Note on localizing systems and Kronecker function rings of semistar operations

Ryûki Matsuda*

Abstract

We study the results of M. Fontana and J. Huckaba [FHu] on localizing systems and semistar operations, and give a couple of remarks for them. After M. Fontana and K.A. Loper [FL3], we study also Nagata rings, Kronecker function rings, and related semistar operations on semigroups.

This paper consists of §1 and §2. M. Fontana and J. Huckaba [FHu] established a natural bridge between localizing systems and semistar operations. In §1 of this paper, we will study their results, and will give a couple of remarks for them. §1 consists of 4-Parts. Part 1 contains preliminary results, and will review a part of [FHu]. Part 2 concerns with relations between finite type localizing systems and finite type semistar operations. We will give an answer to the problem ([FHu]): Characterize a localizing system \mathcal{F} of D such that $\star_{(\mathcal{F}_f)} = (\star_{\mathcal{F}})_f$. In fact, we treat this problem for all localizing systems, and not for particular ones. Part 3 concerns with \star -invertible ideals for semistar operations \star . We will study a pseudo-valuation domain D, a quasispectral semistar operation \star , and \star -invertible ideals of D, and we will show that, if I is a \star -invertible ideal of D, then I need not be $\bar{\star}$ -invertible. The proof of [FHu, Proposition 4.25] seems incomplete. We hear that such an ideal was also given in [FP]. Part 4 concerns with semistar operations which are spectral, quasi-spectral, and fqq-spectral. We will give a condition for a semistar operation to be spectral. The proof of [FHu, Proposition 4.8] seems incomplete.

M. Fontana and K.A. Loper [FL3] investigated Nagata rings, Kronecker function rings, and related semistar operations. A subsemigroup $\ni 0$ of a torsion-free abelian additive group is said a grading monoid (or, a g-monoid). In §2 of this paper, after [FL3], we will study Nagata rings, Kronecker function rings, and related semistar operations on g-monoids, and will show that almost all statements in [FL3] hold for g-monoids. Since the structure of a g-monoid is simpler than that of a domain, it is expected that the semigroup versions of [FL3] are only straightforward translations from rings to semigroups. However, if or not the semigroup version §2, (1.6) of [FL3, Lemma 2.6] is valid is open. In Appendix, we will give a direct proof for the fact that,

Received 4 June, 2008; revised 15 January, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 13A15.

Key Words and Phrases. localizing system, semistar operation, Kronecker function ring.

^{*}Professor Emeritus, Ibaraki University (rmazda@adagio.ocn.ne.jp)

for any integral domain D and for any semistar operation on D, the Kronecker function ring which was defined by M. Fontana, F. Halter-Koch and K.A. Loper ([FL1], [Ha]) is well-defined. Besides, we will show a similar result to [FL2, Theorem 3.5] for our Kronecker function ring $Kr(D, \star, S)$.

§1 Localizing systems and semistar operations

First, we will review a part of [FHu]. The quotient field of an integral domain D is denoted by q(D). Let D be an integral domain with K = q(D). Let $\overline{F}(D)$ be the set of non-zero D-submodules of K, let F(D) be the set of non-zero fractional ideals of D, and let f(D) be the set of non-zero finitely generated D-submodules of K. For every $E, F \in \overline{F}(D)$, we define $(E:F) = \{x \in K \mid xF \subset E\}$ and $E^{-1} = (D:E)$.

If we set $E^d = E$ (resp., $E^e = K$) for every $E \in \overline{F}(D)$, then the mapping $E \longmapsto E^d$ (resp., $E \longmapsto E^e$) is a semistar operation, and is called the *d*-semistar operation (resp., the *e*-semistar operation) on *D*. If we set $E^v = (E^{-1})^{-1}$ for every $E \in \overline{F}(D)$, the mapping $E \longmapsto E^v$ is a semistar operation on *D*, and is called the *v*-semistar operation on *D*. Let *T* be an overring of *D*, and let \star be a semistar operation on *D*. Then there is induced a canonical semistar operation $\alpha(\star)$ on *T*, and is called the ascent of \star to *T*.

We say that a semistar operation \star is stable if $(E \cap F)^{\star} = E^{\star} \cap F^{\star}$ for every $E, F \in \overline{F}(D)$.

A semistar operation \star on D is said of finite type if, for every $E \in \overline{F}(D)$, $E^{\star} = \bigcup \{F^{\star} \mid F \in f(D) \text{ with } F \subset E\}.$

For every semistar operation \star on D, a semistar operation \star_f of finite type can be defined in the following way: For every $E \in \overline{F}(D)$, $E^{\star_f} = \bigcup \{F^{\star} \mid F \in f(D) \text{ with } F \subset E\}.$

We set $v_f = t$. Let \star_1, \star_2 be semistar operations on D. If $E^{\star_1} \subset E^{\star_2}$ for every $E \in \overline{F}(D)$, we set $\star_1 \leq \star_2$.

Let Δ be a non-empty subset of $\operatorname{Spec}(D) - \{(0)\}$. For every $E \in \overline{F}(D)$, define $E^{\star_{\Delta}} = \cap \{ED_P \mid P \in \Delta\}$. Then the mapping $E \longmapsto E^{\star_{\Delta}}$ is a semistar operation on D. A semistar operation \star on D is said spectral, if there is a non-empty subset $\Delta \subset \operatorname{Spec}(D) - \{(0)\}$ such that $\star = \star_{\Delta}$.

A semistar operation \star on D is said quasi-spectral, if for every non-zero ideal I of D such that $I^{\star} \not\supseteq 1$, there is a non-zero prime ideal P with $I \subset P$ such that $P^{\star} \cap D = P$.

We note that a localizing system \mathcal{F} of D is non-empty and $\mathcal{F} \not\supseteq (0)$ by definition. If \star is a semistar operation on D, we consider the following localizing system $\mathcal{F}^{\star} = \{I \mid I \text{ is an ideal of } D \text{ with } I^{\star} \supseteq 1\}.$

If $\star = e$, then $\mathcal{F}^{\star} = \{I \mid I \text{ is a non-zero ideal of } D\}.$

Let \star be a semistar operation on D, and let $\Pi^{\star} = \{P \in \operatorname{Spec}(D) - \{(0)\} \mid P^{\star} \not\supseteq 1\}$. If the set Π^{\star} is non-empty, we consider the semistar operation $\star_{sp} = \star_{\Pi^{\star}}$.

If \mathcal{F} is a localizing system of D, we consider the semistar operation $\star_{\mathcal{F}}$: For every $E \in \overline{F}(D), E^{\star_{\mathcal{F}}} = \bigcup \{ (E:I) \mid I \in \mathcal{F} \}.$

If $\mathcal{F} = \{I \mid I \text{ is a non-zero ideal of } D\}$, then $\star_{\mathcal{F}} = e$.

Let Δ be a non-empty subset of $\operatorname{Spec}(D) - \{(0)\}$. Set $\mathcal{F}(\Delta) = \{I \mid I \text{ is an ideal of } D \text{ with } I \not\subset P \text{ for each } P \in \Delta\}$. Then $\mathcal{F}(\Delta)$ is a localizing system of D. A localizing system \mathcal{F} is said spectral, if there is a non-empty subset $\Delta \subset \operatorname{Spec}(D) - \{(0)\}$ such

Note on localizing systems and Kronecker function rings of semistar operations

that $\mathcal{F} = \mathcal{F}(\Delta)$.

A localizing system \mathcal{F} is said finitely spectral if, for every finitely generated ideal $I \notin \mathcal{F}$, there is a prime ideal $P \notin \mathcal{F}$ such that $P \supset I$.

If a localizing system \mathcal{F} is spectral, then \mathcal{F} is finitely spectral.

A localizing system \mathcal{F} of D is said of finite type if, for every $I \in \mathcal{F}$, there is a non-zero finitely generated ideal $J \in \mathcal{F}$ with $J \subset I$.

Given a localizing system \mathcal{F} of D, we consider the following localizing system of finite type \mathcal{F}_f :

 $\mathcal{F}_f = \{I \in \mathcal{F} \mid \text{There is a non-zero finitely generated ideal } J \in \mathcal{F} \text{ with } J \subset I\}.$

If \star is a semistar operation on D, we consider the semistar operations $\bar{\star} = \star_{\mathcal{F}^{\star}}$ and $\tilde{\star} = \star_{(\mathcal{F}^{\star})_{f}}$. We have

 $E^{\bar{\star}}=\cup\{(E:I)\mid I \text{ is a non-zero ideal of }D \text{ with }I^{\star}\ni 1\}$ for every $E\in \bar{\mathcal{F}}(D)$ and

 $E^{\tilde{\star}} = \bigcup \{ (E : I) \mid I \text{ is a finitely generated non-zero ideal of } D \text{ with } I^* \ni 1 \}$ for every $E \in \overline{F}(D)$.

The following $(0.1) \sim (0.3)$ are results in [FHu].

(0.1) Let \star be a semistar operation on D, and let \mathcal{F} be a localizing system of D.

- (1) $\mathcal{F}^{\star} = \mathcal{F}^{\bar{\star}}.$
- (2) $\mathcal{F}^{\star_f} = (\mathcal{F}^{\star})_f.$
- (3) $\bar{\star} \leq \star$.
- (4) $\tilde{\star} \leq \star_f$.
- (5) If \star is of finite type, then \star is quasi-spectral.
- (6) If \star is spectral, then $\star = \bar{\star}$.
- (7) If \star is of finite type, then $\overline{\star}$ is of finite type.
- (8) \star is stable if and only if $\star = \bar{\star}$.
- (9) \star is spectral if and only if \star is quasi-spectral and stable.
- (10) $\overline{\star_f} = \tilde{\star}.$
- (11) $\mathcal{F} = \mathcal{F}^{\star_{\mathcal{F}}}.$
- (12) If \mathcal{F} is of finite type, then $\star_{\mathcal{F}}$ is of finite type.
- (13) If \star is of finite type, then \mathcal{F}^{\star} is of finite type.
- (14) $\star_{\mathcal{F}}$ is stable.
- (15) If \star is spectral, then \mathcal{F}^{\star} is spectral.
- (16) If \mathcal{F} is spectral, then $\star_{\mathcal{F}}$ is spectral.

(0.2) (1) Let Δ be a non-empty subset of Spec $(D) - \{(0)\}$. Then $\star_{\Delta} = \star_{\mathcal{F}(\Delta)}$ and $\mathcal{F}^{\star_{\Delta}} = \mathcal{F}(\Delta)$.

(2) Let \star_1, \star_2 be semistar operations on D such that $\star_1 \leq \star_2$. Then $\overline{\star_1} \leq \overline{\star_2}$.

(0.3) Assume that $\Pi^* \neq \emptyset$.

- (1) $\bar{\star} \leq \star_{sp}$.
- (2) If \star is spectral, then $\mathcal{F}^{\star} = \mathcal{F}(\Pi^{\star})$ and $\bar{\star} = \star_{sp}$.
- (3) If \star is quasi-spectral, then $\star_{sp} = \bar{\star}$.
- (4) \star is spectral if and only if $\star = \star_{sp}$.

Now, we will study the following,

(1.1) ([FHu]) Characterize a localizing system \mathcal{F} such that $\star_{\mathcal{F}_f} = (\star_{\mathcal{F}})_f$.

(1.2) Let \mathcal{F} be a localizing system of D. (1) For every element $E \in \overline{F}(D)$, we have $E^{\star_{\mathcal{F}}} = \cup \{(E:I) \mid I \in \mathcal{F}\}.$ (2) For every element $E \in f(D)$, we have $E^{(\star_{\mathcal{F}})_f} = \cup \{(E:I) \mid I \in \mathcal{F}\}\)$ and $E^{\star_{(\mathcal{F}_f)}} = \cup \{(E:I) \mid I \text{ is a finitely generated ideal of } D \text{ with } I \in \mathcal{F}\}.$

Proof. $E^{\star(\mathcal{F}_f)} = \bigcup \{ (E:J) \mid J \in \mathcal{F}_f \}$ = $\bigcup \{ (E:J) \mid \text{ There is a finitely generated ideal } I \in \mathcal{F} \text{ with } I \subset J \}$ = $\bigcup \{ (E:I) \mid I \text{ is a finitely generated ideal with } I \in \mathcal{F} \}.$

(1.3) ([FHu, Example 3.5]) There is a domain D and a localizing system \mathcal{F} of D such that $\star_{\mathcal{F}_f} \neq (\star_{\mathcal{F}})_f$.

