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Note on localizing systems and Kronecker function
rings of semistar operations

Rytki MATSUDA*

Abstract
We study the results of M. Fontana and J. Huckaba [FHu] on localizing
systems and semistar operations, and give a couple of remarks for them. After M.
Fontana and K.A. Loper [FL3], we study also Nagata rings, Kronecker function
rings, and related semistar operations on semigroups.

This paper consists of §1 and §2. M. Fontana and J. Huckaba [FHu] established
a natural bridge between localizing systems and semistar operations. In §1 of this
paper, we will study their results, and will give a couple of remarks for them. §1
consists of 4-Parts. Part 1 contains preliminary results, and will review a part of
[FHu]. Part 2 concerns with relations between finite type localizing systems and finite
type semistar operations. We will give an answer to the problem ([FHu]): Characterize
a localizing system JF of D such that x(z,) = (x#). In fact, we treat this problem for
all localizing systems, and not for particular ones. Part 3 concerns with x-invertible
ideals for semistar operations x. We will study a pseudo-valuation domain D, a quasi-
spectral semistar operation x, and x-invertible ideals of D, and we will show that, if
I is a x-invertible ideal of D, then I need not be x-invertible. The proof of [FHu,
Proposition 4.25] seems incomplete. We hear that such an ideal was also given in
[FP]. Part 4 concerns with semistar operations which are spectral, quasi-spectral, qq-
spectral, and fqg-spectral. We will give a condition for a semistar operation to be
spectral. The proof of [FHu, Proposition 4.8] seems incomplete.

M. Fontana and K.A. Loper [FL3] investigated Nagata rings, Kronecker function
rings, and related semistar operations. A subsemigroup > 0 of a torsion-free abelian
additive group is said a grading monoid (or, a g-monoid). In §2 of this paper, after
[FL3], we will study Nagata rings, Kronecker function rings, and related semistar
operations on g-monoids, and will show that almost all statements in [FL3] hold for
g-monoids. Since the structure of a g-monoid is simpler than that of a domain, it is
expected that the semigroup versions of [FL3] are only straightforward translations
from rings to semigroups. However, if or not the semigroup version §2, (1.6) of [FL3,
Lemma 2.6] is valid is open. In Appendix, we will give a direct proof for the fact that,
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16 R. Matsuda

for any integral domain D and for any semistar operation on D, the Kronecker function
ring which was defined by M. Fontana, F. Halter-Koch and K.A. Loper ([FL1], [Hal)
is well-defined. Besides, we will show a similar result to [FL2, Theorem 3.5] for our
Kronecker function ring Kr(D, x, S).

81 Localizing systems and semistar operations

First, we will review a part of [FHu]. The quotient field of an integral domain D
is denoted by q(D). Let D be an integral domain with K = q(D). Let F(D) be the
set of non-zero D-submodules of K, let F(D) be the set of non-zero fractional ideals
of D, and let f(D) be the set of non-zero finitely generated D-submodules of K. For
every E,F € F(D), we define (E: F)={r € K |2F C E} and E' = (D : E).

If we set B4 = E (resp., B¢ = K) for every E € F(D), then the mapping
E —— E? (vesp., E —— E°) is a semistar operation, and is called the d-semistar
operation (resp., the e-semistar operation) on D. If we set EV = (E~1)~! for every
E € F(D), the mapping E — E" is a semistar operation on D, and is called the v-
semistar operation on D. Let T be an overring of D, and let x be a semistar operation
on D. Then there is induced a canonical semistar operation «a(*) on T, and is called
the ascent of x to T

We say that a semistar operation * is stable if (£ N F)* = E* N F* for every
E,F € F(D).

A semistar operation x on D is said of finite type if, for every E € F(D), E* =
U{F* | F € {(D) with F C E}.

For every semistar operation x on D, a semistar operation %; of finite type can
be defined in the following way: For every E € F(D), E*f = U{F* | F € f(D) with
F c E}.

We set vy = t. Let x1,*2 be semistar operations on D. If E*1 C E*? for every
E € F(D), we set x; < xa.

Let A be a non-empty subset of Spec(D) — {(0)}. For every E € F(D), define
E*» =n{EDp | P € A}. Then the mapping F — E*2 is a semistar operation on
D. A semistar operation x on D is said spectral, if there is a non-empty subset A C
Spec(D) — {(0)} such that * = xa.

A semistar operation * on D is said quasi-spectral, if for every non-zero ideal I of
D such that I'* # 1, there is a non-zero prime ideal P with I C P such that P*ND = P.

We note that a localizing system F of D is non-empty and F Z (0) by definition.

If x is a semistar operation on D, we consider the following localizing system
F*={I|Iis anideal of D with I* 5 1}.

If x = e, then F* = {I | I is a non-zero ideal of D}.

Let x be a semistar operation on D, and let IT* = {P € Spec(D)—{(0)} | P* # 1}.
If the set II* is non-empty, we consider the semistar operation g, = *+.

If F is a localizing system of D, we consider the semistar operation xz: For every
EcFD),E**=U{(E:1I)|IecF}.

If 7 ={I| I is a non-zero ideal of D}, then xr = e.

Let A be a non-empty subset of Spec(D) —{(0)}. Set F(A) = {I | I is an ideal of
D with I ¢ P for each P € A}. Then F(A) is a localizing system of D. A localizing
system F is said spectral, if there is a non-empty subset A C Spec(D) — {(0)} such
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that F = F(A).

A localizing system F is said finitely spectral if, for every finitely generated ideal
I ¢ F, there is a prime ideal P ¢ F such that P D I.

If a localizing system F is spectral, then F is finitely spectral.

A localizing system F of D is said of finite type if, for every I € F, there is a
non-zero finitely generated ideal J € F with J C I.

Given a localizing system F of D, we consider the following localizing system of
finite type Fj:

F; ={I € F | There is a non-zero finitely generated ideal J € F with J C I}.

If x is a semistar operation on D, we consider the semistar operations x = xz»
and * = *(z+),. We have

E* =U{(E : I) | I is a non-zero ideal of D with I* > 1} for every E € F(D)

and

E* = U{(E : I) | I is a finitely generated non-zero ideal of D with I* > 1} for
every E € F(D).

The following (0.1) ~ (0.3) are results in [FHu].

(0.1) Let * be a semistar operation on D, and let F be a localizing system of D.

If F is of finite type, then x £ is of finite type.
If x is of finite type, then F* is of finite type.
*r is stable.

If x is spectral, then F* is spectral.

If F is spectral, then xx is spectral.

(1) F*=F*

(2) F* = (F);.

(3) * <=

(4) * S *f.

(5) If x is of finite type, then x is quasi-spectral.
(6) If x is spectral, then x = x.

(7) If % is of finite type, then * is of finite type.
(8) = is stable if and only if x = *.

(9) = is spectral if and only if x is quasi-spectral and stable.
(10) *5 =+

(11) F = F*=.

(12

(13

(14

(15

(16

— S —

(0.2) (1) Let A be a non-empty subset of Spec(D) — {(0)}. Then xa = *z(a)
and F*& = F(A).
(2) Let %1, %2 be semistar operations on D such that x; < x2. Then ¥ < ¥3.

0.3) Assume that IT* # ().

1) * < kgp.

2) If  is spectral, then F* = F(II*) and * = *g.
3) If x is quasi-spectral, then x5, = *.

4) « is spectral if and only if x = *,).

(
(
(
(
(

Now, we will study the following,
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(1.1) ([FHu]) Characterize a localizing system F such that xz, = (xx);.

(1.2) Let F be a localizing system of D.

(1) For every element E € F(D), we have
Exr=U{(E:I)|I€eZF}.

(2) For every element E € f(D), we have

EGAs =U{(E: 1) | I € F}

and

E*70 = U{(E : I) | I is a finitely generated ideal of D with I € F}.

