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Note on localizing systems and Kronecker function
rings of semistar operations

Ryûki Matsuda∗

Abstract

We study the results of M. Fontana and J. Huckaba [FHu] on localizing
systems and semistar operations, and give a couple of remarks for them. After M.
Fontana and K.A. Loper [FL3], we study also Nagata rings, Kronecker function
rings, and related semistar operations on semigroups.

This paper consists of §1 and §2. M. Fontana and J. Huckaba [FHu] established
a natural bridge between localizing systems and semistar operations. In §1 of this
paper, we will study their results, and will give a couple of remarks for them. §1
consists of 4-Parts. Part 1 contains preliminary results, and will review a part of
[FHu]. Part 2 concerns with relations between finite type localizing systems and finite
type semistar operations. We will give an answer to the problem ([FHu]): Characterize
a localizing system F of D such that ?(Ff ) = (?F )f . In fact, we treat this problem for
all localizing systems, and not for particular ones. Part 3 concerns with ?-invertible
ideals for semistar operations ?. We will study a pseudo-valuation domain D, a quasi-
spectral semistar operation ?, and ?-invertible ideals of D, and we will show that, if
I is a ?-invertible ideal of D, then I need not be ?̄-invertible. The proof of [FHu,
Proposition 4.25] seems incomplete. We hear that such an ideal was also given in
[FP]. Part 4 concerns with semistar operations which are spectral, quasi-spectral, qq-
spectral, and fqq-spectral. We will give a condition for a semistar operation to be
spectral. The proof of [FHu, Proposition 4.8] seems incomplete.

M. Fontana and K.A. Loper [FL3] investigated Nagata rings, Kronecker function
rings, and related semistar operations. A subsemigroup 3 0 of a torsion-free abelian
additive group is said a grading monoid (or, a g-monoid). In §2 of this paper, after
[FL3], we will study Nagata rings, Kronecker function rings, and related semistar
operations on g-monoids, and will show that almost all statements in [FL3] hold for
g-monoids. Since the structure of a g-monoid is simpler than that of a domain, it is
expected that the semigroup versions of [FL3] are only straightforward translations
from rings to semigroups. However, if or not the semigroup version §2, (1.6) of [FL3,
Lemma 2.6] is valid is open. In Appendix, we will give a direct proof for the fact that,
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for any integral domain D and for any semistar operation on D, the Kronecker function
ring which was defined by M. Fontana, F. Halter-Koch and K.A. Loper ([FL1], [Ha])
is well-defined. Besides, we will show a similar result to [FL2, Theorem 3.5] for our
Kronecker function ring Kr(D, ?, S).

§1 Localizing systems and semistar operations

First, we will review a part of [FHu]. The quotient field of an integral domain D
is denoted by q(D). Let D be an integral domain with K = q(D). Let F̄(D) be the
set of non-zero D-submodules of K, let F(D) be the set of non-zero fractional ideals
of D, and let f(D) be the set of non-zero finitely generated D-submodules of K. For
every E,F ∈ F̄(D), we define (E : F ) = {x ∈ K | xF ⊂ E} and E−1 = (D : E).

If we set Ed = E (resp., Ee = K) for every E ∈ F̄(D), then the mapping
E 7−→ Ed (resp., E 7−→ Ee) is a semistar operation, and is called the d-semistar
operation (resp., the e-semistar operation) on D. If we set Ev = (E−1)−1 for every
E ∈ F̄(D), the mapping E 7−→ Ev is a semistar operation on D, and is called the v-
semistar operation on D. Let T be an overring of D, and let ? be a semistar operation
on D. Then there is induced a canonical semistar operation α(?) on T , and is called
the ascent of ? to T .

We say that a semistar operation ? is stable if (E ∩ F )? = E? ∩ F ? for every
E,F ∈ F̄(D).

A semistar operation ? on D is said of finite type if, for every E ∈ F̄(D), E? =
∪{F ? | F ∈ f(D) with F ⊂ E}.

For every semistar operation ? on D, a semistar operation ?f of finite type can
be defined in the following way: For every E ∈ F̄(D), E?f = ∪{F ? | F ∈ f(D) with
F ⊂ E}.

We set vf = t. Let ?1, ?2 be semistar operations on D. If E?1 ⊂ E?2 for every
E ∈ F̄(D), we set ?1 ≤ ?2.

Let ∆ be a non-empty subset of Spec(D) − {(0)}. For every E ∈ F̄(D), define
E?∆ = ∩{EDP | P ∈ ∆}. Then the mapping E 7−→ E?∆ is a semistar operation on
D. A semistar operation ? on D is said spectral, if there is a non-empty subset ∆ ⊂
Spec(D) − {(0)} such that ? = ?∆.

A semistar operation ? on D is said quasi-spectral, if for every non-zero ideal I of
D such that I? 63 1, there is a non-zero prime ideal P with I ⊂ P such that P ?∩D = P .

We note that a localizing system F of D is non-empty and F 63 (0) by definition.
If ? is a semistar operation on D, we consider the following localizing system

F? = {I | I is an ideal of D with I? 3 1}.
If ? = e, then F? = {I | I is a non-zero ideal of D}.
Let ? be a semistar operation on D, and let Π? = {P ∈ Spec(D)−{(0)} | P ? 63 1}.

If the set Π? is non-empty, we consider the semistar operation ?sp = ?Π? .
If F is a localizing system of D, we consider the semistar operation ?F : For every

E ∈ F̄(D), E?F = ∪{(E : I) | I ∈ F}.
If F = {I | I is a non-zero ideal of D}, then ?F = e.
Let ∆ be a non-empty subset of Spec(D)−{(0)}. Set F(∆) = {I | I is an ideal of

D with I 6⊂ P for each P ∈ ∆}. Then F(∆) is a localizing system of D. A localizing
system F is said spectral, if there is a non-empty subset ∆ ⊂ Spec(D) − {(0)} such
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that F = F(∆).
A localizing system F is said finitely spectral if, for every finitely generated ideal

I 6∈ F , there is a prime ideal P 6∈ F such that P ⊃ I.
If a localizing system F is spectral, then F is finitely spectral.
A localizing system F of D is said of finite type if, for every I ∈ F , there is a

non-zero finitely generated ideal J ∈ F with J ⊂ I.
Given a localizing system F of D, we consider the following localizing system of

finite type Ff :
Ff = {I ∈ F | There is a non-zero finitely generated ideal J ∈ F with J ⊂ I}.
If ? is a semistar operation on D, we consider the semistar operations ?̄ = ?F?

and ?̃ = ?(F?)f
. We have

E?̄ = ∪{(E : I) | I is a non-zero ideal of D with I? 3 1} for every E ∈ F̄(D)
and
E?̃ = ∪{(E : I) | I is a finitely generated non-zero ideal of D with I? 3 1} for

every E ∈ F̄(D).
The following (0.1) ∼ (0.3) are results in [FHu].

(0.1) Let ? be a semistar operation on D, and let F be a localizing system of D.
(1) F? = F ?̄.
(2) F?f = (F?)f .
(3) ?̄ ≤ ?.
(4) ?̃ ≤ ?f .
(5) If ? is of finite type, then ? is quasi-spectral.
(6) If ? is spectral, then ? = ?̄.
(7) If ? is of finite type, then ?̄ is of finite type.
(8) ? is stable if and only if ? = ?̄.
(9) ? is spectral if and only if ? is quasi-spectral and stable.
(10) ?f = ?̃.
(11) F = F?F .
(12) If F is of finite type, then ?F is of finite type.
(13) If ? is of finite type, then F? is of finite type.
(14) ?F is stable.
(15) If ? is spectral, then F? is spectral.
(16) If F is spectral, then ?F is spectral.

(0.2) (1) Let ∆ be a non-empty subset of Spec(D) − {(0)}. Then ?∆ = ?F(∆)

and F?∆ = F(∆).
(2) Let ?1, ?2 be semistar operations on D such that ?1 ≤ ?2. Then ?1 ≤ ?2.

(0.3) Assume that Π? 6= ∅.
(1) ?̄ ≤ ?sp.
(2) If ? is spectral, then F? = F(Π?) and ?̄ = ?sp.
(3) If ? is quasi-spectral, then ?sp = ?̄.
(4) ? is spectral if and only if ? = ?sp.

Now, we will study the following,
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(1.1) ([FHu]) Characterize a localizing system F such that ?Ff
= (?F )f .

(1.2) Let F be a localizing system of D.
(1) For every element E ∈ F̄(D), we have
E?F = ∪{(E : I) | I ∈ F}.
(2) For every element E ∈ f(D), we have
E(?F )f = ∪{(E : I) | I ∈ F}
and
E

?(Ff ) = ∪{(E : I) | I is a finitely generated ideal of D with I ∈ F}.

Proof. E
?(Ff ) = ∪{(E : J) | J ∈ Ff}

= ∪{(E : J) | There is a finitely generated ideal I ∈ F with I ⊂ J}
= ∪{(E : I) | I is a finitely generated ideal with I ∈ F}.

(1.3) ([FHu, Example 3.5]) There is a domain D and a localizing system F of D
such that ?Ff

6= (?F )f .