(1.4) ([FHu, Proposition 3.3]) For every localizing system \mathcal{F} , we have $\star_{\mathcal{F}_f} \leq (\star_{\mathcal{F}})_f$.

(1.5) ([M2, Lemma 7]) Let \mathcal{F} be a localizing system of D, and let $\star = \star_{\mathcal{F}}$. (1) $(\mathcal{F}^{\star})_f = \mathcal{F}^{\star_f}$. (2) $\star_{\mathcal{F}_f} = \overline{\star_f}$. (3) $(\star_{\mathcal{F}})_f = (\overline{\star})_f$.

(1.6) ([M2, Proposition 2]) Let \mathcal{F} be a localizing system of D, and let $\star = \star_{\mathcal{F}}$. The following conditions are equivalent.

(1) $\star_{\mathcal{F}_f} = (\star_{\mathcal{F}})_f.$

(2) $\overline{\star_f} = (\bar{\star})_f$.

(3) For every element $E \in f(D)$, we have

 $\cup \{ (E:I) \mid I \text{ is a finitely generated ideal of } D \text{ with } I^* \ni 1 \}$

 $= \cup \{ (E:I) \mid I \text{ is an ideal of } D \text{ with } I^* \ni 1 \}.$

(1.7) Let \mathcal{F} be a localizing system of D, and let $\star = \star_{\mathcal{F}}$.

(1) $\star_f = e$ if and only if $\mathcal{F} = \{I \mid I \text{ is a non-zero ideal of } D\}.$

(2) If $\star_f = e$, then $\star_{\mathcal{F}_f} = (\star_{\mathcal{F}})_f$.

(3) If $\star_f \neq e$, then $\Pi^{(\star_{\mathcal{F}})_f} \neq \emptyset$, hence $((\star_{\mathcal{F}})_f)_{sp}$ is well-defined.

Proof. (1) For, $\mathcal{F} = \mathcal{F}^*$ by (0.1)(11).

(2) Then $\mathcal{F} = \{I \mid I \text{ is a non-zero ideal of } D\}$ by (1). Hence $\mathcal{F}_f = \mathcal{F}$ and $\star_{\mathcal{F}} = e$. (3) There is an ideal $I \notin \mathcal{F}$ by (1). Hence the set $\{I \mid I \text{ is an ideal with } I^{\star_f} \not\supseteq I\} = X$ is non-empty. By Zorn's Lemma, X has a maximal member P. Then P is a prime ideal of D, and $P \in \Pi^{\star_f}$.

(1.8) Assume that $\Pi^* \neq \emptyset$. Then we have $(\star_f)_{sp} = \overline{\star_f} \leq \star_f$ and $((\star_f)_{sp})_f =$

 $(\star_f)_{sp}.$

Proof. \star_f is quasi-spectral by (0.1)(5). Then $(\star_f)_{sp} = \overline{\star_f}$ by (0.3)(3), and $(\star_f)_{sp}$ is of finite type by (0.1)(7).

By (1.7), if $\mathcal{F} = \{I \mid I \text{ is a non-zero ideal of } D\}$, then we have $\star_{\mathcal{F}_f} = (\star_{\mathcal{F}})_f$ trivially. And, if otherwise, $((\star_{\mathcal{F}})_f)_{sp}$ is well-defined.

(1.9) **Proposition** Let \mathcal{F} be a localizing system of D with $\mathcal{F} \subsetneq \{I \mid I \text{ is a non-zero ideal of } D\}$, and let $\star = \star_{\mathcal{F}}$. The following conditions are equivalent.

(1) $\star_{\mathcal{F}_f} = (\star_{\mathcal{F}})_f.$

(2) $\overline{\star_f} = (\bar{\star})_f$.

(3) For every element $E \in f(D)$ and for every ideal I with $I^* \ni 1$, we have

 $(E:I) \subset \cup \{(E:J) \mid J \text{ is a finitely generated ideal with } J^* \ni 1\}.$

(4) For every ideal $J \in f(D)$ and for every ideal I with $I^* \ni 1$, we have

 $(J:I) \subset \cup \{(J:E) \mid E \text{ is a finitely generated ideal with } E^* \ni 1\}.$

(5) For every element $E \in f(D)$ and for every ideal I with $I^* \ni 1$ such that $I \subset E$, we have $J \subset E$ for some finitely generated ideal J with $J^* \ni 1$.

(6) \star_f is stable.

(7) \star_f is spectral.

(8) $(\star_f)_{sp} = \star_f.$

(9) For every element $E \in f(D)$ and for every ideal $I \in \mathcal{F}$, we have

 $(E:I) \subset \cup \{(E:J) \mid J \text{ is a finitely generated ideal with } J \in \mathcal{F} \}.$

(10) For every ideal $J \in f(D)$ and for every ideal $I \in \mathcal{F}$, we have

 $(J:I) \subset \cup \{(J:E) \mid E \text{ is a finitely generated ideal with } E \in \mathcal{F}\}.$

(11) For every element $E \in f(D)$ and for every ideal $I \in \mathcal{F}$ such that $I \subset E$, we have $J \subset E$ for some finitely generated ideal $J \in \mathcal{F}$.

(12) For every element $E \in f(D)$ with $E^* \ni 1$, there is a finitely generated ideal I with $I^* \ni 1$ such that $I \subset E$.

Proof. (1), (2),(3) are equivalent by (1.6).

(4) \implies (3): Let $x \in (E : I)$. There is an element $d \in D - \{0\}$ such that $dE \subset D$. Since $dx \in (dE : I)$, there is a finitely generated ideal J with $J^* \ni 1$ such that $dx \in (dE : J)$. Then we have $x \in (E : J)$.

 $(3) \Longrightarrow (4)$: Trivial.

(5) \Longrightarrow (3): Let $0 \neq x \in (E:I)$. Then we have $I \subset \frac{1}{x}E$. Hence there is a finitely

generated ideal J with $J^* \ni 1$ such that $J \subset \frac{1}{x}E$. Then $x \in (E:J)$. (3) \Longrightarrow (5): Since $1 \in (E:I)$, we have $1 \in (E:J)$ for some finitely generated

(3) \implies (5): Since $1 \in (E : I)$, we have $1 \in (E : J)$ for some finitely generated ideal J with $J^* \ni 1$. Then $J \subset E$.

(6) \Longrightarrow (1): $\mathcal{F}_f = \mathcal{F}^{\star_f}$ by (0.1)(2). Then $\star_{\mathcal{F}_f} = \star_f$ by (0.1)(8).

$$(1) \Longrightarrow (6)$$
: By $(0.1)(14)$.

(7) \implies (6): $\star_f = \overline{\star_f}$ by (0.1)(6), and \star_f is stable by (0.1)(8).

(6) \implies (7): \star_f is quasi-spectral by (0.1)(5). Then \star_f is spectral by (0.1)(9).

(8) \iff (7): By (0.3)(4).

(9) \iff (3), (10) \iff (4), and, (11) \iff (5): Because $\mathcal{F} = \mathcal{F}^*$ by (0.1)(11). (6) \implies (12): Because $1 \in E^* \cap D^* = E^{*_f} \cap D^{*_f} = (E \cap D)^{*_f}$. (12) \implies (5): Trivial.

We note that $(1) \iff (6)$ in (1.9) Proposition was proved in [O, Theorem 6]. Now, we will study a pseudo-valuation domain D, a quasi-spectral semistar operation \star on D, and \star -invertible ideals of D.

(2.1) ([FHu, Proposition 4.25]) Let \star be a quasi-spectral semistar operation on D, and let I, J be ideals of D.

(1) $(IJ)^{\star} = D^{\star}$ if and only if $(IJ)^{\overline{\star}} = D^{\overline{\star}}$.

(2) Assume that $\mathcal{F}^* = \{D\}$. Then $(IJ)^* = D^*$ if and only if I = J = D.

Proof. (1) The sufficiency: We have $\bar{\star} \leq \star$ by (0.1)(3), and hence $(IJ)^{\star} = D^{\star}$. The necessity: Suppose that $(IJ)^{\bar{\star}} \subsetneq D^{\bar{\star}}$. Then we have $IJ \notin \mathcal{F}^{\bar{\star}}$. Since $\mathcal{F}^{\star} = \mathcal{F}^{\bar{\star}}$ by (0.1)(1), we have $IJ \notin \mathcal{F}^{\star}$. Hence there is a prime ideal P with $P^{\star} \not\supseteq 1$ such that $P \supset IJ$. It follows that $(IJ)^{\star} \subset P^{\star} \subsetneq D^{\star}$; a contradiction.

(2) If $(IJ)^* = D^*$, then $IJ \in \mathcal{F}^*$, hence IJ = D.

(2.2) ([FHu, Corollary 4.26]) Let \star be a semistar operation on D, and let I, J be ideals of D.

(1) $(IJ)^{\star f} = D^{\star f}$ if and only if $(IJ)^{\tilde{\star}} = D^{\tilde{\star}}$. (2) $(IJ)^t = D^t$ if and only if $(IJ)^{\tilde{v}} = D^{\tilde{v}}$.

Proof. $\overline{\star_f} = \tilde{\star}$ by (0.1)(10). \star_f is quasi-spectral by (0.1)(5). Then we may apply (2.1).

If, for every ideal I with $I^* \not\supseteq 1$, there is a prime ideal P with $P^* \not\supseteq 1$ such that $P \supset I$, then \star is said a qq-spectral semistar operation (or, a quasi-quasi-spectral semistar operation).

Every quasi-spectral semistar operation is a qq-spectral semistar operation.

(2.3) Let \star be a qq-spectral semistar operation on D, and let I, J be ideals of D.

(1) $(IJ)^{\star} = D^{\star}$ if and only if $(IJ)^{\bar{\star}} = D^{\bar{\star}}$.

(2) Assume that $\mathcal{F}^{\star} = \{D\}$. Then $(IJ)^{\star} = D^{\star}$ if and only if I = J = D.

The proof is similar to that of (2.1).

An element $E \in \overline{F}(D)$ is said \star -invertible if there is an element $F \in \overline{F}(D)$ such that $(EF)^* = D^*$. If E is d-invertible, then E is said invertible.

Set $\operatorname{Inv}^{\star}(D) = \{E \in \overline{F}(D) \mid E \text{ is } \star \text{-invertible}\}$, and set $\operatorname{Princ}(D) = \{xD \mid x \in K - \{0\}\}$. $\operatorname{Inv}^{\star}(D)$ forms a group under a canonical product, and $\operatorname{Prin}(D)$ is a subgroup of $\operatorname{Inv}^{\star}(D)$. Then the quotient group $\operatorname{Cl}^{\star}(D) = \frac{\operatorname{Inv}^{\star}(D)}{\operatorname{Princ}(D)}$ is said the \star -class group of D.

(2.4) Let $E \in \overline{F}(D)$. If E is $\overline{\star}$ -invertible, then E is \star -invertible. If E is $\widetilde{\star}$ -invertible, then E is \star_f -invertible. If E is \widetilde{v} -invertible, then E is t-invertible.

For, $\bar{\star} \leq \star$ by (0.1)(3), and $\tilde{\star} \leq \star_f$ by (0.1)(4).

(2.5) Let \star be a semistar operation with $D^{\star} = D$, and let $E \in \overline{F}(D)$.

(1) E is \star -invertible if and only if E is $\overline{\star}$ -invertible.

(2) Assume that $\mathcal{F}^{\star} = \{D\}$. Then E is \star -invertible if and only if E is invertible.

Proof. Let $F \in \overline{F}(D)$ such that $(EF)^* = D$. Then $EF \in \mathcal{F}^*$. Since $\mathcal{F}^* = \mathcal{F}^{\overline{*}}$ by (0.1)(1), we have $EF \in \mathcal{F}^{\overline{*}}$. Hence $(EF)^{\overline{*}} = D$.

(2.6) (cf. [K, Theorem 59]) Assume that D is a quasi-local domain, that is, D has a unique maximal ideal. Then every invertible ideal of D is principal.

Let I be an ideal of D. If, for every element $a, b \in K$, $ab \in I$ and $b \notin I$ imply $a \in I$, then I is called strongly prime. If every prime ideal of D is strongly prime, then D is called a pseud-valuation domain (or, a PVD). We refer to Hedstrom-Houston ([HeHo]) for the notion of a PVD. Thus, every PVD is a quasi-local domain, and if D is a PVD with maximal ideal M, then V = (M : M) is a valuation overring of D with maximal ideal M.