Proof. E*“9 =U{(E:J) | J € Fs}
=U{(F : J) | There is a finitely generated ideal I € F with I C J}
=U{(F:I) | Iis a finitely generated ideal with I € F}.

(1.3) ([FHu, Example 3.5]) There is a domain D and a localizing system F of D

such that xz, # (xx)s.

(1.4) ([FHu, Proposition 3.3]) For every localizing system F, we have xz, <

(x7)s-

(1.5) (M2, Lemma 7]) Let F be a localizing system of D, and let x = xr.
(1) (F*)y=F*.

(2) *Fp = W

B) (x5 = )y

(1.6) ([M2, Proposition 2]) Let F be a localizing system of D, and let x = *£.

The following conditions are equivalent.

(1) xr; = (xF)s-

2) x5 =

3) For every element E € f(D), we have

{(E: 1) | I is a finitely generated ideal of D with I* 5 1}
=U{(F: 1) | Iis an ideal of D with I'* 5 1}.

—~~

| C

(1.7) Let F be a localizing system of D, and let * = *z.

(1) %y =eif and only if F = {I | I is a non-zero ideal of D}.
(2) If %y = e, then x5, = (x7);.

(3) If x5 # e, then TI*#)s £ () hence ((x#)y)sp is well-defined.

Proof. (1) For, F = F* by (0.1)(11).
(2) Then F ={I | I is a non-zero ideal of D} by (1). Hence Fy = F and xz = e.
(3) There is an ideal I ¢ F by (1). Hence the set {I | I is an ideal with

I*f # 1} = X is non-empty. By Zorn’s Lemma, X has a maximal member P. Then P
is a prime ideal of D, and P € II*/.

(1.8) Assume that II* # (). Then we have (xf)sp = *f < %5 and ((xf)sp)f =
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(%f)sp

Proof. *j is quasi-spectral by (0.1)(5). Then (x¢)sp =% by (0.3)(3), and (x7)sp
is of finite type by (0.1)(7).

y (1.7), if 7 = {I | I is a non-zero ideal of D}, then we have xz, = (xz)s
trivially. And, if otherwise, ((xx)s)sp is well-defined.

(1.9) Proposition Let F be a localizing system of D with F & {I | I is a
non-zero ideal of D}, and let x = xz. The following conditions are equivalent.

(1) *r, = (x7)s-
2) *f =¥y
3) For every element F € f(D) and for every ideal I with I* 5 1, we have
E:I)CU{(E:J)| Jis a finitely generated ideal with J* > 1}.
4) For every ideal J € f(D) and for every ideal I with I* 5 1, we have
J:I)CU{(J: E) | E is a finitely generated ideal with E* > 1}.
5) For every element E € f(D) and for every ideal I with I* 3 1 such that I C E,
we have J C E for some finitely generated ideal J with J* 5 1.
) g is stable.
) ¢ is spectral.
) (xf)sp = %5
) For every element E € f(D) and for every ideal I € F, we have
E:I)CU{(E:J)| Jis a finitely generated ideal with J € F}.
10) For every ideal J € f(D) and for every ideal I € F, we have
J:I)CU{(J: E) | E is a finitely generated ideal with E € F}.
11) For every element E € f(D) and for every ideal I € F such that I C E, we
have J C E for some finitely generated ideal J € F.

(12) For every element E € f(D) with E* 3 1, there is a finitely generated ideal
I with I* 5 1 such that I C F.

Proof. (1), (2),(3) are equivalent by (1.6).

(4) = (3): Let x € (E : I). There is an element d € D — {0} such that
dE C D. Since dz € (dE : I), there is a finitely generated ideal J with J* 5 1 such
that dz € (dE : J). Then we have z € (E : J).

(3) = (4): Trivial.

1
(5) = (3): Let0#x € (E:I). Then we have I C —FE. Hence there is a finitely
x

1
generated ideal J with J* 5 1 such that J C —E. Then z € (E : J).

(3) = (5): Since 1 € (E: 1), we havexl € (E : J) for some finitely generated
ideal J with J* 2 1. Then J C E.
(1): Fy=F* by (0.1)(2). Then xz, = *; by (0.1)(8).
(6): By (0-1)(14).
(6): %y =%y by (0.1)(6), and * is stable by (0.1)(8).
(7): *y is quasi-spectral by (0.1)(5). Then x¢ is spectral by (0.1)(9).

(6) =
(1)
(7)
(6)
®) (7): By (0.3)(4).

MM
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(9) <= (3), (10) <= (4), and, (11) <= (5): Because F = F* by (0.1)(11).
(6) = (12): Because 1 € E*ND* = E*f N D*/ = (EN D)*/.
(12) = (5): Trivial.

We note that (1) <= (6) in (1.9) Proposition was proved in [O, Theorem 6].
Now, we will study a pseudo-valuation domain D, a quasi-spectral semistar oper-
ation x on D, and x-invertible ideals of D.

(2.1) ([FHu, Proposition 4.25]) Let x be a quasi-spectral semistar operation on
D, and let I, J be ideals of D.

(1) (IJ)* = D* if and only if (IJ)* =

(2) Assume that F* = {D}. Then (IJ)* = D* if and only if I = J = D.

Proof. (1) The sufficiency: We have x < by (0.1)(3), and hence (IJ)* =

The necessity: Suppose that (I.J)* & D*. Then we have I.J ¢ F*. Since F* = F*
by (0.1)(1), we have I.J ¢ F*. Hence there is a prime ideal P with P* # 1 such that
P D 1J. Tt follows that (IJ)* C P* & D*; a contradiction.

(2) If (IJ)* = D*, then IJ € F*, hence I.J = D.

(2.2) ([FHu, Corollary 4.26]) Let % be a semistar operation on D, and let I, J be
ideals of D.

(1) (IJ)*# = D*7 if and only if (I.J)* =

(2) (IJ)t = Dt if and only if (IJ)° = f’.

Proof. %7 =% by (0.1)(10). * is quasi-spectral by (0.1)(5). Then we may apply
(2.1).

If, for every ideal I with I* # 1, there is a prime ideal P with P* # 1 such
that P D I, then * is said a qq-spectral semistar operation (or, a quasi-quasi-spectral
semistar operation).

Every quasi-spectral semistar operation is a qqg-spectral semistar operation.

(2.3) Let % be a qq-spectral semistar operation on D, and let I, J be ideals of D.
(1) (IJ)* = D* if and only if (IJ)* = D*
(2) Assume that F* = {D}. Then (IJ)* = D* ifand only if I = J = D.

The proof is similar to that of (2.1).

An element E € F(D) is said x-invertible if there is an element F' € F(D) such
that (EF)* = D*. If E is d-invertible, then F is said invertible.

Set Inv*(D) = {E € F(D) | E is xinvertible}, and set Princ(D) = {D | x €
K—{0}}. Inv*(D) forms a group under a canonical product, and Prin(D) is a subgroup
Inv*(D)

m is said the x-class group of

of Inv*(D). Then the quotient group CI*(D) =
D.
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(2.4) Let E € F(D). If E is %invertible, then E is x-invertible. If E is -
invertible, then £ is x¢-invertible. If F is v-invertible, then E is t-invertible.

For, * < % by (0.1)(3), and * < %¢ by (0.1)(4).

(2.5) Let  be a semistar operation with D* = D, and let E € F(D).
(1) E is x-invertible if and only if E is x-invertible.
(2) Assume that F* = {D}. Then F is x-invertible if and only if E is invertible.

Proof. Let F' € F(D) such that (EF)* = D. Then EF € F*. Since F* = F* by
(0.1)(1), we have EF € F*. Hence (EF)* = D.

(2.6) (cf. [K, Theorem 59]) Assume that D is a quasi-local domain, that is, D
has a unique maximal ideal. Then every invertible ideal of D is principal.