(1.4) ([FHu, Proposition 3.3]) For every localizing system F , we have ?Ff
≤

(?F )f .

(1.5) ([M2, Lemma 7]) Let F be a localizing system of D, and let ? = ?F .
(1) (F?)f = F?f .
(2) ?Ff

= ?f .
(3) (?F )f = (?̄)f .

(1.6) ([M2, Proposition 2]) Let F be a localizing system of D, and let ? = ?F .
The following conditions are equivalent.

(1) ?Ff
= (?F )f .

(2) ?f = (?̄)f .
(3) For every element E ∈ f(D), we have
∪{(E : I) | I is a finitely generated ideal of D with I? 3 1}
= ∪{(E : I) | I is an ideal of D with I? 3 1}.

(1.7) Let F be a localizing system of D, and let ? = ?F .
(1) ?f = e if and only if F = {I | I is a non-zero ideal of D}.
(2) If ?f = e, then ?Ff

= (?F )f .
(3) If ?f 6= e, then Π(?F )f 6= ∅, hence ((?F )f )sp is well-defined.

Proof. (1) For, F = F? by (0.1)(11).
(2) Then F = {I | I is a non-zero ideal of D} by (1). Hence Ff = F and ?F = e.
(3) There is an ideal I 6∈ F by (1). Hence the set {I | I is an ideal with

I?f 63 1} = X is non-empty. By Zorn’s Lemma, X has a maximal member P . Then P
is a prime ideal of D, and P ∈ Π?f .

(1.8) Assume that Π? 6= ∅. Then we have (?f )sp = ?f ≤ ?f and ((?f )sp)f =
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(?f )sp.

Proof. ?f is quasi-spectral by (0.1)(5). Then (?f )sp = ?f by (0.3)(3), and (?f )sp

is of finite type by (0.1)(7).

By (1.7), if F = {I | I is a non-zero ideal of D}, then we have ?Ff
= (?F )f

trivially. And, if otherwise, ((?F )f )sp is well-defined.

(1.9) Proposition Let F be a localizing system of D with F $ {I | I is a
non-zero ideal of D}, and let ? = ?F . The following conditions are equivalent.

(1) ?Ff
= (?F )f .

(2) ?f = (?̄)f .
(3) For every element E ∈ f(D) and for every ideal I with I? 3 1, we have
(E : I) ⊂ ∪{(E : J) | J is a finitely generated ideal with J? 3 1}.
(4) For every ideal J ∈ f(D) and for every ideal I with I? 3 1, we have
(J : I) ⊂ ∪{(J : E) | E is a finitely generated ideal with E? 3 1}.
(5) For every element E ∈ f(D) and for every ideal I with I? 3 1 such that I ⊂ E,

we have J ⊂ E for some finitely generated ideal J with J? 3 1.
(6) ?f is stable.
(7) ?f is spectral.
(8) (?f )sp = ?f .
(9) For every element E ∈ f(D) and for every ideal I ∈ F , we have
(E : I) ⊂ ∪{(E : J) | J is a finitely generated ideal with J ∈ F}.
(10) For every ideal J ∈ f(D) and for every ideal I ∈ F , we have
(J : I) ⊂ ∪{(J : E) | E is a finitely generated ideal with E ∈ F}.
(11) For every element E ∈ f(D) and for every ideal I ∈ F such that I ⊂ E, we

have J ⊂ E for some finitely generated ideal J ∈ F .
(12) For every element E ∈ f(D) with E? 3 1, there is a finitely generated ideal

I with I? 3 1 such that I ⊂ E.

Proof. (1), (2),(3) are equivalent by (1.6).
(4) =⇒ (3): Let x ∈ (E : I). There is an element d ∈ D − {0} such that

dE ⊂ D. Since dx ∈ (dE : I), there is a finitely generated ideal J with J? 3 1 such
that dx ∈ (dE : J). Then we have x ∈ (E : J).

(3) =⇒ (4): Trivial.

(5) =⇒ (3): Let 0 6= x ∈ (E : I). Then we have I ⊂ 1
x

E. Hence there is a finitely

generated ideal J with J? 3 1 such that J ⊂ 1
x

E. Then x ∈ (E : J).

(3) =⇒ (5): Since 1 ∈ (E : I), we have 1 ∈ (E : J) for some finitely generated
ideal J with J? 3 1. Then J ⊂ E.

(6) =⇒ (1): Ff = F?f by (0.1)(2). Then ?Ff
= ?f by (0.1)(8).

(1) =⇒ (6): By (0.1)(14).
(7) =⇒ (6): ?f = ?f by (0.1)(6), and ?f is stable by (0.1)(8).
(6) =⇒ (7): ?f is quasi-spectral by (0.1)(5). Then ?f is spectral by (0.1)(9).
(8) ⇐⇒ (7): By (0.3)(4).
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(9) ⇐⇒ (3), (10) ⇐⇒ (4), and, (11) ⇐⇒ (5): Because F = F? by (0.1)(11).
(6) =⇒ (12): Because 1 ∈ E? ∩ D? = E?f ∩ D?f = (E ∩ D)?f .
(12) =⇒ (5): Trivial.

We note that (1) ⇐⇒ (6) in (1.9) Proposition was proved in [O, Theorem 6].
Now, we will study a pseudo-valuation domain D, a quasi-spectral semistar oper-

ation ? on D, and ?-invertible ideals of D.

(2.1) ([FHu, Proposition 4.25]) Let ? be a quasi-spectral semistar operation on
D, and let I, J be ideals of D.

(1) (IJ)? = D? if and only if (IJ)?̄ = D?̄.
(2) Assume that F? = {D}. Then (IJ)? = D? if and only if I = J = D.

Proof. (1) The sufficiency: We have ?̄ ≤ ? by (0.1)(3), and hence (IJ)? = D?.
The necessity: Suppose that (IJ)?̄ $ D?̄. Then we have IJ 6∈ F ?̄. Since F? = F ?̄

by (0.1)(1), we have IJ 6∈ F?. Hence there is a prime ideal P with P ? 63 1 such that
P ⊃ IJ . It follows that (IJ)? ⊂ P ? $ D?; a contradiction.

(2) If (IJ)? = D?, then IJ ∈ F?, hence IJ = D.

(2.2) ([FHu, Corollary 4.26]) Let ? be a semistar operation on D, and let I, J be
ideals of D.

(1) (IJ)?f = D?f if and only if (IJ)?̃ = D?̃.
(2) (IJ)t = Dt if and only if (IJ)ṽ = Dṽ.

Proof. ?f = ?̃ by (0.1)(10). ?f is quasi-spectral by (0.1)(5). Then we may apply
(2.1).

If, for every ideal I with I? 63 1, there is a prime ideal P with P ? 63 1 such
that P ⊃ I, then ? is said a qq-spectral semistar operation (or, a quasi-quasi-spectral
semistar operation).

Every quasi-spectral semistar operation is a qq-spectral semistar operation.

(2.3) Let ? be a qq-spectral semistar operation on D, and let I, J be ideals of D.
(1) (IJ)? = D? if and only if (IJ)?̄ = D?̄.
(2) Assume that F? = {D}. Then (IJ)? = D? if and only if I = J = D.

The proof is similar to that of (2.1).

An element E ∈ F̄(D) is said ?-invertible if there is an element F ∈ F̄(D) such
that (EF )? = D?. If E is d-invertible, then E is said invertible.

Set Inv?(D) = {E ∈ F̄(D) | E is ?-invertible}, and set Princ(D) = {xD | x ∈
K−{0}}. Inv?(D) forms a group under a canonical product, and Prin(D) is a subgroup

of Inv?(D). Then the quotient group Cl?(D) =
Inv?(D)
Princ(D)

is said the ?-class group of

D.
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(2.4) Let E ∈ F̄(D). If E is ?̄-invertible, then E is ?-invertible. If E is ?̃-
invertible, then E is ?f -invertible. If E is ṽ-invertible, then E is t-invertible.

For, ?̄ ≤ ? by (0.1)(3), and ?̃ ≤ ?f by (0.1)(4).

(2.5) Let ? be a semistar operation with D? = D, and let E ∈ F̄(D).
(1) E is ?-invertible if and only if E is ?̄-invertible.
(2) Assume that F? = {D}. Then E is ?-invertible if and only if E is invertible.

Proof. Let F ∈ F̄(D) such that (EF )? = D. Then EF ∈ F?. Since F? = F ?̄ by
(0.1)(1), we have EF ∈ F ?̄. Hence (EF )?̄ = D.

(2.6) (cf. [K, Theorem 59]) Assume that D is a quasi-local domain, that is, D
has a unique maximal ideal. Then every invertible ideal of D is principal.

Let I be an ideal of D. If, for every element a, b ∈ K, ab ∈ I and b 6∈ I imply
a ∈ I, then I is called strongly prime. If every prime ideal of D is strongly prime,
then D is called a pseud-valuation domain (or, a PVD). We refer to Hedstrom-Houston
([HeHo]) for the notion of a PVD. Thus, every PVD is a quasi-local domain, and if D
is a PVD with maximal ideal M , then V = (M : M) is a valuation overring of D with
maximal ideal M .