(2.7) Let \star be a quasi-spectral semistar operation on D, and let I be a non-zero ideal of D.

- (1) If I is \star -invertible, then I need not be $\bar{\star}$ -invertible.
- (2) If $\mathcal{F}^* = \{D\}$, and if I is *-invertible, then I need not be invertible.

For a counter example, let D be a PVD which is not a valuation domain, let M be the maximal ideal of D, let V = (M : M), and let \star be the semistar operation $E \mapsto EV$ on D. Then V is a valuation domain, $M^{\star} = M, D^{\star} = V, \star$ is quasi-spectral, $\mathcal{F}^{\star} = \{D\}$, and $E^{\bar{\star}} = (E : D) = E$ for every $E \in \bar{F}(D)$. Since D is not a valuation domain, there are elements $a, b \in D - \{0\}$ such that $\frac{a}{b} \notin D$ and $\frac{b}{a} \notin D$. Then I = (a, b) is not a principal ideal of D. Since IV is a finitely generated ideal of V, we have IV = xV for some element $x \in K - \{0\}$. Then $(Ix^{-1})^{\star} = V = D^{\star}$, that is, I is a \star -invertible ideal of D. Suppose that I is $\bar{\star}$ -invertible. There is an element $E \in \bar{F}(D)$ such that $(IE)^{\bar{\star}} = D^{\bar{\star}}$, that is, IE = D. Then (2.6) implies that I is a principal ideal of D; a contradiction.

(2.8) Let \star be a semistar operation on D with $D^{\star} = D$. (1) $\operatorname{Cl}^{\star_f}(D) = \operatorname{Cl}^{\tilde{\star}}(D)$. (2) $\operatorname{Cl}^t(D) = \operatorname{Cl}^{\tilde{v}}(D)$.

Proof. $\overline{\star_f} = \tilde{\star}$ by (0.1)(10). Then we may apply (2.5).

(2.9) Let \star be a semistar operation on D. Then $\operatorname{Cl}^{\star_f}(D) = \operatorname{Cl}^{\tilde{\star}}(D)$ need not be

true.

For a counter example, let D, \star, I be those in the counter example of (2.7). Then we have $\star = \star_f$. Let J be an ideal of D with $J^* \ni 1$. Since $M^* = M$, we have J = D. It follows that $E^{\tilde{\star}} = E$ for every element $E \in \overline{F}(D)$. The ideal I = (a, b) is \star_f -invertible. Suppose that I is $\check{\star}$ -invertible. There is an element $F \in \bar{F}(D)$ such that $(IF)^{\tilde{\star}} = D^{\tilde{\star}}$. Then IF = D. (2.6) implies a contradiction.

Now, we will study conditions for a semistar operation to be spectral.

(3.1) Proposition Let \star be a semistar operation on D with $\Pi^* \neq \emptyset$. The following conditions are equivalent.

(1) $\star_{sp} \leq \star$.

(2) \star is qq-spectral.

(3) $E^* = \cap \{ E^* D_P \mid P \in \Pi^* \}$ for every element $E \in \overline{F}(D)$.

Proof. Let $\Pi^* = \{ P_\lambda \mid \lambda \in \Lambda \}.$

(1) \implies (2): Let I be an ideal of D such that $I^* \not\supseteq 1$. Since $\star_{sp} \leq \star$, we have $I^{\star_{sp}} \not\supseteq 1$. Hence we have $I \subset P_{\lambda}$ for some λ , and hence \star is qq-spectral.

(2) \Longrightarrow (3): Suppose that there is an element $z \notin E^*$ such that $z \in \cap \{E^*D_{P_\lambda} \mid \lambda \in \mathcal{C}\}$ Λ}. If we set $J = (E^* z^{-1}) \cap D$, then $J^* \not\supseteq 1$. For every λ , we have $z = \frac{x_\lambda}{z}$ for some element $x_{\lambda} \in E^{\star}$ and for some element $y_{\lambda} \in D - P_{\lambda}$. It follows that $J \not\subset P_{\lambda}$, and that \star is not qq-spectral; a contradiction.

(3) \Longrightarrow (1): $E^{\star_{sp}} = \cap \{ED_{P_{\lambda}} \mid \lambda \in \Lambda\} \subset \cap \{E^{\star}D_{P_{\lambda}} \mid \lambda \in \Lambda\} = E^{\star}.$

For every semistar operation \star, \star_{sp} is spectral by the definition. Hence $\star_{sp} = \overline{\star_{sp}}$ by (0.1)(6).

(3.2) Proposition Assume that $\Pi^* \neq \emptyset$. The following conditions are equivalent. (1) \star is qq-spectral.

- (2) $\star_{sp} = \bar{\star}.$
- (3) $\bar{\star}$ is spectral.
- (4) $\mathcal{F}^{\star} = \mathcal{F}(\Pi^{\star}).$
- (5) \mathcal{F}^{\star} is spectral.

Proof. (1) \Longrightarrow (2): $\star_{sp} \leq \star$ by (3.1), hence $\overline{\star_{sp}} \leq \overline{\star}$ by (0.2)(2). On the other hand, $\overline{\star} \leq \star_{sp}$ by (0.3)(1), and $\star_{sp} = \overline{\star_{sp}}$ by (0.1)(6). Then we have $\star_{sp} = \overline{\star_{sp}} \leq \overline{\star} \leq$ \star_{sp} .

- (2) \Longrightarrow (4): By (0.1)(1) and (0.2)(1), we have $\mathcal{F}^{\star} = \mathcal{F}^{\bar{\star}} = \mathcal{F}^{\star_{sp}} = \mathcal{F}^{\star_{(\Pi^{\star})}} = \mathcal{F}(\Pi^{\star}).$

$$(4) \Longrightarrow (5)$$
: Trivial.

(5) \implies (3): There is a non-empty subset $\Delta \subset \operatorname{Spec}(D) - \{(0)\}$ such that $\mathcal{F}^{\star} =$ $\mathcal{F}(\Delta)$. Then (0.2)(1) implies that

 $\bar{\star} = \star_{\mathcal{F}^{\star}} = \star_{(\mathcal{F}(\Delta))} = \star_{\Delta}.$ (3) \implies (1): $\mathcal{F}^{\star} = \mathcal{F}^{\bar{\star}}$ by (0.1)(1), and $\mathcal{F}^{\bar{\star}} = \mathcal{F}(\Pi^{\bar{\star}})$ by (0.3)(2), and hence

 \mathcal{F}^{\star} is spectral. Set $\Delta = \Pi^{\overline{\star}}$, and hence $\mathcal{F}^{\star} = \mathcal{F}(\Delta)$. If I is an ideal with $I^{\star} \not\supseteq 1$, then $I \notin \mathcal{F}^{\star} = \mathcal{F}(\Delta)$. Hence there is a prime ideal $P \in \Delta$ such that $I \subset P$. Since $P \not\supseteq \mathcal{F}(\Delta) = \mathcal{F}^{\star}$, we have $P^{\star} \not\supseteq 1$.

(3.3) Proposition Assume that $\Pi^* \neq \emptyset$. If \star is qq-spectral and stable, then \star is spectral.

Proof. $\bar{\star}$ is spectral by (3.2), and $\star = \bar{\star}$ by (0.1)(8). Hence \star is spectral.

(3.4) Assume that $\Pi^* \neq \emptyset$. If \star is qq-spectral, is \star quasi-spectral?

(3.5) Assume that $\Pi^* \neq \emptyset$, and that \star is qq-spectral. If \star is of finite fype, or if $\dim(D) < \infty$, then \star is quasi-spectral.

Proof. Let I be an ideal of D with $I^* \not\supseteq 1$. Then the set $X = \{P \in \Pi^* \mid P \supset I\}$ is non-empty. If dim $(D) < \infty$, obviously X has a maximal member. If \star is of finite type, we may use Zorn's Lemma to find a maximal member in X. Let P be a maximal member in X. Since $P^* \not\supseteq 1$, there is a prime ideal Q with $Q^* \not\supseteq 1$ such that $Q \supset P^* \cap D$. By the choice of P, we have Q = P. It follows that $P^* \cap D = P$.

(3.6) ([FHu]) Is there an example of a finitely spectral non-spectral localizing system distinct with $\{I \mid I \text{ is a non-zero ideal of } D\}$?

If, for every finitely generated ideal I of D with $I^* \not\supseteq 1$, there is a prime ideal P with $P^* \not\supseteq 1$ such that $P \supset I$, then \star is said a fqq-spectral semistar operation (or, a finitely quasi-quasi-spectral semistar operation).

Every qq-spectral semistar operation is a fqq-spectral semistar operation.

(3.7) Let $\star = \star_{\mathcal{F}}$. The following conditions are equivalent.

(1) \mathcal{F} is finitely spectral.

(2) \star is a fqq-spectral semistar operation.

Proof. (1) \Longrightarrow (2): Let I be a finitely generated ideal with $I^* \not\supseteq 1$. Since $\mathcal{F} = \mathcal{F}^*$ by (0.1)(11), we have $I \notin \mathcal{F}$. Hence there is a prime ideal $P \notin \mathcal{F}$ such that $I \subset P$. Since $P \notin \mathcal{F}^*$, we have $P^* \not\supseteq 1$.

The proof of $(2) \Longrightarrow (1)$ is similar.

(3.8) **Proposition** Let \mathcal{F} be a localizing system of D and let $\star = \star_{\mathcal{F}}$. The following conditions are equivalent.

(1) \mathcal{F} is a finitely spectral non-spectral localizing system distinct with $\{I \mid I \text{ is a non-zero ideal of } D\}$.

(2) \star is a non-spectral fqq-spectral semistar operation distinct with e.

Proof. (1) \implies (2): \star is non-spectral by (0.1)(15). \star is a fqq-spectral semistar operation by (3.7). Clearly, $\star \neq e$. And, \star is stable by (0.1)(14).

The proof of $(2) \Longrightarrow (1)$ is similar.

(3.8) shows that (3.6) is equivalent to the following,

(3.9) Is there a stable non-spectral fqq-spectral semistar operation distinct with e?

(3.10) Let \star be a fqq-spectral semistar operation on D distinct with e. Then we have $\Pi^* \neq \emptyset$.

Proof. Then we have $D^* \subsetneq K$. Hence there is an element $a \in D - \{0\}$ such that $aD^* \not\supseteq 1$. Then there is a prime ideal P with $P^* \not\supseteq 1$ such that $P \supset aD$.

(3.10) shows that if \star is fqq-spectral distinct with e, then \star_{sp} is well-defined.

(3.11) An example of a domain D, a semistar operation \star on D, a maximal ideal M of D such that $M \subsetneq M^* \not\supseteq 1$.

Example: Let k be a field, let x be an indeterminate over k, and let T = k[x]. Let $D = k[x^2, x^4, x^5]$, and let $M = (x^2, x^4, x^5)$ be a maximal ideal of D. Let \star be a semistar operation $E \longmapsto ET$ on D. Then we have $M \not\supseteq x^3 \in MT = M^* \not\supseteq 1$.

(3.12) Assume that, for each prime ideal P in Π^* , P is a maximal ideal of some overring T of D. Then, if \star is qq-spectral, then \star is quasi-spectral.

Proof. Let I be an ideal of D with $I^* \not\supseteq 1$. Then there is a prime ideal P of D with $P^* \not\supseteq 1$ such that $P \supset I$. There is an overring T of D with maximal ideal P. We have $P^*T \subset (P^*T)^* = (PT)^* = P^*$, hence P^* is a T-module. Since $P^* \not\supseteq 1$, it follows that $P^* \cap T = P$, and $P^* \cap D = P$.

For every element $a, b \in K$, if $ab \in I$ and $b \notin I$ imply $a^n \in I$ for some positive integer n, then I is called strongly primary. If every prime ideal of D is strongly primary, then D is called an almost pseudo-valuation domain (or, an APVD). We refer to Badawi-Houston ([BHo]) for the notion of an APVD. Thus, every APVD is a quasi-local domain. Let M be the maximal ideal of D. Then V = (M : M) is a valuation domain, M is a primary ideal of V, and M is primary to the maximal ideal of V. The set of non-maximal prime ideals of D coincides with the set of non-maximal prime ideals of V.