Let I be an ideal of D. If, for every element a,b € K, ab € I and b ¢ I imply
a € I, then I is called strongly prime. If every prime ideal of D is strongly prime,
then D is called a pseud-valuation domain (or, a PVD). We refer to Hedstrom-Houston
([HeHo)) for the notion of a PVD. Thus, every PVD is a quasi-local domain, and if D
is a PVD with maximal ideal M, then V' = (M : M) is a valuation overring of D with
maximal ideal M.

(2.7) Let x be a quasi-spectral semistar operation on D, and let I be a non-zero
ideal of D.

(1) If I is *-invertible, then I need not be x-invertible.

(2) If F* ={D}, and if I is x-invertible, then I need not be invertible.

For a counter example, let D be a PVD which is not a valuation domain, let M
be the maximal ideal of D, let V = (M : M), and let * be the semistar operation
E+— EV on D. Then V is a valuation domain, M* = M, D* = V, « is quasi-spectral,
F* ={D}, and E* = (E : D) = E for every E € F(D). Since D is not a valuation

b
domain, there are elements a,b € D — {0} such that % ¢ D and o ¢ D. Then

I = (a,b) is not a principal ideal of D. Since I'V is a finitely generated ideal of V', we
have IV = zV for some element z € K — {0}. Then (Iz~!)* =V = D* that is, [ is a
x-invertible ideal of D. Suppose that I is *-invertible. There is an element E € F(D)
such that (IE)* = D*, that is, IE = D. Then (2.6) implies that I is a principal ideal
of D; a contradiction.

(2.8) Let % be a semistar operation on D with D* = D.
(1) CI’(D) = CI*(D).

(2) CI¥(D) = C1°(D).

Proof. *j =% by (0.1)(10). Then we may apply (2.5).

(2.9) Let x be a semistar operation on D. Then C1*/(D) = CI*(D) need not be
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true.

For a counter example, let D, *, I be those in the counter example of (2.7). Then
we have x = xy. Let J be an ideal of D with J* > 1. Since M* = M, we have
J = D. It follows that E* = E for every element E € F(D). The ideal I = (a,b) is
xp-invertible. Suppose that I is *-invertible. There is an element F' € F(D) such that
(IF)* = D*. Then IF = D. (2.6) implies a contradiction.

Now, we will study conditions for a semistar operation to be spectral.

(3.1) Proposition Let *x be a semistar operation on D with IT* # (). The
following conditions are equivalent.

(1) *gp < *.

(2) = is qg-spectral.

(3) E*=n{E*Dp | P € II*} for every element F € F(D).

Proof. Let IT* = {Py | A € A}.

(1) = (2): Let I be an ideal of D such that I* # 1. Since %z, < %, we have
I*s» Z 1. Hence we have I C Py for some \, and hence x is qg-spectral.

(2) = (3): Suppose that there is an element z ¢ E* such that z € "{E*Dp, | X €

A}. If we set J = (E*271) N D, then J* Z 1. For every A\, we have z = X for some

Yx
element z) € E* and for some element yy € D — Py. It follows that J ¢ P, and that

* is not qg-spectral; a contradiction.
(3) = (1): E*» =n{EDp, | N\ e A} CN{E*Dp, | A€ A} = E*.

For every semistar operation x, %4, is spectral by the definition. Hence x4, = %,

by (0.1)(6).

(3.2) Proposition Assume that IT* # (). The following conditions are equivalent.
(1) xis qq—spectral

(2) *gp

(3) * 15 spectral

(4) Fr=F(Ir).

(5) F* is spectral.

Proof. (1) = (2): *sp < x by (3.1), hence *;, < % by (0.2)(2). On the other
hand, * < x4, by (0.3)(1), and *5, = %5, by (0.1)(6). Then we have 5, = %5, < * <
*gp-

(2) = (4): By (0.1)(1) and (0.2)(1), we have

* — f‘k F*ép — f*(n* — f(]:[*).
(5): Trivial.
(

5):
3): There is a non-empty subset A C Spec(D) — {(0)} such that F* =
F(A). Then (0.2)(1) implies that

*

= *FC = XFQ)) T FA _ _
(3) = (1): F* = F* by (0.1)(1), and F* = F(II*) by (0.3)(2), and hence
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F* is spectral. Set A = IT*, and hence F* = F(A). If I is an ideal with I* # 1,
then I ¢ F* = F(A). Hence there is a prime ideal P € A such that I C P. Since
P # F(A) = F*, we have P* # 1.

(3.3) Proposition Assume that IT* # ). If x is qq-spectral and stable, then
is spectral.

Proof. * is spectral by (3.2), and x = * by (0.1)(8). Hence * is spectral.
(3.4) Assume that IT* # (. If * is qg-spectral, is x quasi-spectral?

(8.5) Assume that IT* # ), and that * is gg-spectral. If * is of finite fype, or if
dim(D) < oo, then * is quasi-spectral.

Proof. Let I be an ideal of D with I* # 1. Then the set X = {P € II* | P D I}
is non-empty. If dim(D) < oo, obviously X has a maximal member. If x is of finite
type, we may use Zorn’s Lemma to find a maximal member in X. Let P be a maximal
member in X. Since P* # 1, there is a prime ideal Q) with Q* # 1 such that Q@ > P*ND.
By the choice of P, we have @ = P. It follows that P* N D = P.

(3.6) ([FHu]) Is there an example of a finitely spectral non-spectral localizing
system distinct with {I | I is a non-zero ideal of D}?

If, for every finitely generated ideal I of D with I* Z 1, there is a prime ideal P
with P* # 1 such that P D I, then % is said a fqq-spectral semistar operation (or, a
finitely quasi-quasi-spectral semistar operation).

Every qg-spectral semistar operation is a fqg-spectral semistar operation.

(3.7) Let * = xx. The following conditions are equivalent.
(1) F is finitely spectral.
(2) *is a fqg-spectral semistar operation.

Proof. (1) = (2): Let I be a finitely generated ideal with I* # 1. Since F = F*
by (0.1)(11), we have I ¢ F. Hence there is a prime ideal P ¢ F such that I C P.
Since P ¢ F*, we have P* Z 1.

The proof of (2) = (1) is similar.

(3.8) Proposition Let F be a localizing system of D and let x = *z. The
following conditions are equivalent.

(1) F is a finitely spectral non-spectral localizing system distinct with {I | I is a
non-zero ideal of D}.

(2) *is a non-spectral fqg-spectral semistar operation distinct with e.

Proof. (1) = (2): * is non-spectral by (0.1)(15). * is a fqg-spectral semistar
operation by (3.7). Clearly, x # e. And, * is stable by (0.1)(14).
The proof of (2) = (1) is similar.
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(3.8) shows that (3.6) is equivalent to the following,

(3.9) Is there a stable non-spectral fqq-spectral semistar operation distinct with
e?

(3.10) Let % be a fqg-spectral semistar operation on D distinct with e. Then we
have II* # ().

Proof. Then we have D* & K. Hence there is an element a € D — {0} such that
aD* # 1. Then there is a prime ideal P with P* # 1 such that P D aD.

(3.10) shows that if x is fqg-spectral distinct with e, then %, is well-defined.

(3.11) An example of a domain D, a semistar operation x on D, a maximal ideal
M of D such that M & M* # 1.

Example: Let k be a field, let « be an indeterminate over k, and let T' = k[z].
Let D = k[z?,2% 2°], and let M = (22,2% %) be a maximal ideal of D. Let x be a
semistar operation £ +—— ET on D. Then we have M ¥ 2> € MT = M* # 1.

(3.12) Assume that, for each prime ideal P in II*, P is a maximal ideal of some
overring T of D. Then, if * is qg-spectral, then x is quasi-spectral.