(2.7) Let ? be a quasi-spectral semistar operation on D, and let I be a non-zero
ideal of D.

(1) If I is ?-invertible, then I need not be ?̄-invertible.
(2) If F? = {D}, and if I is ?-invertible, then I need not be invertible.

For a counter example, let D be a PVD which is not a valuation domain, let M
be the maximal ideal of D, let V = (M : M), and let ? be the semistar operation
E 7−→ EV on D. Then V is a valuation domain, M? = M,D? = V, ? is quasi-spectral,
F? = {D}, and E?̄ = (E : D) = E for every E ∈ F̄(D). Since D is not a valuation

domain, there are elements a, b ∈ D − {0} such that
a

b
6∈ D and

b

a
6∈ D. Then

I = (a, b) is not a principal ideal of D. Since IV is a finitely generated ideal of V , we
have IV = xV for some element x ∈ K −{0}. Then (Ix−1)? = V = D?, that is, I is a
?-invertible ideal of D. Suppose that I is ?̄-invertible. There is an element E ∈ F̄(D)
such that (IE)?̄ = D?̄, that is, IE = D. Then (2.6) implies that I is a principal ideal
of D; a contradiction.

(2.8) Let ? be a semistar operation on D with D? = D.
(1) Cl?f (D) = Cl?̃(D).
(2) Clt(D) = Clṽ(D).

Proof. ?f = ?̃ by (0.1)(10). Then we may apply (2.5).

(2.9) Let ? be a semistar operation on D. Then Cl?f (D) = Cl?̃(D) need not be
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true.

For a counter example, let D, ?, I be those in the counter example of (2.7). Then
we have ? = ?f . Let J be an ideal of D with J? 3 1. Since M? = M , we have
J = D. It follows that E?̃ = E for every element E ∈ F̄(D). The ideal I = (a, b) is
?f -invertible. Suppose that I is ?̃-invertible. There is an element F ∈ F̄(D) such that
(IF )?̃ = D?̃. Then IF = D. (2.6) implies a contradiction.

Now, we will study conditions for a semistar operation to be spectral.

(3.1) Proposition Let ? be a semistar operation on D with Π? 6= ∅. The
following conditions are equivalent.

(1) ?sp ≤ ?.
(2) ? is qq-spectral.
(3) E? = ∩{E?DP | P ∈ Π?} for every element E ∈ F̄(D).

Proof. Let Π? = {Pλ | λ ∈ Λ}.
(1) =⇒ (2): Let I be an ideal of D such that I? 63 1. Since ?sp ≤ ?, we have

I?sp 63 1. Hence we have I ⊂ Pλ for some λ, and hence ? is qq-spectral.
(2) =⇒ (3): Suppose that there is an element z 6∈ E? such that z ∈ ∩{E?DPλ

| λ ∈
Λ}. If we set J = (E?z−1) ∩ D, then J? 63 1. For every λ, we have z =

xλ

yλ
for some

element xλ ∈ E? and for some element yλ ∈ D − Pλ. It follows that J 6⊂ Pλ, and that
? is not qq-spectral; a contradiction.

(3) =⇒ (1): E?sp = ∩{EDPλ
| λ ∈ Λ} ⊂ ∩{E?DPλ

| λ ∈ Λ} = E?.

For every semistar operation ?, ?sp is spectral by the definition. Hence ?sp = ?sp

by (0.1)(6).

(3.2) Proposition Assume that Π? 6= ∅. The following conditions are equivalent.
(1) ? is qq-spectral.
(2) ?sp = ?̄.
(3) ?̄ is spectral.
(4) F? = F(Π?).
(5) F? is spectral.

Proof. (1) =⇒ (2): ?sp ≤ ? by (3.1), hence ?sp ≤ ?̄ by (0.2)(2). On the other
hand, ?̄ ≤ ?sp by (0.3)(1), and ?sp = ?sp by (0.1)(6). Then we have ?sp = ?sp ≤ ?̄ ≤
?sp.

(2) =⇒ (4): By (0.1)(1) and (0.2)(1), we have
F? = F ?̄ = F?sp = F?(Π?) = F(Π?).
(4) =⇒ (5): Trivial.
(5) =⇒ (3): There is a non-empty subset ∆ ⊂ Spec(D) − {(0)} such that F? =

F(∆). Then (0.2)(1) implies that
?̄ = ?F? = ?(F(∆)) = ?∆.
(3) =⇒ (1): F? = F ?̄ by (0.1)(1), and F ?̄ = F(Π?̄) by (0.3)(2), and hence
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F? is spectral. Set ∆ = Π?̄, and hence F? = F(∆). If I is an ideal with I? 63 1,
then I 6∈ F? = F(∆). Hence there is a prime ideal P ∈ ∆ such that I ⊂ P . Since
P 63 F(∆) = F?, we have P ? 63 1.

(3.3) Proposition Assume that Π? 6= ∅. If ? is qq-spectral and stable, then ?
is spectral.

Proof. ?̄ is spectral by (3.2), and ? = ?̄ by (0.1)(8). Hence ? is spectral.

(3.4) Assume that Π? 6= ∅. If ? is qq-spectral, is ? quasi-spectral?

(3.5) Assume that Π? 6= ∅, and that ? is qq-spectral. If ? is of finite fype, or if
dim(D) < ∞, then ? is quasi-spectral.

Proof. Let I be an ideal of D with I? 63 1. Then the set X = {P ∈ Π? | P ⊃ I}
is non-empty. If dim(D) < ∞, obviously X has a maximal member. If ? is of finite
type, we may use Zorn’s Lemma to find a maximal member in X. Let P be a maximal
member in X. Since P ? 63 1, there is a prime ideal Q with Q? 63 1 such that Q ⊃ P ?∩D.
By the choice of P , we have Q = P . It follows that P ? ∩ D = P .

(3.6) ([FHu]) Is there an example of a finitely spectral non-spectral localizing
system distinct with {I | I is a non-zero ideal of D}?

If, for every finitely generated ideal I of D with I? 63 1, there is a prime ideal P
with P ? 63 1 such that P ⊃ I, then ? is said a fqq-spectral semistar operation (or, a
finitely quasi-quasi-spectral semistar operation).

Every qq-spectral semistar operation is a fqq-spectral semistar operation.

(3.7) Let ? = ?F . The following conditions are equivalent.
(1) F is finitely spectral.
(2) ? is a fqq-spectral semistar operation.

Proof. (1) =⇒ (2): Let I be a finitely generated ideal with I? 63 1. Since F = F?

by (0.1)(11), we have I 6∈ F . Hence there is a prime ideal P 6∈ F such that I ⊂ P .
Since P 6∈ F?, we have P ? 63 1.

The proof of (2) =⇒ (1) is similar.

(3.8) Proposition Let F be a localizing system of D and let ? = ?F . The
following conditions are equivalent.

(1) F is a finitely spectral non-spectral localizing system distinct with {I | I is a
non-zero ideal of D}.

(2) ? is a non-spectral fqq-spectral semistar operation distinct with e.

Proof. (1) =⇒ (2): ? is non-spectral by (0.1)(15). ? is a fqq-spectral semistar
operation by (3.7). Clearly, ? 6= e. And, ? is stable by (0.1)(14).

The proof of (2) =⇒ (1) is similar.
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(3.8) shows that (3.6) is equivalent to the following,

(3.9) Is there a stable non-spectral fqq-spectral semistar operation distinct with
e?

(3.10) Let ? be a fqq-spectral semistar operation on D distinct with e. Then we
have Π? 6= ∅.

Proof. Then we have D? $ K. Hence there is an element a ∈ D − {0} such that
aD? 63 1. Then there is a prime ideal P with P ? 63 1 such that P ⊃ aD.

(3.10) shows that if ? is fqq-spectral distinct with e, then ?sp is well-defined.

(3.11) An example of a domain D, a semistar operation ? on D, a maximal ideal
M of D such that M $ M? 63 1.

Example: Let k be a field, let x be an indeterminate over k, and let T = k[x].
Let D = k[x2, x4, x5], and let M = (x2, x4, x5) be a maximal ideal of D. Let ? be a
semistar operation E 7−→ ET on D. Then we have M 63 x3 ∈ MT = M? 63 1.

(3.12) Assume that, for each prime ideal P in Π?, P is a maximal ideal of some
overring T of D. Then, if ? is qq-spectral, then ? is quasi-spectral.

Proof. Let I be an ideal of D with I? 63 1. Then there is a prime ideal P of D
with P ? 63 1 such that P ⊃ I. There is an overring T of D with maximal ideal P . We
have P ?T ⊂ (P ?T )? = (PT )? = P ?, hence P ? is a T -module. Since P ? 63 1, it follows
that P ? ∩ T = P , and P ? ∩ D = P .

For every element a, b ∈ K, if ab ∈ I and b 6∈ I imply an ∈ I for some positive
integer n, then I is called strongly primary. If every prime ideal of D is strongly
primary, then D is called an almost pseudo-valuation domain (or, an APVD). We
refer to Badawi-Houston ([BHo]) for the notion of an APVD. Thus, every APVD is
a quasi-local domain. Let M be the maximal ideal of D. Then V = (M : M) is a
valuation domain, M is a primary ideal of V , and M is primary to the maximal ideal
of V . The set of non-maximal prime ideals of D coincides with the set of non-maximal
prime ideals of V .