(3.13) Let D be an APVD. Then every qq-spectral semistar operation \star on D is a quasi-spectral semistar operation.

Proof. Let P be a prime ideal in Π^* . Assume that P is not a maximal ideal of D. Then P is a prime ideal of the valuation domain V = (M : M), where M is the maximal ideal of D. It follows that P is the maximal ideal of the valuation domain V_P . Then (3.12) completes the proof.

(3.14) The following conditions are equivalent.

(1) Assume that $\Pi^* \neq \emptyset$ and that \star is qq-spectral. Then \star is quasi-spectral.

(2) Assume that $\Pi^* \neq \emptyset$ and that \star is qq-spectral with $D^* = D$. Then \star is quasi-spectral.

Proof. (2) \Longrightarrow (1): \star induces a canonical semistar operation \star' on D^{\star} . Since $(D^{\star})^{\star'} = D^{\star}, \, \star'$ is quasi-spectral. Let I be a non-zero ideal of D with $I^{\star} \not\supseteq 1$. I^{\star} is an ideal of D^{\star} with $(I^{\star})^{\star'} \not\supseteq 1$. There is a prime ideal Q of D^{\star} with $Q^{\star'} = Q$ such that $Q \supset I^{\star}$. Set $D \cap Q = P$. Then P is a prime ideal of D with $P^{\star} \cap D = P$ such that $P \supset I$.

§2 Kronecker function rings on semigroups

Throughout the Section, let D be an infinite domain with quotient field K, and let S be a g-monoid $\supseteq \{0\}$ with quotient group q(S) = G. We refer to [G2] and [M1] for the general theory of g-monoids. Let $\bar{F}(S)$ be the set of non-empty subset $E \subset G$ such that $S + E \subset E$, let F(S) be the set of fractional ideals of S, and let f(S) be the set of finitely generated fractional ideals of S. Set $E^e = G$ for every $E \in \bar{F}(S)$. Then the semistar operation $E \longmapsto E^e$ is said the *e*-semistar operation on S. Set $E^d = E$ for every $E \in \bar{F}(S)$. Then the semistar operation $E \longmapsto E^d$ is said the *d*-semistar operation on S.

For every $E, F \in \overline{F}(S)$, we denote $\{x \in G \mid x + E \subset F\}$ by (F : E). Set $E^{-1} = (S : E) = \{x \in G \mid x + E \subset S\}$, set $\emptyset^{-1} = G$, and set $E^v = (E^{-1})^{-1}$ for every $E \in \overline{F}(S)$. Then the semistar operation $E \longmapsto E^v$ is said the *v*-semistar operation on *S*. Let \star be a semistar operation on *S*. We define a semistar operation $\star_f : E \longmapsto \cup \{F^\star \mid F \in f(S) \text{ with } F \subset E\}$. $t = v_f$ is said the *t*-semistar operation on *S*.

Let \star be a semistar operation on S, and let T be an oversemigroup of S. There is induced a canonical semistar operation $\alpha_T(\star) = \alpha(\star)$ on T, and is said the ascent of \star to T.

If \star_1, \star_2 are semistar operations on S, we say $\star_1 \leq \star_2$ if $E^{\star_1} \subset E^{\star_2}$ for every $E \in \overline{F}(S)$.

An ideal I of S is said *-ideal if $I^* = I$. A fractional ideal E of S is said a *-fractional ideal if $E^* = E$.

A prime ideal P satisfies $P \not\supseteq 0$ by the definition.

An ideal I of S is said a quasi- \star -ideal of S if $I^{\star} \cap S = I$.

A prime ideal P of S is said a \star -prime ideal if $P^{\star} = P$.

A prime ideal P of S is said a quasi- \star -prime ideal if $P^{\star} \cap S = P$.

An ideal I of S is said a \star -maximal ideal if I is maximal in the set $\{I \mid I \text{ is an ideal with } S \supseteq I^{\star} = I\}$.

An ideal I of S is said a quasi- \star -maximal ideal if I is maximal in the set $\{I \mid I \text{ is an ideal with } S \supseteq I = I^{\star} \cap S\}.$

(1.1) Let $\alpha_{S^*}(\star) = \alpha(\star)$, and let *I* be an ideal of *S*. Then *I* a quasi- \star -ideal of *S* if and only if $I = E \cap S$, where *E* is an $\alpha(\star)$ -ideal of S^* .

Proof. The sufficiency: $I^* \cap S = (E \cap S)^* \cap S \subset E^* \cap S = E \cap S = I$.

We denote by $\operatorname{Spec}^*(S)$ the set of *-prime ideals of S, by $\operatorname{Max}^*(S)$ the set of *-maximal ideals of S, by $\operatorname{QSpec}^*(S)$ the set of quasi-*-prime ideals of S, by $\operatorname{QMax}^*(S)$ the set of quasi-*-maximal ideals of S.

We set $\Pi^* = \{P \in \operatorname{Spec}(S) \mid P^* \not\supseteq 0\}$, and set $\Pi^*_{\max} = \{P \mid P \text{ is a maximal element in } \Pi^*\}.$

(1.2) Let $e \neq \star = \star_f$.

(1) If I is an ideal of S with $0 \notin I = I^* \cap S$, then there is $J \in QMax^*(S)$ such that $I \subset J$.

(2) If I is a quasi- \star -maximal ideal of S, then I is a quasi- \star -prime ideal of S.

(3) If Q is a quasi-*-maximal ideal of S, then there is an $\alpha(\star)$ -maximal ideal N of S^{\star} such that $Q = N \cap S$.

(4) If E is an $\alpha(\star)$ -prime ideal of S^{\star} , then $E \cap S$ is a quasi- \star -prime ideal of S.

(5) $\operatorname{QSpec}^{\star}(S) \subset \Pi^{\star} \text{ and } \emptyset \neq \Pi^{\star}_{\max} = \operatorname{QMax}^{\star}(S).$

Proof. (1) \sim (4) are straightforward.

(5) There is an element $a \in S$ such that $a + S^* \subsetneq S^*$. Then there is a prime ideal P with $P^* \not\supseteq 0$ such that $P \supset (a + S^*) \cap S$. Hence $\Pi^* \neq \emptyset$.

Let $e \neq \star = \star_f$. Then we set $\mathcal{M}(\star) = \prod_{\max}^{\star}$.

Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$. Then we define a semistar operation $\star_{\Delta} : E \longmapsto \cap \{E + S_P \mid P \in \Delta\}$.

(1.3) Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$, and set $\star = \star_{\Delta}$.

(1) $E^{\star} + S_P = E + S_P$, for every $E \in \overline{F}(S)$ and $P \in \Delta$.

(2) $(E \cap F)^* = E^* \cap F^*$, for every $E, F \in \overline{F}(S)$.

 $(3) \ P^{\star} \cap S = P \text{ for every } P \in \Delta.$

(4) Let I be an ideal with $I^* \not\supseteq 0$, then $I \subset P$ for some $P \in \Delta$.

(5) Assume that $\emptyset \neq \Delta_{\max}$, and that each $P \in \Delta$ is contained in some $Q \in \Delta_{\max}$. Then $\star = \star_{(\Delta_{\max})}$.

The proof is straightforward.

 \star is said spectral if $\star = \star_{\Delta}$ for some $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$.

★ is said quasi-spectral if, for every ideal I with $I^* \not\supseteq 0$, there is a prime ideal P with $P^* \cap S = P$ such that $I \subset P$.

(1.4) Let $\star \neq e$.

(1) \star is spectral if and only if \star is quasi-spectral and stable.

(2) Assume that $\star = \star_f$. Then \star is quasi-spectral and $\mathcal{M}(\star) \neq \emptyset$.

Proof. (1) The sufficiency: Since $\Pi^* \neq \emptyset$ by the proof of (1.2)(5), [M3, §2,(2.3)] completes the proof.

(2) \star is quasi-spectral by [M3, §1,(3.16)]. And $\mathcal{M}(\star) \neq \emptyset$ by (1.2)(5).

If $\Pi^* \neq \emptyset$, we set $\star_{sp} = \star_{\Pi^*}$.

Let $\star \neq e$, and assume that \star is of finite type, then $\Pi^{\star} \neq \emptyset$ by (1.2)(5), hence \star_{sp} is well defined.

If, for every ideal I with $I^* \not\supseteq 0$, there is a prime ideal P with $P^* \not\supseteq 0$ such that $P \supset I$, then \star is said a qq-spectral semistar operation.

Every quasi-spectral semistar operation is a qq-spectral semistar operation.

(1.5) Is a qq-semistar operation a quasi-spectral semistar operation?

A canonical semigroup version of Lemma 2.6 in [FL3] is the following.

(1.6) Let $\Pi^* \neq \emptyset$.

- (1) \star is spectral if and only if $\star = \star_{sp}$.
- (2) The following statements are equivalent.
- (i) $\star_{sp} \leq \star$.
- (ii) \star is quasi-spectral.

(iii) $E^* = \cap \{E^* + S_P \mid P \in \Pi^*\}$ for every $E \in \overline{F}(S)\}.$

(1.7) Let $\Pi^* \neq \emptyset$.

(1) \star is spectral if and only if $\star = \star_{sp}$.

- (2) The following statements are equivalent.
- (i) $\star_{sp} \leq \star$.
- (ii) \star is qq-spectral.
- (iii) $E^* = \cap \{E^* + S_P \mid P \in \Pi^*\}$ for every $E \in \overline{F}(S)$.

Proof. (1) is $[M3, \S1, (3.10)]$, and (2) is $[M3, \S2, (1.2)]$.

(1.6)(2) is valid if and only if the answer to (1.5) is yes.

A non-empty subset \mathcal{F} of ideals of S is said a localizing system of S if it satisfies the following conditions:

(1) If $I \in \mathcal{F}$ and J is an ideal of S with $I \subset J$, then $J \in \mathcal{F}$.

(2) If $I \in \mathcal{F}$ and J is an ideal of S such that $(J:x) \cap S \in \mathcal{F}$ for every $x \in I$, then $J \in \mathcal{F}$.

If \star is a semistar operation on S. Then $\mathcal{F}^{\star} = \{I \mid I \text{ is an ideal of } S \text{ with } I^{\star} \ni 0\}$ is a localizing system of S.

If \mathcal{F} is a localizing system of S, then $\mathcal{F}_f = \{I \mid I \text{ is an ideal of } S \text{ which contains}$ a finitely generated ideal $J \in \mathcal{F}\}$ is a localizing system of S.

If \mathcal{F} is a localizing system of S, then the mapping $\star_{\mathcal{F}}: E \longmapsto \cup \{(E:I) \mid I \in \mathcal{F}\}$ is a semistar operation on S.

We set the semistar operation $\tilde{\star} = \star_{(\mathcal{F}^{\star})_f}$.

(1.8) Assume that $\star \neq e$. Then $\tilde{\star} = (\star_f)_{sp}$.

Proof. $\tilde{\star} = \star_{(\mathcal{F}^{\star})_f} = \star_{\mathcal{F}^{(\star_f)}}$ by [M3, §1,(2.4)]. Since $\tilde{\star}$ is stable and of finite type by [M3, §1,(2.6)], $\tilde{\star}$ is spectral by [M3, §1,(3.16) and §2,(2.3)].

Since $\mathcal{F}^{\star_f} = \mathcal{F}^{\tilde{\star}}$ by [M3, §1, (2.10)], we have $\Pi^{\tilde{\star}} = \Pi^{\star_f} \neq \emptyset$ by (1.2)(5). By [M3, §1, (3.10)], we have $\tilde{\star} = (\tilde{\star})_{sp} = \star_{\Pi^{\tilde{\star}}} = \star_{\Pi^{(\star_f)}} = (\star_f)_{sp}$.