Proof. Let I be an ideal of D with I* Z 1. Then there is a prime ideal P of D
with P* Z 1 such that P D I. There is an overring T of D with maximal ideal P. We
have P*T C (P*T)* = (PT)* = P*, hence P* is a T-module. Since P* Z 1, it follows
that P*NT = P, and P*ND = P.

For every element a,b € K, if ab € I and b € I imply a™ € I for some positive
integer n, then I is called strongly primary. If every prime ideal of D is strongly
primary, then D is called an almost pseudo-valuation domain (or, an APVD). We
refer to Badawi-Houston ([BHo]) for the notion of an APVD. Thus, every APVD is
a quasi-local domain. Let M be the maximal ideal of D. Then V = (M : M) is a
valuation domain, M is a primary ideal of V, and M is primary to the maximal ideal
of V. The set of non-maximal prime ideals of D coincides with the set of non-maximal
prime ideals of V.

(3.13) Let D be an APVD. Then every qg-spectral semistar operation = on D is
a quasi-spectral semistar operation.

Proof. Let P be a prime ideal in IT*. Assume that P is not a maximal ideal of
D. Then P is a prime ideal of the valuation domain V = (M : M), where M is the
maximal ideal of D. It follows that P is the maximal ideal of the valuation domain
Vp. Then (3.12) completes the proof.
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(3.14) The following conditions are equivalent.

(1) Assume that IT* # () and that * is qg-spectral. Then * is quasi-spectral.

(2) Assume that IT* # () and that x is qq-spectral with D* = D. Then x is quasi-
spectral.

Proof. (2) = (1): = induces a canonical semistar operation * on D*. Since
(D*)*, = D*, ¥’ is quasi-spectral. Let I be a non-zero ideal of D with I* Z 1. I'* is an
ideal of D* with (I*)*l # 1. There is a prime ideal Q of D* with Q* = Q such that
QD I*. Set DNQ = P. Then P is a prime ideal of D with P* N D = P such that
PO

82 Kronecker function rings on semigroups

Throughout the Section, let D be an infinite domain with quotient field K, and
let S be a g-monoid 2 {0} with quotient group q(S) = G. We refer to [G2] and [M1]
for the general theory of g-monoids. Let F(S) be the set of non-empty subset £ C G
such that S+ E C E, let F(S) be the set of fractional ideals of S, and let f(.S) be the
set of finitely generated fractional ideals of S. Set E¢ = G for every E € F(S). Then
the semistar operation £ —— E° is said the e-semistar operation on S. Set B¢ = F
for every E € F(S). Then the semistar operation E —— E? is said the d-semistar
operation on S.

For every E,F € F(S), we denote {x € G | s+ FE C F} by (F : E). Set
El'=S :E)={reG|az+E C S} set 07! =G, and set £ = (E~1)~!
for every E € F(S). Then the semistar operation £ —— EV is said the v-semistar
operation on S. Let x be a semistar operation on S. We define a semistar operation
*xp: E— U{F* | F € f(S) with F C E}. t = vy is said the t-semistar operation on S.

Let x be a semistar operation on S, and let T be an oversemigroup of S. There is
induced a canonical semistar operation ar(x) = a(*) on T, and is said the ascent of x
to T

If %1, %9 are semistar operations on S, we say *x; < %o if E** C E*? for every
E € F(9).

An ideal I of S is said x-ideal if I* = I. A fractional ideal F of S is said a
*-fractional ideal if E* = E.

A prime ideal P satisfies P # 0 by the definition.

An ideal I of S is said a quasi-x-ideal of S if I* NS = 1.

A prime ideal P of S is said a x-prime ideal if P* = P.

A prime ideal P of S is said a quasi-x-prime ideal if P* NS = P.

An ideal T of S is said a *-maximal ideal if I is maximal in the set {I | I is an
ideal with S 2 I* = I}.

An ideal I of S is said a quasi-x-maximal ideal if I is maximal in the set {I | I is
an ideal with § 2 I =I*N S}

(1.1) Let ag+ (%) = a(x), and let I be an ideal of S. Then I a quasi-x-ideal of S
if and only if I = EN S, where F is an a(x)-ideal of S*.

Proof. The sufficiency: I*NS=(ENS)*NSCE*NS=FENnS=1.
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We denote by Spec*(S) the set of x-prime ideals of S, by Max*(.S) the set of *-
maximal ideals of S, by QSpec*(S) the set of quasi-x-prime ideals of S, by QMax*(S)
the set of quasi-x-maximal ideals of S.

We set IT* = {P € Spec(S) | P* # 0}, and set II} .. = {P | P is a maximal

max
element in IT*}.

(1.2) Let e # x = *5.

(1) If I is an ideal of S with 0 € I = I* N S, then there is J € QMax*(S) such
that I C J.

(2) If I is a quasi-x-maximal ideal of S, then I is a quasi-x-prime ideal of S.

(3) If @ is a quasi-+-maximal ideal of S, then there is an a(x)-maximal ideal N
of S* such that @ = NN S.

(4) If E is an a(x)-prime ideal of S*, then £ NS is a quasi-x-prime ideal of S.

(5) QSpec*(S) C II* and 0 # I}, = QMax*(.9).

Proof. (1) ~ (4) are straightforward.
(5) There is an element a € S such that a4 5* G S*. Then there is a prime ideal
P with P* # 0 such that P D (a + S*)NS. Hence IT* # ().

Let e # x = xf. Then we set M(%) =II} .

Let @ # A C Spec(S). Then we define a semistar operation xa : F +—— N{E +
Sp | P e A}

1.3) Let @ # A C Spec(S), and set x = *a.

1) E*+Sp=FE+ Sp, for every E € F(S) and P € A.

2) (ENF)*=E*NF*, for every E, F € F(9).

3) P*NS =P for every P € A.

4) Let I be an ideal with I* Z 0, then I C P for some P € A.

5) Assume that ) # Apax, and that each P € A is contained in some Q € A ax.
Then * = x(a

max) "

The proof is straightforward.

* is said spectral if x = xa for some @) # A C Spec(S5).
* is said quasi-spectral if, for every ideal I with I* Z 0, there is a prime ideal P
with P* NS = P such that I C P.

(1.4) Let * #e.
(1) = is spectral if and only if x is quasi-spectral and stable.
(2) Assume that * = xs. Then * is quasi-spectral and M (x) # (.

Proof. (1) The sufficiency: Since IT* # () by the proof of (1.2)(5), [M3, §2,(2.3)]
completes the proof.
(2) * is quasi-spectral by [M3, §1,(3.16)]. And M (x) # 0 by (1.2)(5).
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If IT* # (), we set 5, = *11+.

Let x # e, and assume that % is of finite type, then IT* # () by (1.2)(5), hence g,
is well defined.

If, for every ideal I with I* # 0, there is a prime ideal P with P* Z 0 such that
P D I, then * is said a qqg-spectral semistar operation.

Every quasi-spectral semistar operation is a qqg-spectral semistar operation.

(1.5) Is a qg-semistar operation a quasi-spectral semistar operation?
A canonical semigroup version of Lemma 2.6 in [FL3] is the following.

(1.6) Let IT* £ 0.

(1) = is spectral if and only if * = *g.

(2) The following statements are equivalent.

(i) *sp < .

(if) * is qua51 -spectral. B
(iii) E* =N{E*+ Sp | P € IT*} for every E € F(5)}.

(1.7) Let IT* # 0.

(1) = is spectral if and only if * = *.

(2) The follovvlng statements are equivalent.

(i) *sp <

(ii) *is qq 5pectral

(iii) E* =N{E*+ Sp | P € I*} for every E € F(S).

Proof. (1) is [M3, §1,(3.10)], and (2) is [M3, §2,(1.2)].
(1.6)(2) is valid if and only if the answer to (1.5) is yes.