(3.13) Let D be an APVD. Then every qq-spectral semistar operation ? on D is
a quasi-spectral semistar operation.

Proof. Let P be a prime ideal in Π?. Assume that P is not a maximal ideal of
D. Then P is a prime ideal of the valuation domain V = (M : M), where M is the
maximal ideal of D. It follows that P is the maximal ideal of the valuation domain
VP . Then (3.12) completes the proof.
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(3.14) The following conditions are equivalent.
(1) Assume that Π? 6= ∅ and that ? is qq-spectral. Then ? is quasi-spectral.
(2) Assume that Π? 6= ∅ and that ? is qq-spectral with D? = D. Then ? is quasi-

spectral.

Proof. (2) =⇒ (1): ? induces a canonical semistar operation ?′ on D?. Since
(D?)?′

= D?, ?′ is quasi-spectral. Let I be a non-zero ideal of D with I? 63 1. I? is an
ideal of D? with (I?)?′ 63 1. There is a prime ideal Q of D? with Q?′

= Q such that
Q ⊃ I?. Set D ∩ Q = P . Then P is a prime ideal of D with P ? ∩ D = P such that
P ⊃ I.

§2 Kronecker function rings on semigroups

Throughout the Section, let D be an infinite domain with quotient field K, and
let S be a g-monoid % {0} with quotient group q(S) = G. We refer to [G2] and [M1]
for the general theory of g-monoids. Let F̄(S) be the set of non-empty subset E ⊂ G
such that S + E ⊂ E, let F(S) be the set of fractional ideals of S, and let f(S) be the
set of finitely generated fractional ideals of S. Set Ee = G for every E ∈ F̄(S). Then
the semistar operation E 7−→ Ee is said the e-semistar operation on S. Set Ed = E
for every E ∈ F̄(S). Then the semistar operation E 7−→ Ed is said the d-semistar
operation on S.

For every E,F ∈ F̄(S), we denote {x ∈ G | x + E ⊂ F} by (F : E). Set
E−1 = (S : E) = {x ∈ G | x + E ⊂ S}, set ∅−1 = G, and set Ev = (E−1)−1

for every E ∈ F̄(S). Then the semistar operation E 7−→ Ev is said the v-semistar
operation on S. Let ? be a semistar operation on S. We define a semistar operation
?f : E 7−→ ∪{F ? | F ∈ f(S) with F ⊂ E}. t = vf is said the t-semistar operation on S.

Let ? be a semistar operation on S, and let T be an oversemigroup of S. There is
induced a canonical semistar operation αT (?) = α(?) on T , and is said the ascent of ?
to T .

If ?1, ?2 are semistar operations on S, we say ?1 ≤ ?2 if E?1 ⊂ E?2 for every
E ∈ F̄(S).

An ideal I of S is said ?-ideal if I? = I. A fractional ideal E of S is said a
?-fractional ideal if E? = E.

A prime ideal P satisfies P 63 0 by the definition.
An ideal I of S is said a quasi-?-ideal of S if I? ∩ S = I.
A prime ideal P of S is said a ?-prime ideal if P ? = P .
A prime ideal P of S is said a quasi-?-prime ideal if P ? ∩ S = P .
An ideal I of S is said a ?-maximal ideal if I is maximal in the set {I | I is an

ideal with S % I? = I}.
An ideal I of S is said a quasi-?-maximal ideal if I is maximal in the set {I | I is

an ideal with S % I = I? ∩ S}.

(1.1) Let αS?(?) = α(?), and let I be an ideal of S. Then I a quasi-?-ideal of S
if and only if I = E ∩ S, where E is an α(?)-ideal of S?.

Proof. The sufficiency: I? ∩ S = (E ∩ S)? ∩ S ⊂ E? ∩ S = E ∩ S = I.
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We denote by Spec?(S) the set of ?-prime ideals of S, by Max?(S) the set of ?-
maximal ideals of S, by QSpec?(S) the set of quasi-?-prime ideals of S, by QMax?(S)
the set of quasi-?-maximal ideals of S.

We set Π? = {P ∈ Spec(S) | P ? 63 0}, and set Π?
max = {P | P is a maximal

element in Π?}.

(1.2) Let e 6= ? = ?f .
(1) If I is an ideal of S with 0 6∈ I = I? ∩ S, then there is J ∈ QMax?(S) such

that I ⊂ J .
(2) If I is a quasi-?-maximal ideal of S, then I is a quasi-?-prime ideal of S.
(3) If Q is a quasi-?-maximal ideal of S, then there is an α(?)-maximal ideal N

of S? such that Q = N ∩ S.
(4) If E is an α(?)-prime ideal of S?, then E ∩ S is a quasi-?-prime ideal of S.
(5) QSpec?(S) ⊂ Π? and ∅ 6= Π?

max = QMax?(S).

Proof. (1) ∼ (4) are straightforward.
(5) There is an element a ∈ S such that a+S? $ S?. Then there is a prime ideal

P with P ? 63 0 such that P ⊃ (a + S?) ∩ S. Hence Π? 6= ∅.

Let e 6= ? = ?f . Then we set M(?) = Π?
max.

Let ∅ 6= ∆ ⊂ Spec(S). Then we define a semistar operation ?∆ : E 7−→ ∩{E +
SP | P ∈ ∆}.

(1.3) Let ∅ 6= ∆ ⊂ Spec(S), and set ? = ?∆.
(1) E? + SP = E + SP , for every E ∈ F̄(S) and P ∈ ∆.
(2) (E ∩ F )? = E? ∩ F ?, for every E,F ∈ F̄(S).
(3) P ? ∩ S = P for every P ∈ ∆.
(4) Let I be an ideal with I? 63 0, then I ⊂ P for some P ∈ ∆.
(5) Assume that ∅ 6= ∆max, and that each P ∈ ∆ is contained in some Q ∈ ∆max.

Then ? = ?(∆max).

The proof is straightforward.

? is said spectral if ? = ?∆ for some ∅ 6= ∆ ⊂ Spec(S).
? is said quasi-spectral if, for every ideal I with I? 63 0, there is a prime ideal P

with P ? ∩ S = P such that I ⊂ P .

(1.4) Let ? 6= e.
(1) ? is spectral if and only if ? is quasi-spectral and stable.
(2) Assume that ? = ?f . Then ? is quasi-spectral and M(?) 6= ∅.

Proof. (1) The sufficiency: Since Π? 6= ∅ by the proof of (1.2)(5), [M3, §2,(2.3)]
completes the proof.

(2) ? is quasi-spectral by [M3, §1,(3.16)]. And M(?) 6= ∅ by (1.2)(5).
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If Π? 6= ∅, we set ?sp = ?Π? .
Let ? 6= e, and assume that ? is of finite type, then Π? 6= ∅ by (1.2)(5), hence ?sp

is well defined.
If, for every ideal I with I? 63 0, there is a prime ideal P with P ? 63 0 such that

P ⊃ I, then ? is said a qq-spectral semistar operation.
Every quasi-spectral semistar operation is a qq-spectral semistar operation.

(1.5) Is a qq-semistar operation a quasi-spectral semistar operation?

A canonical semigroup version of Lemma 2.6 in [FL3] is the following.

(1.6) Let Π? 6= ∅.
(1) ? is spectral if and only if ? = ?sp.
(2) The following statements are equivalent.
(i) ?sp ≤ ?.
(ii) ? is quasi-spectral.
(iii) E? = ∩{E? + SP | P ∈ Π?} for every E ∈ F̄(S)}.

(1.7) Let Π? 6= ∅.
(1) ? is spectral if and only if ? = ?sp.
(2) The following statements are equivalent.
(i) ?sp ≤ ?.
(ii) ? is qq-spectral.
(iii) E? = ∩{E? + SP | P ∈ Π?} for every E ∈ F̄(S).

Proof. (1) is [M3, §1,(3.10)], and (2) is [M3, §2,(1.2)].

(1.6)(2) is valid if and only if the answer to (1.5) is yes.

A non-empty subset F of ideals of S is said a localizing system of S if it satisfies
the following conditions:

(1) If I ∈ F and J is an ideal of S with I ⊂ J , then J ∈ F .
(2) If I ∈ F and J is an ideal of S such that (J : x)∩S ∈ F for every x ∈ I, then

J ∈ F .
If ? is a semistar operation on S. Then F? = {I | I is an ideal of S with I? 3 0}

is a localizing system of S.
If F is a localizing system of S, then Ff = {I | I is an ideal of S which contains

a finitely generated ideal J ∈ F} is a localizing system of S.
If F is a localizing system of S, then the mapping ?F : E 7−→ ∪{(E : I) | I ∈ F}

is a semistar operation on S.
We set the semistar operation ?̃ = ?(F?)f

.

(1.8) Assume that ? 6= e. Then ?̃ = (?f )sp.

