftrightarrow (3) follows from (3.6).
$(1) \Longrightarrow(3):(3.4)(2)$ implies that $\operatorname{Kr}(S, \tilde{\star})=\operatorname{Kr}\left(S,(\tilde{\star})_{a}\right)=\operatorname{Kr}\left(S, \star_{a}\right)=\operatorname{Kr}(S, \star)$.
$(1) \Longrightarrow(4):$ Trivial.
$(3) \Longrightarrow(1): ~ B y ~(3.4)(5)$, we have $E^{\star a}=E \operatorname{Kr}(S, \star) \cap G$ and $E^{(\tilde{\varkappa})_{a}}=E \operatorname{Kr}(S, \tilde{\star}) \cap G$.
By (3), we have $E^{\star_{a}}=E^{(\tilde{\star})_{a}}$. Hence $\star_{a}=(\tilde{\star})_{a}$.
(3.13) Proposition Let \star_{1}, \star_{2} be semistar operations on S distinct with e. Then, $\mathrm{Na}\left(S, \star_{1}\right)=\mathrm{Na}\left(S, \star_{2}\right)$ if and only if $\mathcal{M}\left(\left(\star_{1}\right)_{f}\right)=\mathcal{M}\left(\left(\star_{2}\right)_{f}\right)$.

Proof. The necessity follows from (2.1)(5).
The sufficiency follows from (2.1)(2).

Appendix

Let D be a domain, and let S be a g-monoid $\supsetneqq\{0\}$. Let $D[X ; S]$ be the semigroup ring of S over D. If \vec{Z}_{0} is the non-negative integers, then $D\left[X ; \vec{Z}_{0}\right]=D[X]$. After [FL1], we will define the Kronecker function $\operatorname{ring} \operatorname{Kr}(D, \star, S)$ of D with respect to * and S.
(1) (Dedekind-Mertens Lemma)(cf. [GP, 4.3.THEOREM]) Let $f, g \in D[X ; S]-$ $\{0\}$. Then there is a positive integer m such that $c(g)^{m+1} c(f)=c(g)^{m} c(f g)$.
(2) Let \star be a semistar operation on D. Let $f, g, f^{\prime}, g^{\prime} \in D[X ; S]-\{0\}$ with $\frac{f}{g}=\frac{f^{\prime}}{g^{\prime}}$ such that $(c(f) c(h))^{\star} \subset(c(g) c(h))^{\star}$ for some $h \in D[X ; S]-\{0\}$. Then there is $h^{\prime} \in D[X ; S]-\{0\}$ such that $\left(c\left(f^{\prime}\right) c\left(h^{\prime}\right)\right)^{\star} \subset\left(c\left(g^{\prime}\right) c\left(h^{\prime}\right)\right)^{\star}$.

Proof. Then we have $f g^{\prime}=f^{\prime} g$. By (1), there is a positive integer m such that $c(g)^{m+1} c\left(f^{\prime}\right)=c(g)^{m} c\left(f^{\prime} g\right), c(f)^{m+1} c\left(g^{\prime}\right)=c(f)^{m} c\left(f g^{\prime}\right)$.
It follows that $\left\{c(g)^{m+1} c\left(f^{\prime}\right)\right\} c(f)^{m}=\left\{c(f)^{m+1} c\left(g^{\prime}\right)\right\} c(g)^{m}$.
There is $h^{\prime} \in D[X ; S]-\{0\}$ such that $c\left(h^{\prime}\right)=(c(g) c(h))^{m+1}(c(f) c(h))^{m}$.