A non-empty subset F of ideals of S is said a localizing system of S if it satisfies
the following conditions:

(1) If I € F and J is an ideal of S with I C J, then J € F.

(2) If I € F and J is an ideal of S such that (J: x)NS € F for every x € I, then
JeF.

If % is a semistar operation on S. Then F* = {I | I is an ideal of S with I* > 0}
is a localizing system of S.

If F is a localizing system of S, then Fy = {I | I is an ideal of S which contains
a finitely generated ideal J € F} is a localizing system of S.

If F is a localizing system of S, then the mapping z: E+— U{(E: 1) |I € F}
is a semistar operation on S.

We set the semistar operation * = *(z+),.
(1.8) Assume that * # e. Then * = (%f)sp

Proof. * = %(z+), = * ;) by [M3, §1,(2.4)]. Since * is stable and of finite type
by [M3, §1,(2.6)], % is spectral by [M3, §1,(3.16) and §2,(2.3)].
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Since F*/ = F* by [M3, §1, (2.10)], we have IT* = II*/ # () by (1.2)(5). By [M3,
81, (3.10)], we have * = (¥)sp = *z = *py¢) = (%f)sp-

1.9) Let x #e.

1) *=*xp(x;) <xpand x £ e.

) For every E € F(S5),

) B =0{E" +5q | Q € M(xs)},
) EX =n{E+Sq | Q € M(xf)}.

Proof. (1) Set A = II*/, then Apax = Inax = M(xf). By (1.8), we have
= (5p)sp = %A = K(Aa) = FM(sp)-

* < %5 by [M3, §1,(2.8)(3)], and hence * # e.

(2) (a) Since %5 is quasi-spectral, we may use (1.7)(2). Then

ﬂ{E*f —|—SQ ‘ Qe M(*f)} = ﬂ{E*f + SQ | Qe H:nfax}

=M{E +5¢ | Qell*} = E*.

(b) follows from (1).

Set D(x) = {P € Spec(S) | P # x} for every x € S. Then Spec(S) is a topological
space with basis {D(z) | = € S}. A subset A C Spec(S) is said quasi-compact if
A is contained in a union of open sets {G) | A € A}, then theire is a finie subset
{A1,-+ ,An} C A such that A C UTGy,.

(1.10) (a) Let v be the v-semistar operation on S. We have EV = U{(E : I) | I
is a finitely generated ideal with IV 5 0} for every E € F(S).

(b) Let @ # A C Spec(S). If A is quasi-compact, then o = (*a) s and M(xa) =
Amax'

Proof. (a) follows from [M3, §1, (2.6)(2)].

(b) We have F*2 = F(A) by [M3, §1,(3.4)]. Let A = {Py | A € A}, and let
I € F(A). There is an element z)y € I — Py for every A\. Then A C UyD(xy).
Hence, there is a finite subset {A1,---, Ay} C A such that A C D(zy,)U---UD(xy,).
Then J = (xx,, - ,2zx,) C I, and J € F(A), that is, F*2 is of finite type. Then
*a is of finite type by [M3, §1, (1.10)(B)(2) and (2.3)], hence xo = (*a)s. And
M(xa) =TIFA . = Apax by definitions.

(1.11) Proposition Let x be a semistar operation on S. Let {I) | A € A} be a
non-empty set of ideals of S such that if A\q, Ao € A, then I, U I, C I, for some As.

(1) If each I is a x¢-ideal, then I = U{I\ | A € A} is a x¢-ideal.

(2) If each I is a x¢-prime ideal, then I = U{I | A € A} is a *¢-prime ideal.

The proof is straightforward.
(1.12) In (1.11), assume that each Iy & S.

(1) If each Iy is a quasi-x-ideal, then I is a quasi-x-ideal with I G S.
(2) If each I is a quasi-x¢-prime ideal, then I is a quasi-x ¢-prime ideal.
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The proof is straightforward.

Let D be an infinite domain with quotient field q(D) = K. Let f = Y [ a; X"
be a non-zero element of K[X;G], where a; # 0 for each i and t; # ¢; for each ¢ # j.
Then the fractional ideal (a1, - ,a,) of D is said the c-content of f, and is denoted
by ¢p(f) (or, simply by ¢(f)). The subset {a1,--- ,a,} of K is denoted by Coef(f).
The fractional ideal (¢, - ,t,) of S is said the e-content of f, and is denoted by eg(f)
(or, simply by e(f)). The subset {t1,--- ,t,} of G is denoted by Exp(f).

We set N(x) = {f € D[X;5] — {0} | e(f)* 2 0}. Obviously, N(x) = N(x5). We
set .D(‘Xv7 S)e = D[X, S]N(d)

(2.1) Proposition Let x # e.

(1) N(*) is a multiplicatively closed subset of D[X;S].

If f,g € D|X;S] — {0} such that fg € N (%), then f,g € N(%).
(2) N(x) = DIX; 8] — U{QDIX; 8] | @ € M(xp)}.

(3) Max(D[X; S]n () = {QD[X; Slne) | Q € Mlxp)}.

(4) D[X;S]N(*) = O{D(X;SQ)e ‘ Q€ M(*f)}

(5) M(xs) = {M NS | M € Max(DIX; S]yin))}-

roof. (1) follows from Dedekind-Mertens Lemma for S ([GP, 6.2.PROPOSI-

(3) It is sufficient to show that each prime ideal H of D[X;S] contained inside
U{@QD[X;S] | @ € M(*f)} is contained in QD[X;S] for some @ € M(xs). Set
U{e(f) | f € H—{0}} = I. It suffices to show that I*# % 0. Suppose the contrary.
There are fi, -, f, € H — {0} such that (e(f1) U---Ue(f,))*f > 0. There are
c1, ¢ € D —{0} with ¢1f1 + -+ + enfn = g such that Exp(g) = Exp(fi1)U---U
Exp(f,). Hence e(g)*f 3 0, and hence g € H N N(x); a contradiction.

(4) and (5) are consequences of (3).

(2.2) Is (2.1) valid for a finite domain?

We denote D[X; S|y, by Na(S,*, D) (or, simply by Na(S,x)), and we say it the
Nagata ring of S with respect to x and D (or, simply the Nagata ring of S with respect
to x). Obviously, Na(S,*) = Na(S, x¢).

(2.3) Let @ be a prime ideal of S. Then @ is a maximal ¢-ideal of S if and only
if @ =M NS for some M € Max(Na(S,v)).

The proof follows from (2.1)(5).

(2.4) (1) Let P be a prime ideal of S, and let * be the semistar operation
Er—— FE+ SponS.

(a) Mxp) = (P}.

(b) Na(8,%) = D(X; Sp)..
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(€) *=xf = kgp =%

(2) Let 0 # A C Spec(5), let Al = {H € Spec(S) | H C P for some P € A},
and let x = xA. Assume that each P € A is contained in some Q € Apax.

(a) A C QSpec*(S) c Al and QMax*(S) = Apax-

Assume that Ap,.x is a quasi-compact subspace of Spec(S). Then

(b) Na(S,*a) =N{D(X;50)c | @ € Amax} = {D(X;Sp). | P € A},

(c) (*a) =*a.

Proof. (2) (b) * = %y by [M3, §2,(4.1)]. Since M(%) = Apax, we have
Max(Na(S, %)) = {@QNa(S,x) | Q € Apax} by (2.1)(3). It follows that

Na(S, %) = N{Na(5, *)QNa(S,*) | @ € Amax} = m{D[X;S]QD[X;S] | Q € Apax} =
N{D(X;50)e | @ € Amax} =N{D(X;Sp). | P € A}.

(c) Since * is spectral, xsp, = x. Hence * = (%f)sp = *5p = *.

(2.5) Proposition Let x # e, and let E € F(95).
(1) ENa(S,%) = ({ED(X:5). | Q € M(p)}.
(2) ENa(S,x)NG =n{E+Sg | Q € M(x;)}.
(3) E* = ENa(S,%) N G.