Proof. ?̃ = ?(F?)f
= ?F(?f ) by [M3, §1,(2.4)]. Since ?̃ is stable and of finite type

by [M3, §1,(2.6)], ?̃ is spectral by [M3, §1,(3.16) and §2,(2.3)].
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Since F?f = F ?̃ by [M3, §1, (2.10)], we have Π?̃ = Π?f 6= ∅ by (1.2)(5). By [M3,
§1, (3.10)], we have ?̃ = (?̃)sp = ?Π?̃ = ?

Π(?f ) = (?f )sp.

(1.9) Let ? 6= e.
(1) ?̃ = ?M(?f ) ≤ ?f and ?̃ 6= e.
(2) For every E ∈ F̄(S),
(a) E?f = ∩{E?f + SQ | Q ∈ M(?f )},
(b) E?̃ = ∩{E + SQ | Q ∈ M(?f )}.

Proof. (1) Set ∆ = Π?f , then ∆max = Π?f
max = M(?f ). By (1.8), we have

?̃ = (?f )sp = ?∆ = ?(∆max) = ?M(?f ).
?̃ ≤ ?f by [M3, §1,(2.8)(3)], and hence ?̃ 6= e.
(2) (a) Since ?f is quasi-spectral, we may use (1.7)(2). Then
∩{E?f + SQ | Q ∈ M(?f )} = ∩{E?f + SQ | Q ∈ Π?f

max}
= ∩{E?f + SQ | Q ∈ Π?f } = E?f .
(b) follows from (1).

Set D(x) = {P ∈ Spec(S) | P 63 x} for every x ∈ S. Then Spec(S) is a topological
space with basis {D(x) | x ∈ S}. A subset ∆ ⊂ Spec(S) is said quasi-compact if
∆ is contained in a union of open sets {Gλ | λ ∈ Λ}, then theire is a finie subset
{λ1, · · · , λn} ⊂ Λ such that ∆ ⊂ ∪n

1Gλi .

(1.10) (a) Let v be the v-semistar operation on S. We have Eṽ = ∪{(E : I) | I
is a finitely generated ideal with Iv 3 0} for every E ∈ F̄(S).

(b) Let ∅ 6= ∆ ⊂ Spec(S). If ∆ is quasi-compact, then ?∆ = (?∆)f and M(?∆) =
∆max.

Proof. (a) follows from [M3, §1, (2.6)(2)].
(b) We have F?∆ = F(∆) by [M3, §1,(3.4)]. Let ∆ = {Pλ | λ ∈ Λ}, and let

I ∈ F(∆). There is an element xλ ∈ I − Pλ for every λ. Then ∆ ⊂ ∪λD(xλ).
Hence, there is a finite subset {λ1, · · · , λn} ⊂ Λ such that ∆ ⊂ D(xλ1)∪ · · · ∪D(xλn

).
Then J = (xλ1 , · · · , xλn) ⊂ I, and J ∈ F(∆), that is, F?∆ is of finite type. Then
?∆ is of finite type by [M3, §1, (1.10)(B)(2) and (2.3)], hence ?∆ = (?∆)f . And
M(?∆) = Π?∆

max = ∆max by definitions.

(1.11) Proposition Let ? be a semistar operation on S. Let {Iλ | λ ∈ Λ} be a
non-empty set of ideals of S such that if λ1, λ2 ∈ Λ, then Iλ1 ∪ Iλ2 ⊂ Iλ3 for some λ3.

(1) If each Iλ is a ?f -ideal, then I = ∪{Iλ | λ ∈ Λ} is a ?f -ideal.
(2) If each Iλ is a ?f -prime ideal, then I = ∪{Iλ | λ ∈ Λ} is a ?f -prime ideal.

The proof is straightforward.

(1.12) In (1.11), assume that each Iλ $ S.
(1) If each Iλ is a quasi-?f -ideal, then I is a quasi-?f -ideal with I $ S.
(2) If each Iλ is a quasi-?f -prime ideal, then I is a quasi-?f -prime ideal.
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The proof is straightforward.

Let D be an infinite domain with quotient field q(D) = K. Let f =
∑n

1 aiX
ti

be a non-zero element of K[X;G], where ai 6= 0 for each i and ti 6= tj for each i 6= j.
Then the fractional ideal (a1, · · · , an) of D is said the c-content of f , and is denoted
by cD(f) (or, simply by c(f)). The subset {a1, · · · , an} of K is denoted by Coef(f).
The fractional ideal (t1, · · · , tn) of S is said the e-content of f , and is denoted by eS(f)
(or, simply by e(f)). The subset {t1, · · · , tn} of G is denoted by Exp(f).

We set N(?) = {f ∈ D[X;S] − {0} | e(f)? 3 0}. Obviously, N(?) = N(?f ). We
set D(X;S)e = D[X;S]N(d).

(2.1) Proposition Let ? 6= e.
(1) N(?) is a multiplicatively closed subset of D[X;S].
If f, g ∈ D[X;S] − {0} such that fg ∈ N(?), then f, g ∈ N(?).
(2) N(?) = D[X;S] − ∪{QD[X;S] | Q ∈ M(?f )}.
(3) Max(D[X;S]N(?)) = {QD[X;S]N(?) | Q ∈ M(?f )}.
(4) D[X;S]N(?) = ∩{D(X;SQ)e | Q ∈ M(?f )}.
(5) M(?f ) = {M ∩ S | M ∈ Max(D[X;S]N(?))}.

Proof. (1) follows from Dedekind-Mertens Lemma for S ([GP, 6.2.PROPOSI-
TION]).

(2) Let f ∈ D[X;S]−{0}. If e(f)? 63 0, there is a quasi-?f -maximal ideal Q such
that e(f) ⊂ Q. Then f ∈ QD[X;S].

(3) It is sufficient to show that each prime ideal H of D[X;S] contained inside
∪{QD[X;S] | Q ∈ M(?f )} is contained in QD[X;S] for some Q ∈ M(?f ). Set
∪{e(f) | f ∈ H − {0}} = I. It suffices to show that I?f 63 0. Suppose the contrary.
There are f1, · · · , fn ∈ H − {0} such that (e(f1) ∪ · · · ∪ e(fn))?f 3 0. There are
c1, · · · , cn ∈ D − {0} with c1f1 + · · · + cnfn = g such that Exp(g) = Exp(f1) ∪ · · · ∪
Exp(fn). Hence e(g)?f 3 0, and hence g ∈ H ∩ N(?); a contradiction.

(4) and (5) are consequences of (3).

(2.2) Is (2.1) valid for a finite domain?

We denote D[X;S]N(?) by Na(S, ?,D) (or, simply by Na(S, ?)), and we say it the
Nagata ring of S with respect to ? and D (or, simply the Nagata ring of S with respect
to ?). Obviously, Na(S, ?) = Na(S, ?f ).

(2.3) Let Q be a prime ideal of S. Then Q is a maximal t-ideal of S if and only
if Q = M ∩ S for some M ∈ Max(Na(S, v)).

The proof follows from (2.1)(5).

(2.4) (1) Let P be a prime ideal of S, and let ? be the semistar operation
E 7−→ E + SP on S.

(a) M(?f ) = {P}.
(b) Na(S, ?) = D(X;SP )e.
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(c) ? = ?f = ?sp = ?̃.
(2) Let ∅ 6= ∆ ⊂ Spec(S), let ∆↓ = {H ∈ Spec(S) | H ⊂ P for some P ∈ ∆},

and let ? = ?∆. Assume that each P ∈ ∆ is contained in some Q ∈ ∆max.
(a) ∆ ⊂ QSpec?(S) ⊂ ∆↓ and QMax?(S) = ∆max.
Assume that ∆max is a quasi-compact subspace of Spec(S). Then
(b) Na(S, ?∆) = ∩{D(X;SQ)e | Q ∈ ∆max} = ∩{D(X;SP )e | P ∈ ∆},
(c) (̃?∆) = ?∆.

Proof. (2) (b) ? = ?f by [M3, §2,(4.1)]. Since M(?) = ∆max, we have
Max(Na(S, ?)) = {QNa(S, ?) | Q ∈ ∆max} by (2.1)(3). It follows that

Na(S, ?) = ∩{Na(S, ?)QNa(S,?) | Q ∈ ∆max} = ∩{D[X;S]QD[X;S] | Q ∈ ∆max} =
∩{D(X;SQ)e | Q ∈ ∆max} = ∩{D(X;SP )e | P ∈ ∆}.

(c) Since ? is spectral, ?sp = ?. Hence ?̃ = (?f )sp = ?sp = ?.

(2.5) Proposition Let ? 6= e, and let E ∈ F̄(S).
(1) ENa(S, ?) = ∩{ED(X;SQ)e | Q ∈ M(?f )}.
(2) ENa(S, ?) ∩ G = ∩{E + SQ | Q ∈ M(?f )}.
(3) E?̃ = ENa(S, ?) ∩ G.
If E = E?, then E = ENa(S, ?) ∩ G.
(4) Assume that ? = ?f . Then
(i) ?̃ = ?sp.
(ii) S?sp = ∩{SQ | Q ∈ M(?)}.
(iii) ?sp is of finite type.