(1.9) Let $\star \neq e$. (1) $\tilde{\star} = \star_{\mathcal{M}(\star_f)} \leq \star_f$ and $\tilde{\star} \neq e$. (2) For every $E \in \overline{F}(S)$, (a) $E^{\star_f} = \cap \{E^{\star_f} + S_Q \mid Q \in \mathcal{M}(\star_f)\},$ (b) $E^{\tilde{\star}} = \cap \{E + S_Q \mid Q \in \mathcal{M}(\star_f)\}.$

Proof. (1) Set $\Delta = \Pi^{\star_f}$, then $\Delta_{\max} = \Pi_{\max}^{\star_f} = \mathcal{M}(\star_f)$. By (1.8), we have $\tilde{\star} = (\star_f)_{sp} = \star_\Delta = \star_{(\Delta_{\max})} = \star_{\mathcal{M}(\star_f)}$. $\tilde{\star} \leq \star_f$ by [M3, §1,(2.8)(3)], and hence $\tilde{\star} \neq e$. (2) (a) Since \star_f is quasi-spectral, we may use (1.7)(2). Then $\cap \{E^{\star_f} + S_Q \mid Q \in \mathcal{M}(\star_f)\} = \cap \{E^{\star_f} + S_Q \mid Q \in \Pi_{\max}^{\star_f}\}$ $= \cap \{E^{\star_f} + S_Q \mid Q \in \Pi^{\star_f}\} = E^{\star_f}$.

(b) follows from (1).

Set $D(x) = \{P \in \operatorname{Spec}(S) \mid P \not\ni x\}$ for every $x \in S$. Then $\operatorname{Spec}(S)$ is a topological space with basis $\{D(x) \mid x \in S\}$. A subset $\Delta \subset \operatorname{Spec}(S)$ is said quasi-compact if Δ is contained in a union of open sets $\{G_{\lambda} \mid \lambda \in \Lambda\}$, then there is a finite subset $\{\lambda_1, \dots, \lambda_n\} \subset \Lambda$ such that $\Delta \subset \bigcup_1^n G_{\lambda_i}$.

(1.10) (a) Let v be the v-semistar operation on S. We have $E^{\tilde{v}} = \bigcup \{ (E:I) \mid I \text{ is a finitely generated ideal with } I^v \ni 0 \}$ for every $E \in \overline{F}(S)$.

(b) Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$. If Δ is quasi-compact, then $\star_{\Delta} = (\star_{\Delta})_f$ and $\mathcal{M}(\star_{\Delta}) = \Delta_{\max}$.

Proof. (a) follows from $[M3, \S1, (2.6)(2)]$.

(b) We have $\mathcal{F}^{\star_{\Delta}} = \mathcal{F}(\Delta)$ by [M3, §1,(3.4)]. Let $\Delta = \{P_{\lambda} \mid \lambda \in \Lambda\}$, and let $I \in \mathcal{F}(\Delta)$. There is an element $x_{\lambda} \in I - P_{\lambda}$ for every λ . Then $\Delta \subset \cup_{\lambda} D(x_{\lambda})$. Hence, there is a finite subset $\{\lambda_1, \dots, \lambda_n\} \subset \Lambda$ such that $\Delta \subset D(x_{\lambda_1}) \cup \dots \cup D(x_{\lambda_n})$. Then $J = (x_{\lambda_1}, \dots, x_{\lambda_n}) \subset I$, and $J \in \mathcal{F}(\Delta)$, that is, $\mathcal{F}^{\star_{\Delta}}$ is of finite type. Then \star_{Δ} is of finite type by [M3, §1, (1.10)(B)(2) and (2.3)], hence $\star_{\Delta} = (\star_{\Delta})_f$. And $\mathcal{M}(\star_{\Delta}) = \prod_{\max}^{\star_{\Delta}} = \Delta_{\max}$ by definitions.

(1.11) Proposition Let \star be a semistar operation on S. Let $\{I_{\lambda} \mid \lambda \in \Lambda\}$ be a non-empty set of ideals of S such that if $\lambda_1, \lambda_2 \in \Lambda$, then $I_{\lambda_1} \cup I_{\lambda_2} \subset I_{\lambda_3}$ for some λ_3 .

(1) If each I_{λ} is a \star_f -ideal, then $I = \bigcup \{I_{\lambda} \mid \lambda \in \Lambda\}$ is a \star_f -ideal.

(2) If each I_{λ} is a \star_f -prime ideal, then $I = \bigcup \{I_{\lambda} \mid \lambda \in \Lambda\}$ is a \star_f -prime ideal.

The proof is straightforward.

(1.12) In (1.11), assume that each $I_{\lambda} \subsetneq S$.

- (1) If each I_{λ} is a quasi- \star_f -ideal, then I is a quasi- \star_f -ideal with $I \subsetneq S$.
- (2) If each I_{λ} is a quasi- \star_f -prime ideal, then I is a quasi- \star_f -prime ideal.

The proof is straightforward.

Let D be an infinite domain with quotient field q(D) = K. Let $f = \sum_{1}^{n} a_i X^{t_i}$ be a non-zero element of K[X;G], where $a_i \neq 0$ for each i and $t_i \neq t_j$ for each $i \neq j$. Then the fractional ideal (a_1, \dots, a_n) of D is said the c-content of f, and is denoted by $c_D(f)$ (or, simply by c(f)). The subset $\{a_1, \dots, a_n\}$ of K is denoted by $\operatorname{Coef}(f)$. The fractional ideal (t_1, \dots, t_n) of S is said the e-content of f, and is denoted by $e_S(f)$ (or, simply by e(f)). The subset $\{t_1, \dots, t_n\}$ of G is denoted by $\operatorname{Exp}(f)$.

We set $N(\star) = \{f \in D[X; S] - \{0\} \mid e(f)^* \ni 0\}$. Obviously, $N(\star) = N(\star_f)$. We set $D(X; S)_e = D[X; S]_{N(d)}$.

(2.1) Proposition Let $\star \neq e$.

(1) $N(\star)$ is a multiplicatively closed subset of D[X; S]. If $f, g \in D[X; S] - \{0\}$ such that $fg \in N(\star)$, then $f, g \in N(\star)$. (2) $N(\star) = D[X; S] - \cup \{QD[X; S] \mid Q \in \mathcal{M}(\star_f)\}.$ (3) $\operatorname{Max}(D[X; S]_{N(\star)}) = \{QD[X; S]_{N(\star)} \mid Q \in \mathcal{M}(\star_f)\}.$ (4) $D[X; S]_{N(\star)} = \cap \{D(X; S_Q)_e \mid Q \in \mathcal{M}(\star_f)\}.$ (5) $\mathcal{M}(\star_f) = \{M \cap S \mid M \in \operatorname{Max}(D[X; S]_{N(\star)})\}.$

Proof. (1) follows from Dedekind-Mertens Lemma for S ([GP, 6.2.PROPOSI-TION]).

(2) Let $f \in D[X; S] - \{0\}$. If $e(f)^* \not\supseteq 0$, there is a quasi- \star_f -maximal ideal Q such that $e(f) \subset Q$. Then $f \in QD[X; S]$.

(3) It is sufficient to show that each prime ideal H of D[X; S] contained inside $\cup \{QD[X; S] \mid Q \in \mathcal{M}(\star_f)\}$ is contained in QD[X; S] for some $Q \in \mathcal{M}(\star_f)$. Set $\cup \{e(f) \mid f \in H - \{0\}\} = I$. It suffices to show that $I^{\star_f} \not\supseteq 0$. Suppose the contrary. There are $f_1, \dots, f_n \in H - \{0\}$ such that $(e(f_1) \cup \dots \cup e(f_n))^{\star_f} \supseteq 0$. There are $c_1, \dots, c_n \in D - \{0\}$ with $c_1f_1 + \dots + c_nf_n = g$ such that $\operatorname{Exp}(g) = \operatorname{Exp}(f_1) \cup \dots \cup \operatorname{Exp}(f_n)$. Hence $e(g)^{\star_f} \supseteq 0$, and hence $g \in H \cap N(\star)$; a contradiction.

(4) and (5) are consequences of (3).

(2.2) Is (2.1) valid for a finite domain?

We denote $D[X; S]_{N(\star)}$ by Na (S, \star, D) (or, simply by Na (S, \star)), and we say it the Nagata ring of S with respect to \star and D (or, simply the Nagata ring of S with respect to \star). Obviously, Na $(S, \star) =$ Na (S, \star_f) .

(2.3) Let Q be a prime ideal of S. Then Q is a maximal t-ideal of S if and only if $Q = M \cap S$ for some $M \in Max(Na(S, v))$.

The proof follows from (2.1)(5).

(2.4) (1) Let P be a prime ideal of S, and let \star be the semistar operation $E \mapsto E + S_P$ on S.

(a) $\mathcal{M}(\star_f) = \{P\}.$

(b) $\operatorname{Na}(S, \star) = D(X; S_P)_e.$

(c) $\star = \star_f = \star_{sp} = \tilde{\star}.$ (2) Let $\emptyset \neq \Delta \subset \operatorname{Spec}(S)$, let $\Delta^{\downarrow} = \{H \in \operatorname{Spec}(S) \mid H \subset P \text{ for some } P \in \Delta\},\$ and let $\star = \star_{\Delta}$. Assume that each $P \in \Delta$ is contained in some $Q \in \Delta_{\max}$. (a) $\Delta \subset \operatorname{QSpec}^{\star}(S) \subset \Delta^{\downarrow}$ and $\operatorname{QMax}^{\star}(S) = \Delta_{\max}$. Assume that Δ_{\max} is a quasi-compact subspace of $\operatorname{Spec}(S)$. Then (b) $\operatorname{Na}(S, \star_{\Delta}) = \cap \{ D(X; S_Q)_e \mid Q \in \Delta_{\max} \} = \cap \{ D(X; S_P)_e \mid P \in \Delta \},\$ (c) $(\star_{\Delta}) = \star_{\Delta}$. Proof. (2) (b) $\star = \star_f$ by [M3, §2,(4.1)]. Since $\mathcal{M}(\star) = \Delta_{\max}$, we have $Max(Na(S, \star)) = \{QNa(S, \star) \mid Q \in \Delta_{max}\}$ by (2.1)(3). It follows that $\operatorname{Na}(S,\star) = \cap \{\operatorname{Na}(S,\star)_{Q\operatorname{Na}(S,\star)} \mid Q \in \Delta_{\max}\} = \cap \{D[X;S]_{QD[X;S]} \mid Q \in \Delta_{\max}\} =$ $\cap \{ D(X; S_Q)_e \mid Q \in \Delta_{\max} \} = \cap \{ D(X; S_P)_e \mid P \in \Delta \}.$ (c) Since \star is spectral, $\star_{sp} = \star$. Hence $\tilde{\star} = (\star_f)_{sp} = \star_{sp} = \star$. (2.5) Proposition Let $\star \neq e$, and let $E \in \overline{F}(S)$. (1) $ENa(S,\star) = \cap \{ED(X; S_Q)_e \mid Q \in \mathcal{M}(\star_f)\}.$ (2) $ENa(S, \star) \cap G = \cap \{E + S_Q \mid Q \in \mathcal{M}(\star_f)\}.$ (3) $E^{\tilde{\star}} = E \operatorname{Na}(S, \star) \cap G.$ If $E = E^*$, then $E = E \operatorname{Na}(S, \star) \cap G$. (4) Assume that $\star = \star_f$. Then (i) $\tilde{\star} = \star_{sp}$. (ii) $S^{\star_{sp}} = \cap \{S_Q \mid Q \in \mathcal{M}(\star)\}.$ (iii) \star_{sp} is of finite type. Proof. (1) By (2.1), we have $ENa(S, \star) = \cap \{ (ED[X; S]_{N(\star)})_M \mid M \in Max(D[X; S]_{N(\star)}) \}$ $= \cap \{ ED[X;S]_{QD[X;S]} \mid Q \in \mathcal{M}(\star_f) \} = \cap \{ ED(X;S_Q)_e \mid Q \in \mathcal{M}(\star_f) \}.$ (2) We have $E\operatorname{Na}(S,\star) \cap G = \cap \{ ED(X;S_Q)_e \cap G \mid Q \in \mathcal{M}(\star_f) \}$ by (1). Easily, $ED(X; S_Q)_e \cap G = E + S_Q.$ (3) We have that $E^{\tilde{\star}} = \cap \{E + S_Q \mid Q \in \mathcal{M}(\star_f)\}$ by (1.9)(2). Then $E^{\tilde{\star}} =$ $ENa(S, \star) \cap G$ by (2). Assume that $E = E^*$. Since $\tilde{\star} \leq \star$ by (1.9)(1), $E = E^{\tilde{\star}}$. Hence $E = E \operatorname{Na}(S, \star) \cap G$. (4) (i) $\tilde{\star} = \star_{\mathcal{M}(\star)}$ by (1.9)(1), and $\star_{sp} = \star_{\Pi^{\star}} = \star_{\Pi^{\star}_{\max}} = \star_{\mathcal{M}(\star)}$. (ii) $S^{\star_{sp}} = S^{\star_{\mathcal{M}(\star)}} = \cap \{S_Q \mid Q \in \mathcal{M}(\star)\}.$ (iii) $\tilde{\star}$ is of finite type by [M3, §1,(2.6)(7)]. Hence \star_{sp} is of finite type by (i). (2.6) Let $\star \neq e$. (1) $(\tilde{\star})_f = \tilde{\star} = (\tilde{\star})_{sp} = \tilde{\tilde{\star}}.$ (2) $\mathcal{M}(\star_f) = \mathcal{M}(\tilde{\star}).$ (3) $\operatorname{Na}(S, \star) = \operatorname{Na}(S, \tilde{\star}) = \operatorname{Na}(S^{\tilde{\star}}, \alpha(\tilde{\star})).$

Proof. (1) $(\tilde{\star})_f = \tilde{\star}$ by [M3, §1,(2.6)(7)]. Hence $\tilde{\star}$ is quasi-spectral by [M3, §1,(3.16)]. $\tilde{\star}$ is stable by [M3, §1,(2.6)(6)]. Hence $\tilde{\star} = (\tilde{\star})_{sp}$ by [M3, §2,(2.3) and §1,(3.10)]. $\tilde{\tilde{\star}} = \tilde{\star}$ by [M3, §1,(2.7)].