If E = E*, then E = ENa(S,*) NG.

(4) Assume that * = xf. Then

(1) * = *gp.

(ii) S*» =N{Sq | @ € M(x)}.

(iii) *sp is of finite type.

Proof. (1) By (2.1), we have

ENa(S,x) = {(ED[X; S|nw))m | M € Max(D[X; S]n()}

DX Sl | @ & Mixg)} = (ED(X: So). | @ € M(xp)).

(2) We have ENa(S,*) NG = "{ED(X;50)e NG | Q € M(x¢)} by (1). Easily,

D(X;SQ)E NG =FE+Sq.

(3) We have that E* = N{E + Sqg | Q € M(xs)} by (1.9)(2). Then E* =
ENa(S,+) N G by (2).

Assume that £ = E*. Since * < by (1.9)(1), E = E*. Hence E = ENa(S, %)NG.

(4) (1) *=xpme) by (1.9)(1), and %y = *11+ = *115 = *AMf(4)-

(i) S*or = S5m0 =nN{Sq | Q € M(x)}.

(iii) * is of finite type by [M3, §1,(2.6)(7)]. Hence *, is of finite type by (i).

(2.6) Let x #e.

(1) Fy=*=F)sp
(2) M(xp) = M(*). )
(3) Na(S,*) = Na(9,*) = Na(S*, a(*)).

*.

Proof. (1) (*¥);y = * by [M3, §1,(2.6)(7)]. Hence * is quasi-spectral by [M3,
1,(3.16)]. * is stable by [M3, §1,(2.6)(6)]. Hence * = (%)s, by [M3, §2,(2.3) and
1,(3.10)]. % = % by [M3, §1,(2.7)].

(2) Because * = xx(x,) by (1.9)(1).

§
§
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(3) N(x) = N(*) by (2.1)(2). Hence Na(S,*) = Na(S9, %).

The case (C), where x = xf = *a and 0 # A = {Q\ | A € A
Qx ¢ Qx for each A # X'. Then we have S* = N3 Sg, and M(x) =

(Q+5g) N S* = M((Q +5¢) N Sa,) = MA(Q + Sq,) =
(Q+Sg)NS* NS =Q.

Let M € M(a(x)). Then M C S* and M = M**) = M* = N\(M +Sg, ). Hence
M + Sg # 0 for some Q € A. Then M C (Q + Sg) N S* = Q*. By the choice of M,
M = Q* by (1.2)(3).

It follows that M(a(x)) = {Q* | Q € A}.

Since (SQ)Q+SQ D) (S*)Q* D] SQ, we have (S*)Qx = SQ. By (2.1)(4),

Na(S*,a(*)) =M\D(X; (S*)Q;)e =MD(X; SQ/\)e = Na(S, *).

The general case: Set M(x;) = A, then * = xa. By the case (C), we have
Na(S*, (%)) = Na(S, %).

} C Spec(S) with
A. IfQ € A, then
Q*, and Q* NS =

(2.7) Let * be quasi-spectral such that II* # (. Then Na(S,*) = Na(S,x5p) =
Na(S, *).

Proof. We have * = (xf)sp < *sp by [M3, §1,(3.8), (4) and (5)]. Hence Na(S,*) C
Na(S, *gp). Since x5, < + by (1.7)(2), we have Na(S, xsp) C Na(S, ). The first equality
of (2.6)(3) completes the proof.

(2.8) Theorem Assume that * # e. We have Max(Na(S, %)) = {QD(X;Sg)e N
Na(S,%) | Q € M(xg)}.

Proof. (2.1), (3) and (4) show that the maximal ideals of Na(S, x) are the ideals of
the set {QNa(S,*) | Q € M(xy)}, and Na(S,x) 2 QD(X; Sq).NNa(S, %) D QNa(S,*).
The proof is complete.

A valuation oversemigroup V of S is said a x-valuation oversemigroup of S if, for
every element F' € f(S), F* C F + V.

(2.9) Theorem Assume that x # e. Let V be a valuation oversemigroup of S.
Then V is a *-valuation oversemigroup if and only if V' is an oversemigroup of Sp for
some P € M(*y).

Proof. We may assume that V' & G. The sufficiency: % = %uq(,,) by (1.9)(1).
Set M(xf) = {Py | A € A}, and let F € £(S). Then F* = N{F + Sp, | A € A} C
F+SpCcF+V.

The necessity: Let M be the maximal ideal of V| let Q = M N .S, and set
A = M(xs). Since * is of finite type, Q* = U{F* | F € f(S),F C Q}. And F* C
F+V C M. Hence Q* C M.

Suppose that @ ¢ P for each P € M(xs). Then Q* = Q*> =n{Q + Sp | P €
A} 3 0; a contradiction.

In the following (3.1) and (3.2), for convenience, we will review [OM, (4.2) and
(4.3)] briefly.
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(3.1) Let * be a semistar operation on S. Let f, g, f',¢' € D[X;S] — {0} with
/
- such that (e(f) + e(h))* C (e(g) + e(h))* for some h € D[X;S] — {0}. Then

/
g /!
there is b’ € D[X; 5] — {0} such that (e(f’) 4+ e(h'))* C (e(g’) + e(R)))*.

Proof. By [GP, 6.2. PROPOSITION], there is a positive integer m such that
(m+ Delg) + e(f') = me(g) + e(f'g) and (m + De(f) + e(g’) = me(f) + e(f'). Tt
follows that {(m + 1)e(g) +e(f')} +me(f) = {(m + 1)e(f) + e(g')} + me(g).

There are elements si,s9, -+ ,s, of § with s; # s; for each ¢ # j such that
(m+1)(e(g) +e(h)) + m(e(f) +e(h)) = (51,82, ", 8n). If weset b/ = X5t + X2 4
h +%XS“ € D[X;S]—{0}, we have e(h') = (m+1)(e(g) +e(h)) +m(e(f)+e(h)), and
theretore

[ +e(h) ={(m+ De(g) + e(f’) + me(f)} + (2m + 1)e(h)
= 4 V)e(f) + elg’) + me(a)} + @m + 1je(h)
(e(f) + e(h)) + m{e(f) + (k) +m(eg) + (k) + ()
(e(g) + e(h))* +m(e(f) + e(h)) + mle(g) + e(h)) + e(g')
(e(g') +e(h))*.

NNl HA

The set {E | f,g € D[X;S] — {0} such that (e(f) + e(h))* C (e(g) + e(h))* for

some h € D[X;S] — {0}} U {0} is denoted by Kr(S,*, D) (or, simply by Kr(S,x)),
and is said the Kronecker function ring of S with respect to x and D (or, simply with
respect to %). (3.1) and (3.2) show that Kr(S,) is a well-defined overring of D[X; S].

(3.2) Kr(S,*) is an integral domain with quotient field q(D[X; S]).

!
Proof. Let ! f— € Kr(S,x) — {0}. Then there are h,h’ € D[X;S] — {0} such

99

that (e(/) + e(h))* C (e(g) + e(h)* and (e(f") + e(W))* C (e(g) +e(h)*. There is
Jj € D[X;S] — {0} such that e(j) = e(h) + e(h). Then we have

(e(f) +e(4)* C (eg) +e(d)", (e(f) +e(4))* C (e(g) + ()"

We may assume that fl+ f' # 0. Then it follows that (e(f + f') + e(4))* C
(e(g) +e(4))*. Hence §+fg € Kr(S, x).
me(g)—+e(g?) for some m. Thereis j' € D[X;S]—{0}
k). Then we have
+ {(m +2)e(g) + 2¢(j)}

Next, we have (m+2)e(g) =
such that e(j) = (m + 2)e(g) + 2e(
e(ff") +e(i’) c{e(f) +e(f)}

={e(f) +e(i)} + {6( )+ e} + (m+2)e(g)

C 2(e(g) +€(4))* + (m + 2)e(g)

= 2(e(g) + ()" + {melg) + e(9”)} C (e(9®) +e(i))".