Proof. (1) By (2.1), we have
ENa(S, ?) = ∩{(ED[X;S]N(?))M | M ∈ Max(D[X;S]N(?))}
= ∩{ED[X;S]QD[X;S] | Q ∈ M(?f )} = ∩{ED(X;SQ)e | Q ∈ M(?f )}.
(2) We have ENa(S, ?) ∩ G = ∩{ED(X;SQ)e ∩ G | Q ∈ M(?f )} by (1). Easily,

ED(X;SQ)e ∩ G = E + SQ.
(3) We have that E?̃ = ∩{E + SQ | Q ∈ M(?f )} by (1.9)(2). Then E?̃ =

ENa(S, ?) ∩ G by (2).
Assume that E = E?. Since ?̃ ≤ ? by (1.9)(1), E = E?̃. Hence E = ENa(S, ?)∩G.
(4) (i) ?̃ = ?M(?) by (1.9)(1), and ?sp = ?Π? = ?Π?

max
= ?M(?).

(ii) S?sp = S?M(?) = ∩{SQ | Q ∈ M(?)}.
(iii) ?̃ is of finite type by [M3, §1,(2.6)(7)]. Hence ?sp is of finite type by (i).

(2.6) Let ? 6= e.
(1) (?̃)f = ?̃ = (?̃)sp = ˜̃?.
(2) M(?f ) = M(?̃).
(3) Na(S, ?) = Na(S, ?̃) = Na(S?̃, α(?̃)).

Proof. (1) (?̃)f = ?̃ by [M3, §1,(2.6)(7)]. Hence ?̃ is quasi-spectral by [M3,
§1,(3.16)]. ?̃ is stable by [M3, §1,(2.6)(6)]. Hence ?̃ = (?̃)sp by [M3, §2,(2.3) and
§1,(3.10)]. ˜̃? = ?̃ by [M3, §1,(2.7)].

(2) Because ?̃ = ?M(?f ) by (1.9)(1).
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(3) N(?) = N(?̃) by (2.1)(2). Hence Na(S, ?) = Na(S, ?̃).
The case (C), where ? = ?f = ?∆ and ∅ 6= ∆ = {Qλ | λ ∈ Λ} ⊂ Spec(S) with

Qλ 6⊂ Qλ′ for each λ 6= λ′. Then we have S? = ∩λSQλ
and M(?) = ∆. If Q ∈ ∆, then

(Q + SQ) ∩ S? = ∩λ((Q + SQ) ∩ SQλ
) = ∩λ(Q + SQλ

) = Q?, and Q? ∩ S =
(Q + SQ) ∩ S? ∩ S = Q.

Let M ∈ M(α(?)). Then M ⊂ S? and M = Mα(?) = M? = ∩λ(M +SQλ
). Hence

M + SQ 63 0 for some Q ∈ ∆. Then M ⊂ (Q + SQ) ∩ S? = Q?. By the choice of M ,
M = Q? by (1.2)(3).

It follows that M(α(?)) = {Q? | Q ∈ ∆}.
Since (SQ)Q+SQ ⊃ (S?)Q? ⊃ SQ, we have (S?)Q? = SQ. By (2.1)(4),
Na(S?, α(?)) = ∩λD(X; (S?)Q?

λ
)e = ∩λD(X;SQλ

)e = Na(S, ?).
The general case: Set M(?f ) = ∆, then ?̃ = ?∆. By the case (C), we have

Na(S?̃, α(?̃)) = Na(S, ?̃).

(2.7) Let ? be quasi-spectral such that Π? 6= ∅. Then Na(S, ?) = Na(S, ?sp) =
Na(S, ?̃).

Proof. We have ?̃ = (?f )sp ≤ ?sp by [M3, §1,(3.8), (4) and (5)]. Hence Na(S, ?̃) ⊂
Na(S, ?sp). Since ?sp ≤ ? by (1.7)(2), we have Na(S, ?sp) ⊂ Na(S, ?). The first equality
of (2.6)(3) completes the proof.

(2.8) Theorem Assume that ? 6= e. We have Max(Na(S, ?)) = {QD(X;SQ)e ∩
Na(S, ?) | Q ∈ M(?f )}.

Proof. (2.1), (3) and (4) show that the maximal ideals of Na(S, ?) are the ideals of
the set {QNa(S, ?) | Q ∈ M(?f )}, and Na(S, ?) % QD(X;SQ)e∩Na(S, ?) ⊃ QNa(S, ?).
The proof is complete.

A valuation oversemigroup V of S is said a ?-valuation oversemigroup of S if, for
every element F ∈ f(S), F ? ⊂ F + V .

(2.9) Theorem Assume that ? 6= e. Let V be a valuation oversemigroup of S.
Then V is a ?̃-valuation oversemigroup if and only if V is an oversemigroup of SP for
some P ∈ M(?f ).

Proof. We may assume that V $ G. The sufficiency: ?̃ = ?M(?f ) by (1.9)(1).
Set M(?f ) = {Pλ | λ ∈ Λ}, and let F ∈ f(S). Then F ?̃ = ∩{F + SPλ

| λ ∈ Λ} ⊂
F + SP ⊂ F + V .

The necessity: Let M be the maximal ideal of V , let Q = M ∩ S, and set
∆ = M(?f ). Since ?̃ is of finite type, Q?̃ = ∪{F ?̃ | F ∈ f(S), F ⊂ Q}. And F ?̃ ⊂
F + V ⊂ M . Hence Q?̃ ⊂ M .

Suppose that Q 6⊂ P for each P ∈ M(?f ). Then Q?̃ = Q?∆ = ∩{Q + SP | P ∈
∆} 3 0; a contradiction.

In the following (3.1) and (3.2), for convenience, we will review [OM, (4.2) and
(4.3)] briefly.
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(3.1) Let ? be a semistar operation on S. Let f, g, f ′, g′ ∈ D[X;S] − {0} with
f

g
=

f ′

g′
such that (e(f) + e(h))? ⊂ (e(g) + e(h))? for some h ∈ D[X;S] − {0}. Then

there is h′ ∈ D[X;S] − {0} such that (e(f ′) + e(h′))? ⊂ (e(g′) + e(h′))?.

Proof. By [GP, 6.2. PROPOSITION], there is a positive integer m such that
(m + 1)e(g) + e(f ′) = me(g) + e(f ′g) and (m + 1)e(f) + e(g′) = me(f) + e(fg′). It
follows that {(m + 1)e(g) + e(f ′)} + me(f) = {(m + 1)e(f) + e(g′)} + me(g).

There are elements s1, s2, · · · , sn of S with si 6= sj for each i 6= j such that
(m + 1)(e(g) + e(h)) + m(e(f) + e(h)) = (s1, s2, · · · , sn). If we set h′ = Xs1 + Xs2 +
· · ·+Xsn ∈ D[X;S]−{0}, we have e(h′) = (m+1)(e(g)+ e(h))+m(e(f)+ e(h)), and
therefore

e(f ′) + e(h′) = {(m + 1)e(g) + e(f ′) + me(f)} + (2m + 1)e(h)
= {(m + 1)e(f) + e(g′) + me(g)} + (2m + 1)e(h)
= (e(f) + e(h)) + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g′)
⊂ (e(g) + e(h))? + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g′)
⊂ (e(g′) + e(h′))?.

The set {f

g
| f, g ∈ D[X;S] − {0} such that (e(f) + e(h))? ⊂ (e(g) + e(h))? for

some h ∈ D[X;S] − {0}} ∪ {0} is denoted by Kr(S, ?,D) (or, simply by Kr(S, ?)),
and is said the Kronecker function ring of S with respect to ? and D (or, simply with
respect to ?). (3.1) and (3.2) show that Kr(S, ?) is a well-defined overring of D[X;S].

(3.2) Kr(S, ?) is an integral domain with quotient field q(D[X;S]).

Proof. Let
f

g
,
f ′

g
∈ Kr(S, ?) − {0}. Then there are h, h′ ∈ D[X;S] − {0} such

that (e(f) + e(h))? ⊂ (e(g) + e(h))? and (e(f ′) + e(h′))? ⊂ (e(g) + e(h′))?. There is
j ∈ D[X;S] − {0} such that e(j) = e(h) + e(h′). Then we have

(e(f) + e(j))? ⊂ (e(g) + e(j))?, (e(f ′) + e(j))? ⊂ (e(g) + e(j))?.
We may assume that f + f ′ 6= 0. Then it follows that (e(f + f ′) + e(j))? ⊂

(e(g) + e(j))?. Hence
f

g
+

f ′

g
∈ Kr(S, ?).

Next, we have (m+2)e(g) = me(g)+e(g2) for some m. There is j′ ∈ D[X;S]−{0}
such that e(j′) = (m + 2)e(g) + 2e(k). Then we have

e(ff ′) + e(j′) ⊂ {e(f) + e(f ′)} + {(m + 2)e(g) + 2e(j)}
= {e(f) + e(j)} + {e(f ′) + e(j)} + (m + 2)e(g)
⊂ 2(e(g) + e(j))? + (m + 2)e(g)
= 2(e(g) + e(j))? + {me(g) + e(g2)} ⊂ (e(g2) + e(j′))?.