Then we have
$c\left(f^{\prime}\right) c\left(h^{\prime}\right)=\left\{c(g)^{m+1} c\left(f^{\prime}\right) c(f)^{m}\right\} c(h)^{2 m+1}$
$=\left\{c(f)^{m+1} c\left(g^{\prime}\right) c(g)^{m}\right\} c(h)^{2 m+1}=(c(f) c(h))(c(f) c(h))^{m}(c(g) c(h))^{m} c\left(g^{\prime}\right)$
$\subset(c(g) c(h))^{\star}(c(f) c(h))^{m}(c(g) c(h))^{m} c\left(g^{\prime}\right) \subset\left(c\left(g^{\prime}\right) c\left(h^{\prime}\right)\right)^{\star}$.
Therefore $\left(c\left(f^{\prime}\right) c\left(h^{\prime}\right)\right)^{\star} \subset\left(c\left(g^{\prime}\right) c\left(h^{\prime}\right)\right)^{\star}$.
Set $\operatorname{Kr}(D, \star, S)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in D[X ; S]-\{0\}\right.$ such that $(c(f) c(h))^{\star} \subset(c(g) c(h))^{\star}$ for some $h \in D[X ; S]-\{0\}\} \cup\{0\}$. (2) shows that $\operatorname{Kr}(D, \star, S)$ is a well-defined subset of $\mathrm{q}(D[X ; S])$.
(3) $\operatorname{Kr}(D, \star, S)$ is an integral domain with quotient field $\mathrm{q}(D[X ; S])$.

Proof. Let $\frac{f}{g}, \frac{f^{\prime}}{g} \in \operatorname{Kr}(D, \star, S)-\{0\}$. Then there are $h, h^{\prime} \in D[X ; S]-\{0\}$ such that $(c(f) c(h))^{\star} \subset(c(g) c(h))^{\star},\left(c\left(f^{\prime}\right) c\left(h^{\prime}\right)\right)^{\star} \subset\left(c(g) c\left(h^{\prime}\right)\right)^{\star}$.

There is $k \in D[X ; S]-\{0\}$ such that $c(k)=c(h) c\left(h^{\prime}\right)$. Then we have
$(c(f) c(k))^{\star} \subset(c(g) c(k))^{\star},\left(c\left(f^{\prime}\right) c(k)\right)^{\star} \subset(c(g) c(k))^{\star}$.
We may assume that $f+f^{\prime} \neq 0$. Then it follows that $\left(c\left(f+f^{\prime}\right) c(k)\right)^{\star} \subset(c(g) c(k))^{\star}$. Hence $\frac{f}{g}+\frac{f^{\prime}}{g} \in \operatorname{Kr}(D, \star, S)$.

Next, we have $c(g)^{m+2}=c(g)^{m} c\left(g^{2}\right)$ for some m. There is $k^{\prime} \in D[X ; S]-\{0\}$ such that $c\left(k^{\prime}\right)=c(g)^{m+2} c(k)^{2}$. Then we have
$c\left(f f^{\prime}\right) c\left(k^{\prime}\right) \subset\left\{c(f) c\left(f^{\prime}\right)\right\}\left\{c(g)^{m+2} c(k)^{2}\right\}$
$=\{c(f) c(k)\}\left\{c\left(f^{\prime}\right) c(k)\right\} c(g)^{m+2} \subset\left((c(g) c(k))^{2}\right)^{\star} c(g)^{m+2}$
$=\left((c(g) c(k))^{2}\right)^{\star}\left\{c(g)^{m} c\left(g^{2}\right)\right\} \subset\left(c\left(g^{2}\right) c\left(k^{\prime}\right)\right)^{\star}$.
Therefore $\left(c\left(f f^{\prime}\right) c\left(k^{\prime}\right)\right)^{\star} \subset\left(c\left(g^{2}\right) c\left(k^{\prime}\right)\right)^{\star}$, and hence $\frac{f f^{\prime}}{g^{2}} \in \operatorname{Kr}(D, \star, S)$.
(4) $\operatorname{Kr}(D, \star, S)$ is a Bezout domain.

Proof. Set $R=\operatorname{Kr}(D, \star, S)$, and let $h \in D[X ; S]-\{0\}$ with Coef $(f)=$ $\left\{c_{1}, \cdots, c_{n}\right\}$. Then we have $h R=\left(c_{1}, \cdots, c_{n}\right) R$.