(2) Because $\tilde{\star} = \star_{\mathcal{M}(\star_f)}$ by (1.9)(1).

(3) $N(\star) = N(\tilde{\star})$ by (2.1)(2). Hence $\operatorname{Na}(S, \star) = \operatorname{Na}(S, \tilde{\star})$.

The case (C), where $\star = \star_f = \star_\Delta$ and $\emptyset \neq \Delta = \{Q_\lambda \mid \lambda \in \Lambda\} \subset \text{Spec}(S)$ with $Q_\lambda \not\subset Q_{\lambda'}$ for each $\lambda \neq \lambda'$. Then we have $S^\star = \cap_\lambda S_{Q_\lambda}$ and $\mathcal{M}(\star) = \Delta$. If $Q \in \Delta$, then $(Q + S_Q) \cap S^\star = \cap_\lambda ((Q + S_Q) \cap S_{Q_\lambda}) = \cap_\lambda (Q + S_{Q_\lambda}) = Q^\star$, and $Q^\star \cap S = (Q + S_Q) \cap S^\star \cap S = Q$.

Let $M \in \mathcal{M}(\alpha(\star))$. Then $M \subset S^{\star}$ and $M = M^{\alpha(\star)} = M^{\star} = \bigcap_{\lambda} (M + S_{Q_{\lambda}})$. Hence $M + S_Q \not\supseteq 0$ for some $Q \in \Delta$. Then $M \subset (Q + S_Q) \cap S^{\star} = Q^{\star}$. By the choice of M, $M = Q^{\star}$ by (1.2)(3).

It follows that $\mathcal{M}(\alpha(\star)) = \{Q^{\star} \mid Q \in \Delta\}.$

Since $(S_Q)_{Q+S_Q} \supset (S^*)_{Q^*} \supset S_Q$, we have $(S^*)_{Q^*} = S_Q$. By (2.1)(4),

 $\operatorname{Na}(S^{\star}, \alpha(\star)) = \cap_{\lambda} D(X; (S^{\star})_{Q_{\lambda}^{\star}})_{e} = \cap_{\lambda} D(X; S_{Q_{\lambda}})_{e} = \operatorname{Na}(S, \star).$

The general case: Set $\mathcal{M}(\star_f) = \Delta$, then $\tilde{\star} = \star_{\Delta}$. By the case (C), we have $\operatorname{Na}(S^{\tilde{\star}}, \alpha(\tilde{\star})) = \operatorname{Na}(S, \tilde{\star})$.

(2.7) Let \star be quasi-spectral such that $\Pi^* \neq \emptyset$. Then $\operatorname{Na}(S, \star) = \operatorname{Na}(S, \star_{sp}) = \operatorname{Na}(S, \tilde{\star})$.

Proof. We have $\tilde{\star} = (\star_f)_{sp} \leq \star_{sp}$ by [M3, §1,(3.8), (4) and (5)]. Hence Na($S, \tilde{\star}$) \subset Na(S, \star_{sp}). Since $\star_{sp} \leq \star$ by (1.7)(2), we have Na(S, \star_{sp}) \subset Na(S, \star). The first equality of (2.6)(3) completes the proof.

(2.8) Theorem Assume that $\star \neq e$. We have $Max(Na(S, \star)) = \{QD(X; S_Q)_e \cap Na(S, \star) \mid Q \in \mathcal{M}(\star_f)\}.$

Proof. (2.1), (3) and (4) show that the maximal ideals of $\operatorname{Na}(S, \star)$ are the ideals of the set $\{Q\operatorname{Na}(S, \star) \mid Q \in \mathcal{M}(\star_f)\}$, and $\operatorname{Na}(S, \star) \supseteq QD(X; S_Q)_e \cap \operatorname{Na}(S, \star) \supset Q\operatorname{Na}(S, \star)$. The proof is complete.

A valuation oversemigroup V of S is said a \star -valuation oversemigroup of S if, for every element $F \in f(S), F^{\star} \subset F + V$.

(2.9) Theorem Assume that $\star \neq e$. Let V be a valuation oversemigroup of S. Then V is a $\tilde{\star}$ -valuation oversemigroup if and only if V is an oversemigroup of S_P for some $P \in \mathcal{M}(\star_f)$.

Proof. We may assume that $V \subsetneq G$. The sufficiency: $\tilde{\star} = \star_{\mathcal{M}(\star_f)}$ by (1.9)(1). Set $\mathcal{M}(\star_f) = \{P_\lambda \mid \lambda \in \Lambda\}$, and let $F \in f(S)$. Then $F^{\tilde{\star}} = \cap\{F + S_{P_\lambda} \mid \lambda \in \Lambda\} \subset F + S_P \subset F + V$.

The necessity: Let M be the maximal ideal of V, let $Q = M \cap S$, and set $\Delta = \mathcal{M}(\star_f)$. Since $\tilde{\star}$ is of finite type, $Q^{\tilde{\star}} = \bigcup \{F^{\tilde{\star}} \mid F \in f(S), F \subset Q\}$. And $F^{\tilde{\star}} \subset F + V \subset M$. Hence $Q^{\tilde{\star}} \subset M$.

Suppose that $Q \not\subset P$ for each $P \in \mathcal{M}(\star_f)$. Then $Q^{\check{\star}} = Q^{\star_{\Delta}} = \cap \{Q + S_P \mid P \in \Delta\} \ni 0$; a contradiction.

In the following (3.1) and (3.2), for convenience, we will review [OM, (4.2) and (4.3)] briefly.

(3.1) Let \star be a semistar operation on S. Let $f, g, f', g' \in D[X; S] - \{0\}$ with $\frac{f}{g} = \frac{f'}{g'} \text{ such that } (e(f) + e(h))^* \subset (e(g) + e(h))^* \text{ for some } h \in D[X; S] - \{0\}. \text{ Then there is } h' \in D[X; S] - \{0\} \text{ such that } (e(f') + e(h'))^* \subset (e(g') + e(h'))^*.$

Proof. By [GP, 6.2. PROPOSITION], there is a positive integer m such that (m+1)e(g) + e(f') = me(g) + e(f'g) and (m+1)e(f) + e(g') = me(f) + e(fg'). It follows that $\{(m+1)e(g) + e(f')\} + me(f) = \{(m+1)e(f) + e(g')\} + me(g).$

There are elements s_1, s_2, \dots, s_n of S with $s_i \neq s_j$ for each $i \neq j$ such that $(m+1)(e(g)+e(h))+m(e(f)+e(h))=(s_1,s_2,\cdots,s_n)$. If we set $h'=X^{s_1}+X^{s_2}+$ $\dots + X^{s_n} \in D[X; S] - \{0\}$, we have e(h') = (m+1)(e(g) + e(h)) + m(e(f) + e(h)), and therefore

 $e(f') + e(h') = \{(m+1)e(g) + e(f') + me(f)\} + (2m+1)e(h)$ $= \{(m+1)e(f) + e(g') + me(g)\} + (2m+1)e(h)$ = (e(f) + e(h)) + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g') $\subset (e(g) + e(h))^* + m(e(f) + e(h)) + m(e(g) + e(h)) + e(g')$ $\subset (e(q') + e(h'))^{\star}.$

The set $\{\frac{f}{g} \mid f, g \in D[X; S] - \{0\}$ such that $(e(f) + e(h))^* \subset (e(g) + e(h))^*$ for some $h \in D[X; S] - \{0\}\} \cup \{0\}$ is denoted by $\operatorname{Kr}(S, \star, D)$ (or, simply by $\operatorname{Kr}(S, \star)$), and is said the Kronecker function ring of S with respect to \star and D (or, simply with

respect to \star). (3.1) and (3.2) show that Kr(S, \star) is a well-defined overring of D[X;S].

(3.2) $\operatorname{Kr}(S, \star)$ is an integral domain with quotient field q(D[X;S]).

Proof. Let $\frac{f}{g}, \frac{f'}{g} \in \operatorname{Kr}(S, \star) - \{0\}$. Then there are $h, h' \in D[X; S] - \{0\}$ such that $(e(f) + e(h))^{\star} \subset (e(g) + e(h))^{\star}$ and $(e(f') + e(h'))^{\star} \subset (e(g) + e(h'))^{\star}$. There is $j \in D[X; S] - \{0\}$ such that e(j) = e(h) + e(h'). Then we have

 $(e(f)+e(j))^{\star}\subset (e(g)+e(j))^{\star}, (e(f')+e(j))^{\star}\subset (e(g)+e(j))^{\star}.$

We may assume that $f + f' \neq 0$. Then it follows that $(e(f + f') + e(j))^* \subset$

 $(e(g) + e(j))^*$. Hence $\frac{f}{g} + \frac{f'}{g} \in \operatorname{Kr}(S, \star)$. Next, we have $(m+2)e(g) = me(g) + e(g^2)$ for some m. There is $j' \in D[X; S] - \{0\}$ such that e(j') = (m+2)e(g) + 2e(k). Then we have

$$\begin{split} & e(ff') + e(j') \subset \{e(f) + e(f')\} + \{(m+2)e(g) + 2e(j)\} \\ &= \{e(f) + e(j)\} + \{e(f') + e(j)\} + (m+2)e(g) \\ &\subset 2(e(g) + e(j))^* + (m+2)e(g) \\ &= 2(e(g) + e(j))^* + \{me(g) + e(g^2)\} \subset (e(g^2) + e(j'))^*. \end{split}$$

Therefore $(e(ff') + e(j'))^* \subset (e(g^2) + e(j'))^*.$ Hence $\frac{ff'}{gg'} \in \operatorname{Kr}(S, \star).$

We define the mapping $\star_a : \bar{F}(S) \longrightarrow \bar{F}(S)$ by setting $F^{\star_a} = \bigcup \{ ((F+H)^{\star} : H^{\star}) \mid H \in f(S) \} \text{ for every } F \in f(S), \}$ $E^{\star_a} = \bigcup \{ F^{\star_a} \mid F \in f(S) \text{ with } F \subset E \} \text{ for every } E \in \overline{F}(S).$ The following (3.3) appears in [OM, (3.6), (4.5) and (4.7)].

(3.3) (1) \star_a is a semistar operation of finite type on S.

- (2) \star_a is e.a.b. (that is, endlich arithmetisch brauchbar).
- (3) $\star_f = \star_a$ if and only if \star_f is e.a.b.
- (4) If $\star_1 \leq \star_2$, then $(\star_1)_a \leq (\star_2)_a$.
- (5) If $\star_1 \leq \star_2$, then $\operatorname{Kr}(S, \star_1) \subset \operatorname{Kr}(S, \star_2)$.

(6) Let \star be a semistar operation on S. Then, for every $E \in \overline{F}(S)$, we have $E^{\star_a} = \bigcup \{ F \mathrm{Kr}(S, \star) \cap G \mid F \in \mathrm{f}(S) \text{ with } F \subset E \}.$

(3.4) Proposition (1) $\star_f \leq \star_a$.