Therefore (e(ff ′) + e(j′))? ⊂ (e(g2) + e(j′))?. Hence
ff ′

gg′
∈ Kr(S, ?).

We define the mapping ?a : F̄(S) −→ F̄(S) by setting
F ?a = ∪{((F + H)? : H?) | H ∈ f(S)} for every F ∈ f(S),
E?a = ∪{F ?a | F ∈ f(S) with F ⊂ E} for every E ∈ F̄(S).
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The following (3.3) appears in [OM, (3.6),(4.5) and (4.7)].

(3.3) (1) ?a is a semistar operation of finite type on S.
(2) ?a is e.a.b. (that is, endlich arithmetisch brauchbar).
(3) ?f = ?a if and only if ?f is e.a.b.
(4) If ?1 ≤ ?2, then (?1)a ≤ (?2)a.
(5) If ?1 ≤ ?2, then Kr(S, ?1) ⊂ Kr(S, ?2).
(6) Let ? be a semistar operation on S. Then, for every E ∈ F̄(S), we have

E?a = ∪{FKr(S, ?) ∩ G | F ∈ f(S) with F ⊂ E}.

(3.4) Proposition (1) ?f ≤ ?a.
(2) Kr(S, ?) = Kr(S, ?f ) = Kr(S, ?a) = Kr(S?a , α(?a)).
(3) Kr(S, ?) is a Bezout domain.
(4) Na(S, ?) ⊂ Kr(S, ?).
(5) E?a = EKr(S, ?) ∩ G for each E ∈ F̄(S).

Proof. The proof follows from [OM, (3.6),(4.4),(4.6) and (4,8)] and (3.3)(6).

(3.5) If ? is a semistar operation on S distinct with e, then ?a 6= e.

Proof. Suppose the contrary. Since ?a = e, we have S?a = G. Since ?a is of finite
type, S? = G. Therefore ? = e.

(3.6) A valuation oversemigroup V of S is a ?-valuation oversemigroup if and
only if there is a valuation overring W of Kr(S, ?) such that W ∩ G = V .

Proof. Let v be a valuation on G, let f =
∑n

1 aiX
ti ∈ K[X;G], where ai 6= 0 for

each i and ti 6= tj for each i 6= j. If we set v′(f) = min i v(ti), we have a valuation v′

on q(K[X;G]).
Let V be a ?-valuation oversemigroup, let v′ be the canonical extension of v

to q(D[X;S]), and let V ′ be the valuation ring of v′. Let
f

g
∈ Kr(S, ?). There

is an element h ∈ D[X;S] − {0} such that (e(f) + e(h))? ⊂ (e(g) + e(h))?. Let
f =

∑n
1 aiX

si , g =
∑m

1 bjX
tj , h =

∑l
1 ckXuk , and let v(si0) = min i v(si), v(tj0) =

min j v(tj), v(cu0) = min k v(uk). We have
(e(f)+ e(h))? +V = e(f)+ e(h)+V = e(f)+V + e(h)+V = si0 +V + eu0 +V =

si0 + uk0 + V .
Similarly, we have (e(g) + e(h))? + V = tj0 + uk0 + V . Since si0 + uk0 + V ⊂

tj0 +uk0 +V , we have v(si0) ≥ v(tj0). Then v′(
f

g
) = v′(f)−v′(g) = v(si0)−v(tj0) ≥ 0.

Hence
f

g
∈ V ′.

Let W be a valuation overring of Kr(S, ?), and let V = W ∩ G. Let F =
(α1, · · · , αn) ∈ f(S) with αi 6= αj for each i 6= j, and let f = Xα1 + · · · + Xαn .
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Let v(αi0) = min i v(αi). If z ∈ F ?, we have (z)? ⊂ e(f)?. Then we have
z

f
∈

Kr(S, ?) ⊂ W , hence v(z) − v(αi0) ≥ 0. It follows that z ∈ αi0 + V ⊂ F + V , hence
F ? ⊂ F + V .

(3.7) Let W be a valuation overring of Kr(S, ?), and let V = W ∩ G. Then W
is the canonically extended valuation ring of V to q(D[X;S]).

Proof. Let w be a valuation on q(D[X;S]) belonging to W , and set v(s) = w(Xs)
for every s ∈ S. Then v is a valuation on G belonging to V . Let v′ be the canonical
extension of v to q(D[X;S]). If f = a0X

s0 + · · · + anXsn ∈ D[X;S] with ai 6= 0 for
each i and si 6= sj for each i 6= j, and if v(s0) = min iv(si), we have v′(f) = v(s0) and

w(f) ≥ inf iw(aiX
si) = v(s0). Since

Xs0

f
∈ Kr(S, ?) ⊂ W, 0 ≤ w(Xs0

f ) = v(s0)−w(f).

Hence w(f) = v(s0) = v′(f). Therefore w = v′.

(3.8) Theorem Assume that e 6= ? = ?f .
(1) Let W be a valuation oversemigroup of Kr(S, ?) with maximal ideal N $ W .

Set N0 = N ∩ S and N1 = N ∩ D[X;S]. Then
(a) N1 = N0D[X;S], N ∩ Na(S, ?) = N0Na(S, ?) = N1Na(S, ?) and N ∩

Na(S, ?a) = N0Na(S, ?a) = N1 Na(S, ?a).
(b) N0 is a quasi-?a-prime ideal.
(2)　 If P is a quasi-?a-prime ideal of S, then there is a quasi-?a-maximal ideal

Q of S and a valuation overring W of Kr(S, ?) such that P ⊂ Q = N ∩ S, where N is
the maximal ideal of W .

(3) M(?a) is contained in the canonical image in S of Max(Kr(S, ?)).
(4) For each Q ∈ M(?a), there is a ?-valuation oversemigroup V of S containing

SQ.

Proof. (1) (a) Let 0 6= f ∈ N1, and let Exp(f) = {s1, · · · , sn}. Then N ⊃
fKr(S, ?) = (s1, · · · , sn)Kr(S, ?) and (s1, · · · , sn) ⊂ N0. Hence f ∈ N0D[X;S], and
hence N1 = N0D[X;S].

Let
f

g
∈ N ∩ Na(S, ?) with g ∈ N(?). Then f ∈ gN ⊂ N , hence f ∈ N1. Hence

f

g
∈ N1Na(S, ?). It follows that N ∩ Na(S, ?) = N1Na(S, ?) = N0Na(S, ?). Since

Kr(S, ?) = Kr(S, ?a), we have N∩ Na(S, ?a) = N0Na (S, ?a) = N1Na(S, ?a).
(b) By (3.4), we have N?a

0 = N0Kr(S, ?) ∩ G ⊂ N ∩ Kr(S, ?a) ∩ G = N ∩ S?a .
Hence N?a

0 ∩ S ⊂ N ∩ S?a ∩ S = N0.
(2) Since ?a is of finite type, there is a quasi-?a-maximal ideal Q with Q ⊃ P .

Q?a = QKr(S, ?) ∩ G by (3.4)(5). Hence QKr(S, ?) 63 1. Let M be a maximal ideal of
Kr(S, ?) with M ⊃ QKr(S, ?). W = Kr(S, ?)M is a valuation overring of Kr(S, ?) with
maximal ideal N = MW . Since Q is a quasi-?a-maximal ideal, N ∩ S = Q by (1)(b).

(3) follows from the proof of (2).
(4) If Q ∈ M(?a), we can find a valuation overring W of Kr(S, ?) such that

N ∩ S = Q by (2), where N is the maximal ideal of W . Set V = W ∩ G. Then V is a
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?-valuation oversemigroup of S containing SQ by (3.6).

(3.9) Let ? be e.a.b., of finite type and S = S? with ? 6= e. Let P be a ?-maximal
ideal of S. Then P is the center of a minimal ?-valuation oversemigroup of S.

Proof. ?a = ? by (3.3)(3). By (3.8)(3), there is a maximal ideal M of Kr(S, ?)
such that M ∩ S = P . Set W = Kr(S, ?)M , and let N be the maximal ideal of W .
Then W ∩ G = V is a ?-valuation oversemigroup of S, and P is the center of V in
S. Suppose that there is a ?-valuation oversemigroup V ′ with V ′ ⊂ V , let v′ be a
valuation on G belonging to V ′, and let W ′ be the canonical extension of V ′, then W ′

is a valuation overring of Kr(S, ?). Let 0 6= ϕ ∈ W ′. Then ϕ =
∑

aiX
αi∑

bjβj
, where each

αi, βj ∈ V ′ with βj0 = 0 for some j0. It follows that ϕ ∈ W . Hence W ′ = W , and
V ′ = V .

(3.10) Assume that e 6= ? = ?f .
(1) ?̃ ≤ (̃?a) = (?a)sp ≤ ?a and ?̃ ≤ (?̃)a ≤ ?a.
(2) Na(S, ?) = Na(S, ?̃) ⊂ Na(S, (̃?a)) = Na(S, ?a) ⊂ Kr(S, ?a) = Kr(S, ?).
(3) Na(S, ?) = Na(S, ?̃) ⊂ Na(S, (?̃)a) ⊂ Kr(S, (?̃)a) = Kr(S, ?̃) ⊂ Kr(S, ?).
(4) For every E ∈ F̄(S),
(a) E

g(?a) = ENa(S, ?a) ∩ G ⊃ ENa(S, ?) ∩ G = E?̃.
(b) E(?̃)a = EKr(S, ?̃) ∩ G ⊂ EKr(S, ?) ∩ G = E?a .