Let ξ and η be non-zero elements of R. We let $\xi=\frac{f}{g}$ and $\eta=\frac{f^{\prime}}{g}$ with $f, f^{\prime}, g \in$ $D[X ; S]-\{0\}$, and let $\operatorname{Coef}(f) \cup \operatorname{Coef}\left(f^{\prime}\right)=\left\{a_{1}, \cdots, a_{n}\right\}$ with $a_{i} \neq a_{j}$ for every $i \neq j$. Then we have, for an element $s \in S-\{0\}$,
$(\xi, \eta) R=\left(\frac{1}{g}\right)\left(f, f^{\prime}\right) R=\left(\frac{1}{g}\right)\left(a_{1}, \cdots, a_{n}\right) R$
$=\left(\frac{1}{g}\right)\left(a_{1} X^{s}+a_{2} X^{2 s}+\cdots+a_{n} X^{n s}\right) R$.
Therefore $(\xi, \eta) R$ is a principal ideal of R.
The above proof is slightly defferent from the corresponding classical one (cf., for instance, [G1, (32.7) THEOREM]).

Let D be a domain with quotient field K, let \star be a semistar operation on D. A valuation overring V of D is said a \star-valuation overring if, for every $F \in \mathrm{f}(D)$,
$F^{\star} \subset F V$. The following similar result to [FL2, Theorem 3.5] is valid, and the proof is similar:
(5) Proposition Let \star be a semistar operation on D, and let V be a valuation overring of D. Then V is a \star-valuation overring if and only if there is a valuation overring W of $\operatorname{Kr}(D, \star, S)$ such that $W \cap K=V$.

The author thanks to Professor Ken Nakane for his assistance over a long period of time.

REFERENCES

[BHo] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg. 30 (2002), 1591-1606.
[FHu] M. Fontana and J. Huckaba, Localizing systems and semistar operations, Non Noetherian Commutative Ring Theory, Dordrecht, Kluwer Academic Publishers, 2000, 169-197.
[FL1] M. Fontana and K.A. Loper, Kronecker function rings: a general approach, In: Ideal Theoretic Methods in Commutative Algebra, Lecture Notes Pure Appl. Math. 220, Marcel Dekker, 2001, 189-205.
[FL2] M. Fontana and K.A. Loper, A Krull-type theorem for the semistar integral closure of an integral domain, ASJE Theme Issue "Commutative Algebra" 26 (2001), 89-95.
[FL3] M. Fontana and K.A. Loper, Nagata rings, Kronecker function rings, and related semistar operations, Comm. Alg. 31(2003), 4775-4805.
[FP] M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (2005), 645-664.
[G1] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[G2] R. Gilmer, Commuative Semigroup Rings, The Univ. Chicago Press, 1984.
[GP] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.
[Ha] F. Halter-Koch, Kronecker function rings and generalized integral closures, Comm. Alg. 31 (2003), 45-59.
[HeHo] J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), 137-147.
[K] I. Kaplansky, Commutative Rings, The Univ. Chicago Press, 1974.
[M1] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd. ed., Kaisei, Tokyo, 2002.
[M2] R. Matsuda, Note on localizing systems and semistar operations, J. Commutative Algebra, to appear.
[M3] R. Matsuda, Note on localizing systems and semistar operations, II, Bull. Allahabad Math. Soc. 24(2009), to appear.
[O] A. Okabe, Note on a Fontana-Huckaba's open problem, JP J. Algebra, Number Theory and Appl. 5(1) (2005), 17-23.
[OM] A. Okabe and R. Matsuda, Kronecker function rings of semistar operations on semigroups, II, Math. J. Ibaraki Univ. 40(2008), 1-10.

[^0]: Received 4 June, 2008; revised 15 January, 2009.
 2000 Mathematics Subject Classification. 13A15.
 Key Words and Phrases. localizing system, semistar operation, Kronecker function ring.
 *Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