Therefore (e(ff') + e(3'))* C (e(g?) + e(j))*. Hence % € Kr(S, *).

We define the mapping x, : F(S) — F(S) by setting
Fre = U{((F+H)*: H*) | H € f(S)} for every F € f(5),
E*e = U{F* | F € {(S) with F' C E} for every E € F(S).
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The following (3.3) appears in [OM, (3.6),(4.5) and (4.7)].

3) (1) %, is a semistar operation of finite type on S.
*q is e.a.b. (that is, endlich arithmetisch brauchbar).
% = %q if and only if % is e.a.b.
If %1 < %o, then (%1)q < (%2)q-
If v < *9, then KI‘(S, *1) C KI‘(S, *2).
(6) Let x be a semistar operation on S. Then, for every E € F(S), we have
E*e = U{FKr(S,x) NG | F € {(S) with F C E}.

(3.
(
(
(
(

T —

2
3
4
5

(3.4) Proposition (1) *y < %,.

(2) Kr(S,x) = Kr(S,x5) = Kr(S, %) = Kr(S*, a(*q))-
(3) Kr(S,*) is a Bezout domain.

(4) Na(S,*) C Kr(S,*).

(5) E*e = EKr(S,%) NG for each E € F(S).

Proof. The proof follows from [OM, (3.6),(4.4),(4.6) and (4,8)] and (3.3)(6).
(3.5) If % is a semistar operation on S distinct with e, then x, # e.

Proof. Suppose the contrary. Since x, = e, we have S** = G. Since %, is of finite
type, S* = G. Therefore x = e.

(3.6) A valuation oversemigroup V of S is a *-valuation oversemigroup if and
only if there is a valuation overring W of Kr(S, ) such that WNG = V.

Proof. Let v be a valuation on G, let f = >~} a; X" € K[X;G], where a; # 0 for
each i and ¢; # t; for each i # j. If we set v'(f) = min ; v(¢;), we have a valuation v’
on q(K[X; G).

Let V be a x-valuation oversemigroup, let v’ be the canonical extension of v

to q(D[X;S5]), and let V' be the valuation ring of v'. Let f € Kr(S,*). There

is an element h € D[X;S] — {0} such that (e(f) + e(h))* Cg (e(g) + e(h))*. Let
f="a X% g="Tb;X% h=Y" e X, and let v(s;,) = min ; v(s;), v(t;,) =
min ; v(t;),v(cy,) = min g v(ug). We have

(e(f)+eh) +V =e(f)+eh)+V =e(f)+V+eh)+V = s, +V +ey, +V =
Sip +ug, + V.

Similarly, we have (e(g) + e(h))* +V = t;, + ug, + V. Since s,y +up, +V C

e
tjo + Uk, +V, we have v(s;,) > v(tj,). Then v’(g) =0'(f)—2'(9) = v(si,) —v(tj,) > 0.

Hence S eV’

g
Let W be a valuation overring of Kr(S,%), and let V.= W NG. Let F =
(o, -+ ,0p) € f(5) with a; # «; for each ¢ # j, and let f = X 4+ ... 4 X,
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Let v(a,) = min ; v(ey). If z € F*, we have (2)* C e(f)*. Then we have ? €

Kr(S,x) € W, hence v(z) — v(a;,) > 0. It follows that z € oy +V C F 4+ V, hence
F*CcF+V.

(8.7) Let W be a valuation overring of Kr(S,«), and let V.= W NG. Then W
is the canonically extended valuation ring of V' to q(D[X; S]).

Proof. Let w be a valuation on q(D[X; S]) belonging to W, and set v(s) = w(X?®)
for every s € S. Then v is a valuation on G belonging to V. Let v’ be the canonical
extension of v to q(D[X;S]). If f = agX® + -+ + a,X°" € D[X;S] with a; # 0 for
each ¢ and s; # s; for each i # j, and if v(sg) = min ;v(s;), we have v'(f) = v(so) and

X0 s
w(f) > inf ;w(a; X)) = v(sp). Since 5 € Kr(S,+) € W,0 < w(X2) = v(so) —w(f).

!
Hence w(f) = v(sg) = v'(f). Therefore w =v'.

(8.8) Theorem Assume that e # * = .

(1) Let W be a valuation oversemigroup of Kr(S, ) with maximal ideal N G W.
Set No = NNS and Ny = N N D[X;S]. Then

(a) Ni = NoD[X;S], N N Na(S,%) = NoNa(S,%) = N;Na(S,%) and N N
Na(S, *q) = NoNa(S, %) = Ny Na(S, *,).

(b) Ny is a quasi-*,-prime ideal.

(2) O If P is a quasi-x,-prime ideal of S, then there is a quasi-x,-maximal ideal
Q@ of S and a valuation overring W of Kr(.S, ) such that P C Q@ = NN S, where N is
the maximal ideal of W.

(3) M(*,) is contained in the canonical image in S of Max(Kr(5,x)).

(4) For each Q € M(x%,), there is a x-valuation oversemigroup V of S containing
Sqg.

Proof. (1) (a) Let 0 # f € Ny, and let Exp(f) = {s1,--,$n}. Then N D
FKr(S, %) = (s1,-++,8,)Kr(S,*) and (s1,-+-,8n) C No. Hence f € NoDI[X; 5], and
hence N1 = NoD[X; S].

Let g € N N Na(S,x) with g € N(x). Then f € gN C N, hence f € N;. Hence

§ € NiNa(S,x). It follows that N N Na(S,x) = NiNa(S,x) = NgNa(S,*). Since
Kr(S, %) = Kr(S, *,), we have NN Na(S,x,) = NoNa (S, *,) = N1Na(S, xq).

(b) By (3.4), we have NJ* = NoKr(S,x) NG C N N Kr(S,x,) NG = N N S*.
Hence Nj* NS C NN S* NS = Ny.

(2) Since %, is of finite type, there is a quasi-*,-maximal ideal @ with @Q D P.
Q* = QKr(S,x) NG by (3.4)(5). Hence QKr(S,x) # 1. Let M be a maximal ideal of
Kr(S, %) with M D QKr(S,*). W = Kr(S, ) is a valuation overring of Kr(S, ) with
maximal ideal N = MW. Since Q is a quasi-x,-maximal ideal, N NS = @ by (1)(b).

(3) follows from the proof of (2).

(4) If Q € M(*,), we can find a valuation overring W of Kr(S,x) such that
NNS =@ by (2), where N is the maximal ideal of W. Set V=W NG. Then V is a
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*-valuation oversemigroup of S containing Sg by (3.6).

(3.9) Let x be e.a.b., of finite type and S = S* with * # e. Let P be a x-maximal
ideal of S. Then P is the center of a minimal x-valuation oversemigroup of S.

Proof. x, = * by (3.3)(3). By (3.8)(3), there is a maximal ideal M of Kr(S,*)
such that M NS = P. Set W = Kr(S,*)as, and let N be the maximal ideal of W.
Then W NG =V is a x-valuation oversemigroup of S, and P is the center of V in
S. Suppose that there is a *-valuation oversemigroup V’ with V' C V, let v/ be a
valuation on G belonging to V', and let W’ be the canonical extension of V’/, then W’
Z aiX’li

20,0
a;, 3; € V' with g, = 0 for some jo. It follows that ¢ € W. Hence W = W, and
Vi=V.

is a valuation overring of Kr(S,x). Let 0 # ¢ € W’. Then ¢ = , where each

(3.10) Assume that e # * = ;.

(1) *< ( a) = (*a)sp < *q and * < (;) < *g.