- (2) $\operatorname{Kr}(S,\star) = \operatorname{Kr}(S,\star_f) = \operatorname{Kr}(S,\star_a) = \operatorname{Kr}(S^{\star_a},\alpha(\star_a)).$
- (3) $\operatorname{Kr}(S, \star)$ is a Bezout domain.
- (4) $\operatorname{Na}(S, \star) \subset \operatorname{Kr}(S, \star).$
- (5) $E^{\star_a} = E \operatorname{Kr}(S, \star) \cap G$ for each $E \in \overline{F}(S)$.

Proof. The proof follows from [OM, (3.6), (4.4), (4.6) and (4,8)] and (3.3)(6).

(3.5) If \star is a semistar operation on S distinct with e, then $\star_a \neq e$.

Proof. Suppose the contrary. Since $\star_a = e$, we have $S^{\star_a} = G$. Since \star_a is of finite type, $S^{\star} = G$. Therefore $\star = e$.

(3.6) A valuation oversemigroup V of S is a \star -valuation oversemigroup if and only if there is a valuation overring W of $Kr(S, \star)$ such that $W \cap G = V$.

Proof. Let v be a valuation on G, let $f = \sum_{i=1}^{n} a_i X^{t_i} \in K[X;G]$, where $a_i \neq 0$ for each i and $t_i \neq t_j$ for each $i \neq j$. If we set $v'(f) = \min_i v(t_i)$, we have a valuation v'on q(K[X;G]).

Let V be a \star -valuation oversemigroup, let v' be the canonical extension of v to q(D[X;S]), and let V' be the valuation ring of v'. Let $\frac{f}{-} \in Kr(S,\star)$. There is an element $h \in D[X;S] - \{0\}$ such that $(e(f) + e(h))^* \subset (e(g) + e(h))^*$. Let $f = \sum_{1}^{n} a_i X^{s_i}, g = \sum_{1}^{m} b_j X^{t_j}, h = \sum_{1}^{l} c_k X^{u_k}, \text{ and let } v(s_{i_0}) = \min_i v(s_i), v(t_{j_0}) = \min_j v(t_j), v(c_{u_0}) = \min_k v(u_k). \text{ We have}$ $(e(f) + e(h))^* + V = e(f) + e(h) + V = e(f) + V + e(h) + V = s_{i_0} + V + e_{u_0} + V = e(f) + e(h) + V = e(f) + V + E(h) + V + E(h) + V = e(f) + V + E(h) + V = e(f) + V + E(h) + V + E(h) + V = e(h) + V + E(h) + V + E(h) + V + E(h) + V = e(h) + V + E(h) + V + E(h) + V + E(h) + V + E(h) + V = e(h) + V + E(h) + V + E(h) + V = e(h) + V + E(h)$

 $s_{i_0} + u_{k_0} + V.$

Since $s_{i_0} + u_{k_0} + V$. Similarly, we have $(e(g) + e(h))^* + V = t_{j_0} + u_{k_0} + V$. Since $s_{i_0} + u_{k_0} + V \subset t_{j_0} + u_{k_0} + V$, we have $v(s_{i_0}) \ge v(t_{j_0})$. Then $v'(\frac{f}{g}) = v'(f) - v'(g) = v(s_{i_0}) - v(t_{j_0}) \ge 0$.

Hence $\frac{f}{g} \in V'$.

Let W be a valuation overring of $Kr(S, \star)$, and let $V = W \cap G$. Let F = $(\alpha_1, \cdots, \alpha_n) \in f(S)$ with $\alpha_i \neq \alpha_j$ for each $i \neq j$, and let $f = X^{\alpha_1} + \cdots + X^{\alpha_n}$.

Let $v(\alpha_{i_0}) = \min_i v(\alpha_i)$. If $z \in F^*$, we have $(z)^* \subset e(f)^*$. Then we have $\frac{z}{f} \in \operatorname{Kr}(S, \star) \subset W$, hence $v(z) - v(\alpha_{i_0}) \geq 0$. It follows that $z \in \alpha_{i_0} + V \subset F + V$, hence $F^* \subset F + V$.

(3.7) Let W be a valuation overring of $Kr(S, \star)$, and let $V = W \cap G$. Then W is the canonically extended valuation ring of V to q(D[X;S]).

Proof. Let w be a valuation on q(D[X; S]) belonging to W, and set $v(s) = w(X^s)$ for every $s \in S$. Then v is a valuation on G belonging to V. Let v' be the canonical extension of v to q(D[X; S]). If $f = a_0 X^{s_0} + \cdots + a_n X^{s_n} \in D[X; S]$ with $a_i \neq 0$ for each i and $s_i \neq s_j$ for each $i \neq j$, and if $v(s_0) = \min_i v(s_i)$, we have $v'(f) = v(s_0)$ and $w(f) \ge \inf_i w(a_i X^{s_i}) = v(s_0)$. Since $\frac{X^{s_0}}{f} \in \operatorname{Kr}(S, \star) \subset W, 0 \le w(\frac{X^{s_0}}{f}) = v(s_0) - w(f)$. Hence $w(f) = v(s_0) = v'(f)$. Therefore w = v'.

(3.8) Theorem Assume that $e \neq \star = \star_f$.

(1) Let W be a valuation oversemigroup of $\operatorname{Kr}(S, \star)$ with maximal ideal $N \subsetneq W$. Set $N_0 = N \cap S$ and $N_1 = N \cap D[X; S]$. Then

(a) $N_1 = N_0 D[X; S], N \cap \operatorname{Na}(S, \star) = N_0 \operatorname{Na}(S, \star) = N_1 \operatorname{Na}(S, \star)$ and $N \cap \operatorname{Na}(S, \star_a) = N_0 \operatorname{Na}(S, \star_a) = N_1 \operatorname{Na}(S, \star_a).$

(b) N_0 is a quasi- \star_a -prime ideal.

(2) If P is a quasi- \star_a -prime ideal of S, then there is a quasi- \star_a -maximal ideal Q of S and a valuation overring W of Kr(S, \star) such that $P \subset Q = N \cap S$, where N is the maximal ideal of W.

(3) $\mathcal{M}(\star_a)$ is contained in the canonical image in S of Max(Kr(S, \star)).

(4) For each $Q \in \mathcal{M}(\star_a)$, there is a \star -valuation oversemigroup V of S containing S_Q .

Proof. (1) (a) Let $0 \neq f \in N_1$, and let $\operatorname{Exp}(f) = \{s_1, \dots, s_n\}$. Then $N \supset f\operatorname{Kr}(S, \star) = (s_1, \dots, s_n)\operatorname{Kr}(S, \star)$ and $(s_1, \dots, s_n) \subset N_0$. Hence $f \in N_0D[X; S]$, and hence $N_1 = N_0D[X; S]$.

Let $\frac{f}{g} \in N \cap \operatorname{Na}(S, \star)$ with $g \in N(\star)$. Then $f \in gN \subset N$, hence $f \in N_1$. Hence

 $\frac{f}{g} \in N_1 \operatorname{Na}(S, \star). \text{ It follows that } N \cap \operatorname{Na}(S, \star) = N_1 \operatorname{Na}(S, \star) = N_0 \operatorname{Na}(S, \star). \text{ Since } \operatorname{Kr}(S, \star) = \operatorname{Kr}(S, \star_a), \text{ we have } N \cap \operatorname{Na}(S, \star_a) = N_0 \operatorname{Na}(S, \star_a) = N_1 \operatorname{Na}(S, \star_a).$

 $\begin{array}{l}g\\ \operatorname{Kr}(S,\star) = \operatorname{Kr}(S,\star_a), \text{ we have } N \cap \operatorname{Na}(S,\star_a) = N_0 \operatorname{Na}(S,\star_a) = N_1 \operatorname{Na}(S,\star_a).\\ \text{(b) By (3.4), we have } N_0^{\star_a} = N_0 \operatorname{Kr}(S,\star) \cap G \subset N \cap \operatorname{Kr}(S,\star_a) \cap G = N \cap S^{\star_a}.\\ \text{Hence } N_0^{\star_a} \cap S \subset N \cap S^{\star_a} \cap S = N_0. \end{array}$

(2) Since \star_a is of finite type, there is a quasi- \star_a -maximal ideal Q with $Q \supset P$. $Q^{\star_a} = Q\operatorname{Kr}(S, \star) \cap G$ by (3.4)(5). Hence $Q\operatorname{Kr}(S, \star) \not\supseteq 1$. Let M be a maximal ideal of $\operatorname{Kr}(S, \star)$ with $M \supset Q\operatorname{Kr}(S, \star)$. $W = \operatorname{Kr}(S, \star)_M$ is a valuation overring of $\operatorname{Kr}(S, \star)$ with maximal ideal N = MW. Since Q is a quasi- \star_a -maximal ideal, $N \cap S = Q$ by (1)(b). (3) follows from the proof of (2).

(4) If $Q \in \mathcal{M}(\star_a)$, we can find a valuation overring W of $\operatorname{Kr}(S, \star)$ such that $N \cap S = Q$ by (2), where N is the maximal ideal of W. Set $V = W \cap G$. Then V is a

*-valuation oversemigroup of S containing S_Q by (3.6).

(3.9) Let \star be e.a.b., of finite type and $S = S^{\star}$ with $\star \neq e$. Let P be a \star -maximal ideal of S. Then P is the center of a minimal \star -valuation oversemigroup of S.

Proof. $\star_a = \star$ by (3.3)(3). By (3.8)(3), there is a maximal ideal M of $\operatorname{Kr}(S, \star)$ such that $M \cap S = P$. Set $W = \operatorname{Kr}(S, \star)_M$, and let N be the maximal ideal of W. Then $W \cap G = V$ is a \star -valuation oversemigroup of S, and P is the center of V in S. Suppose that there is a \star -valuation oversemigroup V' with $V' \subset V$, let v' be a valuation on G belonging to V', and let W' be the canonical extension of V', then W' is a valuation overring of $\operatorname{Kr}(S, \star)$. Let $0 \neq \varphi \in W'$. Then $\varphi = \frac{\sum a_i X^{\alpha_i}}{\sum b_j \beta_j}$, where each $\alpha_i, \beta_j \in V'$ with $\beta_{j_0} = 0$ for some j_0 . It follows that $\varphi \in W$. Hence W' = W, and V' = V.

(3.10) Assume that
$$e \neq \star = \star_f$$
.

- (1) $\tilde{\star} \leq (\tilde{\star}_a) = (\star_a)_{sp} \leq \star_a \text{ and } \tilde{\star} \leq (\tilde{\star})_a \leq \star_a.$
- (2) $\operatorname{Na}(S,\star) = \operatorname{Na}(S,\tilde{\star}) \subset \operatorname{Na}(S,(\star_a)) = \operatorname{Na}(S,\star_a) \subset \operatorname{Kr}(S,\star_a) = \operatorname{Kr}(S,\star).$
- (3) $\operatorname{Na}(S,\star) = \operatorname{Na}(S,\check{\star}) \subset \operatorname{Na}(S,(\check{\star})_a) \subset \operatorname{Kr}(S,(\check{\star})_a) = \operatorname{Kr}(S,\check{\star}) \subset \operatorname{Kr}(S,\star).$
- (4) For every $E \in \overline{F}(S)$,
- (a) $E^{(\star_a)} = E \operatorname{Na}(S, \star_a) \cap G \supset E \operatorname{Na}(S, \star) \cap G = E^{\tilde{\star}}.$
- (b) $E^{(\tilde{\star})_a} = E\operatorname{Kr}(S, \tilde{\star}) \cap G \subset E\operatorname{Kr}(S, \star) \cap G = E^{\star_a}.$

Proof. (1) Since $\star \leq \star_a$ by (3.4)(1), $\tilde{\star} \leq (\star_a)$ by [M3, $\S1,(2.7)(4)$]. Since \star_a is of finite type by (3.3)(1), $(\tilde{\star}_a) = ((\star_a)_f)_{sp} = (\star_a)_{sp}$. Since \star_a is quasi-spectral by [M3, $\S1,(3.16)$], $(\star_a)_{sp} \leq \star_a$ by [M3, $\S2,(1.2)$]. Since $\tilde{\star}$ is of finite type by [M3, $\S1,(2.6)$], $\tilde{\star} \leq (\tilde{\star})_a$ by (3.4)(1). Since $\tilde{\star} \leq \star$ by [M3, $\S1,(2.6)(3)$], $(\tilde{\star})_a \leq \star_a$ by (3.3)(4).