Proof. (1) Since ? ≤ ?a by (3.4)(1), ?̃ ≤ (̃?a) by [M3, §1,(2.7)(4)]. Since ?a is
of finite type by (3.3)(1), (̃?a) = ((?a)f )sp = (?a)sp. Since ?a is quasi-spectral by [M3,
§1,(3.16)], (?a)sp ≤ ?a by [M3, §2,(1.2)]. Since ?̃ is of finite type by [M3, §1,(2.6)],
?̃ ≤ (?̃)a by (3.4)(1). Since ?̃ ≤ ? by [M3, §1,(2.6)(3)], (?̃)a ≤ ?a by (3.3)(4).

(2) By (2.6)(3), we have Na(S, ?) = Na(S, ?̃) and Na(S, ?a) = Na(S, (̃?a)). By
(1), Na(S, ?̃) ⊂ Na(S, (̃?a)).

(3) Na(S, ?) = Na(S, ?̃) by (2.6)(3).
Since ?̃ ≤ (?̃)a, Na(S, ?̃) ⊂ Na(S, (?̃)a).
Na(S, (?̃)a) ⊂ Kr(S, (?̃)a) by (3.4)(4).
Kr(S, (?̃)a) = Kr(S, ?̃) by (3.4)(2).
Since ?̃ ≤ ?, Kr(S, ?̃) ⊂ Kr(S, ?).
(4) (a) Since ?f ≤ ?a, Na(S, ?) ⊂ Na(S, ?a).
E

g(?a) = ENa(S, ?a) ∩ G by (2.5)(3).
(b) From (3.4)(5) and from the fact ?̃ ≤ ?, we have E(?̃)a = EKr(S, ?̃) ∩ G ⊂

EKr(S, ?) ∩ G = E?a .

(3.11) Proposition Assume that ? 6= e. The following conditions are equivalent.
(1) ?̃ = (̃?a).
(2) M(?f ) = M(?a).
(3) Na(S, ?) = Na(S, ?a).
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Proof. (2) =⇒(1): Since ?a is of finite type, (?a)f = ?a.
By (1.9)(1), ?̃ = ?M(?f ) and (̃?a) = ?M(?a).
(1) =⇒(2): Follows from (2.6)(2).
(2) =⇒ (3): By (2.1)(2), N(?) = N(?a). Hence Na(S, ?) = Na(S, ?a).
(3) =⇒ (2): From (2.1)(5).

(3.12) Assume that ? 6= e. The following conditions are equivalent.
(1) ?a = (?̃)a.
(2) The set of ?̃-valuation oversemigroups of S coincides with the set of ?-valuation

oversemigroups of S.
(3) Kr(S, ?̃) = Kr(S, ?).
Moreover, each of the previous conditions implies
(4) M(?a) = M((?̃)a).

Proof. (2) ⇐⇒ (3) follows from (3.6).
(1) =⇒ (3): (3.4)(2) implies that Kr(S, ?̃) = Kr(S, (?̃)a) = Kr(S, ?a) = Kr(S, ?).
(1) =⇒ (4): Trivial.
(3) =⇒ (1): By (3.4)(5), we have E?a = EKr(S, ?)∩G and E(?̃)a = EKr(S, ?̃)∩G.

By (3), we have E?a = E(?̃)a . Hence ?a = (?̃)a.

(3.13) Proposition Let ?1, ?2 be semistar operations on S distinct with e. Then,
Na(S, ?1) = Na(S, ?2) if and only if M((?1)f ) = M((?2)f ).

Proof. The necessity follows from (2.1)(5).
The sufficiency follows from (2.1)(2).

Appendix

Let D be a domain, and let S be a g-monoid % {0}. Let D[X;S] be the semigroup
ring of S over D. If ~Z0 is the non-negative integers, then D[X; ~Z0] = D[X]. After
[FL1], we will define the Kronecker function ring Kr(D, ?, S) of D with respect to ?
and S.

(1) (Dedekind-Mertens Lemma)(cf. [GP, 4.3.THEOREM]) Let f, g ∈ D[X;S] −
{0}. Then there is a positive integer m such that c(g)m+1c(f) = c(g)mc(fg).

(2) Let ? be a semistar operation on D. Let f, g, f ′, g′ ∈ D[X;S] − {0} with
f

g
=

f ′

g′
such that (c(f)c(h))? ⊂ (c(g)c(h))? for some h ∈ D[X;S] − {0}. Then there

is h′ ∈ D[X;S] − {0} such that (c(f ′)c(h′))? ⊂ (c(g′)c(h′))?.

Proof. Then we have fg′ = f ′g. By (1), there is a positive integer m such that
c(g)m+1c(f ′) = c(g)mc(f ′g), c(f)m+1c(g′) = c(f)mc(fg′).
It follows that {c(g)m+1c(f ′)}c(f)m = {c(f)m+1c(g′)}c(g)m.
There is h′ ∈ D[X;S] − {0} such that c(h′) = (c(g)c(h))m+1(c(f)c(h))m.
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Then we have
c(f ′)c(h′) = {c(g)m+1c(f ′)c(f)m}c(h)2m+1

= {c(f)m+1c(g′)c(g)m}c(h)2m+1 = (c(f)c(h))(c(f)c(h))m(c(g)c(h))mc(g′)
⊂ (c(g)c(h))?(c(f)c(h))m(c(g)c(h))mc(g′) ⊂ (c(g′)c(h′))?.
Therefore (c(f ′)c(h′))? ⊂ (c(g′)c(h′))?.

Set Kr(D, ?, S) = {f

g
| f, g ∈ D[X;S] − {0} such that (c(f)c(h))? ⊂ (c(g)c(h))?

for some h ∈ D[X;S]−{0}} ∪ {0}. (2) shows that Kr(D, ?, S) is a well-defined subset
of q(D[X;S]).

(3) Kr(D, ?, S) is an integral domain with quotient field q(D[X;S]).

Proof. Let
f

g
,
f ′

g
∈ Kr(D, ?, S)− {0}. Then there are h, h′ ∈ D[X;S]− {0} such

that (c(f)c(h))? ⊂ (c(g)c(h))?, (c(f ′)c(h′))? ⊂ (c(g)c(h′))?.
There is k ∈ D[X;S] − {0} such that c(k) = c(h)c(h′). Then we have
(c(f)c(k))? ⊂ (c(g)c(k))?, (c(f ′)c(k))? ⊂ (c(g)c(k))?.
We may assume that f+f ′ 6= 0. Then it follows that (c(f+f ′)c(k))? ⊂ (c(g)c(k))?.

Hence
f

g
+

f ′

g
∈ Kr(D, ?, S).

Next, we have c(g)m+2 = c(g)mc(g2) for some m. There is k′ ∈ D[X;S] − {0}
such that c(k′) = c(g)m+2c(k)2. Then we have

c(ff ′)c(k′) ⊂ {c(f)c(f ′)}{c(g)m+2c(k)2}
= {c(f)c(k)}{c(f ′)c(k)}c(g)m+2 ⊂ ((c(g)c(k))2)?c(g)m+2

= ((c(g)c(k))2)?{c(g)mc(g2)} ⊂ (c(g2)c(k′))?.

Therefore (c(ff ′)c(k′))? ⊂ (c(g2)c(k′))?, and hence
ff ′

g2
∈ Kr(D, ?, S).

(4) Kr(D, ?, S) is a Bezout domain.

Proof. Set R = Kr(D, ?, S), and let h ∈ D[X;S] − {0} with Coef (f) =
{c1, · · · , cn}. Then we have hR = (c1, · · · , cn)R.

Let ξ and η be non-zero elements of R. We let ξ =
f

g
and η =

f ′

g
with f, f ′, g ∈

D[X;S]−{0}, and let Coef(f) ∪ Coef(f ′) = {a1, · · · , an} with ai 6= aj for every i 6= j.
Then we have, for an element s ∈ S − {0},

(ξ, η)R = (
1
g
)(f, f ′)R = (

1
g
)(a1, · · · , an)R

= (
1
g
)(a1X

s + a2X
2s + · · · + anXns)R.

Therefore (ξ, η)R is a principal ideal of R.

The above proof is slightly defferent from the corresponding classical one (cf., for
instance, [G1, (32.7) THEOREM]).

Let D be a domain with quotient field K, let ? be a semistar operation on D.
A valuation overring V of D is said a ?-valuation overring if, for every F ∈ f(D),
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F ? ⊂ FV . The following similar result to [FL2, Theorem 3.5] is valid, and the proof
is similar:

(5) Proposition Let ? be a semistar operation on D, and let V be a valuation
overring of D. Then V is a ?-valuation overring if and only if there is a valuation
overring W of Kr(D, ?, S) such that W ∩ K = V .

The author thanks to Professor Ken Nakane for his assistance over a long period
of time.
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