(2) Na(S,*) = Na(9,%) C Na(S (*a)) = Na(S,*,) C (S o) = Kr(S,*).
(3) Na(,%) = Na(§,%) C Na(5, (£)a) C Kr(S5, (¥)a) = Kr(5,%) C Kr(5,%).
(4) For every E € F(S),

(a) E™«) = ENa(S,%,) NG D ENa(S,%) NG = E*.

(b) E®e = EKr(S,%) NG C EKr(S,x) NG = E*e.

Proof. (1) Since * < %, by (3.4)(1), * < (%4) by [M3, §1,(2.7)(4)]. Since *, is
of finite type by (3.3)(1), (xa) = ((*a)f)sp = (*a)sp. Since %, is quasi-spectral by [M3,
§1,(3.16)], (*a)sp < *¢ by [M3, §2,(1.2)]. Since * is of finite type by [M3, §1,(2.6)],
* < (¥)a by (3.4)(1). Since * <% by [M3, §1,(2.6)(3)], (X)a < *a by (3.3)(4).

(2) By (2.6)(3), we have Na(S,*) = Na(S,*) and Na(S,%,) = Na(S, (x,)). By
(1), Na(5, *) C Na(s ( a))-

() Na(5.) = Na(S.) by (20

Since * < (%), Na(S,

Na(S, (*¥),) C Kr(S, (*

Ki(S, (F)a) = Kx(S,

Since * < %, Kr(S5,%) C Kr

(4) (a) Since xy < *q, Na C Na(S, *,).

E(a) = ENa(S,%,) N G by (2.5)(3).

(b) From (3.4)(5) and from the fact * < %, we have E®a = EKr(S,%) NG C
EKr(S, %) NG = E*e.

W
* F
S~—

(3.11) Proposition Assume that x # e. The following conditions are equivalent.
(1) * = (%q)-

(2) M(xp) = M(*a).

(3) Na(S,*) = Na(5, *,).
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Proof. (2) =(1): Since %, is of finite type, (xq)f = *q.

By (1 9)(1) * = *M(* ) and (*a) = *M(*a)

(1) =(2): Follows from (2.6)(2).

(2) = (3): By (2.1)(2), N(*) = N(*4). Hence Na(S,*) = Na(S,*,).
(3) = (2): From (2.1)(5).

(3.12) Assume that x # e. The following conditions are equivalent.

(1) *q = (*)a-

(2) The set of x-valuation oversemigroups of S coincides with the set of x-valuation
oversemigroups of S.

(3) Kr(S,%) = Kr(S,*).

Moreover, each of the previous conditions implies

(4) M(*a) = M((;)a)'

Proof. (2) <= (3) follows from (3.6).

E ; E g Er )(1) implies that Kr(S, %) = Kr(S, (¥),) = Kr(S,%,) = Kr(S, ).

(3) = (1): By (3.4)(5), we have E*« = EKr(S,x)NG and E®« = EKr(S,%)NG.
By (3), we have E*« = E®)a, Hence x, = (¥),.

(3.13) Proposition Let 1, *3 be semistar operations on S distinct with e. Then,
Na(S,*1) = Na(§, %2) if and only if M((x1)s) = M((*2)f).

Proof. The necessity follows from (2.1)(5).
The sufficiency follows from (2.1)(2).

Appendix

Let D be a domain, and let S be a g-monoid 2 {0}. Let D[X; S] be the semigroup
ring of S over D. If Z, is the non-negative integers, then D[X; Zg] = D[X]. After

[FL1], we will define the Kronecker function ring Kr(D,x, S) of D with respect to
and S.

(1) (Dedekind-Mertens Lemma)(cf. [GP, 4.3.THEOREM]) Let f,g € D[X;S] —
{0}. Then there is a positive integer m such that c¢(g)™*lc(f) = c(g)™c(fg).

(2) Let x be a semistar operation on D. Let f,g, f',¢ € D[X;S] — {0} with
5 § such that (c¢(f)c(h))* C (c(g)e(h))* for some h € D[X;S] — {0}. Then there
is b’ € D[X;S] — {0} such that (c(f")e(h'))* C (c(g')c(h))*.

Proof. Then we have f¢’' = f'g. By (1), there is a positive integer m such that
c(g)"He(f) = clg)™c(f'g), c(f)™elg’) = e(f)™e(fg).

It follows that {c(g)™ " c(f)}e(f)™ = {e(f)™* e(g') }e(g)™

There is b’ € D[X;S] — {0} such that c¢(h’) = (c(g)c(h))™ L (c(f)e(h))™.
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Then we have

c(f)e(h') = {e(g)™ el f)e(f)™ Fe(h)> ™!

= {c(f)" T e(g)elg)™ ye(h)* T = (e(f)e(h))(e(f)e(h))™ (c(g)e(h)™e(d)
C (c(g)e(h))*(c(fle(h)™(c(g)e(h))™e(g") C (e(g')e(h'))*.

Therefore (c(f")c(h"))* C (c(g')e(R'))*.

Set Kr(D,*,S) = {f | f,9 € DIX;S] — {0} such that (c(f)c(h))* C (e(g)e(h))*

for some h € D[X;S] — {0}} U {0}. (2) shows that Kr(D, *,.5) is a well-defined subset
of a(D[X; 5)).

(3) Kr(D,x,S) is an integral domain with quotient field q(D[X;S]).

!/
Proof. Let i r € Kr(D,x,S) — {0}. Then there are h,h’ € D[X;S] — {0} such
99

that (c(f)e(h))* C (c(g)e(h))*, (c(f)e(h')) C (e(g)e(h'))*.
There is k € D[X;S] — {0} such that c(k) = c¢(h)c(h'). Then we have

(c(f)e(k))* C (elg)e(k)*, (e(f)e(k))* < (e(g)e(k))*.
We may assume that f+ f’ # 0. Then it follows that (¢(f+f")e(k))* C (e(g)c(k))*.

!
Hence i + L € Kr(D, *, S).

Next we have ¢(g)™*2 = ¢(g)™c(g?) for some m. There is k' € D[X;S] — {0}
such that c¢(k’) = ¢(g)™ 2c(k)?. Then we have

c(ff)e(k) < {e(f)e(f)Helg )"“r2 (k)?}

= {c(f)elk) Helf)e(k) be(g) ™2 C ((c (g)c(k))?)*e(g)™+?
= ((clg)c(k))*)*{c(g)™e(g®)} C (clg?)e(k"))".
(

!
Therefore (c(ff')e(k'))* C (c(g*)c(k'))*, and hence i € Kr(D, *, S).
g°
(4) Kr(D,x,S) is a Bezout domain.
Proof. Set R = Kr(D,*,5), and let h € D[X;S] — {0} with Coef (f) =
{c1, -+ ,cn}. Then we have hR = (¢1,- -+ ,cn)R.
/

Let & and 7 be non-zero elements of R. We let £ = i and n = f— with f, f/,g €
g

D[X;S]—{0}, and let Coef(f) U Coef(f’) = {a1,--- ,an} with a; # a; for every i # j.
Then we have, for an element s € S — {0},

Lt MR = (M a

1
= (f)(ale + CLQXQS —+ e+ C(,anS)R.
Therefore (£,1)R is a principal ideal of R.

The above proof is slightly defferent from the corresponding classical one (cf., for
instance, [G1, (32.7) THEOREM]).

Let D be a domain with quotient field K, let x be a semistar operation on D.
A valuation overring V' of D is said a *-valuation overring if, for every F € {(D),
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F* C FV. The following similar result to [FL2, Theorem 3.5] is valid, and the proof
is similar:

(5) Proposition Let x be a semistar operation on D, and let V' be a valuation
overring of D. Then V is a x-valuation overring if and only if there is a valuation
overring W of Kr(D, %, S) such that WNK =V.

The author thanks to Professor Ken Nakane for his assistance over a long period
of time.
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