(2) By (2.6)(3), we have $\operatorname{Na}(S, \star) = \operatorname{Na}(S, \tilde{\star})$ and $\operatorname{Na}(S, \star_a) = \operatorname{Na}(S, (\star_a))$. By (1), $\operatorname{Na}(S, \tilde{\star}) \subset \operatorname{Na}(S, (\tilde{\star}_a))$.

(3) $\operatorname{Na}(S, \star) = \operatorname{Na}(S, \tilde{\star})$ by (2.6)(3). Since $\tilde{\star} \leq (\tilde{\star})_a$, $\operatorname{Na}(S, \tilde{\star}) \subset \operatorname{Na}(S, (\tilde{\star})_a)$. $\operatorname{Na}(S, (\tilde{\star})_a) \subset \operatorname{Kr}(S, (\tilde{\star})_a)$ by (3.4)(4). $\operatorname{Kr}(S, (\tilde{\star})_a) = \operatorname{Kr}(S, \tilde{\star})$ by (3.4)(2). Since $\tilde{\star} \leq \star$, $\operatorname{Kr}(S, \tilde{\star}) \subset \operatorname{Kr}(S, \star)$. (4) (a) Since $\star_f \leq \star_a$, $\operatorname{Na}(S, \star) \subset \operatorname{Na}(S, \star_a)$. $E^{\widetilde{(\star_a)}} = E\operatorname{Na}(S, \star_a) \cap G$ by (2.5)(3).

(b) From (3.4)(5) and from the fact $\tilde{\star} \leq \star$, we have $E^{(\tilde{\star})_a} = E\operatorname{Kr}(S, \tilde{\star}) \cap G \subset E\operatorname{Kr}(S, \star) \cap G = E^{\star_a}$.

(3.11) Proposition Assume that $\star \neq e$. The following conditions are equivalent.

- (1) $\tilde{\star} = (\star_a).$
- (2) $\mathcal{M}(\star_f) = \mathcal{M}(\star_a).$
- (3) $\operatorname{Na}(S, \star) = \operatorname{Na}(S, \star_a).$

Proof. (2) \Longrightarrow (1): Since \star_a is of finite type, $(\star_a)_f = \star_a$. By (1.9)(1), $\tilde{\star} = \star_{\mathcal{M}(\star_f)}$ and $\tilde{(\star_a)} = \star_{\mathcal{M}(\star_a)}$. (1) \Longrightarrow (2): Follows from (2.6)(2). (2) \Longrightarrow (3): By (2.1)(2), $N(\star) = N(\star_a)$. Hence Na(S, \star) = Na(S, \star_a). (3) \Longrightarrow (2): From (2.1)(5).

(3.12) Assume that $\star \neq e$. The following conditions are equivalent.

(1) $\star_a = (\tilde{\star})_a$.

(2) The set of $\tilde{\star}$ -valuation over semigroups of S coincides with the set of \star -valuation over semigroups of S.

(3) $\operatorname{Kr}(S, \tilde{\star}) = \operatorname{Kr}(S, \star).$ Moreover, each of the previous conditions implies (4) $\mathcal{M}(\star_a) = \mathcal{M}((\tilde{\star})_a).$

Proof. (2) \iff (3) follows from (3.6). (1) \implies (3): (3.4)(2) implies that $\operatorname{Kr}(S, \check{\star}) = \operatorname{Kr}(S, (\check{\star})_a) = \operatorname{Kr}(S, \star_a) = \operatorname{Kr}(S, \star)$. (1) \implies (4): Trivial. (3) \implies (1): By (3.4)(5), we have $E^{\star_a} = E\operatorname{Kr}(S, \star) \cap G$ and $E^{(\check{\star})_a} = E\operatorname{Kr}(S, \check{\star}) \cap G$.

By (3), we have $E^{\star_a} = E^{(\tilde{\star})_a}$. Hence $\star_a = (\tilde{\star})_a$.

(3.13) Proposition Let \star_1, \star_2 be semistar operations on S distinct with e. Then, Na $(S, \star_1) = Na(S, \star_2)$ if and only if $\mathcal{M}((\star_1)_f) = \mathcal{M}((\star_2)_f)$.

Proof. The necessity follows from (2.1)(5). The sufficiency follows from (2.1)(2).

Appendix

Let D be a domain, and let S be a g-monoid $\supseteq \{0\}$. Let D[X; S] be the semigroup ring of S over D. If \vec{Z}_0 is the non-negative integers, then $D[X; \vec{Z}_0] = D[X]$. After [FL1], we will define the Kronecker function ring $\operatorname{Kr}(D, \star, S)$ of D with respect to \star and S.

(1) (Dedekind-Mertens Lemma)(cf. [GP, 4.3.THEOREM]) Let $f, g \in D[X; S] - \{0\}$. Then there is a positive integer m such that $c(g)^{m+1}c(f) = c(g)^m c(fg)$.

(2) Let \star be a semistar operation on D. Let $f, g, f', g' \in D[X; S] - \{0\}$ with $\frac{f}{g} = \frac{f'}{g'}$ such that $(c(f)c(h))^{\star} \subset (c(g)c(h))^{\star}$ for some $h \in D[X; S] - \{0\}$. Then there is $h' \in D[X; S] - \{0\}$ such that $(c(f')c(h'))^{\star} \subset (c(g')c(h'))^{\star}$.

Proof. Then we have fg' = f'g. By (1), there is a positive integer *m* such that $c(g)^{m+1}c(f') = c(g)^m c(f'g), c(f)^{m+1}c(g') = c(f)^m c(fg').$ It follows that $\{c(g)^{m+1}c(f')\}c(f)^m = \{c(f)^{m+1}c(g')\}c(g)^m$. There is $h' \in D[X; S] - \{0\}$ such that $c(h') = (c(g)c(h))^{m+1}(c(f)c(h))^m$.

Then we have $\begin{aligned} c(f')c(h') &= \{c(g)^{m+1}c(f')c(f)^m\}c(h)^{2m+1} \\ &= \{c(f)^{m+1}c(g')c(g)^m\}c(h)^{2m+1} = (c(f)c(h))(c(f)c(h))^m(c(g)c(h))^mc(g') \\ &\subset (c(g)c(h))^*(c(f)c(h))^m(c(g)c(h))^mc(g') \subset (c(g')c(h'))^*. \end{aligned}$ Therefore $(c(f')c(h'))^* \subset (c(g')c(h'))^*.$

Set $\operatorname{Kr}(D, \star, S) = \{\frac{f}{g} \mid f, g \in D[X; S] - \{0\}$ such that $(c(f)c(h))^{\star} \subset (c(g)c(h))^{\star}$ for some $h \in D[X; S] - \{0\}\} \cup \{0\}$. (2) shows that $\operatorname{Kr}(D, \star, S)$ is a well-defined subset of q(D[X; S]).

(3) $\operatorname{Kr}(D, \star, S)$ is an integral domain with quotient field q(D[X; S]).

Proof. Let $\frac{f}{g}, \frac{f'}{g} \in \operatorname{Kr}(D, \star, S) - \{0\}$. Then there are $h, h' \in D[X; S] - \{0\}$ such that $(c(f)c(h))^{\star} \subset (c(g)c(h))^{\star}, (c(f')c(h'))^{\star} \subset (c(g)c(h'))^{\star}$. There is $k \in D[X; S] - \{0\}$ such that c(k) = c(h)c(h'). Then we have $(c(f)c(k))^{\star} \subset (c(g)c(k))^{\star}, (c(f')c(k))^{\star} \subset (c(g)c(k))^{\star}$. We may assume that $f + f' \neq 0$. Then it follows that $(c(f+f')c(k))^{\star} \subset (c(g)c(k))^{\star}$. Hence $\frac{f}{g} + \frac{f'}{g} \in \operatorname{Kr}(D, \star, S)$. Next, we have $c(g)^{m+2} = c(g)^m c(g^2)$ for some m. There is $k' \in D[X; S] - \{0\}$ such that $c(k') = c(g)^{m+2}c(k)^2$. Then we have

 $\begin{aligned} c(ff')c(k') &\subset \{c(f)c(f')\}\{c(g)^{m+2}c(k)^2\} \\ &= \{c(f)c(k)\}\{c(f')c(k)\}c(g)^{m+2} \subset ((c(g)c(k))^2)^*c(g)^{m+2} \\ &= ((c(g)c(k))^2)^*\{c(g)^mc(g^2)\} \subset (c(g^2)c(k'))^*. \end{aligned}$ Therefore $(c(ff')c(k'))^* \subset (c(g^2)c(k'))^*$, and hence $\frac{ff'}{a^2} \in \mathrm{Kr}(D, \star, S). \end{aligned}$

(4) $\operatorname{Kr}(D, \star, S)$ is a Bezout domain.

Proof. Set $R = \text{Kr}(D, \star, S)$, and let $h \in D[X; S] - \{0\}$ with Coef $(f) = \{c_1, \dots, c_n\}$. Then we have $hR = (c_1, \dots, c_n)R$.

Let ξ and η be non-zero elements of R. We let $\xi = \frac{f}{g}$ and $\eta = \frac{f'}{g}$ with $f, f', g \in D[X; S] - \{0\}$, and let $\operatorname{Coef}(f) \cup \operatorname{Coef}(f') = \{a_1, \cdots, a_n\}$ with $a_i \neq a_j$ for every $i \neq j$. Then we have, for an element $s \in S - \{0\}$,

$$(\xi,\eta)R = (\frac{1}{g})(f,f')R = (\frac{1}{g})(a_1,\cdots,a_n)R$$
$$= (\frac{1}{g})(a_1X^s + a_2X^{2s} + \cdots + a_nX^{ns})R.$$

Therefore $(\xi, \eta)R$ is a principal ideal of R.

The above proof is slightly defferent from the corresponding classical one (cf., for instance, [G1, (32.7) THEOREM]).

Let D be a domain with quotient field K, let \star be a semistar operation on D. A valuation overring V of D is said a \star -valuation overring if, for every $F \in f(D)$,

 $F^{\star} \subset FV$. The following similar result to [FL2, Theorem 3.5] is valid, and the proof is similar:

(5) **Proposition** Let \star be a semistar operation on D, and let V be a valuation overring of D. Then V is a \star -valuation overring if and only if there is a valuation overring W of $Kr(D, \star, S)$ such that $W \cap K = V$.

The author thanks to Professor Ken Nakane for his assistance over a long period of time.

REFERENCES

[BHo] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg. 30 (2002), 1591-1606.

[FHu] M. Fontana and J. Huckaba, Localizing systems and semistar operations, Non Noetherian Commutative Ring Theory, Dordrecht, Kluwer Academic Publishers, 2000, 169-197.

[FL1] M. Fontana and K.A. Loper, Kronecker function rings: a general approach, In: Ideal Theoretic Methods in Commutative Algebra, Lecture Notes Pure Appl. Math. 220, Marcel Dekker, 2001, 189-205.

[FL2] M. Fontana and K.A. Loper, A Krull-type theorem for the semistar integral closure of an integral domain, ASJE Theme Issue "Commutative Algebra" 26 (2001), 89-95.

[FL3] M. Fontana and K.A. Loper, Nagata rings, Kronecker function rings, and related semistar operations, Comm. Alg. 31(2003), 4775-4805.

[FP] M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (2005), 645-664.

[G1] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.

[G2] R. Gilmer, Commutive Semigroup Rings, The Univ. Chicago Press, 1984.

[GP] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.

[Ha] F. Halter-Koch, Kronecker function rings and generalized integral closures, Comm. Alg. 31 (2003), 45-59.

[HeHo] J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), 137-147.

[K] I. Kaplansky, Commutative Rings, The Univ. Chicago Press, 1974.

[M1] R. Matsuda, Multiplicative Ideal Theory for Semigroups, 2nd. ed., Kaisei, Tokyo, 2002.

[M2] R. Matsuda, Note on localizing systems and semistar operations, J. Commutative Algebra, to appear.

[M3] R. Matsuda, Note on localizing systems and semistar operations, II, Bull. Allahabad Math. Soc. 24(2009), to appear.

[O] A. Okabe, Note on a Fontana-Huckaba's open problem, JP J. Algebra, Number Theory and Appl. 5(1) (2005), 17-23.

[OM] A. Okabe and R. Matsuda, Kronecker function rings of semistar operations on semigroups, II, Math. J. Ibaraki Univ. 40(2008), 1-10.